1
|
Zhang Y, Ge Y, Wu S, Shao Y, Lu Y, Zhao X, Gu J, Wang Y. Superoxide anion-responsive persulfide and all-trans retinoic acid co-donating peptide assemblies attenuate myocardial ischemia-reperfusion injury. Biomaterials 2025; 320:123276. [PMID: 40120175 DOI: 10.1016/j.biomaterials.2025.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) has become a severe threat to human health due to its high mortality rate and poor prognosis. Mutually entangled issues including ROS over-production, excessive inflammatory responses, and myocardial apoptosis are involved during MIRI. Effective inhibition of ROS burst at the beginning of reperfusion has been proved as the key for MIRI treatment. In this work, we report a superoxide anion-responsive peptide co-assembly (S/A-P) capable of delivering the H2S donor (i.e., superoxide-responsive persulfide donor) and all-trans retinoic acid (ATRA) simultaneously for the treatment. Our results suggest that compared with its single peptidic counterparts, the as-prepared system can significantly lower ROS production and repair myocardial mitochondrial dysfunction due to the synergy effect from the persulfides/H2S and ATRA. Moreover, S/A-P can reduce excessive inflammatory response through regulating macrophage polarization, which is further mapped by RNA sequencing. In vivo assessment of the co-assembly also displays an excellent therapeutic effect of MIRI on rats. In terms of good biocompatibility and outstanding efficacy, we believe that S/A-P will have a bright future for the treatment of cardiovascular diseases or other related diseases.
Collapse
Affiliation(s)
- Yanwen Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxuan Ge
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiqi Wu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200125, China
| | - Yiyang Shao
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujia Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Yin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
3
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
4
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
5
|
Johnson TW, Holt J, Kleyman A, Zhou S, Sammut E, Bruno VD, Gaupp C, Stanzani G, Martin J, Arina P, Deutsch J, Ascione R, Singer M, Dyson A. Development and translation of thiometallate sulfide donors using a porcine model of coronary occlusion and reperfusion. Redox Biol 2024; 73:103167. [PMID: 38688060 PMCID: PMC11070758 DOI: 10.1016/j.redox.2024.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Sulfide-releasing compounds reduce reperfusion injury by decreasing mitochondria-derived reactive oxygen species production. We previously characterised ammonium tetrathiomolybdate (ATTM), a clinically used copper chelator, as a sulfide donor in rodents. Here we assessed translation to large mammals prior to clinical testing. In healthy pigs an intravenous ATTM dose escalation revealed a reproducible pharmacokinetic/pharmacodynamic (PK/PD) relationship with minimal adverse clinical or biochemical events. In a myocardial infarction (1-h occlusion of the left anterior descending coronary artery)-reperfusion model, intravenous ATTM or saline was commenced just prior to reperfusion. ATTM protected the heart (24-h histological examination) in a drug-exposure-dependent manner (r2 = 0.58, p < 0.05). Blood troponin T levels were significantly (p < 0.05) lower in ATTM-treated animals while myocardial glutathione peroxidase activity, an antioxidant selenoprotein, was elevated (p < 0.05). Overall, our study represents a significant advance in the development of sulfides as therapeutics and underlines the potential of ATTM as a novel adjunct therapy for reperfusion injury. Mechanistically, our study suggests that modulating selenoprotein activity could represent an additional mode of action of sulfide-releasing drugs.
Collapse
Affiliation(s)
- Thomas W Johnson
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - James Holt
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Shengyu Zhou
- Institute of Pharmaceutical Science, King's College London, London, UK; Centre for Pharmaceutical Medicine Research, King's College London, London, UK
| | - Eva Sammut
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Vito Domenico Bruno
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Charlotte Gaupp
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Giacomo Stanzani
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - John Martin
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Pietro Arina
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Julia Deutsch
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Raimondo Ascione
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK; Institute of Pharmaceutical Science, King's College London, London, UK; Centre for Pharmaceutical Medicine Research, King's College London, London, UK.
| |
Collapse
|
6
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
7
|
Łoboda A, Dulak J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024; 13:158. [PMID: 38247849 PMCID: PMC10814317 DOI: 10.3390/cells13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland;
| | | |
Collapse
|
8
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
9
|
Testai L, Montanaro R, Flori L, Pagnotta E, Vellecco V, Gorica E, Ugolini L, Righetti L, Brancaleone V, Bucci M, Piragine E, Martelli A, Di Cesare Mannelli L, Ghelardini C, Calderone V. Persulfidation of mitoKv7.4 channels contributes to the cardioprotective effects of the H 2S-donor Erucin against ischemia/reperfusion injury. Biochem Pharmacol 2023; 215:115728. [PMID: 37524208 DOI: 10.1016/j.bcp.2023.115728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a gasotransmitter deeply involved in cardiovascular homeostasis and implicated in the myocardial protection against ischemia/reperfusion. The post-translational persulfidation of cysteine residues has been identified as the mechanism through which H2S regulates a plethora of biological targets. Erucin (ERU) is an isothiocyanate produced upon hydrolysis of the glucosinolate glucoerucin, presents in edible plants of Brassicaceae family, such as Eruca sativa Mill., and it has emerged as a slow and long-lasting H2S-donor. AIM In this study the cardioprotective profile of ERU has been investigated and the action mechanism explored, focusing on the possible role of the recently identified mitochondrial Kv7.4 (mitoKv7.4) potassium channels. RESULTS Interestingly, ERU showed to release H2S and concentration-dependently protected H9c2 cells against H2O2-induced oxidative damage. Moreover, in in vivo model of myocardial infarct ERU showed protective effects, reducing the extension of ischemic area, the levels of troponin I and increasing the amount of total AnxA1, as well as co-related inflammatory outcomes. Conversely, the pre-treatment with XE991, a blocker of Kv7.4 channels, abolished them. In isolated cardiac mitochondria ERU exhibited the typical profile of a mitochondrial potassium channels opener, in particular, this isothiocyanate produced a mild depolarization of mitochondrial membrane potential, a reduction of calcium accumulation into the matrix and finally a flow of potassium ions. Finally, mitoKv7.4 channels were persulfidated in ERU-treated mitochondria. CONCLUSIONS ERU modulates the cardiac mitoKv7.4 channels and this mechanism may be relevant for cardioprotective effects.
Collapse
Affiliation(s)
- L Testai
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy.
| | - R Montanaro
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - L Flori
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - E Pagnotta
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - V Vellecco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - E Gorica
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - L Ugolini
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - L Righetti
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - V Brancaleone
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - M Bucci
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - E Piragine
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - A Martelli
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - L Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - C Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - V Calderone
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Brown EM, Grace JP, Ranasinghe Arachchige NPR, Bowden NB. Synthesis of Sulfur-35-Labeled Trisulfides and GYY-4137 as Donors of Radioactive Hydrogen Sulfide. ACS OMEGA 2023; 8:27576-27584. [PMID: 37546638 PMCID: PMC10399151 DOI: 10.1021/acsomega.3c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Hydrogen sulfide has emerged as a key gasotransmitter in humans and in plants, and the addition of exogenous hydrogen sulfide has many beneficial effects in vivo and in vitro. A challenge in investigating the effect of exogenous hydrogen sulfide is tracking the location of exogenous hydrogen sulfide on an organism and cellular level. In this article, we report the synthesis of three key chemicals (cysteine trisulfide, glutathione trisulfide, and GYY-4137) that release radiolabeled 35S as hydrogen sulfide. The synthesis started with the reduction of Na235SO4 mixed with Na2SO4 to generate hydrogen sulfide gas that was trapped with aq NaOH to yield radiolabeled Na2S. The Na2S was converted in one step to GYY-4137 at 65% yield. It was also converted to bis(tributyltin) sulfide that readily reacted with N-bromophthalimide to yield a monosulfur transfer reagent. Trisulfides were synthesized by reaction with the monosulfur transfer reagent and the corresponding thiols. The levels of radioactivity of the final products could be varied on a per gram basis to alter the radioactivity for applications that require different loadings of hydrogen sulfide donors.
Collapse
|
11
|
Farag A, Mandour AS, Hendawy H, Elhaieg A, Elfadadny A, Tanaka R. A review on experimental surgical models and anesthetic protocols of heart failure in rats. Front Vet Sci 2023; 10:1103229. [PMID: 37051509 PMCID: PMC10083377 DOI: 10.3389/fvets.2023.1103229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Heart failure (HF) is a serious health and economic burden worldwide, and its prevalence is continuously increasing. Current medications effectively moderate the progression of symptoms, and there is a need for novel preventative and reparative treatments. The development of novel HF treatments requires the testing of potential therapeutic procedures in appropriate animal models of HF. During the past decades, murine models have been extensively used in fundamental and translational research studies to better understand the pathophysiological mechanisms of HF and develop more effective methods to prevent and control congestive HF. Proper surgical approaches and anesthetic protocols are the first steps in creating these models, and each successful approach requires a proper anesthetic protocol that maintains good recovery and high survival rates after surgery. However, each protocol may have shortcomings that limit the study's outcomes. In addition, the ethical regulations of animal welfare in certain countries prohibit the use of specific anesthetic agents, which are widely used to establish animal models. This review summarizes the most common and recent surgical models of HF and the anesthetic protocols used in rat models. We will highlight the surgical approach of each model, the use of anesthesia, and the limitations of the model in the study of the pathophysiology and therapeutic basis of common cardiovascular diseases.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Ahmed Farag
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Ahmed S. Mandour
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Ryou Tanaka
| |
Collapse
|
12
|
Domán A, Dóka É, Garai D, Bogdándi V, Balla G, Balla J, Nagy P. Interactions of reactive sulfur species with metalloproteins. Redox Biol 2023; 60:102617. [PMID: 36738685 PMCID: PMC9926313 DOI: 10.1016/j.redox.2023.102617] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Reactive sulfur species (RSS) entail a diverse family of sulfur derivatives that have emerged as important effector molecules in H2S-mediated biological events. RSS (including H2S) can exert their biological roles via widespread interactions with metalloproteins. Metalloproteins are essential components along the metabolic route of oxygen in the body, from the transport and storage of O2, through cellular respiration, to the maintenance of redox homeostasis by elimination of reactive oxygen species (ROS). Moreover, heme peroxidases contribute to immune defense by killing pathogens using oxygen-derived H2O2 as a precursor for stronger oxidants. Coordination and redox reactions with metal centers are primary means of RSS to alter fundamental cellular functions. In addition to RSS-mediated metalloprotein functions, the reduction of high-valent metal centers by RSS results in radical formation and opens the way for subsequent per- and polysulfide formation, which may have implications in cellular protection against oxidative stress and in redox signaling. Furthermore, recent findings pointed out the potential role of RSS as substrates for mitochondrial energy production and their cytoprotective capacity, with the involvement of metalloproteins. The current review summarizes the interactions of RSS with protein metal centers and their biological implications with special emphasis on mechanistic aspects, sulfide-mediated signaling, and pathophysiological consequences. A deeper understanding of the biological actions of reactive sulfur species on a molecular level is primordial in H2S-related drug development and the advancement of redox medicine.
Collapse
Affiliation(s)
- Andrea Domán
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Éva Dóka
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary,Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary
| | - Virág Bogdándi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - György Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary
| | - József Balla
- Kálmán Laki Doctoral School, University of Debrecen, 4012, Debrecen, Hungary,ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, 4012, Debrecen, Hungary,Department of Nephrology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary.
| |
Collapse
|
13
|
Chen X, Zhu L, Wang X, Xiao J. Insight into Heart-Tailored Architectures of Hydrogel to Restore Cardiac Functions after Myocardial Infarction. Mol Pharm 2023; 20:57-81. [PMID: 36413809 DOI: 10.1021/acs.molpharmaceut.2c00650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With permanent heart muscle injury or death, myocardial infarction (MI) is complicated by inflammatory, proliferation and remodeling phases from both the early ischemic period and subsequent infarct expansion. Though in situ re-establishment of blood flow to the infarct zone and delays of the ventricular remodeling process are current treatment options of MI, they fail to address massive loss of viable cardiomyocytes while transplanting stem cells to regenerate heart is hindered by their poor retention in the infarct bed. Equipped with heart-specific mimicry and extracellular matrix (ECM)-like functionality on the network structure, hydrogels leveraging tissue-matching biomechanics and biocompatibility can mechanically constrain the infarct and act as localized transport of bioactive ingredients to refresh the dysfunctional heart under the constant cyclic stress. Given diverse characteristics of hydrogel including conductivity, anisotropy, adhesiveness, biodegradability, self-healing and mechanical properties driving local cardiac repair, we aim to investigate and conclude the dynamic balance between ordered architectures of hydrogels and the post-MI pathological milieu. Additionally, our review summarizes advantages of heart-tailored architectures of hydrogels in cardiac repair following MI. Finally, we propose challenges and prospects in clinical translation of hydrogels to draw theoretical guidance on cardiac repair and regeneration after MI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Rong F, Wang T, Zhou Q, Peng H, Yang J, Fan Q, Li P. Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications. Bioact Mater 2023; 19:198-216. [PMID: 35510171 PMCID: PMC9034248 DOI: 10.1016/j.bioactmat.2022.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) plays an important role in regulating various pathological processes such as protecting mammalian cell from harmful injuries, promoting tissue regeneration, and regulating the process of various diseases caused by physiological disorders. Studies have revealed that the physiological effects of H2S are highly associated with its concentrations. At relatively low concentration, H2S shows beneficial functions. However, long-time and high-dose donation of H2S would inhibit regular biological process, resulting in cell dysfunction and apoptosis. To regulate the dosage of H2S delivery for precision medicine, H2S delivery systems with intelligent characteristics were developed and a variety of biocompatibility polymers have been utilized to establish intelligent polymeric H2S delivery systems, with the abilities to specifically target the lesions, smartly respond to pathological microenvironments, as well as real-timely monitor H2S delivery and lesion conditions by incorporating imaging-capable moieties. In this review, we focus on the design, preparation, and therapeutic applications of intelligent polymeric H2S delivery systems in cardiovascular therapy, inflammatory therapy, tissue regenerative therapy, cancer therapy and bacteria-associated therapy. Strategies for precise H2S therapies especially imaging-guided H2S theranostics are highlighted. Since H2S donors with stimuli-responsive characters are vital components for establishing intelligent H2S delivery systems, the development of H2S donors is also briefly introduced. H2S is an endogenous gasotransmitter that plays important role in regulating various physiological and pathological pathways. Controlled H2S delivery is vital since the therapeutic effects of H2S are highly associated with its concentrations. Intelligent polymeric H2S delivery systems possess specific targeting, stimuli responsive and imaging guided capabilities, representing a strategic option for next generation of therapies.
Collapse
|
15
|
Zhang X, Liu W. Engineering Injectable Anti‐Inflammatory Hydrogels to Treat Acute Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoping Zhang
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
16
|
A ROS-responsive, self-immolative and self-reporting hydrogen sulfide donor with multiple biological activities for the treatment of myocardial infarction. Bioact Mater 2021; 9:168-182. [PMID: 34820564 PMCID: PMC8586025 DOI: 10.1016/j.bioactmat.2021.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI), as one of the leading causes of global death, urgently needs effective therapies. Recently, hydrogen sulfide (H2S) has been regarded as a promising therapeutic agent for MI, while its spatiotemporally controlled delivery remains a major issue limiting clinical translation. To address this limitation, we designed and synthesized a novel H2S donor (HSD-R) that can produce H2S and emit fluorescence in response to reactive oxygen species (ROS) highly expressed at diseased sites. HSD-R can specifically target mitochondria and provide red fluorescence to visualize and quantify H2S release in vitro and in vivo. Therapeutically, HSD-R significantly promoted the reconstruction of cardiac structure and function in a rat MI model. Mechanistically, myocardial protection is achieved by reducing cardiomyocyte apoptosis, attenuating local inflammation, and promoting angiogenesis. Furthermore, inhibition of typical pro-apoptotic genes (Bid, Apaf-1, and p53) played an important role in the anti-apoptotic effect of HSD-R to achieve cardioprotection, which were identified as new therapeutic targets of H2S against myocardial ischemia injury. This ROS-responsive, self-immolative, and fluorescent H2S donor can serve as a new theranostic agent for MI and other ischemic diseases. A reactive oxygen species-responsive and self-reporting H2S donor (HSD-R) is developed for controlled H2S delivery. HSD-R shows desirable fluorescence for imaging H2S release upon triggering by reactive oxygen species. HSD-R displays significant cardioprotective effects in rats. HSD-R exhibits multiple biological activities including anti-apoptotic, anti-inflammatory, and pro-angiogenic effects. Anti-apoptotic activity of HSD-R is due to inhibiting the expression of several pro-apoptotic factors.
Collapse
|
17
|
Wu D, Gu Y, Zhu D. Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 24:875. [PMID: 34726247 DOI: 10.3892/mmr.2021.12515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022] Open
Abstract
Ischemic heart disease is one of the major causes of cardiovascular‑related mortality worldwide. Myocardial ischemia can be attenuated by reperfusion that restores the blood supply. However, injuries occur during blood flow restoration that induce cardiac dysfunction, which is known as myocardial ischemia‑reperfusion injury (MIRI). Hydrogen sulfide (H2S), the third discovered endogenous gasotransmitter in mammals (after NO and CO), participates in various pathophysiological processes. Previous in vitro and in vivo research have revealed the protective role of H2S in the cardiovascular system that render it useful in the protection of the myocardium against MIRI. The cardioprotective effects of H2S in attenuating MIRI are summarized in the present review.
Collapse
Affiliation(s)
- Dan Wu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yijing Gu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Deqiu Zhu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
18
|
Grace J, Bowden NB. Synthesis and Hydrogen Sulfide Releasing Properties of Diaminodisulfides and Dialkoxydisulfides. ACS OMEGA 2021; 6:17741-17747. [PMID: 34278160 PMCID: PMC8280695 DOI: 10.1021/acsomega.1c02585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Heterosubstituted disulfides are an understudied class of molecules that have been used in biological studies, but they have not been investigated for their ability to release hydrogen sulfide (H2S). The synthesis of two sets of chemicals with the diaminodisulfide (NSSN) and dialkoxydisulfide (OSSO) functional groups was reported. These chemicals were synthesized from commercially available sulfur monochloride or a simple disulfur transfer reagent. Both the diaminodisulfide and dialkoxydisulfide functional groups were found to have rapid rates of H2S release in the presence of excess thiol. The release of H2S was complete with 10 min, and the only byproducts were conversion of the thiols into disulfides and the amines or alcohols originally used in the synthesis of the diaminodisulfide or dialkoxydisulfide functional groups. These results will allow the design of H2S releasing chemicals that also release natural, biocompatible alcohols or amines. Chemicals with the diaminodisulfide and dialkoxydisulfide functional groups may find applications in medicine where a controlled, burst release of H2S is needed.
Collapse
|
19
|
Zhang ML, Peng W, Ni JQ, Chen G. Recent advances in the protective role of hydrogen sulfide in myocardial ischemia/reperfusion injury: a narrative review. Med Gas Res 2021; 11:83-87. [PMID: 33818448 PMCID: PMC8130667 DOI: 10.4103/2045-9912.311499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is recognized to be a novel mediator after carbon monoxide and nitric oxide in the organism. It can be produced in various mammalian tissues and exert many physiological effects in many systems including the cardiovascular system. A great amount of recent studies have demonstrated that endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) provide protection in many cardiovascular diseases, such as ischemia/reperfusion injury, heart failure, cardiac hypertrophy, and atherosclerosis. In recent years, many mechanisms have been proposed and verified the protective role exhibited by H2S against myocardial ischemia/reperfusion injury, and this review is to demonstrate the protective role of exogenous and endogenous H2S on myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Meng-Ling Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wei Peng
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Qiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
20
|
Huang K, Wen S, Wang W, Zhou JE, Huang J, Wang F, Pang L, Wang Y, Sun X. Erythrocyte membrane coated nanoparticle-based control releasing hydrogen sulfide system protects ischemic myocardium. Nanomedicine (Lond) 2021; 16:465-480. [PMID: 33599532 DOI: 10.2217/nnm-2020-0404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To construct a long circulatory and sustained releasing H2S system and explore its protective effects on myocardial ischemia and reperfusion (I/R) injury. Materials & methods: Red blood cell (RBC) membrane-coated, diallyl trisulfide (DATS)-carrying mesoporous iron oxide nanoparticles (MIONs) (RBC-DATS-MIONs) were prepared and characterized. Cytotoxicity and cellular uptake were studied in vitro, followed by in vivo assessment of safety, distribution and effect on cardiac function following I/R injury. Results: RBC-DATS-MIONs exhibited excellent biocompatibility, extended circulatory time and controlled-release of H2S in plasma and myocardium. They exhibited superior therapeutic effects on in vitro hypoxia/reoxygenation models and in vivo myocardial I/R models, which involved various mechanisms, including anti-apoptosis, anti-inflammatory and antioxidant activities. Conclusion: This work provides a new potential platform for best utilizing the protective effects of H2S by prolonging its releasing process.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Shuyan Wen
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wenshuo Wang
- Department of Cardic Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jing-E Zhou
- Institute of Biomedical Engineering, Technology, Shanghai Engineering Research Center of Molecular Therapeutics, New Drug Development, School of Chemistry, Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiechun Huang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Fangrui Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Liewen Pang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yiqing Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
21
|
Zhang P, Yu Y, Wang P, Shen H, Ling X, Xue X, Yang Q, Zhang Y, Xiao J, Wang Z. Role of Hydrogen Sulfide in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Pharmacol 2021; 77:130-141. [PMID: 33165141 DOI: 10.1097/fjc.0000000000000943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S), generally known as a new gas signal molecule after nitric oxide and carbon monoxide, has been found as an important endogenous gasotransmitter in the last few decades, and it plays a significant role in the cardiovascular system both pathologically and physiologically. In recent years, there is growing evidence that H2S provides myocardial protection against myocardial ischemia-reperfusion injury (MIRI), which resulted in an ongoing focus on the possible mechanisms of action accounting for the H2S cardioprotective effect. At present, lots of mechanisms of action have been verified through in vitro and in vivo models of I/R injury, such as S-sulfhydrated modification, antiapoptosis, effects on microRNA, bidirectional effect on autophagy, antioxidant stress, or interaction with NO and CO. With advances in understanding of the molecular pathogenesis of MIRI and pharmacology studies, the design, the development, and the pharmacological characterization of H2S donor drugs have made great important progress. This review summarizes the latest research progress on the role of H2S in MIRI, systematically explains the molecular mechanism of H2S affecting MIRI, and provides a new idea for the formulation of a myocardial protection strategy in the future.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Yue Yu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Pei Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Hua Shen
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xinyu Ling
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Xiaofei Xue
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Qian Yang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Yufeng Zhang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China; and
| |
Collapse
|
22
|
Jeremic JN, Jakovljevic VL, Zivkovic VI, Srejovic IM, Bradic JV, Milosavljevic IM, Mitrovic SL, Jovicic NU, Bolevich SB, Svistunov AA, Tyagi SC, Jeremic NS. Garlic Derived Diallyl Trisulfide in Experimental Metabolic Syndrome: Metabolic Effects and Cardioprotective Role. Int J Mol Sci 2020; 21:ijms21239100. [PMID: 33265949 PMCID: PMC7730157 DOI: 10.3390/ijms21239100] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023] Open
Abstract
This study aimed to examine the effects of diallyl trisulfide (DATS), the most potent polysulfide derived from garlic, on metabolic syndrome and myocardial function in rats with metabolic syndrome (MetS). For that purpose, we used 36 male Wistar albino rats divided into control rats, rats with MetS and MetS rats treated with 40 mg/kg of DATS every second day for 3 weeks. In the first part, we studied the impact of DATS on MetS control and found that DATS significantly raised H2S, decreased homocysteine and glucose levels and enhanced lipid and antioxidative, while reducing prooxidative parameters. Additionally, this polysulfide improved cardiac function. In the second part, we investigated the impact of DATS on ex vivo induced ischemia/reperfusion (I/R) heart injury and found that DATS consumption significantly improved cardiodynamic parameters and prevented oxidative and histo-architectural variation in the heart. In addition, DATS significantly increased relative gene expression of eNOS, SOD-1 and -2, Bcl-2 and decreased relative gene expression of NF-κB, IL-17A, Bax, and caspases-3 and -9. Taken together, the data show that DATS can effectively mitigate MetS and have protective effects against ex vivo induced myocardial I/R injury in MetS rat.
Collapse
Affiliation(s)
- Jovana N. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Vladimir I. Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (V.L.J.); (V.I.Z.); (I.M.S.)
| | - Jovana V. Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Isidora M. Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
| | - Slobodanka Lj. Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Nemanja U. Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Sergey B. Bolevich
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Andrey A. Svistunov
- Research Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, 119991 Moscow, Russia;
| | - Suresh C. Tyagi
- Department of Physiology, School of Medicine, University of Louisville, 500 S Preston Street, Louisville, KY 40202, USA;
| | - Nevena S. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.N.J.); (J.V.B.); (I.M.M.)
- Department of Physiology, School of Medicine, University of Louisville, 500 S Preston Street, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +381-64-7019794
| |
Collapse
|
23
|
Interplay of pro-inflammatory cytokines, pro-inflammatory microparticles and oxidative stress and recurrent ventricular arrhythmias in elderly patients after coronary stent implantations. Cytokine 2020; 137:155345. [PMID: 33137563 DOI: 10.1016/j.cyto.2020.155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The roles of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress were unknown in elderly patients with recurrent ventricular arrhythmias (VA). We evaluated whether cross talk between oxidative stress, pro-inflammatory microparticles, and pro-inflammatory cytokines play the roles in elderly patients with recurrent VA after coronary stenting. This research sought to investigate the effects of oxidative stress, pro-inflammatory microparticles, and pro-inflammatory cytokines on recurrent VA in elderly patients after coronary stenting. METHODS In this study, we included 613 consecutive elderly patients with recurrent ventricular arrhythmias induced by coronary reocclusions after coronary stenting. We measured CD31+ endothelial microparticle (CD31+EMP), CD62E+ endothelial microparticle (CD62E+EMP), high-sensitivity C-reactive protein (hs-CRP), aldosterone (ALD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), soluble tumor necrosis factor receptor-1 (sTNFR-1) and soluble tumor necrosis factor receptor-2 (sTNFR-2) in elderly patients with recurrent VA and assessed impacts of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress on recurrent VA in elderly patients after coronary stenting. RESULTS The levels of CD31+EMP, CD62E+EMP, hs-CRP, ALD, MDA, TNF-α, sTNFR-1 and sTNFR-2 were increased in recurrent malignant ventricular arrhythmia, sustained ventricular tachycardia, multiple ventricular premature beat and left and right ventricular bundle branch block groups (P < 0.001) in elderly patients with coronary reocclusions after coronary stent implantation. Upregulation of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress markers induced recurrent VA in elderly patients after coronary stenting. CONCLUSIONS High levels of pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress markers were associated with recurrent VA in elderly patients after coronary stenting. Our results suggested that the pro-inflammatory microparticles, pro-inflammatory cytokines and oxidative stress may simultaneously induce and aggravate recurrent VA in elderly patients after coronary stenting.
Collapse
|
24
|
Han L, Wu G, Feng C, Yang Y, Li B, Ge Y, Jiang Y, Shi Y, Le G. Dietary methionine restriction improves the impairment of cardiac function in middle-aged obese mice. Food Funct 2020; 11:1764-1778. [PMID: 32044910 DOI: 10.1039/c9fo02819f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dietary methionine restriction (MR) has been reported to extend lifespan, reduce obesity and decrease oxidative damage to mtDNA in the heart of rats, and increase endogenous hydrogen sulfide (H2S) production in the liver and blood. H2S has many potential benefits in the pathophysiology of the cardiovascular system. MR also increases the level of homocysteine (Hcy) in the liver and plasma, but elevated plasma Hcy is a risk factor for cardiovascular disease. Therefore, this study aimed to determine the effect of MR on cardiac function and metabolic status in obese middle-aged mice and its possible mechanisms. C57BL/6J mice (aged approximately 28 weeks) were divided into six dietary groups: CON (0.86% methionine + 4% fat), CMR40 (0.52% methionine + 4% fat), CMR80 (0.17% methionine + 4% fat), HFD (0.86% methionine + 24% fat), HMR40 (0.52% methionine + 24% fat) and HMR80 (0.17% methionine + 24% fat) for 15 consecutive weeks. Our results showed that 80% MR improves systolic dysfunction in middle-aged obese mice and enhances myocardial energy metabolism. 80% MR also reduces myocardial oxidative stress and improves inflammatory response. In addition, 80% MR increased mice Hcy levels and activated remethylation and transsulfur pathways of Hcy and promoted endogenous H2S production in the heart. 40% MR has the same trend, but is not significant. Moreover 40% MR at variance with 80% MR, did not decrease the body weight in both control and high-fat diet mice. These findings suggest that MR can improve myocardial energy metabolism, reduce heart inflammation and oxidative stress by increasing cardiac H2S production, and improve cardiac dysfunction in middle-aged obese mice.
Collapse
Affiliation(s)
- Le Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoqin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxin Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuhui Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yueting Ge
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuge Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Safety and Tolerability of Sodium Thiosulfate in Patients with an Acute Coronary Syndrome Undergoing Coronary Angiography: A Dose-Escalation Safety Pilot Study (SAFE-ACS). J Interv Cardiol 2020; 2020:6014915. [PMID: 33041696 PMCID: PMC7532357 DOI: 10.1155/2020/6014915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background In animal studies, hydrogen sulfide (H2S) has been shown to protect the heart from ischemia-reperfusion injury. This study evaluates the safety and tolerability of the H2S donor sodium thiosulfate (STS) in patients with acute coronary syndrome (ACS). Methods Eighteen patients, undergoing coronary angiography for ACS, received STS intravenously immediately after arrival at the catheterization laboratory according to a “3 + 3 dose-escalation design” with fixed dosing endpoint (0, 2.5, 5, 10, 12.5, and 15 grams). This first dose STS was combined with verapamil and nitroglycerin required for transradial procedures. A second dose STS was administered 6 hours later. Primary endpoint was dose-limiting toxicity, defined as significant hemodynamic instability or death up to 24 hours or before discharge from the coronary care unit. Secondary outcomes included the occurrence of anaphylaxis, nausea, vomiting, and systolic blood pressure (SBP) course. Results Sixteen patients received two dosages of STS and two patients one dosage. None of the patients reached the primary endpoint, nor experienced a serious adverse event. We observed a clinically well-tolerated decline in SBP 1 hour after administration of the first STS dose and concomitant verapamil/nitroglycerin. SBP for all patients together reduced 16.8 (8.1–25.5) mmHg (P = 0.0008). No significant decline in SBP occurred after the second dose. Mild nausea was observed in one patient. Conclusion This is the first report on sodium thiosulfate administration in patients with acute coronary syndromes. Our data suggest that sodium thiosulfate was well tolerated in this setting. The potential benefit of this intervention has to be examined in larger studies.
Collapse
|
26
|
Mukhopadhyay M, Bera AK. Modulation of acid-sensing ion channels by hydrogen sulfide. Biochem Biophys Res Commun 2020; 527:71-75. [PMID: 32446393 DOI: 10.1016/j.bbrc.2020.04.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 01/30/2023]
Abstract
Acid-sensing ion channels (ASICs) have been implicated in many physiological and patho-physiological processes like synaptic plasticity, inflammation, pain perception, stroke-induced brain damage and, drug-seeking behaviour. Although ASICs have been shown to be modulated by gasotransmitters like nitric oxide (NO), their regulation by hydrogen sulfide (H2S) is not known. Here, we present strong evidence that H2S potentiates ASICs-mediated currents. Low pH-induced current in Chinese hamster ovary (CHO) cells, expressing homomeric either ASIC1a, ASIC2a or ASIC3, increased significantly by an H2S donor NaHS. The effect was reversed by washing the cells with NaHS-free external solution of pH 7.4. MTSES, a membrane impermeable cysteine thiol-modifier failed to abrogate the effect of NaHS on ASIC1a, suggesting that the target cysteine residues are not in the extracellular region of the channel. The effect of NaHS is not mediated through NO, as the basal NO level in cells did not change following NaHS application. This previously unknown mechanism of ASICs-modulation by H2S adds a new dimension to the ASICs in health and disease.
Collapse
Affiliation(s)
- Mohona Mukhopadhyay
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
27
|
Chen Y, Zhang F, Yin J, Wu S, Zhou X. Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol 2020; 235:9059-9070. [PMID: 32542668 DOI: 10.1002/jcp.29761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2 S), which has been identified as the third gaseous signaling molecule after nitric oxide (NO) and carbon monoxide (CO), plays an important role in maintaining homeostasis in the cardiovascular system. Endogenous H2 S is produced mainly by three endogenous enzymes: cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfur transferase. Numerous studies have shown that H2 S has a significant protective role in myocardial ischemia. The mechanisms by which H2 S affords cardioprotection include the antifibrotic and antiapoptotic effects, regulation of ion channels, protection of mitochondria, reduction of oxidative stress and inflammatory response, regulation of microRNA expression, and promotion of angiogenesis. Amplification of NO- and CO-mediated signaling through crosstalk between H2 S, NO, and CO may also contribute to the cardioprotective effect. Exogenous H2 S donors are expected to become effective drugs for the treatment of cardiovascular diseases. This review article focuses on the protective mechanisms and potential therapeutic applications of H2 S in myocardial ischemia.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Siyi Wu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Huang H, Qing X, Li H. Isoflurane Preconditioning Protects the Myocardium Against Ischemia and Reperfusion Injury by Upregulating GRM1 Expression. Curr Neurovasc Res 2020; 17:171-176. [PMID: 32048972 DOI: 10.2174/1567202617666200212104453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Reduction in myocardial I/R injury has become the key to the therapy of ischemic cardiovascular disease. Isoflurane (ISO) preconditioning can mimic the major potent protective mechanisms and attenuate ischemia injury. Nevertheless, the mechanisms involved in the cardioprotective effects afforded by isoflurane preconditioning have never been evaluated systematically. METHODS Mice were randomly divided into an ISO preconditioning group and control group. The size of the infarcted region was measured, and comparisons between ISO preconditioning and control animals were made. The metabotropic glutamate receptor type 1(GRM1) expression levels in all groups were determined by quantitative PCR. GRM1 protein expression and DNA damage relative protein γ-H2AX were measured by western blot analysis. The oxidative stress was detected by immunofluorescence after staining with the Dihydroethidium (DHE). RESULTS ISO preconditioning significantly reduced the IR induced infarct volumes and reversed the GRM1 protein expression level in I/R induced myocardial injury. Moreover, ISO preconditioning has a protective effect in reducing the I/R induced DNA damage and oxidative stress. CONCLUSION The results of the present study have demonstrated that the expression of GRM1 provides a protective role in ISO preconditioning against I/R-induced myocardial infarction by reducing the oxidative stress and DNA damage.
Collapse
Affiliation(s)
- He Huang
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu City, Sichuan Province, 610041, China
| | - Xiaoyan Qing
- Department of Oncology, Chengdu Seventh People's Hospital, Chengdu City, Sichuan Province, 610041, China
| | - Handan Li
- Department of Anesthesiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu City, Sichuan Province, 610041, China
| |
Collapse
|
29
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
30
|
Hydrogen Sulfide Attenuates High Glucose-induced Myocardial Injury in Rat Cardiomyocytes by Suppressing Wnt/beta-catenin Pathway. Curr Med Sci 2019; 39:938-946. [PMID: 31845225 DOI: 10.1007/s11596-019-2120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/08/2019] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major heart complications of diabetic patients. Hydrogen sulfide (H2S) is now recognized as an important signaling molecule and has been shown to attenuate the development of diabetic cardiomyopathy. However, the underlying mechanisms linking H2S and the development of DCM have not been fully elucidated. In the present study, we therefore sought to explore the role and mechanism of H2S in the pathogenesis of DCM by establishing high glucose-induced injury model in neonatal rat cardiomyocytes (NRCMs) and H9c2 cells. Using cystathionine gamma-lyase (CSE) overexpression and CSE interference vectors transfection, the cell viability, cell apoptosis. and oxidative stress were determined and compared between the treatment of high glucose induction and exgenous NaHS administration. Meanwhile, the relationship between the CSE/H2S system and Wnt/beta-catenin pathway was analyzed and discussed in the high glucose-induced cardiomyocytes. Our results indicated that H2S played an important protective role in high glucose-induced apoptosis and oxidative stress in cardiomyocytes, as shown by the decreased reactive oxygen species and malondialdehyde levels, and the increased activities of superoxide dismutase, catalase and glutathione peroxidase. Moreover, H2S could attenuate the Wnt/β-catenin signalling pathway and up-regulate the expression of haem oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the diabetic myocardium cells. Together, these results demonstrated that H2S could attenuate high glucose-induced myocardial injury in rat cardiomyocytes by suppressing Wnt/β-catenin pathway.
Collapse
|
31
|
Xu W, Zhang L, Zhang Y, Zhang K, Wu Y, Jin D. TRAF1 Exacerbates Myocardial Ischemia Reperfusion Injury via ASK1-JNK/p38 Signaling. J Am Heart Assoc 2019; 8:e012575. [PMID: 31650881 PMCID: PMC6898833 DOI: 10.1161/jaha.119.012575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background After acute myocardial infarction, the recovery of ischemic myocardial blood flow may cause myocardial reperfusion injury, which reduces the efficacy of myocardial reperfusion. Ways to reduce and prevent myocardial ischemia/reperfusion (I/R) injury are of great clinical significance in the treatment of patients with acute myocardial infarction. TRAF1 (tumor necrosis factor receptor-associated factor 1) is an important adapter protein that is implicated in molecular events regulating immunity, inflammation, and cell death. Little is known about the role and impact of TRAF1 in myocardial I/R injury. Methods and Results TRAF1 expression is markedly induced in wild-type mice and cardiomyocytes after I/R or hypoxia/reoxygenation stimulation. I/R models were established in TRAF1 knockout mice and wild type mice (n=10 per group). We demonstrated that TRAF1 deficiency protects against myocardial I/R-induced loss of heat function, inflammation, and cardiomyocyte death. In addition, overexpression of TRAF1 in primary cardiomyocytes promotes hypoxia/reoxygenation-induced inflammation and apoptosis in vitro. Mechanistically, TRAF1 promotes myocardial I/R injury through regulating ASK1 (apoptosis signal-regulating kinase 1)-mediated JNK/p38 (c-Jun N-terminal kinase/p38) MAPK (mitogen-activated protein kinase) cascades. Conclusions Our results indicated that TRAF1 aggravates the development of myocardial I/R injury by enhancing the activation of ASK1-mediated JNK/p38 cascades. Targeting the TRAF1-ASK1-JNK/p38 pathway provide feasible therapies for cardiac I/R injury.
Collapse
Affiliation(s)
- Weipan Xu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Huang Shi China
| | - Li Zhang
- Center for Animal Experiment Wuhan University Wuhan China
| | - Yi Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Kai Zhang
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Yongbo Wu
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| | - Daoqun Jin
- Department of Cardiology Huangshi Central Hospital Affiliated Hospital of Hubei Polytechnic University Edong Healthcare Group Huang Shi China
| |
Collapse
|
32
|
Baehr A, Klymiuk N, Kupatt C. Evaluating Novel Targets of Ischemia Reperfusion Injury in Pig Models. Int J Mol Sci 2019; 20:E4749. [PMID: 31557793 PMCID: PMC6801853 DOI: 10.3390/ijms20194749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary heart diseases are of high relevance for health care systems in developed countries regarding patient numbers and costs. Disappointingly, the enormous effort put into the development of innovative therapies and the high numbers of clinical studies conducted are counteracted by the low numbers of therapies that become clinically effective. Evidently, pre-clinical research in its present form does not appear informative of the performance of treatments in the clinic and, even more relevant, it appears that there is hardly any consent about how to improve the predictive capacity of pre-clinical experiments. According to the steadily increasing relevance that pig models have gained in biomedical research in the recent past, we anticipate that research in pigs can be highly predictive for ischemia-reperfusion injury (IRI) therapies as well. Thus, we here describe the significance of pig models in IRI, give an overview about recent developments in evaluating such models by clinically relevant methods and present the latest insight into therapies applied to pigs under IRI.
Collapse
Affiliation(s)
- Andrea Baehr
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| | - Nikolai Klymiuk
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| | - Christian Kupatt
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
33
|
Wang H, Zhong P, Sun L. Exogenous hydrogen sulfide mitigates NLRP3 inflammasome-mediated inflammation through promoting autophagy via the AMPK-mTOR pathway. Biol Open 2019; 8:bio.043653. [PMID: 31315822 PMCID: PMC6679392 DOI: 10.1242/bio.043653] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate whether exogenous hydrogen sulfide (H2S) could mitigate NLRP3 inflammasome-mediated inflammation through promoting autophagy via the AMPK-mTOR pathway in L02 cells. L02 cells were stimulated with different concentrations of oleic acid (OA), then cell viability and the protein expression of NLRP3 and pro-caspase-1 were detected by MTT and western blot, respectively, to determine appropriate OA concentration in this study. The cells were divided into four groups: the cells in the control group were cultured with RPMI-1640 for 24.5 h; the cells in the OA group were cultured with RPMI-1640 for 0.5 h, then were stimulated with 1.2 mmol/l OA for 24 h; the cells in the NaHS+OA group were pretreated with sodium hydrogen sulfide (NaHS, a donor of H2S) for 0.5 h before exposure to OA for 24 h; and the cells in the NaHS group were treated with NaHS 0.5 h, then were cultured with RPMI-1640 for 24 h. Subsequently, the cells in every group were collected and the protein expression of NLRP3, procaspase-1, cleaved caspase-1, P62, LC3, Beclin1, T-AMPK, P-AMPK, T-mTOR, P-mTOR and the level of IL-1β were detected by western blot and ElISA, respectively. Exogenous H2S reduced the level of NLRP3, caspase-1, P62, IL-1β and the ratio of P-mTOR/T-mTOR induced by OA and increased the ratio of LC3 II/I and the protein expression of Beclin1 suppressed by OA. This study demonstrates for the first time that H2S might suppress NLRP3 inflammasome-mediated inflammation induced by OA through promoting autophagy via the AMPK-mTOR pathway. It provides a theoretical basis for the further study of the anti-inflammatory mechanism of H2S. Summary: We prove that exogenous H2S can suppress NLRP3-mediated inflammation by promoting autophagy via the AMPK/mTOR pathway in L02 cells, providing insights into the anti-inflammatory mechanism of H2S.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Peiyu Zhong
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Leilei Sun
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
34
|
Drucker NA, Te Winkel JP, Shelley WC, Olson KR, Markel TA. Inhibiting hydrogen sulfide production in umbilical stem cells reduces their protective effects during experimental necrotizing enterocolitis. J Pediatr Surg 2019; 54:1168-1173. [PMID: 30879750 PMCID: PMC6545254 DOI: 10.1016/j.jpedsurg.2019.02.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Umbilical mesenchymal stem cells (USC) have been shown to reduce illness in animal models of necrotizing enterocolitis (NEC), possibly through the paracrine release of hydrogen sulfide (H2S). We hypothesized that animals treated with USCs with inhibited H2S synthesis would exhibit more severe disease. METHODS NEC was induced in five-day-old mouse pups by formula feeding and hypoxic and hypothermic stress. Experimental groups received intraperitoneal injection of either saline vehicle or 80,000cells/gram of one of the following cell types: USC, USCs with negative-control siRNA, or USCs with targeted siRNA inhibition of the H2S-producing enzymes. Pups were monitored by clinical assessment and after euthanasia, intestine and lung histologic injury were scored. Tissue was homogenized, and concentrations of IL-6, IL-10, and VEGF were determined by ELISA. For statistical analysis, p<0.05 was considered significant. RESULTS Animals treated with negative-control siRNA USCs were significantly improved compared to vehicle. Clinical sickness scores as well as intestinal and lung histologic injury scores in the targeted siRNA groups were significantly worse when compared to the negative-control siRNA group. IL-6, IL-10, and VEGF had varying patterns of expression in the different groups. CONCLUSION Inhibition of H2S production in USCs reduces the beneficial effects of these cells during therapy in experimental NEC. LEVEL OF EVIDENCE Animal studies are typically described as "foundational evidence" without a true level assigned. TYPE OF STUDY Animal Study.
Collapse
Affiliation(s)
- Natalie A Drucker
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, Indianapolis, IN.
| | - Jan P Te Winkel
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, Indianapolis, IN
| | - W Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, IN
| | - Kenneth R Olson
- The Indiana University School of Medicine, South Bend, South Bend, IN
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, Indianapolis, IN
| |
Collapse
|
35
|
Liang W, Chen J, Li L, Li M, Wei X, Tan B, Shang Y, Fan G, Wang W, Liu W. Conductive Hydrogen Sulfide-Releasing Hydrogel Encapsulating ADSCs for Myocardial Infarction Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14619-14629. [PMID: 30939870 DOI: 10.1021/acsami.9b01886] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) exhibits extensive protective actions in cardiovascular systems, such as anti-inflammatory and stimulating angiogenesis, but its therapeutic potential is severely discounted by the short half-life and the poorly controlled releasing behavior. Herein, we developed a macromolecular H2S prodrug by grafting 2-aminopyridine-5-thiocarboxamide (a small-molecule H2S donor) on partially oxidized alginate (ALG-CHO) to mimic the slow and continuous release of endogenous H2S. In addition, tetraaniline (a conductive oligomer) and adipose-derived stem cells (ADSCs) were introduced to form a stem cell-loaded conductive H2S-releasing hydrogel through the Schiff base reaction between ALG-CHO and gelatin. The hydrogel exhibited adhesive property to ensure a stable anchoring to the wet and beating hearts. After myocardial injection, longer ADSCs retention period and elevated sulfide concentration in rat myocardium were demonstrated, accompanied by upregulation of cardiac-related mRNA (Cx43, α-SMA, and cTnT) and angiogenic factors (VEGFA and Ang-1) and downregulation of inflammatory factors (tumor necrosis factor-α). Echocardiography and histological analysis strongly demonstrated an increase in the ejection fraction value and smaller infarction size, suggesting a remarkable improvement of the cardiac functions of Sprague-Dawley rats. The ADSC-loaded conductive hydrogen sulfide-releasing hydrogel dramatically promoted the therapeutic effects, offering a promising therapeutic strategy for treating myocardial infarction.
Collapse
Affiliation(s)
- Wei Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Lingyan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities , Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University , Shanghai 200233 , China
| | - Baoyu Tan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Yingying Shang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
36
|
Inhibition of endogenous hydrogen sulfide production improves viral elimination in CVB3-infected myocardium in mice. Pediatr Res 2019; 85:533-538. [PMID: 30670775 DOI: 10.1038/s41390-019-0281-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND To find whether administration of hydrogen sulfide has interaction with coxsackie virus B3 (CVB3) replication and spread. METHODS Six-week-old inbred male Balb/c mice were injected intraperitoneally with CVB3. Mice were randomized to four groups (n = 10 for each group): group N (sham infection + vehicle), group C (virus + vehicle), group P (virus + DL-proparglygylcine (PAG)), and group S (virus + sodium hydrogen sulfide (NaHS)). PAG and NaHS were administered intraperitoneally daily and mice were killed on day 4 after viral inoculation. Serum specimens were obtained to assay tumor necrosis factor-α (TNFα) level, and heart specimens were harvested for histological examination, 50% tissue culture infection dose (TCID50) assay, reverse transcription-polymerase chain reaction and Western blot analysis. RESULTS The ratio of heart-weight to body-weight and inflammatory scores showed no significant difference between infected groups. The circulatory and local concentrations of TNFα, nitric oxide synthase 2 messenger RNA, and protein were higher in group P, and were lower in group S compared to those in group C. Mice treated with PAG and NaHS had significantly lower and higher viral stocks than those inoculated with CVB3 only, respectively. CONCLUSION Inhibition of endogenous hydrogen sulfide production contributed to viral clearance in acute viremia of CVB3-induced myocarditis.
Collapse
|
37
|
Pan J, Alimujiang M, Chen Q, Shi H, Luo X. Exosomes derived from miR‐146a‐modified adipose‐derived stem cells attenuate acute myocardial infarction−induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem 2018; 120:4433-4443. [PMID: 30362610 DOI: 10.1002/jcb.27731] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Junjie Pan
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| | - Maimaitijiang Alimujiang
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| | - Qiying Chen
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| | - Haiming Shi
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| | - Xinping Luo
- Department of Cardiovascular Medicine Huashan Hospital Affiliated to Fudan University Shanghai China
| |
Collapse
|
38
|
Bredthauer A, Lehle K, Scheuerle A, Schelzig H, McCook O, Radermacher P, Szabo C, Wepler M, Simon F. Intravenous hydrogen sulfide does not induce neuroprotection after aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury in a human-like porcine model of ubiquitous arteriosclerosis. Intensive Care Med Exp 2018; 6:44. [PMID: 30357563 PMCID: PMC6200829 DOI: 10.1186/s40635-018-0209-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/14/2018] [Indexed: 12/02/2022] Open
Abstract
Objective In rodents, intravenous sulfide protected against spinal cord ischemia/reperfusion (I/R) injury during aortic balloon occlusion. We investigated the effect of intravenous sulfide on aortic occlusion-induced porcine spinal cord I/R injury. Methods Anesthetized and mechanically ventilated “familial hypercholesterolemia Bretoncelles Meishan” (FBM) pigs with high-fat-diet-induced hypercholesterolemia and atherosclerosis were randomized to receive either intravenous sodium sulfide 2 h (initial bolus, 0.2 mg kg body weight (bw)−1; infusion, 2 mg kg bw−1 h−1; n = 4) or vehicle (sodium chloride, n = 4) prior to 45 min of thoracic aortic balloon occlusion and for 8 h during reperfusion (infusion, 1 mg kg bw−1 h−1). During reperfusion, noradrenaline was titrated to maintain blood pressure at above 80% of the baseline level. Spinal cord function was assessed by motor evoked potentials (MEPs) and lower limb reflexes using a modified Tarlov score. Spinal cord tissue damage was evaluated in tissue collected at the end of experiment using hematoxylin and eosin and Nissl staining. Results A balloon occlusion time of 45 min resulted in marked ischemic neuron damage (mean of 16% damaged motoneurons in the anterior horn of all thoracic motor neurons) in the spinal cord. In the vehicle group, only one animal recovered partial neuronal function with regain of MEPs and link motions at each time point after deflating. All other animals completely lost neuronal functions. The intravenous application of sodium sulfide did not prevent neuronal cell injury and did not confer to functional recovery. Conclusion In a porcine model of I/R injury of the spinal cord, treatment with intravenous sodium sulfide had no protective effect in animals with a pre-existing arteriosclerosis.
Collapse
Affiliation(s)
- Andre Bredthauer
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Angelika Scheuerle
- Institute of Pathology - Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Oscar McCook
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Martin Wepler
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Florian Simon
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.,Department of Vascular and Endovascular Surgery, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
39
|
Drucker NA, Jensen AR, Te Winkel JP, Markel TA. Hydrogen Sulfide Donor GYY4137 Acts Through Endothelial Nitric Oxide to Protect Intestine in Murine Models of Necrotizing Enterocolitis and Intestinal Ischemia. J Surg Res 2018; 234:294-302. [PMID: 30527488 DOI: 10.1016/j.jss.2018.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/01/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) in premature infants is often a devastating surgical condition with poor outcomes. GYY4137 is a long-acting donor of hydrogen sulfide, a gasotransmitter that is protective against intestinal injury in experimental NEC, likely through protection against injury secondary to ischemia. We hypothesized that administration of GYY4137 would improve mesenteric perfusion, reduce intestinal injury, and reduce inflammatory responses in experimental NEC and ischemia-reperfusion injury, and that these benefits would be mediated through endothelial nitric oxide synthase-dependent pathways. METHODS NEC was induced in C57BL/6 wild-type (WT) and endothelial nitric oxide synthase (eNOS) knockout (eNOSKO) pups via maternal separation, formula feeding, enteral lipopolysaccharide, and intermittent hypoxic and hypothermic stress. Pups received daily intraperitoneal injections of 50 mg/kg GYY4137 or phosphate buffered saline vehicle. In separate groups, adult male WT and eNOSKO mice underwent superior mesenteric artery occlusion for 60 min. Before abdominal closure, 50 mg/kg GYY4137 or phosphate buffered saline vehicle was administered into the peritoneal cavity. Laser doppler imaging was used to assess mesenteric perfusion of pups at baseline and on postnatal day 9, and the adult mice at baseline and 24 h after ischemic insult. After euthanasia, the terminal ileum of each animal was fixed, paraffin embedded, sectioned, and stained with hematoxylin and eosin. Sections were blindly graded using published injury scores. Intestinal tissue was homogenized and cytokines measured by ELISA. Data were compared using Mann-Whitney U test, and P-values <0.05 were significant. RESULTS After NEC and ischemia reperfusion (I/R) injury, GYY4137 improved perfusion in WT mice compared to vehicle, but this effect was lost in the eNOSKO animals. Histologic injury followed a similar pattern with reduced intestinal injury in WT mice treated with GYY4137, and no significant improvement in the eNOSKO group. Cytokine expression after GYY4137 administration was altered by the ablation of eNOS in both NEC and I/R injury groups, with significant differences noted in Interleukin 6 and vascular endothelial growth factor. CONCLUSIONS GYY4137, a long-acting donor of hydrogen sulfide, has potential as a therapeutic compound for NEC. It improves mesenteric perfusion and intestinal injury in experimental NEC and intestinal I/R injury, and these benefits appear to be mediated through eNOS-dependent pathways.
Collapse
Affiliation(s)
- Natalie A Drucker
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda R Jensen
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jan P Te Winkel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
40
|
Drucker NA, Jensen AR, Ferkowicz M, Markel TA. Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis. J Pediatr Surg 2018; 53:1692-1698. [PMID: 29338840 DOI: 10.1016/j.jpedsurg.2017.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) continues to be a morbid surgical condition among preterm infants. Novel therapies for this condition are desperately needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter that has been found to have beneficial properties. We therefore hypothesized that intraperitoneal injection of various H2S donors would improve clinical outcomes, increase intestinal perfusion, and reduce intestinal injury in an experimental mouse model of necrotizing enterocolitis. METHODS NEC was induced in five-day-old mouse C57BL/6 mouse pups through maternal separation, formula feeding, and intermittent hypoxic and hypothermic stress. The control group (n=10) remained with their mother and breastfed ad lib. Experimental groups (n=10/group) received intraperitoneal injections of phosphate buffered saline (PBS) vehicle or one of the following H2S donors: (1) GYY4137, 50mg/kg daily; (2) Sodium sulfide (Na2S), 20mg/kg three times daily; (3) AP39, 0.16mg/kg daily. Pups were monitored for weight gain, clinical status, and intestinal perfusion via transcutaneous Laser Doppler Imaging (LDI). After sacrifice on day nine, intestinal appearance and histology were scored and cytokines were measured in tissue homogenates of intestine, liver, and lung. Data were compared with Mann-Whitney and p<0.05 was considered significant. RESULTS Clinical score and weight gain were significantly improved in all three H2S-treated groups as compared to vehicle (p<0.05 for all groups). Intestinal perfusion of the vehicle group was 22% of baseline while the GYY4137 group was 38.7% (p=0.0103), Na2S was 47.0% (p=0.0040), and AP39 was 43.0% (p=0.0018). The vehicle group had a median histology score of 2.5, while the GYY4137 group's was 1 (p=0.0013), Na2S was 0.5 (p=0.0004), and AP39 was 0.5 (p=0.0001). Cytokine analysis of the intestine of the H2S-treated groups revealed levels closer to breastfed pups as compared to vehicle (p<0.05 for all groups). CONCLUSION Intraperitoneal administration of H2S protects against development of NEC by improving mesenteric perfusion, and by limiting mucosal injury and altering the tissue inflammatory response. Further experimentation is necessary to elucidate downstream mechanisms prior to clinical implementation.
Collapse
Affiliation(s)
- Natalie A Drucker
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Amanda R Jensen
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Michael Ferkowicz
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; Riley Hospital for Children at Indiana University Health, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
41
|
The Drug Developments of Hydrogen Sulfide on Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4010395. [PMID: 30151069 PMCID: PMC6087600 DOI: 10.1155/2018/4010395] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023]
Abstract
The recognition of hydrogen sulfide (H2S) has been evolved from a toxic gas to a physiological mediator, exhibiting properties similar to NO and CO. On the one hand, H2S is produced from L-cysteine by enzymes of cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3MST) in combination with aspartate aminotransferase (AAT) (also called as cysteine aminotransferase, CAT); on the other hand, H2S is produced from D-cysteine by enzymes of D-amino acid oxidase (DAO). Besides sulfide salt, several sulfide-releasing compounds have been synthesized, including organosulfur compounds, Lawesson's reagent and analogs, and plant-derived natural products. Based on garlic extractions, we synthesized S-propargyl-L-cysteine (SPRC) and its analogs to contribute our endeavors on drug development of sulfide-containing compounds. A multitude of evidences has presented H2S is widely involved in the roles of physiological and pathological process, including hypertension, atherosclerosis, angiogenesis, and myocardial infarcts. This review summarizes current sulfide compounds, available H2S measurements, and potential molecular mechanisms involved in cardioprotections to help researchers develop further applications and therapeutically drugs.
Collapse
|
42
|
Jovanović A. Cardioprotective signalling: Past, present and future. Eur J Pharmacol 2018; 833:314-319. [PMID: 29935170 DOI: 10.1016/j.ejphar.2018.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 11/29/2022]
Abstract
A few decades ago, cardiac muscle was discovered to possess signalling pathways that, when activated, protect the myocardium against the damage induced by ischaemia-reperfusion. The ability of cardiac muscle to protect itself against injury has been termed 'cardioprotection'. Many compounds and procedures can trigger cardioprotection including conditionings (exposure to brief episodes of ischaemia-reperfusion to protect against sustained ischaemia-reperfusion), hypoxia, adenosine, acetylcholine, adrenomedullin, angiotensin, bradykinin, catecholamines, endothelin, estrogens, phenylephrine, opioids, testosterone, and many more. These triggers activate many intracellular signalling factors including protein kinases, different enzymes, transcription factors and defined signalling pathways to target structures in mitochondria, sarcoplasmic reticulum, nucleus and sarcolemma to mediate cardioprotection. Although a lot of information about cardioprotection has been acquired, there are still two major outstanding issues to be addressed in the future 1) better understanding of spatio-temporal relationships between signalling elements, and; 2) devising therapeutic strategies against myocardial diseases based on cardioprotective signalling. Further research is required to paint integral picture of cardioprotective signalling and more clinical studies are required to properly test clinical efficacy and safety of potential cardioprotective strategies. Therapies against cardiac diseases based on cardioprotective strategies would be a perfect adjunct to current therapeutic strategies based on restitution of coronary blood flow and regulation of myocardial metabolic demands.
Collapse
Affiliation(s)
- Aleksandar Jovanović
- University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, CY-1700 Nicosia, Cyprus.
| |
Collapse
|
43
|
A Preliminary Study of microRNA-208b after Acute Myocardial Infarction: Impact on 6-Month Survival. DISEASE MARKERS 2018; 2018:2410451. [PMID: 29977411 PMCID: PMC5994296 DOI: 10.1155/2018/2410451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Introduction miRNAs contribute to a variety of essential biological processes including development, proliferation, differentiation, and apoptosis. Circulating microRNAs are very stable and have shown potential as biomarkers of cardiovascular disease. microRNA-208b expression was increased in the blood of patients with acute myocardial infarction (AMI) and has been proposed as a biomarker for early diagnosis. In this pilot study, we investigate the potential of circulating miR-208b as a prognostic biomarker of 6-month survival in AMI patients. Methods Plasma samples from 21 patients and 8 age- and gender-matched healthy adults were collected, and circulating levels of miR-208b were detected using quantitative real-time PCR. Results miR-208b levels were higher in healthy control subjects (9.6-fold; P ≤ 0.05). Within the AMI patients, the levels of miR-208b were significantly lower in the survivor versus nonsurvivor group (fold change = 6.51 and 14.1, resp.; P ≤ 0.05). The Kaplan-Meier curve revealed that the 6-month survival time was significantly higher among AMI patients with a relative expression of miR-208b lower than 12.38. The hazard ratio (HR) for the relative expression of miR-208b (<12.38 was the reference) was 5.08 (95% CI: 1.13–22.82; P = 0.03). Conclusion Our results showed that elevated miR-208b expression was associated with reduced long-term survival in AMI patients. These pilot data indicate the need for a large follow-up study to confirm whether miR-208b can be used as a predictor of 6-month survival time after AMI.
Collapse
|
44
|
Takatani-Nakase T, Katayama M, Matsui C, Hanaoka K, van der Vlies AJ, Takahashi K, Nakase I, Hasegawa U. Hydrogen sulfide donor micelles protect cardiomyocytes from ischemic cell death. MOLECULAR BIOSYSTEMS 2018; 13:1705-1708. [PMID: 28681875 DOI: 10.1039/c7mb00191f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hydrogen sulfide, an important gaseous signaling molecule in the human body, is known to protect cardiomyocytes from ischemia, a condition characterized by insufficient oxygen supply to the cells. Here we show that a nanosized H2S donor micelle releases H2S intracellularly and prevents cardiomyocyte apoptosis in an in vitro ischemia model.
Collapse
Affiliation(s)
- T Takatani-Nakase
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhuang R, Guo L, Du J, Wang S, Li J, Liu Y. Exogenous hydrogen sulfide inhibits oral mucosal wound-induced macrophage activation via the NF-κB pathway. Oral Dis 2018; 24:793-801. [DOI: 10.1111/odi.12838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/28/2022]
Affiliation(s)
- R Zhuang
- Department of Implant Dentistry; Capital Medical University School of Stomatology; Beijing China
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics; Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction; Capital Medical University School of Stomatology; Beijing China
| | - L Guo
- Department of Orthodontics; Beijing Stomatological Hospital; Capital Medical University; Beijing China
| | - J Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics; Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction; Capital Medical University School of Stomatology; Beijing China
| | - S Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration; Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction; Capital Medical University School of Stomatology; Beijing China
- Department of Biochemistry and Molecular Biology; Capital Medical University School of Basic Medical Sciences; Beijing China
| | - J Li
- Department of Implant Dentistry; Capital Medical University School of Stomatology; Beijing China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics; Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction; Capital Medical University School of Stomatology; Beijing China
| |
Collapse
|
46
|
Libiad M, Motl N, Akey DL, Sakamoto N, Fearon ER, Smith JL, Banerjee R. Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin. J Biol Chem 2018; 293:2675-2686. [PMID: 29348167 PMCID: PMC5827441 DOI: 10.1074/jbc.ra117.000826] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Rhodanese domains are structural modules present in the sulfurtransferase superfamily. These domains can exist as single units, in tandem repeats, or fused to domains with other activities. Despite their prevalence across species, the specific physiological roles of most sulfurtransferases are not known. Mammalian rhodanese and mercaptopyruvate sulfurtransferase are perhaps the best-studied members of this protein superfamily and are involved in hydrogen sulfide metabolism. The relatively unstudied human thiosulfate sulfurtransferase-like domain-containing 1 (TSTD1) protein, a single-domain cytoplasmic sulfurtransferase, was also postulated to play a role in the sulfide oxidation pathway using thiosulfate to form glutathione persulfide, for subsequent processing in the mitochondrial matrix. Prior kinetic analysis of TSTD1 was performed at pH 9.2, raising questions about relevance and the proposed model for TSTD1 function. In this study, we report a 1.04 Å resolution crystal structure of human TSTD1, which displays an exposed active site that is distinct from that of rhodanese and mercaptopyruvate sulfurtransferase. Kinetic studies with a combination of sulfur donors and acceptors reveal that TSTD1 exhibits a low Km for thioredoxin as a sulfane sulfur acceptor and that it utilizes thiosulfate inefficiently as a sulfur donor. The active site exposure and its interaction with thioredoxin suggest that TSTD1 might play a role in sulfide-based signaling. The apical localization of TSTD1 in human colonic crypts, which interfaces with sulfide-releasing microbes, and the overexpression of TSTD1 in colon cancer provide potentially intriguing clues as to its role in sulfide metabolism.
Collapse
Affiliation(s)
- Marouane Libiad
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Nicole Motl
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - David L Akey
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Naoya Sakamoto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Eric R Fearon
- Departments of Internal Medicine, Human Genetics, and Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Janet L Smith
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109.
| |
Collapse
|
47
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
48
|
Pan LL, Qin M, Liu XH, Zhu YZ. The Role of Hydrogen Sulfide on Cardiovascular Homeostasis: An Overview with Update on Immunomodulation. Front Pharmacol 2017; 8:686. [PMID: 29018349 PMCID: PMC5622958 DOI: 10.3389/fphar.2017.00686] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/13/2017] [Indexed: 01/21/2023] Open
Abstract
Hydrogen sulfide (H2S), the third endogenous gaseous signaling molecule alongside nitric oxide (NO) and carbon monoxide, is synthesized by multiple enzymes in cardiovascular system. Similar to other gaseous mediators, H2S has demonstrated a variety of biological activities, including anti-oxidative, anti-apoptotic, pro-angiogenic, vasodilating capacities and endothelial NO synthase modulating activity, and regulates a wide range of pathophysiological processes in cardiovascular disorders. However, the underlying mechanisms by which H2S mediates cardiovascular homeostasis are not fully understood. This review focuses on the recent progress on functional and mechanistic aspects of H2S in the inflammatory and immunoregulatory processes of cardiovascular disorders, importantly myocardial ischemia, heart failure, and atherosclerosis. Moreover, we highlight the challenges for developing H2S-based therapy to modulate the pathological processes in cardiovascular diseases. A better understanding of the immunomodulatory and biochemical functions of H2S might provide new therapeutic strategies for these cardiovascular diseases.
Collapse
Affiliation(s)
- Li-Long Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ming Qin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin-Hua Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
49
|
Reprint of: Hydrogen sulfide in stroke: Protective or deleterious? Neurochem Int 2017; 107:78-87. [DOI: 10.1016/j.neuint.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022]
|
50
|
Tkacheva NI, Morozov SV, Lomivorotov BB, Grigor’ev IA. Organic Hydrogen Sulfide Donor Compounds with Cardioprotective Properties (Review). Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1576-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|