1
|
Hashtjin YA, Raeeszadeh M, Khanghah AP. Interaction of Heavy Metals (Cadmium and Selenium) in an Experimental Study on Goldfish: Hematobiochemical Changes and Oxidative Stress. J Xenobiot 2025; 15:57. [PMID: 40278162 DOI: 10.3390/jox15020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Heavy metal interactions within aquatic ecosystems significantly affect fish physiology. This study evaluated the protective role of selenium against cadmium-induced hematological, biochemical, and electrophoretic alterations in goldfish. METHODS A total of 120 goldfish individuals were divided into four groups: control, cadmium chloride-treated (2.8 mg/L), sodium selenite-treated (2 mg/L), and a combined cadmium and selenium-treated group. After 14 days, blood samples were collected and analyzed for hematological parameters, biochemical markers, and serum protein electrophoresis. RESULTS Cadmium exposure led to significant reductions in red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin (Hb), and hematocrit (HCT) (p < 0.001). Selenium supplementation alleviated these declines and improved overall hematological function. Additionally, cadmium exposure decreased albumin and total protein levels while elevating aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, indicating liver damage. Selenium co-treatment reduced cadmium accumulation and mitigated liver toxicity. Elevated urea and creatinine levels in cadmium-exposed fish were also significantly lowered in the combined treatment group (p < 0.0001). Furthermore, selenium supplementation enhanced antioxidant defense mechanisms by increasing catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity while reducing malondialdehyde (MDA) levels, effectively counteracting cadmium-induced oxidative stress. CONCLUSION Sodium selenite at a dose of 2 mg/L effectively mitigated the toxic effects of cadmium chloride on hematological, biochemical, and oxidative stress markers in goldfish, demonstrating its protective potential against heavy metal toxicity.
Collapse
Affiliation(s)
- Yasaman Aghaei Hashtjin
- Graduate of Faculty of Veterinary Sciences, Sa.C., Islamic Azad University, Sanandaj 618, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sa.C., Islamic Azad University, Sanandaj 618, Iran
| | - Ali Parsa Khanghah
- Department of Aquatic Animal Health and Disease, Sa.C., Islamic Azad University, Sanandaj 618, Iran
| |
Collapse
|
2
|
El-Demerdash FM, Mohammed LT, Mohamed TM. Modulatory effect of Eruca vesicaria seeds essential oil on acetamiprid nephrotoxicity via oxidative stress inhibition and regulation of Cox-2, TNF-α, and PPAR-α pathways. Tissue Cell 2025; 95:102905. [PMID: 40198929 DOI: 10.1016/j.tice.2025.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Acetamiprid (Aceta) is a neonicotinoid insecticide utilized extensively worldwide, and its environmental and human health risks are of concern. Eruca vesicaria is an edible year-round plant that contains a lot of health-promoting phytochemicals and is an excellent source of antioxidants. So, the present investigation was planned to assess the effect of E. vesicaria seed essential oil versus acetamiprid-induced toxicity in rats. Animals were partitioned into 4 groups of seven each: control, E. vesicaria seeds essential oil (ESEO; 0.17 mL/kg), acetamiprid (Aceta; 21.7 mg/kg), and ESEO plus Aceta, respectively. Doses were given orally and daily for 14 days. Results revealed that ESEO has many phytochemical components with high antioxidant activity. Data showed that treatment with Aceta increased lipid peroxidation and decreased the activities of "enzymatic and non-enzymatic antioxidants" in kidney homogenate. Also, disturbance of kidney and liver function biomarkers, lipid profile, and protein content were observed. These are confirmed by the histological, molecular (Cox-2, TNF-α, and PPAR-α), and renal damage biomarkers (KIM-1 and Cystatin C) examination. On the other hand, rats administered ESEO and then treated with Aceta showed significant amelioration in most of the examined indices. To sum up, ESEO has a potent anti-inflammatory, anti-apoptotic, and antioxidant activity that protects against the pronounced harmful effects of Aceta in rat kidneys due to its health-promoting phytochemicals.
Collapse
Affiliation(s)
- Fatma Mohamady El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt.
| | - Laith Taha Mohammed
- Department of Biology, College of Science, Al-Qasim Green University, Babylon 51013, Iraq.
| | - Tarek Mostafa Mohamed
- Biochemistry Division, Department of Chemistry, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
3
|
El-Demerdash FM, Al Mhanna AB, El-Sayed RA, Mohamed TM, Salem MM. Use of Nigella sativa silver nanocomposite as an alternative therapy against thioacetamide nephrotoxicity. GENES & NUTRITION 2025; 20:6. [PMID: 40087564 PMCID: PMC11909921 DOI: 10.1186/s12263-025-00766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Nigella sativa (N. sativa) L. (Ranunculaceae), commonly referred to as black cumin, has a long history of usage as an herbal remedy. It has been utilized conventionally and in clinical settings to treat various illnesses. Six groups of male Wister rats were randomly selected as Gp I, represented as control; Gp II administered N. sativa aqueous extract (NSAE); 200 mg/kg/d, Gp III received N. sativa silver nanocomposite (NS-Ag-NC); 0.25 mg/kg/d; Gp IV administered thioacetamide (TAA);100 mg/kg; thrice weekly and Gps V and VI administered NSAE and NS-Ag-NC with TAA for six weeks, respectively. Findings showed that GC-MS analysis of NSAE has a high concentration of phytochemicals with strong antioxidant activity. Results revealed that TAA administration elevated TBARS, H2O2, PCC, NO levels, kidney function parameters, LDH activity, and up-regulated TNF-α, IL-1β, NF-kβ, and COX-2 gene expressions. In contrast, enzymatic and non-enzymatic antioxidants and ALP activity were extensively diminished. Also, severe abnormalities in lipid profile, hematological parameters, and histopathological features were noted. On the other hand, the administration of NSAE or NS-Ag-NC followed by TAA intoxication reduces renal impairment, restores the antioxidant system, and downregulates the expression of TNF-α, IL-1β, NF-kβ, and COX-2 genes in rats' renal tissues. Collectively, NS-Ag-NC has more prevalent nephroprotective impacts than NSAE and can adjust the oxidant/antioxidant pathways besides their anti-inflammatory efficacy against TAA toxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| | - Ansam B Al Mhanna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Department of Chemistry, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Department of Chemistry, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Bai S, Zhang M, Tang S, Li M, Wu R, Wan S, Chen L, Wei X, Feng S. Effects and Impact of Selenium on Human Health, A Review. Molecules 2024; 30:50. [PMID: 39795109 PMCID: PMC11721941 DOI: 10.3390/molecules30010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Selenium (Se) is an essential trace element that is crucial for human health. As a key component of various enzymes and proteins, selenium primarily exerts its biological functions in the form of selenoproteins within the body. Currently, over 30 types of selenoproteins have been identified, with more than 20 of them containing selenocysteine residues. Among these, glutathione peroxidases (GPXs), thioredoxin reductases (TrxRs), and iodothyronine deiodinases (DIOs) have been widely studied. Selenium boasts numerous biological functions, including antioxidant properties, immune system enhancement, thyroid function regulation, anti-cancer effects, cardiovascular protection, reproductive capability improvement, and anti-inflammatory activity. Despite its critical importance to human health, the range between selenium's nutritional and toxic doses is very narrow. Insufficient daily selenium intake can lead to selenium deficiency, while excessive intake carries the risk of selenium toxicity. Therefore, selenium intake must be controlled within a relatively precise range. This article reviews the distribution and intake of selenium, as well as its absorption and metabolism mechanisms in the human body. It also explores the multiple biological functions and mechanisms of selenium in maintaining human health. The aim is to provide new insights and evidence for further elucidating the role of selenium and selenoproteins in health maintenance, as well as for future nutritional guidelines and public health policies.
Collapse
Affiliation(s)
- Song Bai
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Miaohe Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| | - Shouying Tang
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Miao Li
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Rong Wu
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Suran Wan
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Lijun Chen
- Guizhou Industry Polytechnic College, Guiyang 550008, China; (S.B.); (M.L.); (R.W.); (S.W.); (L.C.)
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| | - Shuang Feng
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China; (M.Z.); (X.W.); (S.F.)
| |
Collapse
|
5
|
Sendani AA, Farmani M, Kazemifard N, Ghavami SB, Sadeghi A. Molecular mechanisms and therapeutic effects of natural products in inflammatory bowel disease. CLINICAL NUTRITION OPEN SCIENCE 2024; 58:21-42. [DOI: 10.1016/j.nutos.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
6
|
B. Abo-Zalam H, El Denshary EED, A. Abdalsalam R, A. Khalil I, M. Khattab M, A. Hamzawy M. Revolutionizing Hyperlipidemia Treatment: Nanoencapsulated CoQ10 and Selenium Combat Simvastatin-Induced Myopathy and Insulin Resistance in Rats. Adv Pharm Bull 2024; 14:364-377. [PMID: 39206395 PMCID: PMC11347742 DOI: 10.34172/apb.2024.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 09/04/2024] Open
Abstract
Purpose The objective of this study was to develop a nanoencapsulated platform for coenzyme Q10 nanoparticles (coQNPs) or selenium nanoparticles (SeNPs) and explore their potential therapeutic benefits in treating hyperlipidemia and combating simvastatin (SV)-induced myopathy and adverse reactions in hyperlipidemic rats. Methods The physical and chemical properties of the solid nanoparticles, coQNPs, and SeNPs were characterized, including zeta potential studies. Male Wistar albino rats were treated with various interventions for 112 days, including a nano-vehicle only, high-fat diet (HFD), HFD with SV alone, or with coQNPs or/and SeNPs for the last 30 days. Results The coQNPs and SeNPs exhibited uniform spherical shapes with high encapsulation efficiency (EE% 91.20±2.14 and 94.89±1.54, respectively). The results demonstrated that coQNPs and SeNPs effectively reduced hyperlipidemia, insulin resistance, SV-induced myopathy, and hepatotoxicity. However, combining SV with coQNPs and SeNPs resulted in severe liver and muscle damage. Treatment with SV and SeNPs or SV and coQNPs alone showed significant improvements compared to SV treatment alone. Conclusion These findings suggest that the CoQNPs or SeNPs platforms offer advanced relief for hyperlipidemia and insulin resistance while limiting adverse effects such as myopathy and hepatotoxicity.
Collapse
Affiliation(s)
- Hagar B. Abo-Zalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, 6th of October University, 6th of October, Giza, Egypt
| | - Ezz El Deen El Denshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania A. Abdalsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, New Giza University, Giza, Egypt
| | - Islam A. Khalil
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza, (12566) Egypt
| | - Mahmoud M. Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A. Hamzawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
7
|
Rahib A, Karhib MM, Nasr HM, El-Sayed RA, Abdel-Daim MM, Jebur AB, El-Demerdash FM. Citrus reticulata peel extract mitigates oxidative stress and liver injury induced by abamectin in rats. Tissue Cell 2024; 87:102321. [PMID: 38350206 DOI: 10.1016/j.tice.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.
Collapse
Affiliation(s)
- Ahmed Rahib
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Mustafa M Karhib
- Department of Medical Laboratory Techniques, College of Health and Medical Technologies, Al-Mustaqbal University, 51001 Hillah, Babylon, Iraq.
| | - Hoda M Nasr
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ali B Jebur
- Department of Animal Production, College of Agriculture, University of Kerbala, Kerbala 56001, Iraq.
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
8
|
El-Demerdash FM, Al Mhanna AB, El-Sayed RA, Mohamed TM, Salem MM. Hepatoprotective impact of Nigella sativa silver nanocomposite against genotoxicity, oxidative stress, and inflammation induced by thioacetamide. Tissue Cell 2024; 87:102332. [PMID: 38367325 DOI: 10.1016/j.tice.2024.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Protection from liver damage and the repercussion of that harm is thought to be crucial for reducing the number of deaths each year. This work was developed to evaluate the possible role of silver nanocomposite prepared using Nigella sativa (N. sativa) aqueous extract against the hepatic damage brought on by thioacetamide (TAA), with particular attention to how they affect the NF-κβ, TNF-α, IL-1β, and COX-2 signaling pathways. There were seven groups of male Wistar rats used as follows: control, saline, N. sativa aqueous extract (NSAE; 200 mg/kg/d), N. sativa silver nanocomposite (NS-AgNC; 0.25 mg/kg/d), TAA (100 mg/kg; thrice weekly), NSAE + TTA, and NS-AgNC + TAA, respectively. The experiment continued for six weeks. The results showed that NS-AgNPs significantly enhanced liver functions (p<0.05) (albumin, ALP, LDH, AST, total protein, ALT, and globulin) and oxidant/antioxidant biomarkers (p<0.05) (H2O2, MDA, PCC, NO, SOD, CAT, GPx, GR, GST and, GSH), contrasted with TAA group. Moreover, a significant (p<0.05) downregulation of the gene expressions (COX-2, TNF-α, IL-1β, and NF-κβ) was also achieved by using silver nanocomposite therapy. These findings have been supported by histological analysis. Collectively, NS-AgNC exhibits more prominent and well-recognized protective impacts than NSAE in modulating the anti-inflammatory, genotoxicity and oxidative stress effects against TAA-induced liver injuries.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Ansam B Al Mhanna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, 31257, Tanta, Egypt.
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, 31257, Tanta, Egypt.
| |
Collapse
|
9
|
Ayed-Boussema I, Rjiba K, M'nassri A, Hamdi H, Abid S. Subchronic exposure to fenpyroximate causes multiorgan toxicity in Wistar rats by disrupting lipid profile, inducing oxidative stress and DNA damage. Biomarkers 2024; 29:68-77. [PMID: 38299991 DOI: 10.1080/1354750x.2024.2313663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Fenpyroximate (FEN) is an acaricide that inhibits the complex I of the mitochondrial respiratory chain in mites. Data concerning mammalian toxicity of this acaricide are limited; thus the aim of this work was to explore FEN toxicity on Wistar rats, particularly on cardiac, pulmonary, and splenic tissues and in bone marrow cells. METHODS rats were treated orally with FEN at 1, 2, 4, and 8 mg/Kg bw for 28 days. After treatment, we analyzed lipid profile, oxidative stress and DNA damage in rat tissues. RESULTS FEN exposure increased creatinine phosphokinase (CPK) and lactate dehydrogenase (LDH) activities, elevated total cholesterol (T-CHOL), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) concentrations, while decreasing high-density lipoprotein cholesterol (HDL-C). It inhibited acetylcholinesterase (AChE) activity, enhanced lipid peroxidation, protein oxidation, and modulated antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase). Comet assay indicated that FEN induced a dose-dependent DNA damage, contrasting with the micronucleus test showing no micronuclei formation. Nonetheless, FEN exhibited cytotoxicity to bone marrow cells, as evidenced by a reduction in the number of immature erythrocytes among total cells. CONCLUSION FEN appears to carry out its genotoxic and cytotoxic activities most likely through an indirect pathway that involves oxidative stress.
Collapse
Affiliation(s)
- Imen Ayed-Boussema
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17, University of Monastir, Faculty of Dental Medicine, Monastir, Tunisia
- Faculty of Science of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Karima Rjiba
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17, University of Monastir, Faculty of Dental Medicine, Monastir, Tunisia
- Faculty of Science of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Asma M'nassri
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17, University of Monastir, Faculty of Dental Medicine, Monastir, Tunisia
- Faculty of Science of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Hiba Hamdi
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17, University of Monastir, Faculty of Dental Medicine, Monastir, Tunisia
| | - Salwa Abid
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17, University of Monastir, Faculty of Dental Medicine, Monastir, Tunisia
| |
Collapse
|
10
|
El-Derany MO, Hanna DMF, Youshia J, Elmowafy E, Farag MA, Azab SS. Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study. Pharmacol Rep 2023; 75:1045-1065. [PMID: 37587394 PMCID: PMC10539420 DOI: 10.1007/s43440-023-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
11
|
Ivanović SR, Borozan N, Miladinović DĆ, Živković I, Borozan S. The relationship between the cholinergic mechanism of toxicity and oxidative stress in rats during subacute diazinon poisoning. Toxicol Appl Pharmacol 2023; 473:116598. [PMID: 37331382 DOI: 10.1016/j.taap.2023.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Diazinon is an organophosphate pesticide (OP) that has significant potential for accidental and intentional poisoning of wildlife, domestic animals and humans. The aim of the study is to investigate the correlation between cholinesterase activity and oxidative stress parameters in liver and diaphragm by continuous monitoring as a function of time during prolonged use of diazinon. Wistar rats were treated orally with diazinon (55 mg/kg/day): 7, 14, 21 and 28 days. At the end of each period, blood, liver and diaphragm were collected to examine cholinesterase activity and enzymatic/non-enzymatic oxidative stress parameters: superoxide dismutase 1 (SOD1), catalase (CAT), thiobarbituric acid substances (TBARS), protein carbonyl groups. In all four time periods, there was a significant change in acetylcholinesterase (AChE) in erythrocytes and butyrylcholinesterase (BuChE) in blood plasma, CAT in liver and diaphragm and SOD1 in diaphragm. Parameters significantly altered during the cholinergic crisis included: cholinesterases and TBARS in liver and diaphragm and partially SOD1 in liver. Protein carbonyl groups in liver and diaphragm were significantly altered outside the cholinergic crisis. In the liver, there was a very strong negative correlation between BuChE and TBARS in all four time periods and BuChE and CAT on day 7. In the diaphragm, a very strong negative correlation was found between AChE and TBARS at days 7 and 14, and a very strong positive correlation between AChE and SOD1 at days 14, 21 and 28. A better understanding of the relationship between cholinergic overstimulation and oxidative stress may help to better assess health status in prolonged OPs intoxication.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Serbia.
| | | | | | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Serbia.
| |
Collapse
|
12
|
Jia Y, Yin C, Ke W, Liu J, Guo B, Wang X, Zhao P, Hu S, Zhang C, Li X, Liu R, Zheng X, Wang Y, Wang G, Pan H, Hu W, Song Z. Alpha-ketoglutarate alleviates cadmium-induced inflammation by inhibiting the HIF1A-TNFAIP3 pathway in hepatocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163069. [PMID: 36996991 DOI: 10.1016/j.scitotenv.2023.163069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
The threat to public health posed by rapidly increasing levels of cadmium (Cd) in the environment is receiving worldwide attention. Although, Cd is known to be absorbed into the body and causes non-negligible damage to the liver, the detailed mechanisms underlying its hepatoxicity are incompletely understood. In the present study, investigated the effect of TNFAIP3 and α-ketoglutarate (AKG) on Cd-induced liver inflammation and hepatocyte death. Male C57BL/6 mice were exposed to cadmium chloride (1.0 mg/kg) while being fed a diet with 2 % AKG for two weeks. We found that Cd induced hepatocyte injury and inflammatory infiltration. In addition, TNFAIP3 expression was inhibited in the liver tissues and cells of CdCl2-treated mice. Mouse hepatocyte-specific TNFAIP3 overexpression by tail vein injection of an adeno-associated virus (AAV) vector effectively alleviated Cd-induced hepatic necrosis and inflammation, which was mediated by the NF-κB signaling pathway. Notably, this inhibitory effect of TNFAIP3 on Cd-induced liver injury was dependent on AKG. Exogenous addition of AKG prevented Cd exposure-induced increases in serum ALT, AST and LDH levels, production of pro-inflammatory cytokines, activation of the NF-κB signaling pathway, and even significantly reduced Cd-induced oxidative stress and hepatocyte death. Mechanistically, AKG exerted its anti-inflammatory effect by promoting the hydroxylation and degradation of HIF1A to reduce its Cd-induced overexpression in vivo and in vitro, avoiding the inhibition of the TNFAIP3 promoter by HIF1A. Moreover, the protective effect of AKG was significantly weaker in Cd-treated primary hepatocytes transfected with HIF1A pcDNA. Overall, our results reveal a novel mechanism of Cd-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wenbo Ke
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Bing Guo
- Insitute for Genome Sciences, University of Maryland School of Medical, Baltimore, MD 21201, United States
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ran Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wenjun Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| |
Collapse
|
13
|
Saouli A, Adjroud O, Ncir M, Bachir A, El Feki A. Attenuating effects of selenium and zinc against hexavalent chromium-induced oxidative stress, hormonal instability, and placenta damage in preimplanted rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60050-60079. [PMID: 37017835 DOI: 10.1007/s11356-023-26700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
As a toxic metal, hexavalent chromium (CrVI) has effects on both the reproductive and endocrine systems. This study aimed to evaluate the protective effects of selenium (Se) and zinc (Zn) against the toxicity of chromium on the placenta in pregnant Wistar albino rats. Thirty pregnant Wistar rats were divided into control and four treated groups, receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg body weight (bw)) alone, or in association with Se (0.3 mg/kg bw), ZnCl2 (20 mg/kg bw), or both of them simultaneously. Plasma steroid hormones, placenta histoarchitecture, oxidative stress profile, and developmental parameters were investigated. These results showed that K2Cr2O7 exposure induced a significant increase in the levels of both plasma estradiol (E2) and placenta malondialdehyde (MDA), the number of fetal resorptions, and percent of post-implantation loss. On the other hand, K2Cr2O7 significantly reduced developmental parameters, maternal body and placenta weight, and plasma progesterone (P) and chorionic gonadotropin hormone (β HCG) levels. However, K2Cr2O7 significantly decreased the placenta activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), and nonprotein sulfhydryl (NPSH). These changes have been reinforced by histopathological evaluation of the placenta. Se and/or ZnCl2 supplementation provoked a significant improvement in most indices. These results suggest that the co-treatment with Se or ZnCl2 strongly opposes the placenta cytotoxicity induced by K2Cr2O7 through its antioxidant action.
Collapse
Affiliation(s)
- Asma Saouli
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria.
| | - Ounassa Adjroud
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria
| | - Marwa Ncir
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Achouak Bachir
- Anatomy and Pathology Laboratory, EHS Salim Zemirli, 16200, El Harrach, Algeria
| | - Abdelfattah El Feki
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
14
|
Zinc and selenium mitigated heavy metals mixture (Pb, Al, Hg and Mn) mediated hepatic-nephropathy via modulation of oxido-inflammatory status and NF‑kB signaling in female albino rats. Toxicology 2022; 481:153350. [DOI: 10.1016/j.tox.2022.153350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
|
15
|
Oushani NH, Valipour M, Maghami P. Protective role of selenium on structural change of human hemoglobin in the presence of vinyl chloride. Toxicol Res 2022; 38:557-566. [PMID: 36277367 PMCID: PMC9532497 DOI: 10.1007/s43188-022-00137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vinyl chloride is a colorless gas with a pleasant odor capable of entering the body through oral or inhalation routes. Extensive studies on this compound indicated that it is a carcinogen, and Vinyl chloride exposure can result in a specific type of cancer in vinyl chloride workers. Whereas hemoglobin plays a vital role in oxygen transfer throughout the body, in a molecular aspect, the effect of vinyl chloride on human hemoglobin has not been studied. Furthermore, selenium as an antioxidant is a vital factor for the health of humans and animals. Then this research investigated the effect of the antioxidant capability of selenium at the same concentrations in blood on the interaction between vinyl chloride and hemoglobin. UV-visible, Fourier-transform infrared, chemiluminescence, and fluorescence spectroscopies were employed. The results indicated the destruction of hemoglobin structure in different concentrations of vinyl chloride. At the same time, the antioxidant effect of selenium inhibited the destructive impact of vinyl chloride on hemoglobin structure.
Collapse
Affiliation(s)
| | - Masoumeh Valipour
- Department of Biology, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Sefi M, Chaâbane M, Bejaoui S, Elwej A, Marrekchi R, Jamoussi K, Gouiaa N, Sellami TB, El Cafsi M, Zeghal N. Antioxidant role of selenium against maneb-induced cardiotoxicity in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54827-54841. [PMID: 35312919 DOI: 10.1007/s11356-022-19497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The current study was conducted to assess the beneficial effect of selenium (Se) on maneb-induced cardiotoxicity and fatty acid alterations in adult mice. Swiss albino male mice were assigned into four experimental groups. The first group consisted of negative controls. The second group represented the positive controls where mice received daily, via the diet, sodium selenite at a dose of 0.2 mg/kg. For the third group, mice were subjected to intraperitoneal injections of maneb (30 mg/kg BW). The fourth group (MB+Se) received daily the same dose of maneb as group 3 along with sodium selenite at the same dose as group 2. Mice exposure to maneb caused cardiotoxicity as indicated by an increase in malondialdehyde, hydrogen peroxide, and protein carbonyl levels, and an alteration of the antioxidant defense system (catalase, glutathione peroxidase, superoxide dismutase, glutathione, and vitamin C). Plasma lactate dehydrogenase activity and total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels increased, while high-density lipoprotein cholesterol level decreased. Results showed also a decrease in the amount of n-3 PUFA, docosahexaenoic, docosapentaenoic, and eicosapentaenoic acids. However, an increase in the levels of MUFA, cis-vaccenic, and palmitoleic acids was observed. Co-administration of Se restored the parameters indicated above to near control values. The histopathological findings confirmed the biochemical results. Selenium could be a useful and efficient agent against maneb-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mediha Sefi
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia.
- Ecology, Biology and Physiology Laboratory of Aquatic Organisms, Department of Biological Sciences, Sciences Faculty of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Mariem Chaâbane
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Safa Bejaoui
- Ecology, Biology and Physiology Laboratory of Aquatic Organisms, Department of Biological Sciences, Sciences Faculty of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Awatef Elwej
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Rim Marrekchi
- Biochemistry Laboratory, Department of Biochemistry, CHU Hedi Chaker, University of Sfax, 3029, Sfax, Tunisia
| | - Kamel Jamoussi
- Biochemistry Laboratory, Department of Biochemistry, CHU Hedi Chaker, University of Sfax, 3029, Sfax, Tunisia
| | - Naourez Gouiaa
- Histopathology Laboratory, Department of Anatomo-pathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Tahia Boudawara Sellami
- Histopathology Laboratory, Department of Anatomo-pathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - M'hamed El Cafsi
- Ecology, Biology and Physiology Laboratory of Aquatic Organisms, Department of Biological Sciences, Sciences Faculty of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Najiba Zeghal
- Animal Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
17
|
Chronic Intestinal Disorders in Humans and Pets: Current Management and the Potential of Nutraceutical Antioxidants as Alternatives. Animals (Basel) 2022; 12:ani12070812. [PMID: 35405802 PMCID: PMC8996831 DOI: 10.3390/ani12070812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Chronic disorders of the intestinal tract (CID) are characterized by signs of inflammation of the intestine for a period of at least three weeks. Both humans and pets can be affected by these disorders. Different therapeutic approaches can be selected to treat patients and the use of natural products has been increased in the last decade, since oxidative stress plays a key role in the progression of the chronic intestinal disorders. In this review, the antioxidant proprieties of several natural products with potential for treatment of CID in human and veterinary medicine are highlighted. Unfortunately, few clinical trials report the use of these products for treating CID in humans and none in animals. Abstract Chronic intestinal disorders (CID) are characterized by persistent, or recurrent gastrointestinal (GI) signs present for at least three weeks. In human medicine, inflammatory bowel disease (IBD) is a group of chronic GI diseases and includes Crohn’s disease (CD) and ulcerative colitis (UC). On the other hand, the general term chronic enteropathies (CE) is preferred in veterinary medicine. Different therapeutic approaches to these diseases are used in both humans and pets. This review is focused on the use of traditional therapies and nutraceuticals with specific antioxidant properties, for the treatment of CID in humans and animal patients. There is strong evidence of the antioxidant properties of the nutraceuticals included in this review, but few studies report their use for treating CID in humans and none in animals. Despite this fact, the majority of the nutraceuticals described in the present article could be considered as promising alternatives for the regular treatment of CID in human and veterinary medicine.
Collapse
|
18
|
Chabane K, Khene MA, Zaida F, Ainouz L, Giaimis J, Mameri S, Baz A. Subacute and subchronic methomyl exposure induced toxic effects on intestines via oxidative stress in male albino rats: biochemical and histopathological study. Drug Chem Toxicol 2022; 45:523-536. [DOI: 10.1080/01480545.2020.1727496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kahina Chabane
- Laboratory of Biology and Organism Physiology, University of Sciences and Technology, Houari Boumediene (USTHB), Algiers, Algeria
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| | | | - Faiza Zaida
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| | - Lynda Ainouz
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| | - Jean Giaimis
- UMR Qualisud-Faculty of Pharmacy, University of Montpellier I, Montpellier, France
| | - Saâdia Mameri
- Laboratory of Anatomopathology, Mustapha Bacha Hospital, Algiers, Algeria
| | - Ahsene Baz
- Laboratory of Biology and Animal Physiology, ENS Kouba, Algiers, Algeria
| |
Collapse
|
19
|
Birdane YO, Avci G, Birdane FM, Turkmen R, Atik O, Atik H. The protective effects of erdosteine on subacute diazinon-induced oxidative stress and inflammation in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21537-21546. [PMID: 34766221 DOI: 10.1007/s11356-021-17398-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
In today's world, pesticides are commonly used to control pests and in advanced agriculture. As an organophosphorus insecticide (OPI), diazinon (DZN) is a commonly used substance. However, the widespread usage of DZN increases the probability of incidence of toxication. This toxication has been reported to be shaped not through cholinergic syndromes that are experienced as a result of acetylcholinesterase inhibition, which is the primary effect of these cases. It is rather shaped by the altering of the facilitation of oxidative stress and inflammatory response. In this study, the protective effect of administering erdosteine (ERDOS) subacute DZN exposure was investigated. A total of 24 male Wistar albino rats were separated into 4 groups (with 6 rats in each group), namely, the control, DZN (15 mg/kg/day), ERDOS (10 mg/kg/day), and DZN + ERDOS (15 mg/kg/day DZN + 10 mg/kg/day ERDOS) groups. These medications were given through oral gavage for 28 days. With the whole blood, plasma, and serum samples taken from the rats, oxidant-antioxidant parameters and cytokine levels were measured. The MDA and NOx levels and SOD and CAT enzyme activities of the DZN group were higher than those of the control group, while the GSH levels and TAC and GPx activities of the DZN group were lower than those of the control group (p < 0.05). It was also found that cytokine (IL-1β, IL-10, and TNF-α) levels in the DZN group were higher than those in the control group (p < 0.05). On the other hand, the ERDOS implementations were detected to ameliorate the harmful effects of DZN on the oxidant-antioxidant parameters and cytokine levels (p < 0.05). Conclusively, besides the known mucolytic efficacy of ERDOS, it may also be stated to display free radical scavenger, antioxidant, and anti-inflammatory characteristics to inhibit some proinflammatory cytokines that are specifically involved in oxidative stress. Additionally, the ameliorating property of ERDOS can be benefited from in possible DZN-induced toxication cases.
Collapse
Affiliation(s)
- Yavuz Osman Birdane
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey.
| | - Gulcan Avci
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Fatih Mehmet Birdane
- Department of Internal Medicine, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ruhi Turkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Orkun Atik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Hulya Atik
- Department of Physiology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
20
|
Effect of Brazil Nuts on Selenium Status, Blood Lipids, and Biomarkers of Oxidative Stress and Inflammation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Antioxidants (Basel) 2022; 11:antiox11020403. [PMID: 35204285 PMCID: PMC8869304 DOI: 10.3390/antiox11020403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Tree nuts, including Brazil nuts, have been hypothesized to impact cardiovascular health through the modulation of oxidative stress and inflammation. Nonetheless, a quantitative analysis of these effects has not been performed. Therefore, the aim of this study was to systematically revise and quantify the effect of Brazil nut intervention on selenium status, blood lipids, and biomarkers of oxidative stress and inflammation using a meta-analytical approach. To meet the goals of this study, a systematic search of PubMed, EMBASE, and Web of Science databases of published randomised clinical trials reporting on dietary interventions with Brazil nuts and their effects on selenium status, blood lipids, and markers of oxidative stress and inflammation was performed. Eight articles were included for systematic review and meta-analysis. Based on the conducted analysis, a significant positive effect of Brazil nuts on selenium blood concentration (SMD = 6.93, 95% CI: 3.99; 9.87) was found. Additionally, a positive effect of Brazil nut intervention on glutathione peroxidase activity (SMD = 0.53, 95% CI: 0.07; 0.99) was observed. However, no significant results were found when considering blood lipid levels, including results for total cholesterol (SMD = −0.22, 95% CI: −0.57; 0.14), HDL cholesterol (SMD = −0.04, 95% CI: −0.28; 0.19) and LDL cholesterol (SMD = −0.15; 95% CI: −0.43; 0.13). In conclusion, the findings from this study suggest that Brazil nut consumption improves selenium status and exerts antioxidant effects, which could be considered a potential pathway for the prevention of metabolic disorders related to altered blood lipid profiles. However, further studies are needed to elucidate the effect of Brazil nuts toward blood lipid profile, also preferably controlling for other biomarkers.
Collapse
|
21
|
Yuan L, Ma ZF, Zhang M, Qin L, Yin X, Han F. Hair Se Is a Sensitive Biomarker to Monitor the Effects of Se Supplementation in Elderly. Biol Trace Elem Res 2022; 200:488-496. [PMID: 33738684 DOI: 10.1007/s12011-021-02674-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
It is rapidly increasing to have selenium (Se) supplementation for urban elderly population in China since they are facing a widespread deficiency daily Se intake. However, until now, there is no low-cost, non-invasive, rapid, and reliable method to monitor the health improvement or risk for elderly Se-supplemented population in China. The present cross-sectional study (229 participants with older than 55 years old) performed in Beijing, China, revealed that the Se concentrations of non-supplementer users (n = 27) were 55 ± 23 μg/L in urine, 139.9 ± 102.3 μg/L in serum, and 487.6 ± 158.7 μg/kg in hair. But a significant increase on hair Se concentrations (615.4 ± 238.8 μg/kg) was observed for Se supplementer users (n = 202) (p < 0.05); there were no significant statistical differences in serum and urine between the Se-supplemented (n = 202) and Se non-supplemented groups (n = 27). This indicated the hair Se levels could be a more sensitive biomarker for Se-supplemented elderly population. Participants who consumed Se supplements for 7-12 months had the highest Se status based on hair and serum Se concentrations (p < 0.05). The present study also revealed that most elderly adults in Beijing just need to supplement 50 μg Se per day to achieve Se plateau status. Furthermore, hair Se levels were positively related with triglycerides/TG levels (p < 0.05) but not body mass index/BMI, total cholesterol/TC, and low-density lipoprotein cholesterol/LDL, implicating Se supplementation for Se sufficiency baseline in elderly population in Beijing likely posed health risk, especially on TG because of excessive Se oxidation stress. An ongoing monitoring of Se status via hair is still warranted to prevent future Se deficiency or excess in China.
Collapse
Affiliation(s)
- Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu, 215123, Suzhou, China.
| | - Zheng Feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu, 215123, Suzhou, China
| | - Minming Zhang
- Key Laboratory of Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Feng Han
- Research Centre, Soochow Setek Biotechnology Co., Ltd., Suzhou, 215123, Jiangsu, China
| |
Collapse
|
22
|
Wang Z, Huang W, Pang F. Selenium in Soil-Plant-Microbe: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:167-181. [PMID: 34617141 DOI: 10.1007/s00128-021-03386-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) plays an important role in geochemistry and is an essential trace element for humans and animals. This review summarizes the transformation and accumulation of Se in the plant-soil-microbe system. As one of the important reservoirs of Se, soil is an important material basis of its entry into the food chain through plants. Soil with an appropriate amount of Se is beneficial for plant growth and plays a valuable role in a stress-resistant environment. Among the many migration and transformation pathways, the transformation of Se by microorganisms is particularly important and is the main form of Se transformation in the soil environment. In this review, the role and form transformation of Se in plants, soil, and microorganisms; the role of Se in plants; the form, input, and output of Se in soil; the absorption and transformation of Se by plants; and the role of microorganisms in Se transformation are presented. In addition to describing the migration and transformation laws of Se in the environment, this review expounds on the main directions and trends of Se research in the agricultural field as well as current gaps and difficulties in Se-related research. Overall, this reviews aims to provide necessary information and theoretical references for the development of Se-rich agriculture.
Collapse
Affiliation(s)
- Zhen Wang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wei Huang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Fei Pang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
23
|
da Silva JS, Rosa AF, Moncau CT, Vignato BS, Pugine SMP, de Melo MP, Sanchez JMD, Zanetti MA. Effect of different selenium sources and concentrations on glutathione peroxidase activity and cholesterol metabolism of beef cattle. J Anim Sci 2021; 99:6424803. [PMID: 34755854 DOI: 10.1093/jas/skab321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022] Open
Abstract
The objective of this study was to investigate the effects of different Se sources and concentrations on glutathione forms and cholesterol metabolism in beef cattle. Sixty-three Nellore bulls (412 ± 19 kg BW; 24 months old) were randomly assigned to a completely randomized design in a 2×3 + 1 factorial arrangement (63 pens; one animal/pen) with two Se sources (sodium selenite, ING and Se-yeast, ORG), three concentrations (0.3, 0.9 and 2.7 mg supplemental Se/kg DM), and control treatment (without Se supplementation) fed for 90 days. Blood samples were collected on d 0, 28, 56, and 84. Muscle and liver samples were collected at harvest. Hepatic GSSG (P = 0.004), GSH/GSSG ratio (P = 0.030), and GSH-Px (P = 0.004) were affected by Se source x concentration interaction. Oxidized glutathione was higher in the ORG group vs. ING at concentration 2.7 mg supplemental Se/kg DM, but at 0.3 mg supplemental Se/kg DM the ING group was higher than ORG. The liver GSH-Px activity was higher in the ORG group vs. ING at concentration 0.9 and 2.7 mg supplemental Se/kg DM. The GSH/GSSG ratio was the highest in animals fed 0.3 mg supplemental Se/kg DM of ORG. Selenium liver concentration increased linearly with the supplemental Se concentration in the diet (y = 0.0583 + 0.4254x, R 2 = 0.92, P < 0.0001), regardless of source. Total meat cholesterol was greater (P < 0.001) in CON (control) vs. SUP (supplemented, regardless source) group. The muscle GSH-Px activity was higher (P < 0.001) in SUP vs. CON and increased (P < 0.004) with increasing supplemental Se concentrations. There was an increase on VLDL, glucose, and triglycerides in ORG vs. ING (P ≤ 0.035). In general, serum Se was higher (P < 0.001) in SUP vs. CON and increased with increasing supplemental Se concentration. Lastly, the HMGCR concentration was lower (P = 0.002) in SUP (0.39 ng/mL) vs. CON (0.55 ng/mL). Selenium supplementation with different sources and concentrations has the potential to affect cholesterol metabolism by affecting GSH/GSSG ratio, GSH-Px, and the HMGCR.
Collapse
Affiliation(s)
- Janaina S da Silva
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Alessandra F Rosa
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Cristina T Moncau
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Bárbara Silva Vignato
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, ESALQ/USP, Piracicaba, Brazil
| | - Silvana Marina P Pugine
- Department of Basic Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Mariza P de Melo
- Department of Basic Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - João Marcelo D Sanchez
- University of Florida, Institute of Food and Agricultural Sciences, Range Cattle Research and Education Center, USA
| | - Marcus Antonio Zanetti
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
24
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, Hassanpour P, Qujeq D, Rashtchizadeh N, Ghorbanihaghjo A. Zinc and Selenium in Inflammatory Bowel Disease: Trace Elements with Key Roles? Biol Trace Elem Res 2021; 199:3190-3204. [PMID: 33098076 DOI: 10.1007/s12011-020-02444-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that may emerge at a young age and often lasts for life. It often goes through phases of recurrence and remission and has a devastating effect on quality of life. The exact etiology of the disease is still unclear, but it appears that an inappropriate immune response to intestinal flora bacteria in people with a genetic predisposition may cause the disease. Managing inflammatory bowel disease is still a serious challenge. Oxidative stress and free radicals appear to be involved in the pathogenesis of this disease, and a number of studies have suggested the use of antioxidants as a therapeutic approach. The antioxidant and anti-inflammatory properties of some trace elements have led some of the research to focus on studying these trace elements in inflammatory bowel disease. Zinc and selenium are among the most important trace elements that have significant anti-inflammatory and antioxidant properties. Some studies have shown the importance of these trace elements in inflammatory bowel disease. In this review, we have attempted to provide a comprehensive overview of the findings of these studies and to gather current knowledge about the association of these trace elements with the inflammatory process and inflammatory bowel disease.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Nadereh Rashtchizadeh
- Connective Tissue Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, P.O. Box 14711, Tabriz, 5166614711, Iran.
| |
Collapse
|
25
|
Fang H, He X, Wu Y, Chen S, Zhang M, Pan F, Huang J, Liu A. Association Between Selenium Level in Blood and Glycolipid Metabolism in Residents of Enshi Prefecture, China. Biol Trace Elem Res 2021; 199:2456-2466. [PMID: 33025519 DOI: 10.1007/s12011-020-02372-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 11/28/2022]
Abstract
The present study aimed to detect selenium (Se) levels in the blood of Enshi Prefecture residents in China and investigate the relationship between blood Se levels and glucose or lipid metabolism disorder. A cross-sectional study was conducted, and 1876 subjects were selected through cluster random sampling from Enshi Prefecture using a questionnaire survey, physical examinations, and biochemical blood tests. The mean blood Se level in the overall population was 0.128 ± 0.178 μg/mL. Se exhibits a "U"-shaped curve on the serum fasting plasma glucose (FPG) of the total samples, that is, when the blood Se is more than 0.131 μg/mL or less than 0.062 μg/mL, the FPG increases significantly. A significant negative correlation was demonstrated between the FPG levels of the 4-17-year-old age group and different blood Se levels (P < 0.001). No significant correlation was demonstrated between the serum triglyceride (TG) and blood Se levels. However, a positive correlation was demonstrated between blood Se and serum total cholesterol (TC) levels and the incidence of high cholesterol in the total population (P < 0.001). The odds ratio and related 95% confidence interval for the incidence of high cholesterol between the highest (≥ 0.133 μg/mL) and lowest blood Se (< 0.064 μg/mL) levels was 2.64 and 1.48-4.79, respectively. The results of this study are very important for the safety scope and risk-benefit assessment of Se in the human; however, further investigation with a larger sample size is required.
Collapse
Affiliation(s)
- Haiqin Fang
- China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Xiaohong He
- Enshi Center for Disease Control and Prevention, Enshi, 445000, Hubei, China
| | - Yingyu Wu
- College of Agricultural and Environmental Sciences, United States, University of California, Davis, CA, USA
| | - Siqiang Chen
- Enshi Center for Disease Control and Prevention, Enshi, 445000, Hubei, China
| | - Mingyuan Zhang
- China National Center for Food Safety Risk Assessment, Beijing, 100021, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Feng Pan
- China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Jiao Huang
- School of Public Health, Huazhong, Huazhong University of Science and Technology, Wuhan, China
| | - Aidong Liu
- China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| |
Collapse
|
26
|
Hasani M, Saidpour A, Irandoost P, Golab F, Khazdouz M, Qorbani M, Agh F, Mohammad Sharifi A, Vafa M. Beneficial effects of Se/Zn co-supplementation on body weight and adipose tissue inflammation in high-fat diet-induced obese rats. Food Sci Nutr 2021; 9:3414-3425. [PMID: 34631042 PMCID: PMC8488787 DOI: 10.1002/fsn3.2203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022] Open
Abstract
This research investigated the effect of co-supplementation of selenium with zinc on weight control and the inflammatory and oxidative status in relation to obesity. Male Wistar rats (N = 32) were randomly divided into four groups after induction of obesity model: 1) "Zn" was supplemented with zinc sulfate (15 mg/kg BW), 2) "Se" supplemented with selenium as sodium selenate (0.5 mg/kg BW), 3) "Zn + Se" which received Zn (15 mg/kg BW) + Se (0.5 mg/kg BW), and 4) "HFD" as the control group. The intervention was done for eight weeks. At the end of treatment, serum and tissue level of Zn, Se, SOD, GSH-Px, MDA, leptin, TNF-α, and IL-6 was evaluated. Weight and food intake were significantly reduced in the Se group(p < .001), while in the Zn group, weight gain due to obesity was prevented compared to the control group (p = .48). There was a significant and stronger increase in SOD, GSH-Px levels and a remarkable decrease in MDA, leptin, TNF-α, and IL-6 in the group receiving the combination of two supplements than either alone(p < .001). Leptin had a positive correlation with inflammatory factors and lipid peroxidation marker and showed an inverse relationship with Zn and Se levels and anti-oxidative enzymes(p < .05). The analysis showed the mediating role of leptin in the effects of zinc. Co-supplementation of selenium and zinc may have a synergistic effect in reduction of oxidative and inflammatory markers. Regarding the effect of zinc on inflammatory factors and lipid peroxidation, leptin can play a mediating role.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition School of Public Health Iran University of Medical Sciences Tehran Iran
| | - Atoosa Saidpour
- National Nutrition and Food Technology Research Institute (Department) Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Pardis Irandoost
- Department of Nutrition School of Public Health Iran University of Medical Sciences Tehran Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center Iran University of Medical Science Tehran Iran
| | - Maryam Khazdouz
- Department of Nutrition School of Public Health Iran University of Medical Sciences Tehran Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center Alborz University of Medical Sciences Karaj Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Fahimeh Agh
- Department of Nutrition School of Public Health Iran University of Medical Sciences Tehran Iran
| | - Ali Mohammad Sharifi
- Stem cell and regenerative Medicine research center and department of pharmacology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Mohammadreza Vafa
- Department of Nutrition School of Public Health Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
27
|
Samarghandian S, Farkhondeh T, Yousefizadeh S. Toxicity Evaluation of the Subacute Diazinon in Aged Male Rats: Hematological Aspects. Cardiovasc Hematol Disord Drug Targets 2021; 20:198-201. [PMID: 32133967 PMCID: PMC8388065 DOI: 10.2174/1871529x20666200305103007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 11/22/2022]
Abstract
Background & Objective Age-dependent Organophosphates (OPs) toxicity is a controversial topic. The present study was designed to investigate the effect of the sub-acute exposure to diazinon (DZN), one of the main OPs insecticides, on the hematological alterations in adult and aged male rats. Methods For the aim of this approach, the adult and aged rats were administered with DZN (15 mg/kg, orally) for 4 weeks. Then, the blood samples were collected from the retro-orbital sinus for measuring red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), platelets (PLT), MCV (mean corpuscular volume), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin (MCHC). Results The obtained results indicated that DZN significantly decreased RBCs (4.93 ± 0.41), Htc (28.12 ± 1.21), Hb (10.31 ± 0.36), MCHC (30.51 ± 2.04), MCV (62.86 ± 2.58), and PLT (265.6 ± 34.81) values in the adult and aged rats versus the age-matched control rats. Moreover, RBC, Hb, and Htc levels de-creased significantly in the aged rats versus adult rats. However, no significant differences were observed between MCHC, MCV, and PLT levels in adult and aged rats. Moreover, the MCH concentration did not change in any group. Additionally, DZN did not deteriorate the hematological alterations in the aged rats versus adult rats. Conclusion the present study showed that the toxicity of DZN is not associated with age. However, more studies should be conducted to confirm this finding.
Collapse
Affiliation(s)
- Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Para-Veterinary, Ilam University, Ilam, Iran
| |
Collapse
|
28
|
Zhao M, Luo T, Zhao Z, Rong H, Zhao G, Lei L. Food Chemistry of Selenium and Controversial Roles of Selenium in Affecting Blood Cholesterol Concentrations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4935-4945. [PMID: 33902277 DOI: 10.1021/acs.jafc.1c00784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypercholesterolemia, one of the major risk factors of cardiovascular diseases, is a worldwide public health problem. Nutraceuticals and phytochemicals are attracting attention as a result of their cholesterol-lowering ability and minimal side effects. Among them, selenium (Se) is on the list. The amount of Se in foods varies by region. Se-enriched fertilizers and feeds can raise the Se content in plants and animals, while some processing methods decrease food Se content. This review summarizes recent studies on (1) the content distribution of Se in foods and factors influencing Se-enriched foods, (2) the bioavailability and metabolism of Se, and (3) the role of Se in affecting blood cholesterol and cholesterol metabolism. Although the hypocholesterolemic effect of Se is equivocal, its cholesterol-lowering activity may be more remarkable when the Se supplementation is 200 μg/day or the baseline blood total cholesterol is above 200 mg/dL in humans with low Se status.
Collapse
Affiliation(s)
- Meng Zhao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zixuan Zhao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Han Rong
- College of Material and Environment, Beijing Institute of Technology, Zhuhai, Guangdong 519085, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, People's Republic of China
| |
Collapse
|
29
|
Yaghubi Beklar S, Hamzeh M, Karimpour Malekshah A, Talebpour Amiri F. The hydroalcoholic extract of Zingiber officinale diminishes diazinon-induced hepatotoxicity by suppressing oxidative stress and apoptosis in rats. Biotech Histochem 2021; 96:269-275. [PMID: 32672073 DOI: 10.1080/10520295.2020.1794039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diazinon (DZN) is an organophosphate insecticide that affects the liver adversely. Ginger exhibits antioxidant properties. We investigated the hepatoprotective effects of an ethanolic extract of ginger root on DZN induced hepatotoxicity. We measured total phenolics and flavonoids in the hydroalcoholic extract. We used Wistar rats divided into four groups: control, 100 mg/kg/day ginger by gavage, 10 mg/kg/day DZN intraperitoneally, and ginger + DZN group treated with ginger 1 h before DZN. All treatments were for 30 consecutive days. One day after the last treatment, we evaluated oxidative stress parameters, serum biochemistry, histopathology and immunohistochemistry. The ginger extract contained 101.33 ± 2.73 mg total flavonoid and 237.9 ± 3 mg total phenolic content/g dry ginger plant roots. We found that DZN increased oxidative stress significantly. Histopathology of the liver tissue was consistent with increased AST, ALT, and ALP. Ginger extract treatment reduced oxidative stress and improved histopathology. DZN increased caspase-3 immunoreactivity and ginger extract reduced it. Ginger extract exhibited hepatoprotective effects against DZN induced hepatic injury owing to its antioxidant and anti-apoptotic activity.
Collapse
Affiliation(s)
- Saeed Yaghubi Beklar
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maedeh Hamzeh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
30
|
Wang ZN, Li H, Tang H, Zhang SJ, Pauline M, Bi CL. Short Communication: Effects of Dietary Selenium Supplementation on Selenium Deposition and Antioxidant Status in Postpartum Mice. Biol Trace Elem Res 2021; 199:1488-1492. [PMID: 32588333 DOI: 10.1007/s12011-020-02260-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the effects of dietary selenium during pregnancy on the selenium deposition and antioxidant enzymes in postpartum mouse serum, liver, and mammary gland. Eighty BALB/c pregnant mice were randomly divided into four groups: CG (Se-deficient basal diet, n = 20), LG (0.05 mg/kg Se-supplemented diet, n = 20), MG (0.1 mg/kg Se-supplemented diet, n = 20), and HG (0.2 mg/kg Se-supplemented diet, n = 20). Four days after parturition, all mice were euthanized. The selenium deposition and antioxidants enzymes in serum, liver, and mammary gland were detected. Results show that with increasing selenium supplementation, the selenium deposition and activation of T-AOC, T-SOD, and GSH-Px increased, meanwhile the concentration of MDA decreased in serum, liver, and mammary gland. Therefore, this study suggested selenium was mainly deposited in the liver, and dietary selenium during pregnancy might improve the antioxidant status in postpartum animals.
Collapse
Affiliation(s)
- Zhen-Nan Wang
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China
| | - Mirielle Pauline
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Shuangling Road, Linyi City, 276005, Shandong Province, China.
| |
Collapse
|
31
|
Shafeeq S, Mahboob T. 2,4-Dichlorophenoxyacetic acid induced hepatic and renal toxicological perturbations in rat model: Attenuation by selenium supplementation. Toxicol Ind Health 2021; 37:152-163. [PMID: 33689533 DOI: 10.1177/0748233720983167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a commercially used herbicide to manage broadleaf weeds that have various toxicological and ecological effects. In view of ever-escalating use of 2,4-D, risk assessment becomes mandatory to ensure the safety of both human health and the ecosystem. Oxidative injury has been expected as a possible mechanism implicated in 2,4-D toxicity. The present study was planned and conducted to explore the antioxidant potential of selenium (Se) supplementation to moderate the 2,4-D hepatic and renal toxicity in a rat model. The rats were randomly assigned to four equal groups and treated via oral gavage for a period of 4 weeks. Group I: received deionized water as a vehicle, group II: received 2,4-D (150 mg-1 kg-1 day-1), group III: received Se supplement (1 mg-1 kg-1 day-1), and group IV: received 2,4-D (150 mg-1 kg-1 day-1) and Se supplement (1 mg-1 kg-1 day-1) simultaneously. After 4 weeks of administration, 2,4-D induced toxicity was observed, as manifested by disrupted levels of plasma urea, creatinine, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Further, 2,4-D caused a considerable increase in tissue malondialdehyde (MDA) levels and decreased activity of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione reductase. Se supplementation exhibited its antioxidant properties by significantly improving urea, creatinine, ALP, AST, and ALT, and MDA levels and antioxidant enzyme activities. In conclusion, the results suggest that 2,4-D induced hepatic and renal toxicities were attenuated by Se supplementation probably owing to its antioxidant properties.
Collapse
Affiliation(s)
- Sehrish Shafeeq
- Department of Biochemistry, 63596University of Karachi, Karachi 75270, Pakistan
| | - Tabassum Mahboob
- Department of Biochemistry, 63596University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
32
|
Saoudi M, Badraoui R, Rahmouni F, Jamoussi K, El Feki A. Antioxidant and Protective Effects of Artemisia campestris Essential Oil Against Chlorpyrifos-Induced Kidney and Liver Injuries in Rats. Front Physiol 2021; 12:618582. [PMID: 33716767 PMCID: PMC7945717 DOI: 10.3389/fphys.2021.618582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
This study is aimed to elucidate the possible antioxidant and protective effects of Artemisia campestris essential oil (ACEO) against the deleterious effects of chlorpyrifos (CPF) in rats. The in vivo study revealed increases in aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activities and the serum contents of creatinine, urea, uric acid, cholesterol, triglycerides, low density lipoproteins (LDL), and glucose in rats treated with CPF as compared to controls. Meanwhile, hepatic and renal activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver and kidney decreased and the content of malondialdehyde (MDA) increased. Some histopathologic features were noticed in liver and kidney of the CPF group. Interestingly, ACEO alleviated the biochemical disruptions and reduced these hepato-renal morphologic changes.
Collapse
Affiliation(s)
- Mongi Saoudi
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Badraoui
- Department of Biology, University of Hai’l, Ha’il, Saudi Arabia
- Laboratory of Histology - Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax University, Sfax, Tunisia
| | - Fatma Rahmouni
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax University, Sfax, Tunisia
| | - Kamel Jamoussi
- Biochemistry Laboratory, University Hospital Complex (CHU) Hedi Chaker of Sfax, Sfax, Tunisia
| | - Abdelfattah El Feki
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
33
|
Farouk SM, Gad FAM, Emam MA. Comparative immuno-modulatory effects of basil and sesame seed oils against diazinon-induced toxicity in rats; a focus on TNF-α immunolocalization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5332-5346. [PMID: 32964385 DOI: 10.1007/s11356-020-10840-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Diazinon (DZN), a common organophosphorus insecticide (OPI), has hazardous effect to human and animals with its ubiquitous use. Considering the implication of reactive oxygen species (ROS) in the OPIs toxicity, the present study was aimed to evaluate the ameliorative properties of basil (BO) and sesame (SO) seed oils against the toxic effect of DZN. Forty adult male albino rats were divided into four experimental groups (n = 10 rats/group); control, DZN (10 mg/kg b.w/day), DZN + BO (5 ml/kg b.w/day), and DZN + SO (8 ml/kg b.w/day) groups, treated for a period of 4 weeks. DZN-exposed animals showed significant elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (Cr) with a significant decline in testosterone level compared with control. On the other hand, DZN + BO and DZN + SO groups revealed significant decreases in ALT, AST, BUN, and Cr with a significant increase in testosterone level when compared with DZN-exposed animals. Oxidative/antioxidant indices revealed significant increases of malondialdehyde (MDA) levels along with significant decreases of superoxide dismutase (SOD), glutathione peroxidase (Gpx), and catalase (CAT) activities among DZN-treated rats compared with control. Distinctly lower levels of MDA and increased activities of SOD, Gpx, and CAT were evident in both DZN + BO and DZN + SO groups when compared with DZN-exposed animals. Inflammatory and immuno-modulatory markers assessment showed a significant increase in TNF-α with a significant decline in IL-10 level in DZN group; meanwhile, both DZN + BO and DZN + SO groups revealed significant declines in levels of TNF-α with significant increases in IL-10. Corresponds immunohistochemistry, the total scores (TS) of TNF-α immunostainings in hepatorenal, testicular, and epididymal tissues of control, DZN + BO and DZN + SO groups were significantly lower than those values of DZN group. Additionally, the examined tissues of DZN + BO group revealed significant lower TS of TNF-α immunostaining compared with DZN + SO group. The overall data suggested that both BO and SO can be efficiently used as preventive herbal compounds against DZN-induced oxidative stress with special reference to their possible antioxidant, anti-inflammatory, and free radical activities. However, BO has more potent protective effect against DZN-induced tissue injury at both immunohistochemical and molecular levels.
Collapse
Affiliation(s)
- Sameh Mohamed Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Fatma Abdel-Monem Gad
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Banha, 13736, Egypt
| | | |
Collapse
|
34
|
Mokhtari Sangdehi SR, Hajizadeh Moghaddam A, Ranjbar M. Anti-apoptotic effect of silymarin-loaded chitosan nanoparticles on hippocampal caspase-3 and Bcl-2 expression following cerebral ischemia/reperfusion injury. Int J Neurosci 2021; 132:1102-1109. [PMID: 33287594 DOI: 10.1080/00207454.2020.1860971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) causes memory and learning impairments and apoptosis in the hippocampus. The aim of present study aimed to investigate the anti-apoptotic effects of silymarin-loaded chitosan nanoparticles (SM-CS-NPs) on the expression of Bcl-2 and Caspase-3 genes in hippocampal neurons after I/R injury. MATERIAL AND METHODS SM and SM-CS-NPs were orally administered (15 mg/kg) for 14 days, and then cerebral I/R injury was induced by the bilateral common carotid artery occlusion (BCCAO). One day after I/R induction, memory and learning impairments and various biochemical estimations were assessed. RESULTS Our results indicated that SM-CS-NPs improved I/R-induced memory and learning impairments and oxidative damage in the hippocampal region. The qRT-PCR analysis indicated that SM-CS-NPs pretreatment inhibited I/R-induced neuronal apoptosis by increasing the expression of Bcl-2 and decreasing the expression of Caspase-3 in the hippocampus. CONCLUSION These findings suggest that SM-CS-NPs exert neuroprotective effects, and the neuroprotection is likely to be associated with the regulation of Bcl-2 and Caspase-3, leading to inhibition of apoptotic cell death in hippocampal neurons.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
35
|
Farkhondeh T, Aschner M, Sadeghi M, Mehrpour O, Naseri K, Amirabadizadeh A, Roshanravan B, Aramjoo H, Samarghandian S. The effect of diazinon on blood glucose homeostasis: a systematic and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4007-4018. [PMID: 33175357 DOI: 10.1007/s11356-020-11364-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Though evidence exists on the association between diazinon (DZN), an organophosphate pesticide, with hyperglycemia, contrasting reports also exist. Herein, we performed a systematic and meta-analysis study to address this issue. A systematic search was conducted in PubMed, Ovid Medline, Google Scholar, Scopus, and Web of Science up to April 5, 2020, searching for animal studies (rodents and fish) that assessed the impact of DZN on blood glucose concentration. The risk of bias was assessed by the SYRCLE's RoB scale. Once each article's quality was assessed, a random-effects meta-regression was used to pool the data into a meta-analysis. Heterogeneity between the studies was evaluated with the I square and Q test. Random-effect meta-analysis of 19 studies (I2 = 90.5%, p < 0.001) indicated low heterogeneity between the studies. DZN significantly increased blood glucose levels in the exposed versus control groups (95% CI: 2.46-4.94; Z = 5.86; p < 0.001). Subgroup analysis indicated that the effect of high-dose (3.40 (95% CI: 2.03-4.76)) DZN on changes in blood glucose was more pronounced than in the low dose (4.83 (95% CI: 1.56-8.11)). It was also ascertained that the blood glucose level was significantly higher in females (3.55 (95% CI: 2.21-4.89)) versus males (4.87 (95% CI: 0.20-9.55)) exposed to DZN. No publication bias was observed. Sensitivity analysis showed the robustness of the (standardized mean differences: 3.26-4.03). Our findings establish an association between DZN exposure and hyperglycemia in rodents and fish, which is both dose- and gender-dependent.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Omid Mehrpour
- Arizona Poison & Drug Information Center, the University of Arizona, college of pharmacy and university of Arizona, Tucson, Arizona, USA
- Scientific unlimited horizon, Tucson, Arizona, USA
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Amirabadizadeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Aramjoo
- Student Research Committee, BSc Student in Medical LaboratoryScience, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
36
|
Aramjoo H, Farkhondeh T, Aschner M, Naseri K, Mehrpour O, Sadighara P, Roshanravan B, Samarghandian S. The association between diazinon exposure and dyslipidemia occurrence: a systematic and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3994-4006. [PMID: 33159230 DOI: 10.1007/s11356-020-11363-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The effects of diazinon (DZN), an organophosphate pesticide, on lipid profiles have been extensively reported. However, controversy on this issue persists. Here, we performed a systematic and meta-analysis study to investigate the association between DZN exposure and dyslipidemia in rodents and fish species. This systematic review was prepared according to the PRISMA guidelines. Main databases, including Google Scholar, Scopus, PubMed, Ovid MEDLINE, and Web of Science, were systematically searched through March 4, 2020. The risk of bias was evaluated with the SYRCLE's RoB tool. Once all articles were assessed for scientific quality, a random-effects model was applied to perform a pooled analysis. I2 and Q test were used to assess the heterogeneity between articles, and Forest plots, indicating point and pooled estimates, were drawn. Twenty-eight articles were included; between them, 13 publications were selected for meta-analysis. Random-effects meta-analysis showed low heterogeneity between the articles. A pooled analysis indicated that DZN significantly increased total cholesterol levels (95% CI: 0.86-3.79; Z = 3.10; p = 0.002), triglyceride (95% CI: 0.38-3.22; Z = 2.48; p = 0.09), low-density lipoprotein cholesterol (95% CI: 0.25-2.85; Z = 2.34; p = 0.7) in the DZN vs. control groups. In addition, DZN significantly decreased high-density lipoprotein cholesterol (95% CI: - 2.92, - 0.42; Z = 2.62; p = 0.07) in the DZN vs. control groups. No publication bias was observed. Our findings suggest that DZN induces dyslipidemia in rodents and fish species in a dose-dependent manner.
Collapse
Affiliation(s)
- Hamed Aramjoo
- Student Research Committee, BSc Student in Medical Laboratory Science, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Micheal Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, NY, USA
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Arizona Poison & Drug Information Center, the University of Arizona, College of Pharmacy and University of Arizona, Tucson, AZ, USA
- Scientific Unlimited Horizon, Tucson, AZ, USA
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health and Center for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
37
|
Rahimi Anbarkeh F, Jalali M, Nikravesh MR, Soukhtanloo M. Protective effects of alpha-lipoic acid on diazinon-induced renal toxicity in rats: an immunohistochemistry study. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1812659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fatemeh Rahimi Anbarkeh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Jalali
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Yousefizadeh S, Farkhondeh T, Samarghandian S. Age-Related Diazinon Toxicity Impact on Blood Glucose, Lipid Profile and Selected Biochemical Indices in Male Rats. Curr Aging Sci 2020; 12:49-54. [PMID: 31038084 PMCID: PMC6971895 DOI: 10.2174/1874609812666190416160918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022]
Abstract
Background: Diabetes and its complications are age-related diseases. Low-grade inflammation plays the main role in the aging processes. Diazinon (DZN), an organophosphate pesticide, has been found to induce metabolic disturbances. Objective: The present study was designed to investigate the impact of DZN on age-related changes on inflammatory cells, blood glucose concentration, lipid profile, and liver and kidney function indices in adult and aged rats. Methods: Male rats (2 and 16 month old) were orally administrated with DZN (15 mg/kg) for 4 weeks. Then the blood was obtained for measuring inflammatory cells, lipid profile, glucose and serum biochemical indices such as liver enzymes, albumin, total protein, creatinine (Cr), urea, and uric acid in the serum of adult and aged male rats. Results: DZN increased the blood levels of glucose and the percentage of lymphocytes and also serum levels of TChol, TG, LDL-c, AST, ALT, ALP, LDH, Cr, urea, and uric acid in the adult and aged rats versus the aged matched control rats (p< 0.001). A marked reduction in HDL-c levels, total protein, albumin, and in the percentage of neutrophils were seen in the adult and aged animals exposed to DZN versus the aged matched control rats. DZN also increased the levels of LDL-c and ALT in the aged rats versus adult animals. Conclusion: The present study indicated that DZN can cause metabolic disturbance. However, the age-dependent effects of DZN on metabolic indices were not be confirmed by the present data.
Collapse
Affiliation(s)
- Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Para-Veterinary, Ilam University, Ilam, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
39
|
Fan D, Li L, Li Z, Zhang Y, Ma X, Wu L, Zhang H, Guo F. Biosynthesis of selenium nanoparticles and their protective, antioxidative effects in streptozotocin induced diabetic rats. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:505-514. [PMID: 32939175 PMCID: PMC7476508 DOI: 10.1080/14686996.2020.1788907] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 05/28/2023]
Abstract
Green synthesis of selenium nanoparticles (Se NPs) was performed by mixing Hibiscus sabdariffa (roselle plant) leaf extract with the solution of selenious acid (H2SeO3) under continuous stirring conditions resulting the roselle plant secondary metabolites conjugated Se NPs. The existence of functional groups of roselle plant secondary metabolites on the surface of prepared Se NPs was confirmed by Fourier transform infrared spectroscopy (FTIR). The formation of crystalline nanoparticles with anisotropic shape was confirmed by transmission electron microscopy (TEM) images. Furthermore, we also studied anti-oxidative and protective effects of Se NPs in streptozotocin (STZ) induced diabetes rats. These STZ induced diabetic rats were daily exposed to Se NPs or/and insulin treatment and the effect of Se NPs on the factors correlated to oxidative damage in the rat testes were evaluated. The biochemical studies showed that the Se NPs are capable to enhance the serum testosterone reduction caused due to STZ induced diabetes. In addition, Se NPs can significantly reduce the oxidative stress indicators of the testicular tissue such as nitric oxide and lipid peroxidation. However, the treatment of Se NPs on the STZ induced diabetic rats increased the activities of antioxidant enzyme as well as the glutathione content in testicular tissues. Furthermore, microscopic studies revealed that the Se NPs are capable of preventing the histological damage in the testes of STZ induced diabetic rats. Altogether, these results explained the possible effects of Se NPs in attenuating oxidative damage induced by diabetes, especially in the testicular tissue.
Collapse
Affiliation(s)
- Dabei Fan
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Ophthalmologic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhizhen Li
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Zhang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haohao Zhang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Akpa AR, Ayo JO, Mika'il HG, Zakari FO. Protective effect of fisetin against subchronic chlorpyrifos-induced toxicity on oxidative stress biomarkers and neurobehavioral parameters in adult male albino mice. Toxicol Res 2020; 37:163-171. [PMID: 33868974 DOI: 10.1007/s43188-020-00049-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chlorpyrifos (CPF), a chlorinated organophosphate insecticide that is widely used in agriculture and public health, has neurotoxic effects in animals. In addition to acetylcholinesterase inhibition, CPF has been shown to induce alterations such as oxidative stress and lipid peroxidation. Fisetin is a dietary flavonol that protects the brain tissue against oxidative stress by modulating the activity of antioxidant enzymes. This study was designed to investigate the protective role of fisetin against brain oxidative damages and neurobehavioral parameters induced by subchronic oral exposure to CPF in albino mice. Adult albino mice (males, n = 32, weighing 20 ~ 25 g) were assigned randomly into 4 groups and treated accordingly for 7 weeks as follows: Group 1(S/OIL): served as the control group and were given 2 ml/kg of soya oil; Group 2 (CPF): received CPF (6.6 mg/kg; 1/5th of the LD50); Group 3 (FIS): fisetin (15 mg/kg) and Group 4 (FIS + CPF): received fisetin at 15 mg/kg, followed by CPF (6.6 mg/kg) 30 min later. Co-treatment with FIS + CPF mitigated the increase in brain malondialdehyde concentration (0.28 ± 0.02 nmol/mg) and orchestrated the increase in the activities of catalase (81.35 ± 7.26 µ/mg), superoxide dismutase (93.03 ± 6.63 IU/mL), glutathione peroxidase (68.76 ± 3.554 nmol/mL) and acetylcholinesterase (11.59 ± 0.72 nmol/min/mL) when compared to the CPF group. The result showed that deficits in motor strength and excitability scores induced by subchronic CPF were mitigated by fisetin administration. It was concluded that fisetin has a protective potential in mitigating against oxidative stress and damages in the brain tissues, induced by subchronic exposure to CPF in adult male albino mice.
Collapse
Affiliation(s)
- Amaka Rosita Akpa
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Olusegun Ayo
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Hudu Garba Mika'il
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Friday Ocheja Zakari
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| |
Collapse
|
41
|
Akinmoladun AC, Adegbamigbe AD, Okafor NR, Josiah SS, Olaleye MT. Toxicological and pharmacological assessment of a multiherbal phytopharmaceutical on Triton X-1339-induced hyperlipidemia and allied biochemical dysfunctions. J Food Biochem 2020; 45:e13238. [PMID: 32410299 DOI: 10.1111/jfbc.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
This study investigated the safety and therapeutic effect of a multiherbal tea (MHT) on Triton X-1339-induced hyperlipidemia and associated biochemical and tissue dysfunctions. An infusion of the MHT was assessed for phytoconstituents, proximate and mineral composition, and antioxidant activity. Wistar rats administered 200 mg/kg Triton X-1399 were post-treated with MHT for 14 days followed by biochemical estimations in serum, heart, liver, and kidney of animals. Hematological and histopathological evaluations of the blood, and liver, respectively, were also performed. Different phytochemicals were detected in MHT, toxic metals were absent and antioxidant activity was appreciable. Disturbances in glucose level and redox homeostasis, alterations in liver, kidney, and heart function markers, and imbalances in hematological parameters precipitated by triton toxicity were mitigated by posttreatment with MHT. Multiherbal tea also ameliorated triton-induced hepatic histoarchitectural abnormalities. These results suggest that MHT is apparently an effective antilipemic tea with minimal or no side effects. PRACTICAL APPLICATIONS: Hyperlipidemia is one of the core risk factors for arteriosclerosis and a major contributor to other adverse health conditions. The prevalence of hyperlipidemia has increased drastically in the last few decades. Plant and plant products have been extensively used in the management of dyslipidemia and many plant-based antilipemic products with poorly defined toxicity and pharmacological profiles abound in the market. The results of this study demonstrated the protective effects of a MHT against triton-induced hyperlipidemia, atherogenic tendency, and dysfunction of key organs in rats and lent credence to its therapeutic relevance in the management of hyperlipidemia and related diseases.
Collapse
Affiliation(s)
- Afolabi C Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Adaugo Damilola Adegbamigbe
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Nkechi Ruth Okafor
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Sunday Solomon Josiah
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - M Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| |
Collapse
|
42
|
Tichati L, Trea F, Ouali K. Potential Role of Selenium Against Hepatotoxicity Induced by 2,4-Dichlorophenoxyacetic Acid in Albino Wistar Rats. Biol Trace Elem Res 2020; 194:228-236. [PMID: 31190189 DOI: 10.1007/s12011-019-01773-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/05/2019] [Indexed: 01/18/2023]
Abstract
The present study aims to investigate the hepatoprotective effects of selenium on toxicity induced by 'Désormone Lourd' based on 2,4-dichlorophenoxyacetic acid in Wistar rats. Male Wistar rats were divided into four groups and were treated orally. The (C) group was used as a control, while the test groups were treated with Se (0.2 mg/kg b.w.), 2,4-D (5 mg/kg b.w.) or both (2,4-D + Se) for 4 weeks. Our results showed that chronic treatment with 2,4-D resulted in hepatotoxicity, as revealed by an increase in liver function markers Aminotransferases (ALT, AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and total bilirubin (TB), along with reduced total protein content and albumin. An overall pro-oxidant effect was associated with a decrease in the reduced glutathione (GSH) content and the enzymatic activity of glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), and an increase in malondialdehyde (MDA) and protein carbonyl levels (PCO). Microscopic observation of liver in 2,4-D-treated rats reveals lesions, which results in perivascular inflammatory infiltration around the vessel, sinusoidal dilatation and vacuolization of hepatocytes. However, selenium supplementation in 2,4-D-treated rats elicited a reduction in the toxic effects of the pesticide by improving the studied parameters, which was confirmed by the histological study of the liver. Selenium appears to have a promising prophylactic effect through its effective anti-radical action against the hepatotoxic effects of 2,4-D.
Collapse
Affiliation(s)
- Lazhari Tichati
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria
| | - Fouzia Trea
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria.
| |
Collapse
|
43
|
Ben Othmène Y, Hamdi H, Annabi E, Amara I, Ben Salem I, Neffati F, Najjar MF, Abid-Essefi S. Tebuconazole induced cardiotoxicity in male adult rat. Food Chem Toxicol 2020; 137:111134. [DOI: 10.1016/j.fct.2020.111134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 01/04/2023]
|
44
|
Zheng Y, Dai W, Hu X, Hong Z. Effects of dietary glycine selenium nanoparticles on loin quality, tissue selenium retention, and serum antioxidation in finishing pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Feriani A, Hachani R, Tir M, Ghazouani L, Mufti A, Borgi MA, Allagui MS. Bifenthrin exerts proatherogenic effects via arterial accumulation of native and oxidized LDL in rats: the beneficial role of vitamin E and selenium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5651-5660. [PMID: 30465240 DOI: 10.1007/s11356-018-3771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to investigate, for the first time, the effects of Bifenthrin (Bif) chronic exposure on plasmatic and aortic lipid parameters disturbance and their pro-atherogenic possibility in Wistar rats. The ameliorative role of vitamin E (Vit E) and selenium (Se) were also targeted. Thus, rats were treated by gastric gavage with combination of Vit E (100 mg/kg/bw) and Se (0.25 mg/kg/bw) in alone and co-treated groups for 90 days. Apart from control and Vit E-Se groups, all the groups were subjected to Bif (3 mg/kg, via gavage) toxicity. Results showed that Bif increased markedly plasmatic and aortic total cholesterol, LDL-cholesterol, native LDL-apoB-100, and oxidized-LDL, compared to the control. Moreover, Bif treatment significantly increased the plasmatic levels of the pro-inflammatory cytokines TNF-α, IL-2, and IL-6. In addition, the densitometric quantification of protein bands showed that the amount of hepatic native LDL-receptor protein decreased significantly in the intoxicated rats compared to the control group. The expression of arterial LDL receptors (LDLRs) and scavenger receptors (CD36) was amplified owing to Bif toxicity. This harmful effect was confirmed by histological study using Oil-Red-O staining. Owing to their antioxidant capacities, Vit E and Se have maintained all the changes in plasma and aorta lipids and prevented the pro-atherogenic effect observed in Bif-treated animals.
Collapse
Affiliation(s)
- Anouar Feriani
- Unité de Biochimie Macromoléculaire et Génétique, Faculté des Sciences de Gafsa, cité Zarroug, Université de Gafsa, 2112, Gafsa, Tunisia.
| | - Rafik Hachani
- Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Jarzouna, Tunisia
- Laboratoire d'Etude de la Microcirculation (EA 3509), Faculté de Médecine Lariboisière-St. Louis, Université Paris VII, Paris, France
| | - Meriam Tir
- Unité de Physiologie et Environnement Aquatique, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Lakhdar Ghazouani
- Unité de Biochimie Macromoléculaire et Génétique, Faculté des Sciences de Gafsa, cité Zarroug, Université de Gafsa, 2112, Gafsa, Tunisia
| | - Afoua Mufti
- Unité de Biochimie Macromoléculaire et Génétique, Faculté des Sciences de Gafsa, cité Zarroug, Université de Gafsa, 2112, Gafsa, Tunisia
| | - Mohamed Ali Borgi
- Unité de Biochimie Macromoléculaire et Génétique, Faculté des Sciences de Gafsa, cité Zarroug, Université de Gafsa, 2112, Gafsa, Tunisia
| | - Mohamed Salah Allagui
- Laboratoire d'Ecophysiologie Animale, Faculté des Sciences de Sfax, 3018, Sfax, Tunisia
| |
Collapse
|
46
|
Naderi N, Souri M, Nasr Esfahani MH, Hajian M, Tanhaei Vash N. Ferulago angulata extract ameliorates epididymal sperm toxicity in mice induced by lead and diazinon. Andrology 2020; 8:706-718. [PMID: 31747138 DOI: 10.1111/andr.12730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The potential toxicity that results from environmental xenobiotics is not completely known. Increasing levels of heavy metals and the use of organophosphate pesticides (OPs) and their co-existence in the environment could be associated with an increasing incidence of male reproductive system disorders in humans and animals. Ferulago angulata is a dietary source of phenolic compounds with reported health benefits. OBJECTIVE This study was conducted to investigate whether an extract of Ferulago angulata could protect adult male NMRI mice against reproductive toxicity induced by lead acetate (PbAc), diazinon (DZN), or PbAc + DZN. MATERIALS AND METHODS Adult male NMRI mice were exposed to either 0.5% PbAc in drinking water, DZN (3 mg/kg/day, intraperitoneal [i.p.] injection), or PbAc + DZN in the presence or absence of 400 mg/kg/day Ferulago angulata hydroalcoholic extract (FAE) that was administered via gavage for 6 weeks. RESULTS Chronic exposure to PbAc, DZN, and PbAc + DZN decreased sperm quality, sperm chromatin maturity and integrity, increased oxidative stress and lipid peroxidation, and could reduce male fertility indices. Co-administration of FAE could reduce these negative effects. CONCLUSION The Ferulago angulata extract should be considered as a useful natural extract for the treatment of male infertility, especially in males exposed to conditions which induce reproductive toxicity.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran.,Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Manouchehr Souri
- Department of Animal Science, College of Agriculture, Razi University, Kermanshah, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
47
|
Tavoosi S, Baghsheikhi AH, Shetab-Boushehri SV, Navaei-Nigjeh M, Sarvestani NN, Karimi MY, Ranjbar A, Ebadollahi-Natanzi A, Hosseini A. Cerium and Yttrium Oxide Nanoparticles and Nano-selenium Produce Protective Effects Against H2O2-induced Oxidative Stress in Pancreatic Beta Cells by Modulating Mitochondrial Dysfunction. Pharm Nanotechnol 2020; 8:63-75. [PMID: 31577213 DOI: 10.2174/2211738507666191002154659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Type 1 diabetes mellitus is characterized by the destruction of insulin- producing Beta cells in the pancreas. Researchers hope that islet transplantation will help to patients with insulin-dependent diabetes mellitus (IDDM). Oxidative stress is the most important challenge that beta cells face to it after isolation, and mitochondrial dysfunction is a crucial mediator in beta cells death. Hence, therapeutic approaches can shift to antioxidants through the application of nanoparticles such as cerium and yttrium oxide nanoparticles (Cer and Ytt Ox NPs) and nano-selenium (Nan Se). OBJECTIVE This study evaluates the effects of Cer and Ytt Ox NPs and Nan Se on H2O2- induced oxidative stress in pancreatic beta cells with focus on mitochondrial dysfunction pathway. METHODS CRI-D2 beta-cell line were pretreated with Cer Ox NPs (200 µM) + Ytt Ox NPs (0.5 µg/mL) for 3 days and/or Nan Se (0.01 µM) for 1 day. Then markers of oxidative stress, mitochondrial dysfunction, insulin and glucagon secretion were measured. RESULTS We reported a decrease in H2O2-induced reactive oxygen species (ROS) level and glucagon secretion, and an increase in H2O2-reduced ATP/ADP ratio, MMP, as well as UCP2 protein expression, and insulin secretion by pretreatment of CRI-D2 cells with Cer and Ytt Ox NPs and/or Nan Se. CONCLUSION We found maximum protective effect with Cer and Ytt Ox NPs on CRI-D2 beta-cell line exposed by H2O2 for keeping beta cells alive until transplant whereas combination of Cer and Ytt Ox NPs and Nan Se had very little protective effect in this condition.
Collapse
Affiliation(s)
- Shima Tavoosi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Vahid Shetab-Boushehri
- Department of Toxicology & Pharmacology, School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| | - Nazanin Namazi Sarvestani
- Department of Animal Biology, School of Biology, Department of Science, University of Tehran, Tehran, Iran
| | | | - Akram Ranjbar
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ebadollahi-Natanzi
- Medicinal plants Department, Imam Khomeini Higher Education Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Ahmadifard T, Heydari R, Tarrahi MJ, Khorramabadi GS. Photocatalytic Degradation of Diazinon in Aqueous Solutions Using Immobilized MgO Nanoparticles on Concrete. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2019. [DOI: 10.1515/ijcre-2018-0154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Photocatalytic degradation of diazinon in the aqueous solution using UV light and MgO nanoparticle (NPs) immobilized on the concrete was investigated. Prepared catalyst was characterized using TEM, XRD, SEM, and EDX techniques. The results showed that the average particle size of immobilized MgO NPs was 38.3 nm and NPs appropriately was coated on the concrete surface. The performance of degradation and mineralization of diazinon was evaluated by HPLC and TOC techniques, respectively. The effect of operational parameters including pH value, initial pesticide concentration, and contact time were studied on the removal and mineralization of diazinon by a photocatalytic process. The results showed that the MgO NPs and UV light had little effect in removing pesticide when used individually. On the other hand, diazinon can be effectively degraded by immobilized MgO NPs in the presence of UV light. Degradation products of diazinon using the proposed photocatalytic technique were identified by the GC-MS analysis. The maximum diazinon removal (99.46 %) was obtained under the conditions; pH 7, diazinon concentration of 5 mg/L, and contact time of 120 minutes. Also, the lowest energy consumption conditions were as follow; pH 7, diazinon concentration of 5 mg/L, and contact time of 30 minutes.
Collapse
|
49
|
Ahmadi A, Heidarian E, Ghatreh-Samani K. Modulatory effects of artichoke (Cynara scolymus L.) leaf extract against oxidative stress and hepatic TNF-α gene expression in acute diazinon-induced liver injury in rats. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2018-0180. [PMID: 31469651 DOI: 10.1515/jbcpp-2018-0180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Background Diazinon (DZN) causes serious liver damage in both humans and animals. In the present study, the hepatoprotective effects of Cynara scolymus L. leaf extract against DZN-induced liver injury were examined. Methods Forty male rats were divided into five groups. The control group received a normal diet. The DZN group received DZN only (25 mg/kg, po). The DZN + Syl group received DZN (25 mg/kg, po) and silymarin (Syl) (50 mg/kg, po). The DZN + Art group received DZN (25 mg/kg, po) and artichoke (Art) leaf extract (1500 mg/kg, po). The Art group received Art leaf extract only (1500 mg/kg, po). After 15 days, serum tumor necrosis factor α (TNF-α), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lipid profile, protein carbonyl content, serum and hepatic malondialdehyde (MDA), hepatic TNF-α gene expression, hepatic catalase (CAT), superoxide dismutase (SOD), and vitamin C (Vit C) were measured and histopathological examination was performed. Results DZN caused a significant elevation in serum ALP, AST, ALT, MDA, TNF-α, protein carbonyl, hepatic MDA, and TNF-α gene expression in the DZN group as opposed to the control group. Also, DZN led to the reduction of hepatic CAT, SOD, and Vit C in the DZN group relative to the control group. The administration of Art extract resulted in not only a significant reduction in serum ALP, AST, ALT, MDA, TNF-α, and protein carbonyl but also an improvement of liver histopathological changes and hepatic CAT and SOD activities as opposed to the DZN group. Conclusions This study confirmed that Art leaf extract has liver protective effects and causes downregulation of oxidative stress in acute DZN-induced liver injury in rats.
Collapse
Affiliation(s)
- Arezoo Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran, Mobile: + 98 913 314 5229, Phone: + 98 383 3346720, Fax: + 98 383 3346721
| | - Keihan Ghatreh-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
50
|
Ameliorative effect of Parinari curatellifolia seed extracts on sodium nitroprusside–induced cardiovascular toxicity in rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-03047-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|