1
|
Nosaka S, Imai T, Miyamoto K, Sezaki A, Kawase F, Shirai Y, Abe C, Sanada M, Sugihara N, Honda T, Sumikama Y, Inden A, Tsukahara T, Shimokata H. Nonlinear Relationships Between Dietary Selenium Intake and Ischemic Heart Disease Incidence and Mortality: A Cross-Sectional and Longitudinal Ecological Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025:1-7. [PMID: 40239039 DOI: 10.1080/27697061.2025.2483261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE Selenium, an essential mineral with antioxidant properties, can potentially prevent atherosclerosis and maintain cardiovascular health. However, the association between selenium and ischemic heart disease (IHD) remains unclear. This study aimed to determine the impact of selenium on global IHD incidence (IHDi) and mortality (IHDd) over a 28-year period from 1990 to 2018, using open data for global comparisons. METHOD IHDi and IHDd per 100,000 people were obtained from the Global Burden of Disease Study (GBD) 2019 database and estimated selenium intake from the Global Dietary Database. Covariates were obtained from the World Bank and GBD databases. The associations of selenium intake with IHDi and IHDd in the 28 years from 1990 onward were analyzed for 149 countries with populations >1 million, using a Bayesian generalized additive mixed model, controlling for covariates. RESULTS A nonlinear relationship existed between selenium intake and IHDi and IHDd. The selenium intake levels with the lowest risk for IHDi and IHDd were 93.3 and 78.5 µg/d, respectively. The risk ratios (RRs) for IHDi were 2.30 (95% CI, 1.82-2.84) and 1.40 (95% CI, 1.13-1.73) for selenium intakes of 10.0 µg/d and 200.0 µg/d, respectively. For IHDd, the RRs were 3.40 (95% CI, 2.62-4.40) for intakes of 10.0 µg/d and 1.72 (95% CI, 1.31-2.20) for 200.0 µg/d. The risk was higher for selenium underintake than for overintake. CONCLUSIONS This study revealed a nonlinear relationship between selenium intake and IHDi and IHDd, aiding in establishing a selenium target intake for the primary prevention of IHD and addressing public health problems.
Collapse
Affiliation(s)
- Saya Nosaka
- Graduate School of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Department of Food Science and Nutrition, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Tomoko Imai
- Department of Food Science and Nutrition, Doshisha Women's College of Liberal Arts, Kyoto, Japan
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Keiko Miyamoto
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Department of Nursing, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Ayako Sezaki
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Fumiya Kawase
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Department of Nutrition, Asuke Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Toyota, Aichi, Japan
| | - Yoshiro Shirai
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Health and Medical Research Group, Think Tank Division, KDDI Research, Inc, Tokyo, Japan
| | - Chisato Abe
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Department of Food and Nutrition, Tsu City College, Mie, Japan
| | - Masayo Sanada
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Department of Nursing, Heisei College of Health Sciences, Gifu, Japan
| | - Norie Sugihara
- Faculty of Health and Social Services, Kanagawa University of Human Services, Kanagawa, Japan
| | - Toshie Honda
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Department of Nursing, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Yuta Sumikama
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Department of Nutrition, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
| | - Ayaka Inden
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Clinical Nutrition Unit, Hamamatsu University Hospital, Shizuoka, Japan
| | - Takayoshi Tsukahara
- Graduate School of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| | - Hiroshi Shimokata
- Graduate School of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
- Institute of Health and Nutrition, Nagoya University of Arts and Sciences, Nisshin, Aichi, Japan
| |
Collapse
|
2
|
Chen Q, Yu L, Zhang W, Cheng S, Cong X, Xu F. Molecular and physiological response of chives (Allium schoenoprasum) under different concentrations of selenium application by transcriptomic, metabolomic, and physiological approaches. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109633. [PMID: 39955822 DOI: 10.1016/j.plaphy.2025.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/03/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
Selenium (Se) is a vital trace element for human health, and its uneven distribution in soil triggers Se deficiencies in some regions. Se biofortification has been demonstrated to mitigate this issue by producing Se-enriched crops. Chives (Allium schoenoprasum cv. 'sijixiaoxiangcong'), a simple-to-cultivate and fast-growing vegetable, offers a promising Se-accumulation ability. However, the physiological and molecular mechanisms underlying Se responses in chives remain unclear. This study applied sodium selenite at various doses to chives via root irrigation, and integrated strategies including multi-omics were employed to unfold the response mechanism. (1) Physiological data reveal that sodium selenite irrigation adversely affects the height, shoot weight, chlorophyll, and soluble sugar content of chives' aerial parts. However, chives exhibit a remarkable ability to accumulate selenium, reaching up to 40.21 mg kg-1 DW under high Se exposure (160 mg L-1); (2) Transcriptomic analysis revealed significant enrichment of the phenylpropanoid biosynthesis and plant hormone signal transduction pathways under Se treatment. Key DEGs, such as MAPKKK17_18, JAZs, and PCL, were identified as Se response candidates. Our findings show that selenomethionine is the primary form of Se accumulation, and DEGs linked to antioxidant defense and phenylpropanoid biosynthesis are crucial for mitigating Se stress; (3) Importantly, plant hormone signaling plays a central role by regulating phenylpropanoid metabolism and enhancing the antioxidant enzyme system, highlighting its significance in chives' Se tolerance. These results clarify the Se response mechanisms in chives and enable Se-enriched chive cultivation.
Collapse
Affiliation(s)
- Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, JingZhou, 434025, Hubei, People's Republic of China; Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China; Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, People's Republic of China
| | - Li Yu
- College of Horticulture and Gardening, Yangtze University, JingZhou, 434025, Hubei, People's Republic of China
| | - WeiWei Zhang
- College of Horticulture and Gardening, Yangtze University, JingZhou, 434025, Hubei, People's Republic of China; Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, People's Republic of China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, People's Republic of China; National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, People's Republic of China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, JingZhou, 434025, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Membrino V, Di Paolo A, Di Crescenzo T, Cecati M, Alia S, Vignini A. Effects of Animal-Based and Plant-Based Nitrates and Nitrites on Human Health: Beyond Nitric Oxide Production. Biomolecules 2025; 15:236. [PMID: 40001539 PMCID: PMC11852942 DOI: 10.3390/biom15020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Nitrate (NO3) and nitrite (NO2) are important nitrogen compounds that play a vital role in the nitrogen cycle, contributing to plant nutrition and broader ecological functions. Nitrates are produced from nitric acid (HNO3), while nitrites come from nitrous acid (HNO2). These substances are commonly found in the environment, especially in food and water, due to contamination from both human and natural sources. Human activities are major contributors to the high levels of nitrates found in water, leading to environmental pollution. Although nitrogen is crucial for plant growth, excessive fertilizer use has caused ecological disruptions. In plants, nitrates tend to accumulate primarily in the leaves of non-leguminous crops, such as leafy vegetables, which are known for their high nitrate content. Furthermore, nitrates and nitrites are added to animal-based foods, especially processed meats and cheeses, to prevent bacterial growth, slow spoilage, and improve flavor and color. The concentration of these compounds in food can vary due to different factors like farming practices, climate, soil conditions, and food production methods. This review seeks to examine the differences between the plant-based and animal-based sources of these compounds and assess their potential impact on human health, considering also the paradigm that goes beyond nitric oxide production.
Collapse
Affiliation(s)
- Valentina Membrino
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (V.M.); (A.D.P.); (T.D.C.)
| | - Alice Di Paolo
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (V.M.); (A.D.P.); (T.D.C.)
| | - Tiziana Di Crescenzo
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (V.M.); (A.D.P.); (T.D.C.)
| | - Monia Cecati
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sonila Alia
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (V.M.); (A.D.P.); (T.D.C.)
| | - Arianna Vignini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy; (V.M.); (A.D.P.); (T.D.C.)
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60100 Ancona, Italy
| |
Collapse
|
4
|
Bai YZ, Li JM, Zhang SQ. A nonlinear association between total selenium intake and blood selenium concentration: An analysis based on the National Health and Nutrition Examination Survey 2011-2018. J Food Sci 2024; 89:9955-9967. [PMID: 39558512 DOI: 10.1111/1750-3841.17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/01/2024] [Accepted: 10/09/2024] [Indexed: 11/20/2024]
Abstract
Diets are the major sources of selenium (Se) and biomonitoring Se is used for the assessment of Se status. The present study explored the association between Se intake and blood Se concentration from the National Health and Nutrition Examination Survey 2011-2018 data for optimizing Se reference intakes among American adults and interpreted the data in the context of exposure guidance values. Weighted linear regression models were conducted to evaluate the association between Se intake and blood Se concentration. Restricted cubic spline models were employed to explore the dose-response association between total Se intake and blood Se concentration. Blood Se concentrations were compared to biomonitoring equivalents established for exposure guidance values. For gender, race, educational status, poverty income ratio, body mass index, smoking status, dietary Se intake, and total Se intake, significant differences were observed among quartiles of blood Se concentration. There was no significant difference for age and alcohol use. There was a positive association between dietary Se intake and blood Se concentration although the association was not statistically significant following the adjustments for covariates. When the associations between total Se intake and blood Se concentration were assessed, no statistically significant relationship was found. The restricted cubic spline supported a significant nonlinear association between total Se intake and blood Se concentration with/without the adjustments of covariates. The present work displayed a baseline for Se exposure among American adults. Considering the sex difference in dietary Se and blood Se concentration, it is necessary to establish gender-based Se reference intakes.
Collapse
Affiliation(s)
- Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia-Meng Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Ma Y, Guo F, Zhu H, Wu Y, Guo B, Yang J, Wu F. Risk assessment and impact prediction of associated heavy metal pollution in selenium-rich farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175321. [PMID: 39111424 DOI: 10.1016/j.scitotenv.2024.175321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024]
Abstract
Selenium (Se)-rich farmland is a valuable and nonrenewable resource for addressing the global challenge of Se deficiency. However, frequent warnings of heavy metal pollution have threatened the safety and legitimacy of Se-rich functional agriculture, eventually damaged public health security. Definitive and judgmental quantitative studies on this hazardous phenomenon are still missing. Relevant reviews published in the past have summarized textual descriptions of the problem, lacking the support of the necessary statistical analysis of the data. Based on the collected publications, the present study evaluated and analyzed the sources, risks and impacts of heavy metal pollution in Se-rich farmland. Concentrations of cadmium (Cd), arsenic, lead and zinc in Se-rich farmland were significantly higher than those in non-Se-rich farmland, especially Cd. Pollution source analyses indicated that Se enrichment and heavy metal pollution occurred simultaneously in farmland, related to Se-heavy metal homology in rocks. According to environmental risk assessment, both serious Cd pollution and the narrow Se concentration range of safety utilization limited the availability of Se-rich farmland. Pollution impact predictions showed that the pollution in Se-rich farmland would result in serious human health risks to consumers and economic losses of 4000 yuan/hm2 on production side. Tackling Cd pollution was anticipated to recover economic losses (81 %) while lowering the carcinogenic (60 %) and non-carcinogenic (10 %) health risks. Our study also provided recommendations to address heavy metal pollution in Se-rich farmland. The two criteria should be followed by pollution control strategies applied to Se-rich functional agriculture including (i) not affecting the original Se enrichment in plant and (ii) not being interfered by Se in soil-plant systems. This will provide valuable information for Se-rich functional agriculture and public health security.
Collapse
Affiliation(s)
- Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fuxing Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Haode Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunmei Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Baocheng Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
6
|
Oumer A, Joy EJM, De Groote H, Broadley MR, Gashu D. Burden of selenium deficiency and cost-effectiveness of selenium agronomic biofortification of staple cereals in Ethiopia. Br J Nutr 2024; 132:1110-1122. [PMID: 39479900 PMCID: PMC11600287 DOI: 10.1017/s0007114524001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 11/02/2024]
Abstract
Selenium (Se) deficiency among populations in Ethiopia is consistent with low concentrations of Se in soil and crops that could be addressed partly by Se-enriched fertilisers. This study examines the disease burden of Se deficiency in Ethiopia and evaluates the cost-effectiveness of Se agronomic biofortification. A disability-adjusted life years (DALY) framework was used, considering goiter, anaemia, and cognitive dysfunction among children and women. The potential efficiency of Se agronomic biofortification was calculated from baseline crop composition and response to Se fertilisers based on an application of 10 g/ha Se fertiliser under optimistic and pessimistic scenarios. The calculated cost per DALY was compared against gross domestic product (GDP; below 1-3 times national GDP) to consider as a cost-effective intervention. The existing national food basket supplies a total of 28·2 µg of Se for adults and 11·3 µg of Se for children, where the risk of inadequate dietary Se reaches 99·1 %-100 %. Cereals account for 61 % of the dietary Se supply. Human Se deficiency contributes to 0·164 million DALYs among children and women. Hence, 52 %, 43 %, and 5 % of the DALYs lost are attributed to anaemia, goiter, and cognitive dysfunction, respectively. Application of Se fertilisers to soils could avert an estimated 21·2-67·1 %, 26·6-67·5 % and 19·9-66·1 % of DALY via maize, teff and wheat at a cost of US$129·6-226·0, US$149·6-209·1 and US$99·3-181·6, respectively. Soil Se fertilisation of cereals could therefore be a cost-effective strategy to help alleviate Se deficiency in Ethiopia, with precedents in Finland.
Collapse
Affiliation(s)
- Abdu Oumer
- School of Public Health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Edward J. M. Joy
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, UK
- Rothamsted Research, Harpenden, HertfordshireAL5 2JQ, UK
| | - Hugo De Groote
- Sustainable Agrifood Systems Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Martin R. Broadley
- Rothamsted Research, Harpenden, HertfordshireAL5 2JQ, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LeicestershireLE12 5RD, UK
| | - Dawd Gashu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Demircan K, Chillon TS, Bang J, Gladyshev VN, Schomburg L. Selenium, diabetes, and their intricate sex-specific relationship. Trends Endocrinol Metab 2024; 35:781-792. [PMID: 38599899 DOI: 10.1016/j.tem.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Selenium (Se) is an essential trace element, which is inserted as selenocysteine (Sec) into selenoproteins during biosynthesis, orchestrating their expression and activity. Se is associated with both beneficial and detrimental health effects; deficient supply or uncontrolled supplementation raises concerns. In particular, Se was associated with an increased incidence of type 2 diabetes (T2D) in a secondary analysis of a randomized controlled trial (RCT). In this review, we discuss the intricate relationship between Se and diabetes and the limitations of the available clinical and experimental studies. Recent evidence points to sexual dimorphism and an association of Se deficiency with gestational diabetes mellitus (GDM). We highlight the emerging evidence linking high Se status with improved prognosis in patients with T2D and lower risk of macrovascular complications.
Collapse
Affiliation(s)
- Kamil Demircan
- Institute for Experimental Endocrinology, Max Rubner Center, Charité University Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Max Rubner Center, Charité University Berlin, Germany
| | - Jeyoung Bang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Max Rubner Center, Charité University Berlin, Germany.
| |
Collapse
|
8
|
Zou X, Sun R, Wang C, Wang J. Study on Selenium Assimilation and Transformation in Radish Sprouts Cultivated Using Maillard Reaction Products. Foods 2024; 13:2761. [PMID: 39272526 PMCID: PMC11395403 DOI: 10.3390/foods13172761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
The organic selenium (Se), particularly in the form of selenoamino acids, in non-edible sections or by-products of Se-enriched plants, has the potential to generate Maillard reaction products (MRPs) during thermal treatment or fermentation. To elucidate the recycling process of organic selenium in foods and improve the utilization rate of Se, the biotransformation of organic selenium was studied by the cultivation of edible radish sprouts with Se-MPRs. Maillard reactions were simulated using selenoamino acids (SeAAs; selenomethionine and methylselenocysteine) and reducing sugars (glucose and fructose) for preparing Se-MRPs. The structures of the possible dehydrated Se-MRPs were analyzed using a HPLC-ESI-MS/MS system based on their fragmentation patterns and Se isotopic characteristics. Se absorption by the radish sprouts cultivated using Se-MRPs was estimated by the corresponding Se in the SeAAs and the total Se contents. The capabilities of SeAA transformation and total Se assimilation by the sprouts were related to the substrate composition during the Se-Maillard reaction. A particular Se-MRP (selenomethionine + fructose) increased SeAAs transformation by 33.8% compared to selenomethionine. However, glucose and fructose seemed to inhibit the transformation of the Se-MRPs to SeAAs by 10.0 to 59.1% compared to purified Se-MRPs. These results provide key references for the efficient utilization of organic Se in the cultivation of Se-enriched sprouts.
Collapse
Affiliation(s)
- Xiaoshuang Zou
- College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Beijing 100083, China
| | - Ruiqi Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Beijing 100083, China
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Beijing 100083, China
| | - Jun Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Beijing 100083, China
| |
Collapse
|
9
|
Oztekin Y, Buyuktuncer Z. Agronomic Biofortification of Plants with Iodine and Selenium: A Potential Solution for Iodine and Selenium Deficiencies. Biol Trace Elem Res 2024:10.1007/s12011-024-04346-7. [PMID: 39192170 DOI: 10.1007/s12011-024-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Iodine and selenium deficiencies are widespread both in developed countries and developing countries. The soil is the fundamental source of iodine and selenium for plants, and iodine and/or selenium-depleted soil restrains the cultivation of crops to cover recommended daily intakes of iodine and selenium. Although food fortification strategies, including salt iodization, increase the dietary intake of these minerals, their global deficiencies have not been eliminated. Therefore, new strategies have been developed to prevent iodine and selenium deficiencies, and biofortification is one of them. The aim of this review is to assert the outcomes of the studies that investigate the optimum conditions for biofortification with iodine and selenium and to recognize the role of biofortification practices as a potential solution for preventing iodine and selenium deficiencies. The findings of studies show that biofortification with iodine and selenium can be a solution for iodine and selenium deficiencies. Agronomic biofortification is currently a more convenient method to increase selenium and iodine contents in plants. However, the most effective agronomic biofortification conditions are crucial to acquire biofortified food. Moreover, increasing the awareness of the producers and consumers on biofortification has a determinative role in the achievement of biofortification practices for human health. Although research about iodine and selenium biofortification has been increased, the effectiveness of biofortified foods to meet recommended daily intakes is still unknown. More research is needed to understand most effective biofortification conditions for plants and bioavailability of biofortified foods for humans.
Collapse
Affiliation(s)
- Yesim Oztekin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Zehra Buyuktuncer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Bai YZ, Gao YX, Zhang SQ. Identification of Factors on Blood Selenium Levels in the US Adults: A Cross-Sectional Study. Nutrients 2024; 16:1734. [PMID: 38892667 PMCID: PMC11174933 DOI: 10.3390/nu16111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Selenium (Se) is an essential trace element for humans and its low or high concentration in vivo is associated with the high risk of many diseases. It is important to identify influential factors of Se status. The present study aimed to explore the association between several factors (Se intake, gender, age, race, education, body mass index (BMI), income, smoking and alcohol status) and blood Se concentration using the National Health and Nutrition Examination Survey 2017-2020 data. Demographic characteristics, physical examination, health interviews and diets were compared among quartiles of blood Se concentration using the Rao-Scott χ2 test. Se levels were compared between the different groups of factors studied, measuring the strength of their association. A total of 6205 participants were finally included. The normal reference ranges of blood Se concentration were 142.3 (2.5th percentile) and 240.8 μg/L (97.5th percentile), respectively. The mean values of dietary Se intake, total Se intake and blood Se concentration of the participants were 111.5 μg/day, 122.7 μg/day and 188.7 μg/L, respectively, indicating they were in the normal range. Total Se intake was the most important contributor of blood Se concentration. Gender, race, education status, income, BMI, smoking and alcohol status were associated with blood Se concentration.
Collapse
Affiliation(s)
| | | | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China; (Y.-Z.B.); (Y.-X.G.)
| |
Collapse
|
11
|
Špoljarić Maronić D, Žuna Pfeiffer T, Bek N, Štolfa Čamagajevac I, Galir Balkić A, Stević F, Maksimović I, Mihaljević M, Lončarić Z. Distribution of selenium: A case study of the Drava, Danube and associated aquatic biotopes. CHEMOSPHERE 2024; 354:141596. [PMID: 38484986 DOI: 10.1016/j.chemosphere.2024.141596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
This paper presents the results of the research on the overall distribution of selenium (Se) in various aquatic compartments (water, sediment, plankton and macrophytes) at six selected sites of the Croatian part of the Drava and Danube rivers, the connected floodplain lake and the melioration channel system carried out in two sampling periods (flooding in June and the drought period in September). In addition, the physicochemical water properties, plankton composition and biomass were analysed. Our study revealed low mean Se contents in sediments and water, indicating Se deficiency in the studied freshwater systems. The physicochemical environment, including Se distribution, was primarily influenced by hydrology rather than site-specific biogeochemical and morphological characteristics. The flooding period was characterised by higher Se content in water and higher transparency, nitrate and total nitrogen concentrations than drought conditions. At the river sites, sediment Se content was the highest during the flood period, while at all other sites, higher concentrations were found during the drought, reaching the maximum in the lake. Although Se concentrations were below the threshold for aquatic ecotoxicity, they increased in the following order: water (0.021-0.187 μg Se L-1) < sediments (0.005-0.352 mg Se kg-1) < macrophytes (0.010-0.413 mg Se kg-1) < plankton (0.044-0.518 mg Se kg-1) indicating its possible biomagnification at the bottom of the food chain. Species known for high Se accumulation potential dominated the biomass of the main plankton groups and the composition of the macrophyte community, which may provide a more sensitive and accurate steady-state compartment monitor for Se assessment in freshwater biotopes.
Collapse
Affiliation(s)
| | - Tanja Žuna Pfeiffer
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| | - Nikolina Bek
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Anita Galir Balkić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Filip Stević
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Maksimović
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Melita Mihaljević
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zdenko Lončarić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
12
|
Wen Y, Zhang L, Li S, Wang T, Jiang K, Zhao L, Zhu Y, Zhao W, Lei X, Sharma M, Zhao Y, Shi Z, Yuan J. Effect of dietary selenium intake on CVD: a retrospective cohort study based on China Health and Nutrition Survey (CHNS) data. Public Health Nutr 2024; 27:e122. [PMID: 38533778 DOI: 10.1017/s1368980024000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
OBJECTIVE We aimed to examine the association between dietary Se intake and CVD risk in Chinese adults. DESIGN This prospective cohort study included adults above 20 years old in the China Health and Nutrition Survey (CHNS), and they were followed up from 1997 to 2015 (n 16 030). Dietary data were retrieved from CHNS, and a 3-d, 24-h recall of food intake was used to assess the cumulative average intake of dietary Se, which was divided into quartiles. The Cox proportional hazards model was adopted to analyse the association between dietary Se intake and incident CVD risk. SETTING CHNS (1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011 and 2015). RESULTS A total of 663 respondents developed CVD after being followed up for a mean of 9·9 years (median 9 years). The incidence of CVD was 4·3, 3·7, 4·6 and 4·0 per 1000 person-years across the quartiles of cumulative Se intake. After adjusting all potential factors, no significant associations were found between cumulative Se intake and CVD risk. No interactions were found between Se intake and income, urbanisation, sex, region, weight, hypertension and CVD risk. CONCLUSION We found no association between dietary Se and CVD.
Collapse
Affiliation(s)
- Yaqi Wen
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Laixi Zhang
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengping Li
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tiankun Wang
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Jiang
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lingxi Zhao
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhao Zhu
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Zhao
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Lei
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Manoj Sharma
- Social & Behavioral Health, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Yong Zhao
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
- The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Jun Yuan
- School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Chilala P, Skalickova S, Horky P. Selenium Status of Southern Africa. Nutrients 2024; 16:975. [PMID: 38613007 PMCID: PMC11013911 DOI: 10.3390/nu16070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Selenium is an essential trace element that exists in inorganic forms (selenite and selenates) and organic forms (selenoamino acids, seleno peptides, and selenoproteins). Selenium is known to aid in the function of the immune system for populations where human immunodeficiency virus (HIV) is endemic, as studies suggest that a lack of selenium is associated with a higher risk of mortality among those with HIV. In a recent study conducted in Zambia, adults had a median plasma selenium concentration of 0.27 μmol/L (IQR 0.14-0.43). Concentrations consistent with deficiency (<0.63 μmol/L) were found in 83% of adults. With these results, it can be clearly seen that selenium levels in Southern Africa should be investigated to ensure the good health of both livestock and humans. The recommended selenium dietary requirement of most domesticated livestock is 0.3 mg Se/kg, and in humans above 19 years, anRDA (recommended daily allowance) of 55 mcg Se/per dayisis recommended, but most of the research findings of Southern African countries have recorded low levels. With research findings showing alarming low levels of selenium in soils, humans, and raw feed materials in Southern Africa, further research will be vital in answering questions on how best to improve the selenium status of Southern African soils and plants for livestock and humans to attain sufficient quantities.
Collapse
Affiliation(s)
| | | | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic; (P.C.); (S.S.)
| |
Collapse
|
14
|
Ma Y, Huang X, Du H, Yang J, Guo F, Wu F. Impacts, causes and biofortification strategy of rice selenium deficiency based on publication collection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169619. [PMID: 38157912 DOI: 10.1016/j.scitotenv.2023.169619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Selenium (Se) deficiency in rice will result in a Se hidden hunger threat to the general public's human health, particularly in areas where rice consumption is high. Nevertheless, the impact scope and coping strategies have not been given sufficient focus on a worldwide scale. In order to evaluate the impacts, causes and biofortification strategies of Se-deficient rice, this study collected data from the publications on three themes: market survey, field sampling and controlled experiments. According to the market survey, global rice Se concentrations were 0.079 mg/kg on mean and 0.062 mg/kg on median. East Asia has a human Se intake gap due to the region's high rice consumption and the lowest rice Se concentration in markets globally. Total Se concentrations in East Asian paddy soils were found to be adequate based on the field sampling. However, over 70 % of East Asian paddy fields were inadequate to yield rice that met the global mean for rice Se concentration. The Se-deficient rice was probably caused by widespread low Se bioavailability in East Asian paddy fields. There were two important factors influencing rice Se enrichment including root Se uptake and iron oxide in soils. Concentrating on these processes is beneficial to rice Se biofortification. Since Se is adequate in the paddy soils of East Asia. Rather of adding Se exogenously, activating the native Se in paddy soil is probably a more appropriate strategy for rice Se biofortification in East Asia. Meta-analysis revealed water management had the greatest impact on rice Se biofortification. The risks and solutions for rice Se deficiency were discussed in our farmland-to-table survey, which will be a valuable information in addressing the global challenge of Se hidden hunger. This study also provided new perspectives and their justifications, critically analyzing both present and future strategies to address Se hidden hunger.
Collapse
Affiliation(s)
- Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xintian Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huini Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuxing Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
15
|
Wang Q, Huang S, Huang Q, Yu Y, Li H, Wan Y. Absorption and Biotransformation of Selenomethionine and Selenomethionine-Oxide by Wheat Seedlings ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:380. [PMID: 38337913 PMCID: PMC10857051 DOI: 10.3390/plants13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
An in-depth understanding of Se uptake and metabolism in plants is necessary for developing Se biofortification strategies. Thus, hydroponic experiments were conducted to investigate the associated processes and mechanisms of organic Se (selenomethionine (SeMet) and selenomethionine-oxide (SeOMet)) uptake, translocation, transformation and their interaction in wheat, in comparison to inorganic Se. The results showed that Se uptake by the roots and the root-to-shoot translocation factor under the SeMet treatment were higher than those under the selenite, selenate and SeOMet treatments. The uptake and translocation of SeMet were higher than those of SeOMet within 72 h, although the differences gradually narrowed with time. The uptake of SeMet and SeOMet was also sensitive to the aquaporin inhibitor: AgNO3 addition resulted in 99.5% and 99.9% inhibitions of Se in the root in the SeMet and SeOMet treatments, respectively. Once absorbed by the root, they rapidly assimilated to other Se forms, and SeMet and Se-methyl-selenocysteine (MeSeCys) were the dominant species in SeMet- and SeOMet-treated plants, while notably, an unidentified Se form was also found in the root and xylem sap under the SeMet treatment. In addition, within 16 h, SeOMet inhibited the uptake and translocation of SeMet, while the inhibition was weakened with longer treatment time. Taken together, the present study provides new insights for the uptake and transformation processes of organic Se within plants.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Siyu Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Qingqing Huang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China;
| | - Yao Yu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| |
Collapse
|
16
|
Alexander J, Olsen AK. Selenium - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10320. [PMID: 38187789 PMCID: PMC10770655 DOI: 10.29219/fnr.v67.10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/21/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024] Open
Abstract
Selenium is an essential trace element in humans, critical to the normal physiology in all animal species. The main form of selenium in food is selenomethionine, selenocysteine and a variety of organic compounds, while inorganic salts mainly occur in food supplements. In animals and humans, selenium occurs as selenocysteine in selenoproteins encoded by 25 genes (specific selenium pool). Several selenoproteins are part of the antioxidant enzyme system and serve as oxido-reductases and in thyroid hormone regulation. SelenoproteinP (SELENOP) transports selenium to peripheral tissues, is the main plasma selenoprotein, and has been used as biomarker of selenium status and intake. SELENOP in plasma represents a saturable pool of selenium and is maximised at a selenium concentration in plasma of about 110 µg/L or an intake of selenomethionine at about 1.2 µg/kg body weight in adults. In Finland, with an estimated selenium intake of 88 µg/day in men and 68 µg/day in women, the average selenium concentration in plasma is about 110 µg/L. Imported wheat from selenium rich areas is an important dietary source in Norway. Dietary intakes in the Nordic and Baltic area vary from 39 to 88 µg/day in men and 22 to 68 µg/day in women, the highest levels were from Finland. Most intervention trials on the effect of selenium supplementation on health outcomes have been carried out in 'selenium-replete'-populations and show no beneficial effect, which from a nutritional point of view would rather not be expected. Some intervention studies conducted in populations low in selenium have showed a beneficial effect. Observational studies suggest an inverse relationship between selenium status and risk of cardiovascular diseases (CVDs), cancer and all-cause mortality, and some other outcomes at low levels of intake (<55 µg/day) or in plasma or serum (<100 µg/L). However, a lack of quantitative data and inconsistencies between studies precludes these studies to be used to derive dietary reference values. At high intakes above 330 to 450 µg/day selenium may cause toxic effects affecting liver, peripheral nerves, skin, nails, and hair. An upper tolerable level (UL) of 255 µg selenium/day in adults was established by EFSA.
Collapse
|
17
|
Liu H, Lin H, Xu T, Shi X, Yao Y, Khoso PA, Jiang Z, Xu S. New insights into brain injury in chickens induced by bisphenol A and selenium deficiency-Mitochondrial reactive oxygen species and mitophagy-apoptosis crosstalk homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166890. [PMID: 37683847 DOI: 10.1016/j.scitotenv.2023.166890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Bisphenol A (BPA), a component of plastic products, can penetrate the blood-brain barrier and pose a threat to the nervous system. Selenium (Se) deficiency can also cause nervous system damage. Resulting from the rapid industrial development, BPA pollution and Se deficiency often coexist. However, it is unclear whether brain damage in chickens caused by BPA exposure and Se deficiency is related to the crosstalk disorder between mitophagy and apoptosis. In this study, 60 chickens (1 day old) were fed with a diet that contained 20 mg/kg BPA but was insufficient in Se (only 0.039 mg/kg) for 42 days to establish a chicken brain injury model. In vitro, the primary chicken embryo brain neurons were treated for 24 h with Se-deficient medium containing 75 μM BPA. The results showed that BPA exposure and Se deficiency inhibited the expression of the mitochondrial respiratory chain complex in brain neurons, and a large number of mitochondrial reactive oxygen species were released. Furthermore, the expression levels of mitochondrial fusion proteins (OPA1, Mfn1, and Mfn2) decreased, while the expression levels of mitochondrial fission proteins (Drp1, Mff, and Fis1) increased, thus exacerbating mitochondrial division. In addition, the results of immunofluorescence and flow cytometry analysis, as well as the elevated expressions of mitophagy related genes (PINK1, Parkin, ATG5, and LC3II/I) and pro-apoptotic markers (Bax, Cytc, Caspase3, and Caspase9) indicated that BPA exposure and Se deficiency disrupted the crosstalk homeostasis between mitophagy and apoptosis. However, this crosstalk homeostasis was restored after Mito-Tempo and Rapamycin treatment. In contrast, 3-methyladenine treatment exacerbated this crosstalk disorder. In conclusion, BPA exposure and Se deficiency can induce mitochondrial reactive oxygen species bursts and disorders of mitochondrial dynamics by destroying the mitochondrial respiratory chain complex. The result is indicative of an imbalance in mitochondrial autophagy and apoptosis crosstalk homeostasis, which damages the chicken brain.
Collapse
Affiliation(s)
- Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Zhihui Jiang
- Henan Beiai Natural Product Application and Development Engineering Research Center, Anyang Institute of Technology, Anyang 455000, Henan, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
18
|
DeAngelo SL, Győrffy B, Koutmos M, Shah YM. Selenoproteins and tRNA-Sec: regulators of cancer redox homeostasis. Trends Cancer 2023; 9:1006-1018. [PMID: 37716885 PMCID: PMC10843386 DOI: 10.1016/j.trecan.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/18/2023]
Abstract
In the past two decades significant progress has been made in uncovering the biological function of selenium. Selenium, an essential trace element, is required for the biogenesis of selenocysteine which is then incorporated into selenoproteins. These selenoproteins have emerged as central regulators of cellular antioxidant capacity and maintenance of redox homeostasis. This review provides a comprehensive examination of the multifaceted functions of selenoproteins with a particular emphasis on their contributions to cellular antioxidant capacity. Additionally, we highlight the promising potential of targeting selenoproteins and the biogenesis of selenocysteine as avenues for therapeutic intervention in cancer. By understanding the intricate relationship between selenium, selenoproteins, and reactive oxygen species (ROS), insights can be gained to develop therapies that exploit the inherent vulnerabilities of cancer cells.
Collapse
Affiliation(s)
- Stephen L DeAngelo
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Markos Koutmos
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Dobrzyńska M, Kaczmarek K, Przysławski J, Drzymała-Czyż S. Selenium in Infants and Preschool Children Nutrition: A Literature Review. Nutrients 2023; 15:4668. [PMID: 37960322 PMCID: PMC10648445 DOI: 10.3390/nu15214668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium (Se), an essential trace element, is fundamental to human health, playing an important role in the formation of thyroid hormones, DNA synthesis, the immune response, and fertility. There is a lack of comprehensive epidemiological research, particularly the serum Se concetration in healthy infants and preschool children compared to the estimated dietary Se intake. However, Se deficiencies and exceeding the UL have been observed in infants and preschool children. Despite the observed irregularities in Se intake, there is a lack of nutritional recommendations for infants and preschool children. Therefore, the main objective of this literature review was to summarize what is known to date about Se levels and the risk of deficiency related to regular consumption in infants and preschool children.
Collapse
Affiliation(s)
| | | | | | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Science, Rokietnicka 3 Street, 60-806 Poznan, Poland; (M.D.); (K.K.); (J.P.)
| |
Collapse
|
20
|
Sinha I, Zhu J, Sinha R. Selective Impact of Selenium Compounds on Two Cytokine Storm Players. J Pers Med 2023; 13:1455. [PMID: 37888066 PMCID: PMC10607864 DOI: 10.3390/jpm13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
COVID-19 patients suffer from the detrimental effects of cytokine storm and not much success has been achieved to overcome this issue. We sought to test the ability of selenium to reduce the impact of two important cytokine storm players: IL-6 and TNF-α. The effects of four selenium compounds on the secretion of these cytokines from THP-1 macrophages were evaluated in vitro following an LPS challenge. Also, the potential impact of methylseleninic acid (MSeA) on Nrf2 and IκBα was determined after a short treatment of THP-1 macrophages. MSeA was found to be the most potent selenium form among the four selenium compounds tested that reduced the levels of IL-6 and TNF-α secreted by THP-1 macrophages. In addition, an increase in Nrf2 and decrease in pIκBα in human macrophages was observed following MSeA treatment. Our data indicate that COVID-19 patients might benefit from the addition of MSeA to the standard therapy due to its ability to suppress the key players in the cytokine storm.
Collapse
Affiliation(s)
- Indu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Junjia Zhu
- Department of Public Health Sciences, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
21
|
Ferrari L, Cattaneo DM, Abbate R, Manoni M, Ottoboni M, Luciano A, von Holst C, Pinotti L. Advances in selenium supplementation: From selenium-enriched yeast to potential selenium-enriched insects, and selenium nanoparticles. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:193-203. [PMID: 37484993 PMCID: PMC10362088 DOI: 10.1016/j.aninu.2023.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023]
Abstract
Selenium (Se) is an essential micronutrient that plays an important role in animal and human development and physiological homoeostasis. This review surveys the role of Se in the environment, plants and animal bodies, and discusses data on Se biofortification with different sources of supplementation, from inorganic to organic forms, with special focus on Se-enriched yeast (Se-yeast). Although Se-yeast remains one of the main sources of organic Se, other emerging and innovative sources are reviewed, such as Se-enriched insects and Se-nanoparticles and their potential use in animal nutrition. Se-enriched insects are discussed as an option for supplying Se in organic form to livestock diets. Se-nanoparticles are also discussed, as they represent a more biocompatible and less toxic source of inorganic Se for animal organisms, compared to selenite and selenate. We also provide up to date information on the legal framework in the EU, USA, and Canada of Se that is contained in feed additives. From the scientific evidence available in the literature, it can be concluded that among the inorganic forms, sodium selenite is still one of the main options, whereas Se-yeast remains the primary organic form. However, other potential sources such as Se-enriched insects and Se-nanoparticles are being investigated as they could potentially combine a high bioavailability and reduced Se emissions in the environment.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Donata M.I.R. Cattaneo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Rossella Abbate
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Michele Manoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | - Alice Luciano
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
| | | | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
22
|
Verstegen J, Günther K. Ubiquitous Occurrence of Nano Selenium in Food Plants. Foods 2023; 12:3203. [PMID: 37685136 PMCID: PMC10487048 DOI: 10.3390/foods12173203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Selenium is an essential trace element in human nutrition. Recent findings suggest that the biosynthesis of selenium nano particles (SeNPs) in plants might be a ubiquitous phenomenon. We investigated the potential of SeNP biosynthesis in food plants and our core objective was to explore the commonness and possible ubiquitousness of nano selenium in food plants and consequently in the human diet. By growing a variety of plants in controlled conditions and the presence of selenite we found strong evidence that SeNPs are widely present in vegetables. The shoots and roots of seven different plants, and additionally Brazil nuts, were analyzed with single-particle inductively coupled plasma mass spectrometry with a focus on edible plants including herbs and salads. SeNPs were found in every plant of our study, hence we conclude, that SeNPs are common ingredients in plant-based food and are therefore eaten daily by most humans. Considering the concerning worldwide prevalence of selenium deficiency and the great physiological properties of SeNPs, we see a high potential in utilizing this discovery.
Collapse
Affiliation(s)
- Jonas Verstegen
- Institute of Nutritional and Food Sciences, University of Bonn, 53115 Bonn, Germany
- Federal Institute for Drugs and Medical Devices, 53175 Bonn, Germany
| | - Klaus Günther
- Institute of Nutritional and Food Sciences, University of Bonn, 53115 Bonn, Germany
- Research Centre Juelich, Institute of Bio- and Geosciences, IBG-2, Plant Sciences, 52428 Jülich, Germany
| |
Collapse
|
23
|
Morton CM, Pullabhotla H, Bevis L, Lobell DB. Soil micronutrients linked to human health in India. Sci Rep 2023; 13:13591. [PMID: 37604890 PMCID: PMC10442378 DOI: 10.1038/s41598-023-39084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023] Open
Abstract
Trace soil minerals are a critical determinant of both crop productivity and the mineral concentration of crops, therefore potentially impacting the nutritional status of human populations relying on those crops. We link health data from nearly 0.3 million children and one million adult women across India with over 27 million soil tests drawn from a nationwide soil health program. We find that soil zinc availability is positively associated with children's linear height growth, and soil iron availability is positively associated with hemoglobin levels. The link between soil zinc and childhood stunting is particularly robust-a one standard deviation increase in satisfactory soil zinc tests is associated with approximately 11 fewer children stunted per 1000. We also find that this zinc-stunting relationship is strongest in wealthier households. Our results suggest that soil mineral availability impacts human nutritional status and health in at least some areas of India, and that agronomic fortification may be a beneficial intervention.
Collapse
Affiliation(s)
- Claire M Morton
- Mathematical and Computational Science Program, Stanford University, Stanford, USA.
| | | | - Leah Bevis
- Department of Agricultural, Environmental and Development Economics, Ohio State University, Columbus, USA
| | - David B Lobell
- Department of Earth System Science and Center on Food Security and the Environment, Stanford University, Stanford, USA
| |
Collapse
|
24
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Feng Z, Sun H, Qin Y, Zhou Y, Zhu H, Yao Q. A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162076. [PMID: 36758687 DOI: 10.1016/j.scitotenv.2023.162076] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Dietary selenium (Se) is an effective strategy to meet Se requirement of human body, and Se biofortification in crops in seleniferous soils with selenobacteria represents an eco-friendly biotechnique. In this study, we tested the effectiveness of siderophore-producing bacterial (SPB) synthetic communities (SynComs) in promoting plant Se uptake in a subtropical seleniferous soil where the fixation of Se by ferric-oxides is severe. The results indicated that SPB SynComs drastically elevated soil bioavailable Se content by up to 68.7 %, and significantly increased plant Se concentration and uptake by up to 83.1 % and 92.2 %, respectively. Seven out of ten SPB isolates in the SynComs were enriched in soils after 120 days of inoculation. Additionally, variation partitioning analysis (VPA) revealed that the contribution of soil bacterial community (up to 42.8 %) to the increased plant Se uptake was much greater than that of soil bioavailable Se (up to 5.1 %), suggesting a direct pathway other than the pathway of mobilizing Se. The relative abundances of some operational taxonomic units (OTUs) showed significantly positive relationship with plant Se status but not with soil Se status, which supports the results of VPA. Network analysis indicates that some inoculated SPB isolates promoted plant Se uptake by regulating the native bacterial taxa. Taken together, this study demonstrates that SPB can be used in Se biofortification in crops, especially in subtropical soils.
Collapse
Affiliation(s)
- Zengwei Feng
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Sun
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yongqiang Qin
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Zafeiriou I, Gasparatos D, Ioannou D, Katsikini M, Pinakidou F, Paloura EC, Massas I. Se(IV)/Se(VI) adsorption mechanisms on natural and on Ca-modified zeolite for Mediterranean soils amended with the modified zeolite: prospects for agronomic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41983-41998. [PMID: 36640241 PMCID: PMC10067652 DOI: 10.1007/s11356-022-24979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the ability of a modified CaCl2 zeolite (Ca-Z) to both increase Se(IV) availability and restrict Se(VI) mobility in soils is examined. As it was resulted from batch experiments and verified by X-ray absorption fine structure (XAFS) and X-ray fluorescence (XRF) spectroscopies, higher amounts of both Se species adsorbed on Ca-Z compared to natural zeolite (Z-N) forming outer-sphere complexes while the oxidation state did not alter during agitation of samples. Thereafter, Ca-Z was incorporated in six Greek soils, divided into acid and alkaline, at a 20% (w/w) rate and a series of equilibrium batch experiments were performed with soils alone and soils-Ca-Z mixtures to investigate sorption and desorption processes and mechanisms. The acid soils, either treated with Ca-Z or not, adsorbed higher amounts of Se(IV) than alkaline ones, whereas soils alone did not adsorb Se(VI) but impressively high adsorption of Se(VI) occurred in the Ca-Z-treated soils. Desorption of Se(IV) was higher from the Ca-Z-treated soils and especially from the acid soils. Higher distribution coefficients of desorption than the distribution coefficients of sorption were observed, clearly pointing to a hysteresis mechanism. The experimental data fitted with Langmuir and Freundlich isotherms. In the presence of Ca-Z, the Langmuir qm values increased indicating higher Se(IV) retention while Langmuir bL values decreased suggesting lower bonding strength and higher Se(IV) mobility. Overall, treating the soils with Ca-Z increased Se(IV) adsorption and mobility whereas it provided sites for Se(VI) adsorption that did not exist in the studied soils.
Collapse
Affiliation(s)
- Ioannis Zafeiriou
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources Management & Agricultural Engineering, School of Environment & Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece
| | - Dionisios Gasparatos
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources Management & Agricultural Engineering, School of Environment & Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece
| | - Dafni Ioannou
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources Management & Agricultural Engineering, School of Environment & Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece
| | - Maria Katsikini
- Department of Physics, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - Fani Pinakidou
- Department of Physics, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - Eleni C Paloura
- Department of Physics, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - Ioannis Massas
- Laboratory of Soil Science and Agricultural Chemistry, Department of Natural Resources Management & Agricultural Engineering, School of Environment & Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
27
|
Pinzon-Nuñez DA, Wiche O, Bao Z, Xie S, Fan B, Zhang W, Tang M, Tian H. Selenium Species and Fractions in the Rock-Soil-Plant Interface of Maize ( Zea mays L.) Grown in a Natural Ultra-Rich Se Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4032. [PMID: 36901044 PMCID: PMC10001709 DOI: 10.3390/ijerph20054032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) enrichments or deficiency in maize (Zea mays L.), one of the world's most important staple foods and livestock feeds, can significantly affect many people's diets, as Se is essential though harmful in excess. In particular, Se-rich maize seems to have been one of the factors that led to an outbreak of selenosis in the 1980s in Naore Valley in Ziyang County, China. Thus, this region's geological and pedological enrichment offers some insight into the behavior of Se in naturally Se-rich crops. This study examined total Se and Se species in the grains, leaves, stalks, and roots of 11 maize plant samples, Se fractions of soils around the rhizosphere, and representative parent rock materials from Naore Valley. The results showed that total Se concentrations in the collected samples were observed in descending order of soil > leaf > root > grain > stalk. The predominant Se species detected in maize plants was SeMet. Inorganic Se forms, mainly Se(VI), decreased from root to grain, and were possibly assimilated into organic forms. Se(IV) was barely present. The natural increases of Se concentration in soils mainly affected leaf and root dry-weight biomasses of maize. In addition, Se distribution in soils markedly correlated with the weathered Se-rich bedrocks. The analyzed soils had lower Se bioavailability than rocks, with Se accumulated predominantly as recalcitrant residual Se. Thus, the maize plants grown in these natural Se-rich soils may uptake Se mainly from the oxidation and leaching of the remaining organic-sulfide-bound Se fractions. A viewpoint shift from natural Se-rich soils as menaces to possibilities for growing Se-rich agricultural products is also discussed in this study.
Collapse
Affiliation(s)
- Diego Armando Pinzon-Nuñez
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Ziyang Zhongdida Selenium Technology Co., Ltd., Ankang 725000, China
| | - Oliver Wiche
- Biology/Ecology Unit, Institute of Biosciences, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang 725000, China
| | - Shuyun Xie
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Bolun Fan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Scientific Research Academy of Guangxi Environment Protection, Nanning 530022, China
| | - Wenkai Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Molan Tang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- New Generation Information Technology Research Institute, Guangxi Academy of Sciences, Nanning 530007, China
| | - Huan Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Ziyang Zhongdida Selenium Technology Co., Ltd., Ankang 725000, China
| |
Collapse
|
28
|
Antoshkina M, Golubkina N, Poluboyarinov P, Skrypnik L, Sekara A, Tallarita A, Caruso G. Effect of Sodium Selenate and Selenocystine on Savoy Cabbage Yield, Morphological and Biochemical Characteristics under Chlorella Supply. PLANTS (BASEL, SWITZERLAND) 2023; 12:1020. [PMID: 36903880 PMCID: PMC10005640 DOI: 10.3390/plants12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Biofortification of Brassica oleracea with selenium (Se) is highly valuable both for human Se status optimization and functional food production with direct anti-carcinogenic activity. To assess the effects of organic and inorganic Se supply for biofortifying Brassica representatives, foliar applications of sodium selenate and selenocystine (SeCys2) were performed on Savoy cabbage treated with the growth stimulator microalgae Chlorella. Compared to sodium selenate, SeCys2 exerted a stronger growth stimulation of heads (1.3 against 1.14 times) and an increase of leaf concentration of chlorophyll (1.56 against 1.2 times) and ascorbic acid (1.37 against 1.27 times). Head density was reduced by 1.22 times by foliar application of sodium selenate and by 1.58 times by SeCys2. Despite the greater growth stimulation effect of SeCys2, its application resulted in lower biofortification levels (2.9 times) compared to sodium selenate (11.6 times). Se concentration decreased according to the following sequence: leaves > roots > head. The antioxidant activity (AOA) was higher in water extracts compared to the ethanol ones in the heads, but the opposite trend was recorded in the leaves. Chlorella supply significantly increased the efficiency of biofortification with sodium selenate (by 1.57 times) but had no effect in the case of SeCys2 application. Positive correlations were found between leaf and head weight (r = 0.621); head weight and Se content under selenate supply (r = 0.897-0.954); leaf ascorbic acid and total yield (r = 0.559), and chlorophyll (r = +0.83-0.89). Significant varietal differences were recorded for all the parameters examined. The broad comparison performed between the effects of selenate and SeCys2 showed significant genetic differences as well as important peculiarities connected with the Se chemical form and its complex interaction with Chlorella treatment.
Collapse
Affiliation(s)
- Marina Antoshkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Nadezhda Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Pavel Poluboyarinov
- Medical Faculty, Department of General and Clinical Pharmacology, Penza State University, 440026 Penza, Russia
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
29
|
Blinov AV, Maglakelidze DG, Rekhman ZA, Yasnaya MA, Gvozdenko AA, Golik AB, Blinova AA, Kolodkin MA, Alharbi NS, Kadaikunnan S, Thiruvengadam M, Shariati MA, Nagdalian AA. Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. MICROMACHINES 2023; 14:433. [PMID: 36838132 PMCID: PMC9964575 DOI: 10.3390/mi14020433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This article presents the results of the synthesis of Se NPs stabilized by a quaternary ammonium compound-catamine AB. Se NPs were obtained by chemical reduction in an aqueous medium. In the first stage of this study, the method of synthesis of Se NPs was optimized by a multifactorial experiment. The radius of the obtained samples was studied by dynamic light scattering, and the electrokinetic potential was studied using acoustic and electroacoustic spectrometry. Subsequently, the samples were studied by transmission electron microscopy, and the analysis of the data showed that a bimodal distribution is observed in negatively charged particles, where one fraction is represented by spheres with a diameter of 45 nm, and the second by 1 to 10 nm. In turn, positive Se NPs have a diameter of about 70 nm. In the next stage, the influence of the active acidity of the medium on the stability of Se NPs was studied. An analysis of the obtained data showed that both sols of Se NPs exhibit aggregative stability in the pH range from 2 to 6, while an increase in pH to an alkaline medium is accompanied by a loss of particle stability. Next, we studied the effect of ionic strength on the aggregative stability of Se NPs sols. It was found that negatively charged ions have a significant effect on the particle size of the positive sol of Se NPs, while the particle size of the negative sol is affected by positively charged ions.
Collapse
Affiliation(s)
- Andrey V. Blinov
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - David G. Maglakelidze
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Zafar A. Rekhman
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Maria A. Yasnaya
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Alexey A. Gvozdenko
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Alexey B. Golik
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Anastasiya A. Blinova
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Maxim A. Kolodkin
- Department of Physics and Technology of Nanostructures and Materials, Physical and Technical Faculty, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
| | - Andrey A. Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, 1 Pushkin Str., 355017 Stavropol, Russia
| |
Collapse
|
30
|
Subirana MA, Boada R, Xiao T, Llugany M, Valiente M. Direct and indirect selenium speciation in biofortified wheat: A tale of two techniques. PHYSIOLOGIA PLANTARUM 2023; 175:e13843. [PMID: 36538026 PMCID: PMC10107779 DOI: 10.1111/ppl.13843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Wheat can be biofortified with different inorganic selenium (Se) forms, selenite or selenate. The choice of Se source influences the physiological response of the plant and the Se metabolites produced. We looked at selenium uptake, distribution and metabolization in wheat exposed to selenite, selenate and a 1:1 molar mixture of both to determine the impact of each treatment on the Se speciation in roots, shoots, and grains. To achieve a comprehensive quantification of the Se species, the complementarity of high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy was exploited. This approach allowed the identification of the six main selenium species: selenomethionine, selenocysteine, selenocystine, selenite, selenate, and elemental selenium. The three treatments resulted in similar total selenium concentration in grains, 90-150 mg Se kg-1 , but produced different effects in the plant. Selenite enhanced root accumulation (66% of selenium) and induced the maximum toxicity, whereas selenate favored shoot translocation (46%). With the 1:1 mixture, selenium was distributed along the plant generating lower toxicity. Although all conditions resulted in >92% of organic selenium in the grain, selenate produced mainly C-Se-C forms, such as selenomethionine, while selenite (alone or in the mixture) enhanced the production of C-Se-Se-C forms, such as selenocystine, modifying the selenoamino acid composition. These results provide a better understanding of the metabolization of selenium species which is key to minimize plant toxicity and any concomitant effect that may arise due to Se-biofortification.
Collapse
Affiliation(s)
- Maria Angels Subirana
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Roberto Boada
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Tingting Xiao
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Manuel Valiente
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
31
|
Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients 2022; 14:nu14245308. [PMID: 36558469 PMCID: PMC9785339 DOI: 10.3390/nu14245308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Selenium is an essential trace element in humans and animals and its role in selenoprotein and enzyme antioxidant activity is well documented. Food is the principal source of selenium, and it is important that selenium status in the body is adequately maintained for physiological functions. There has been increasing attention on the role of selenium in mitigating the toxic effects of mercury exposure from dietary intake in humans. In contrast, mercury is a neurotoxin, and its continuous exposure can cause adverse health effects in humans. The interactions of selenium and mercury are multi-factorial and involve complex binding mechanisms between these elements at a molecular level. Further insights and understanding in this area may help to evaluate the health implications of dietary mercury exposure and selenium status. This review aims to summarise current information on the interplay of the interactions between selenium and mercury in the body and the protective effect of selenium on at-risk groups in a population who may experience long-term mercury exposure.
Collapse
|
32
|
Zhou C, Xiao R, Li M, Wang Q, Cong W, Zhang F. Highland barley grain and soil surveys reveal the widespread deficiency of dietary selenium intake of Tibetan adults living along Yalung Zangpo River. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1007876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ObjectiveIn order to assess selenium (Se) flux through the soil-plant-human chain in Tibet plateau and explore the reason why local Tibetan adult residents from large scale agricultural production areas in Tibet lacked daily Se intake.MethodsA total of 210 intact highland barley plants and their corresponding cultivated topsoil samples were collected in fields of 14 agricultural counties along Yalung Zangpo River and quantitative dietary data were collected from a cross-sectional survey using a cultural-specific food frequency questionnaire that contained all local Tibetan foods in 2020.ResultsThe mean value of The estimated daily Se dietary intake by each participant was 17.1 ± 1.9 μg/day/adult, the Se concentration in topsoil and highland barley grain were 0.128 ± 0.015 mg/kg and 0.017 ± 0.003 mg/kg, respectively. Although highland barley was the first contributor of dietary Se in local adult residents (34.2%), the dietary Se intake provided by highland barley only about 10% of the EAR value (50 μg/day/adult) currently. A significantly positive relationship was determined between soil total Se content (STSe), available Se content (SASe) and highland barley grain Se content (GSe). The amount of Se in food system depends on a number of soil properties (TOC, pH, clay content, Fe/Mn/Al oxides), climate variables (MAP, MAT) and terrain factor (altitude).ConclusionTo sum up, it can be inferred that the insufficient dietary Se intake of Tibetan adult population living along Yalung Zangbo River is mainly caused by the low Se content in highland barley grain, which was result from the low Se content in cultivated soil. In order to enable adult participants in the present study to achieve recommended dietary Se-intake levels, agronomic fortification with selenised fertilizers applied to highland barley could be a great solution. It is necessary to combine the influencing factors, and comprehensively consider the spatial variation of local soil properties, climatic and topographic conditions, and planting systems.
Collapse
|
33
|
Marjanovic V, Markovic R, Steharnik M, Dimitrijevic S, Marinkovic AD, Peric-Grujic A, Đolic M. Lignin Microspheres Modified with Magnetite Nanoparticles as a Selenate Highly Porous Adsorbent. Int J Mol Sci 2022; 23:13872. [PMID: 36430351 PMCID: PMC9696047 DOI: 10.3390/ijms232213872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Highly porous lignin-based microspheres, modified by magnetite nanoparticles, were used for the first time for the removal of selenate anions, Se(VI), from spiked and real water samples. The influence of experimental conditions: selenate concentration, adsorbent dosage and contact time on the adsorption capacity was investigated in a batch experimental mode. The FTIR, XRD, SEM techniques were used to analyze the structural and morphological properties of the native and exhausted adsorbent. The maximum adsorption capacity was found to be 69.9 mg/g for Se(VI) anions at pH 6.46 from the simulated water samples. The modified natural polymer was efficient in Se(VI) removal from the real (potable) water samples, originated from six cities in the Republic of Serbia, with an overage efficacy of 20%. The regeneration capacity of 61% in one cycle of desorption (0.5 M NaOH as desorption solution) of bio-based adsorbent was gained in this investigation. The examined material demonstrated a significant affinity for Se(VI) oxyanion, but a low potential for multi-cycle material application; consequently, the loaded sorbent could be proposed to be used as a Se fertilizer.
Collapse
Affiliation(s)
- Vesna Marjanovic
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, 19210 Bor, Serbia
| | - Radmila Markovic
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, 19210 Bor, Serbia
| | - Mirjana Steharnik
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, 19210 Bor, Serbia
| | | | - Aleksandar D. Marinkovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Aleksandra Peric-Grujic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Maja Đolic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
34
|
Duborská E, Šebesta M, Matulová M, Zvěřina O, Urík M. Current Strategies for Selenium and Iodine Biofortification in Crop Plants. Nutrients 2022; 14:nu14224717. [PMID: 36432402 PMCID: PMC9694821 DOI: 10.3390/nu14224717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Selenium and iodine are essential trace elements for both humans and animals. Among other things, they have an essential role in thyroid function and the production of important hormones by the thyroid gland. Unfortunately, in many areas, soils are deficient in selenium and iodine, and their amount is insufficient to produce crops with adequate contents to cover the recommended daily intake; thus, deficiencies have an endemic character. With the introduction of iodized table salt in the food industry, the thyroid status of the population has improved, but several areas remain iodine deficient. Furthermore, due to the strong relationship between iodine and selenium in metabolic processes, selenium deficiency often compromises the desired positive impact of salt iodization efforts. Therefore, a considerable number of studies have looked for alternative methods for the simultaneous supplementation of selenium and iodine in foodstuff. In most cases, the subject of these studies is crops; recently, meat has also been a subject of interest. This paper reviews the most recent strategies in agriculture to fortify selenium and iodine in crop plants, their effect on the quality of the plant species used, and the potential impact of food processing on their stability in fortified crops.
Collapse
Affiliation(s)
- Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Michaela Matulová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Ondřej Zvěřina
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2602-96392
| |
Collapse
|
35
|
Se-enrichment of Chlorella vulgaris grown under different trophic states for food supplementation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Wu F, Luo W, Li J, Xing W, Lyu L, Yang J, Liu R, Shi Z. Effects of arbuscular mycorrhizal fungi on accumulation and translocation of selenium in winter wheat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6481-6490. [PMID: 35570337 DOI: 10.1002/jsfa.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/14/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Selenium (Se) is an essential micronutrient for humans and animals, but not for plants. Generally, cereals including wheat and rice are the main source of dietary Se for humans. Although arbuscular mycorrhizal fungi (AMF) are ubiquitous soil microbes and commonly develop symbionts with winter wheat (Triticum aestivum L.), the influence of AMF on accumulation and translocation of Se during developmental cycle of winter wheat is still unclear. RESULTS Based on a pot trial, the present results indicated that the effects of AMF on grain Se concentration in winter wheat depend on the Se species spiked in the soil and that Rhizophagus intraradices (Ri) significantly enhanced grain Se concentration under selenite treatment. Moreover, inoculation of AMF significantly increased grain Se content under selenite and selenate treatments. The enhanced grain Se content of mycorrhizal wheat could be attributed to (i) apparently increased root growth of mycorrhizal wheat at jointing could absorb more Se for translocating to aerial tissues and consequently result in significantly higher stalk Se content and (ii) enhancing Se translocation from vegetative tissues to grains. The present study showed that AMF significantly (P < 0.05) increased pre-anthesis Se uptake under selenate treatment and post-anthesis Se uptake under selenite treatment. CONCLUSION The present study indicated the feasibility of inoculation of AMF for increasing grain Se concentration under selenite treatment and enhancing the efficiency of biofortification of Se under selenate treatments. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Wanqing Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Wenjing Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Lihui Lyu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Ruifang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Zhaoyong Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
37
|
Mutonhodza B, Joy EJM, Bailey EH, Lark MR, Kangara MGM, Broadley MR, Matsungo TM, Chopera P. Linkages between soil, crop, livestock, and human selenium status in Sub-Saharan Africa: a scoping review. Int J Food Sci Technol 2022; 57:6336-6349. [PMID: 36605250 PMCID: PMC9804181 DOI: 10.1111/ijfs.15979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Selenium (Se) is essential for human health, however, data on population Se status and agriculture-nutrition-health linkages are limited in sub-Saharan Africa (SSA). The scoping review aims to identify linkages between Se in soils/crops, dietary Se intakes, and livestock and human Se status in SSA. Online databases, organisational websites and grey literature were used to identify articles. Articles were screened at title, abstract and full text levels using eligibility criteria. The search yielded 166 articles from which 112 were excluded during abstract screening and 54 full text articles were assessed for eligibility. The scoping review included 34 primary studies published between 1984 and 2021. The studies covered Se concentrations in soils (n = 7), crops (n = 9), animal tissues (n = 2), livestock (n = 3), and human Se status (n = 15). The evidence showed that soil/crop Se concentrations affected Se concentration in dietary sources, dietary Se intake and biomarkers of Se status. Soil types are a primary driver of human Se status and crop Se concentration correlates positively with biomarkers of Se dietary status. Although data sets of Se concentrations exist across the food system in SSA, there is limited evidence on linkages across the agriculture-nutrition nexus. Extensive research on Se linkages across the food chain is warranted.
Collapse
Affiliation(s)
- Beaula Mutonhodza
- Department of Nutrition, Dietetics and Food SciencesUniversity of ZimbabweP.O. Box MP167, Mt PleasantHarareZimbabwe
| | - Edward J. M. Joy
- London School for Hygiene and Tropical MedicineKeppel StreetLondonWC1E 7HTUK
- Rothamsted ResearchWest CommonHarpendenAL5 2JQUK
| | - Elizabeth H. Bailey
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicestershireLE12 5RDUK
| | - Murray R. Lark
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicestershireLE12 5RDUK
| | | | - Martin R. Broadley
- Rothamsted ResearchWest CommonHarpendenAL5 2JQUK
- School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicestershireLE12 5RDUK
| | - Tonderayi M. Matsungo
- Department of Nutrition, Dietetics and Food SciencesUniversity of ZimbabweP.O. Box MP167, Mt PleasantHarareZimbabwe
| | - Prosper Chopera
- Department of Nutrition, Dietetics and Food SciencesUniversity of ZimbabweP.O. Box MP167, Mt PleasantHarareZimbabwe
| |
Collapse
|
38
|
Zhang Z, Li B, Liu Y, He L, Pang T, Chen Z, Shohag MJI, Miao X, Li X, Gu M, Wei Y. Arbuscular Mycorrhizal Fungal Inoculation Increases Organic Selenium Accumulation in Soybean ( Glycine max (Linn.) Merr.) Growing in Selenite-Spiked Soils. TOXICS 2022; 10:565. [PMID: 36287845 PMCID: PMC9610514 DOI: 10.3390/toxics10100565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Selenium (Se) is an essential trace element for humans. Arbuscular mycorrhizal fungi (AMF) play a crucial role in increasing plant micronutrient acquisition. Soybean (Glycine max (Linn.) Merr.) is a staple food for most people around the world and a source of Se. Therefore, it is necessary to study the mechanism of Se intake in soybean under the influence of AMF. In this study, the effects of fertilization with selenite and inoculation with different AMF strains (Claroideoglomus etunicatum (Ce), Funneliformis mosseae (Fm)) on the accumulation and speciation of Se in common soybean plants were discussed. We carried out a pot experiment at the soil for 90 days to investigate the impact of fertilization with selenite and inoculation with Ce and Fm on the Se fractions in soil, soybean biomass, accumulation and speciation of Se in common soybean plants. The daily dietary intake of the Se (DDI) formula was used to estimate the risk threshold of human intake of Se from soybean seeds. The results showed that combined use of both AMF and Se fertilizer could boost total Se and organic Se amounts in soyabean seeds than that of single Se application and that it could increase the proportion of available Se in soil. Soybean inoculated with Fm and grown in soil fertilized with selenite had the highest organic Se. The results suggest that AMF inoculation could promote root growth, more soil water-soluble Se and higher Se uptake. The maximum Se intake of soybean for adults was 93.15 μg/d when treated with Se fertilizer and Fm, which satisfies the needs of Se intake recommended by the WHO. Combined use of AMF inoculation and Se fertilizer increases the bioavailable Se in soil and promotes the total Se concentration and organic Se accumulation in soybean. In conclusion, AMF inoculation combined with Se fertilization can be a promising strategy for Se biofortification in soybean.
Collapse
Affiliation(s)
- Zengyu Zhang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Bei Li
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yongxian Liu
- Guangxi Academy of Agricultural Sciences, Nanning 530004, China
| | - Lixin He
- Soil and Fertilizer Workstation of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Ting Pang
- Agricultural Service Center of Guangxi Liubei District, Liuzhou 545000, China
| | - Zongdao Chen
- Agricultural Service Center of Guangxi Liubei District, Liuzhou 545000, China
| | - Md. Jahidul Islam Shohag
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Xiuyan Miao
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xi Li
- College of Agriculture and Food Engineering, Baise Uninversity, Baise 533000, China
| | - Minghua Gu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
39
|
Han M, Liu K. Selenium and selenoproteins: their function and development of selenium‐rich foods. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengqing Han
- School of Food and Strategic Reserves Henan University of Technology 450001 Zhengzhou China
- College of Food Science and Engineering Henan University of Technology 450001 Zhengzhou China
| | - Kunlun Liu
- School of Food and Strategic Reserves Henan University of Technology 450001 Zhengzhou China
- College of Food Science and Engineering Henan University of Technology 450001 Zhengzhou China
| |
Collapse
|
40
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
41
|
Chen H, Cheng Q, Chen Q, Ye X, Qu Y, Song W, Fahad S, Gao J, Saud S, Xu Y, Shen Y. Effects of Selenium on Growth and Selenium Content Distribution of Virus-Free Sweet Potato Seedlings in Water Culture. FRONTIERS IN PLANT SCIENCE 2022; 13:965649. [PMID: 35874011 PMCID: PMC9298572 DOI: 10.3389/fpls.2022.965649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding the selenium tolerance of different sweet potato [Dioscorea esculenta (Lour.) Burkill] is essential for simultaneously for breeding of new selenium-tolerant varieties and improving the selenium content in sweet potato. Therefore, a greenhouse experiment was conducted from February to April 2022 to evaluate the effect of sweet potato cultivars and selenium (Na2SeO3) concentrations (0-40 mg/L) on plant growth, physiological activities and plant selenium content distribution. The results showed that when the selenium concentration was more than 3 mg/L, the plant growth was significantly affected and the plant height and root length were significantly different compared to the control. While the selenium concentration was 20 and 40 mg/L had the greatest effect on plant growth when the number of internodes and leaves of the plant decreased, the root system stopped growing and the number of internodes of the plant, the number of leaves and the dry-to-fresh weight ratio of the plant a very significant level compared to reached control. The relative amount of chlorophyll in leaves under treatment with a selenium concentration of 1 mg/L was increased, and the relative amount of chlorophyll in 3 mg/L leaves gradually increased with the increase in the selenium concentration. The values of the maximum photochemical efficiency PSII (fv/fm) and the potential activity of PSII (fv/fo) compared to the control under treatment with 40 mg/L selenium concentration and photosynthesis of plants was inhibited. The selenium content in root, stem and leaf increased with the increase in selenium concentration, and the distribution of selenium content in the plant was leaf <stem <root, and the selenium content in root was significantly higher than that in stem and leaf. In summary, the appropriate concentration of selenium tolerance has been determined to be 3 mg/L. The aquatic culture identification method of selenium tolerance of sweet potatoes and growth indices of various selenium tolerant varieties (lines) established in this study will provide a technical basis for selenium tolerant cultivation and mechanism research.
Collapse
Affiliation(s)
- Huoyun Chen
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Qun Cheng
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Qiaoling Chen
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Xingzhi Ye
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Yong Qu
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Weiwu Song
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, Faculty of Agricultural Sciences, The University of Haripur, Haripur, Pakistan
| | - Jianhua Gao
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, China
| | - Yi Xu
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Yanfen Shen
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
| |
Collapse
|
42
|
Lemming EW, Pitsi T. The Nordic Nutrition Recommendations 2022 - food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022; 66:8572. [PMID: 35757440 PMCID: PMC9199833 DOI: 10.29219/fnr.v66.8572] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background Knowledge about the nutrient intakes and food consumption in the Nordic and Baltic countries is important for the formulation of dietary reference values (DRVs) and food-based dietary guidelines (FBDGs), as part of the Nordic Nutrition Recommendations 2022 project (NNR2022). Objective To describe nutrient intake and food consumption at a broad level in the adult population of each Nordic and Baltic country. This paper also provides guidance on where to find more information on the nutrient intake and food consumption reported from each country. Design Information about the dietary surveys as well as the daily mean intakes was retrieved from the national dietary surveys in each of the Nordic and Baltic countries. Tabulation of the population intakes divided by sex for macronutrients, 20 micronutrients, and for the following broader food groups, Beverages, Cereals, Potatoes, Vegetables, Fruits and berries, Fish and seafood, Meat and meat products, Milk and dairy products, Cheese, Eggs, Fats and oils, and Sweets and sweet bakery products, was done. Results and Discussion The Nordic and Baltic countries share not only similarities but also differences in food consumption patterns, which is reflected in differences in average food consumption and nutrient intakes between the countries. This may be related to the dietary assessment method, prevalence of misreporting, and participation rates in the different dietary surveys. Other factors that may play a role are differences in the calculation procedures in the food composition databases and the definition of food groups. Conclusion The nutrient intake and, especially, food consumption differ between the Nordic and Baltic countries because of differences in food patterns and factors related to the dietary surveying, food grouping, and calculation procedures in each country. To facilitate future comparisons between countries, it would be of interest to harmonize food groupings and the age groups reported on.
Collapse
Affiliation(s)
- Eva Warensjö Lemming
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden.,Departments of Food Studies, Nutrition and Dietetics and Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Tagli Pitsi
- Nutrition and Exercise Unit, Centre for Health Risk Prevention, National Institute for Health Development, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Talinn, Estonia.,Haapsalu College, Tallinn University, Haapsalu, Estonia
| |
Collapse
|
43
|
Selenium Uptake by Lettuce Plants and Se Distribution in Soil Chemical Phases Affected by the Application Rate and the Presence of a Seaweed Extract-Based Biostimulant. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
To tackle selenium (Se) malnutrition, biofortification is among the proposed strategies. A biostimulant application in soils is thought to support a plant’s growth and productivity. Biofortification with Se(VI) may lead to a leaching hazard due to the high mobility of Se(VI) in the soil environment. In this study, the effect of the application of two Se(VI) rates—5 and 10 mg kg−1 soil—and a biostimulant on the Se uptake by lettuce plants and on the Se(VI) distribution in soil fractions following the plants harvest, was investigated. Phosphorus (P) and sulfur (S) concentrations in plants were also determined. A high Se(VI) rate suppressed plant growth, leading to a significant fresh weight decrease from 12.28 to 7.55 g and from 14.6 to 2.43 g for the control and high Se(VI) without and with biostimulants, respectively. Impaired plant growth was verified by the SPAD, NDVI and NDRE measurements. The significantly highest Se concentration in plants, 325 mg kg−1, was recorded for the high Se(VI) rate in the presence of the biostimulant. Compared to controls, the low Se(VI) rate significantly decreased P and increased the S concentrations in plants. The post-harvest soil fractionation revealed that, in the presence of the biostimulant, the Se(VI) soluble fraction increased from 0.992 to 1.3 mg kg−1 at a low Se(VI) rate, and decreased from 3.T85 to 3.13 mg kg−1 at a high Se(VI) rate. Nevertheless, at a low Se(VI) rate, 3.6 and 3.1 mg kg−1 of the added Se(VI) remained in the soil in less mobile forms, in the presence or absence of the biostimulant, respectively. This study indicated that the exogenous application of Se in soil exerted dual effects on lettuce growth and Se availability, depending on the level of selenate applied.
Collapse
|
44
|
Dobermann A, Bruulsema T, Cakmak I, Gerard B, Majumdar K, McLaughlin M, Reidsma P, Vanlauwe B, Wollenberg L, Zhang F, Zhang X. Responsible plant nutrition: A new paradigm to support food system transformation. GLOBAL FOOD SECURITY 2022. [DOI: 10.1016/j.gfs.2022.100636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Zyambo K, Hodges P, Chandwe K, Chisenga CC, Mayimbo S, Amadi B, Kelly P, Kayamba V. Selenium status in adults and children in Lusaka, Zambia. Heliyon 2022; 8:e09782. [PMID: 35800716 PMCID: PMC9253361 DOI: 10.1016/j.heliyon.2022.e09782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 06/20/2022] [Indexed: 10/26/2022] Open
|
46
|
Zommara M, Omran M, Ghanimah M. Milk permeate medium for the production of selenium nanoparticles by lactic acid bacteria. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohsen Zommara
- Department of Dairy Science, Faculty of Agriculture Kafrelsheikh University Kafr El‐Sheikh 33516 Egypt
| | - Mayada Omran
- Food Technology Research Institute Agriculture Research Centre 9 El Gamma Street Giza Egypt
| | - Mohamed Ghanimah
- Department of Dairy Science, Faculty of Agriculture Kafrelsheikh University Kafr El‐Sheikh 33516 Egypt
| |
Collapse
|
47
|
Song J, Liu X, Wang Z, Zhang Z, Chen Q, Lin ZQ, Yuan L, Yin X. Selenium Effect Threshold for Soil Nematodes Under Rice Biofortification. FRONTIERS IN PLANT SCIENCE 2022; 13:889459. [PMID: 35646016 PMCID: PMC9131072 DOI: 10.3389/fpls.2022.889459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Crop biofortification with inorganic selenium (Se) fertilizer is a feasible strategy to improve the health of residents in Se-deficient areas. For eco-friendly crop Se biofortification, a comprehensive understanding of the effects of Se on crop and soil nematodes is vital. In this study, a rice pot experiment was carried out to test how selenite supply (untreated control (0), 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, or 200 mg Se kg-1) in soil affected rice growth, rice Se accumulation, and soil nematode abundance and composition. The results showed that selenite supply (5-200 mg kg-1) generally increased the number of rice tillers, rice yield, and Se concentrations in rice grains. In soil under 10 mg kg-1 Se treatment, the genus composition of nematodes changed significantly compared with that in the control soil. With increased Se level (> 10 mg kg-1), soil nematode abundance decreased significantly. Correlation analysis also demonstrated the positive relationships between soil Se concentrations (total Se and bioavailable Se) with rice plant parameters (number of rice tillers, rice yield, and grain Se concentration) and negative relationships between soil Se concentrations (total Se and bioavailable Se) with soil nematode indexes (nematode abundance and relative abundance of Tobrilus). This study provides insight into balancing Se biofortification of rice and soil nematode community protection and suggests the effective concentrations for total Se (1.45 mg kg-1) and bioavailable Se (0.21 mg kg-1) to soil nematode abundances at 20% level (EC20) as soil Se thresholds. At Se concentrations below these thresholds, rice plant growth and Se accumulation in the grain will still be promoted, but the disturbance of the soil nematodes would be negligible.
Collapse
Affiliation(s)
- Jiaping Song
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaodong Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Zhangmin Wang
- Jiangsu Bio-Engineering Research Center for Selenium/Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for FAST/National Innovation Center for Functional Rice, Nanjing, China
| | - Zezhou Zhang
- Jiangsu Bio-Engineering Research Center for Selenium/Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for FAST/National Innovation Center for Functional Rice, Nanjing, China
| | - Qingqing Chen
- Jiangsu Bio-Engineering Research Center for Selenium/Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for FAST/National Innovation Center for Functional Rice, Nanjing, China
| | - Zhi-Qing Lin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuebin Yin
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
- Jiangsu Bio-Engineering Research Center for Selenium/Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for FAST/National Innovation Center for Functional Rice, Nanjing, China
| |
Collapse
|
48
|
Exogenous Selenium Treatment Promotes Glucosinolate and Glucoraphanin Accumulation in Broccoli by Activating Their Biosynthesis and Transport Pathways. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplementation using selenium (Se) on plants is an effective and widely used approach. It can not only be converted to more Se rich compounds but promote the accumulation of glucosinolates (GSLs) with anti-carcinogenic properties. However, the molecular mechanism of Se in regulating GSLs synthesis remains unclear. In the present study, we analyzed the effects of Se treatment (50 μM sodium selenite) on GSLs, glucoraphanin (4MSOB), and sulforaphane compounds in broccoli tissues. The transcript levels of genes involved in sulfur absorption and transport, GSLs biosynthesis, translocation, and degradation pathways were also evaluated. The study showed that Se treatment remarkably promoted the accumulation of total sulfur and total Se contents and increased Trp-derived GSLs levels in roots by 2 times. The 4MSOB concentration and sulforaphane content in fresh leaves was increased by 67% and 30% after Se treatment, respectively. For genes expressions, some genes involved in sulfate uptake and transporters, GSLs biosynthesis, and transporters were induced strongly upon Se exposure. Results revealed that exogenous Se treatment promotes the overaccumulation of GSLs and 4MSOB content in broccoli by activating the transcript levels of genes involved in sulfur absorption, GSLs biosynthesis, and translocation pathways.
Collapse
|
49
|
Antioxidant potential and essential oil properties of Hypericum perforatum L. assessed by application of selenite and nano-selenium. Sci Rep 2022; 12:6156. [PMID: 35418599 PMCID: PMC9007960 DOI: 10.1038/s41598-022-10109-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/25/2022] [Indexed: 01/24/2023] Open
Abstract
It is necessary to develop a simple way to achieve food quality quantitatively. Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture. In terms of medicinal and therapeutic properties, Hypericumperforatum is an important species. For this study, a randomized complete block design with three replications was used in each experimental unit. The foliar application of selenite and nano-selenium (6, 8, 10, and 12 mg/l), control (distilled water), at the rosette stage and harvesting at 50% flowering stage has been applied as an alleviation strategy subjected to producing essential oils and antioxidant activity. Experimental results revealed that the selenite and nano selenium fertilizers had a significant effect on traits such as total weight of biomass, essential oil percentage, the content of hypericin and hyperforin, the selenium accumulation in the plant, relative leaf water content, chlorophylls, phenolic content, proline, catalase, peroxidase, malondialdehyde, and DPPH. The highest essential oil content was obtained from the control treatment when the accumulation of selenium was achieved with 12 mg/l nano-selenium. The maximum rate of hypericin was seen in the foliar application of 8 mg/l selenite whereas the maximum hyperforin was gained at 10 mg/l selenium. Conceding that the goal is to produce high hypericin/ hyperforin, and also the accumulation of selenium in the plant, treatments of 6 and 8 mg/l of selenite and nano-selenium could be applied. Consequently, an easy detection technique proposed herein can be successfully used in different ranges, including biology, medicine, and the food industry.
Collapse
|
50
|
Alehagen U, Johansson P, Svensson E, Aaseth J, Alexander J. Improved cardiovascular health by supplementation with selenium and coenzyme Q10: applying structural equation modelling (SEM) to clinical outcomes and biomarkers to explore underlying mechanisms in a prospective randomized double-blind placebo-controlled intervention project in Sweden. Eur J Nutr 2022; 61:3135-3148. [PMID: 35381849 PMCID: PMC9363287 DOI: 10.1007/s00394-022-02876-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Purpose Selenium and coenzyme Q10 have synergistic antioxidant functions. In a four-year supplemental trial in elderly Swedes with a low selenium status, we found improved cardiac function, less cardiac wall tension and reduced cardiovascular mortality up to 12 years of follow-up. Here we briefly review the main results, including those from studies on biomarkers related to cardiovascular risk that were subsequently conducted. In an effort, to explain underlying mechanisms, we conducted a structured analysis of the inter-relationship between biomarkers. Methods Selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/ day), or placebo was given to 443 elderly community-living persons, for 48 months. Structural Equation Modelling (SEM) was used to investigate the statistical inter-relationships between biomarkers related to inflammation, oxidative stress, insulin-like growth factor 1, expression of microRNA, fibrosis, and endothelial dysfunction and their impact on the clinical effects. The main study was registered at Clinicaltrials.gov at 30th of September 2011, and has the identifier NCT01443780. Results In addition to positive clinical effects, the intervention with selenium and coenzyme Q10 was also associated with favourable effects on biomarkers of cardiovascular risk. Using these results in the SEM model, we showed that the weights of the first-order factors inflammation and oxidative stress were high, together forming a second-order factor inflammation/oxidative stress influencing the factors, fibrosis (β = 0.74; p < 0.001) and myocardium (β = 0.65; p < 0.001). According to the model, the intervention impacted fibrosis and myocardium through these factors, resulting in improved cardiac function and reduced CV mortality. Conclusion Selenium reduced inflammation and oxidative stress. According to the SEM analysis, these effects reduced fibrosis and improved myocardial function pointing to the importance of supplementation in those low on selenium and coenzyme Q10.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85, Linköping, Sweden.
| | - Peter Johansson
- Department of Health, Medicine and Caring Sciences, Linköping University, 601 74, Norrköping, Sweden
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, 2381, Brumunddal, Norway.,Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, 2418, Elverum, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, 0403, Oslo, Norway
| |
Collapse
|