1
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
2
|
Başeğmez M, Yüksel D. The Effect of Boric Acid on Oxidative Stress, Inflammation, and Apoptosis in Embryonic and Fetal Tissues Damage Caused by Consumption of High-Fructose Corn Syrup in Pregnant Rats. Reprod Sci 2025; 32:514-525. [PMID: 39821796 PMCID: PMC11825574 DOI: 10.1007/s43032-025-01792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025]
Abstract
This study aimed to determine the protective role of boric acid in a pregnant rat model of high fructose corn syrup consumption. Consumption of high fructose corn syrup has been associated with adverse health outcomes in humans and animals. Twenty-eight healthy female Wistar albino rats (250-300 g weight and 16-24 weeks old) were randomly distributed into four equal groups (n = 7): Control, Boric acid (BA), High Fructose Corn Syrup (HFCS), HFCS + BA. Boric acid (20 mg/kg) was administered to pregnant rats via oral gavage every day during pregnancy. The prepared 30% HFCS (F30) solution (24% fructose, 28% dextrose) was added to the drinking water throughout pregnancy. At the end of pregnancy (day 19), blood, placenta, uterus, and fetuses were collected from rats. The results indicated that HFCS increases oxidative stress by increasing the level of MDA and decreasing GSH, SOD, and CAT activity in the blood of maternal. However, BA administration significantly decreased MDA levels and increased GSH levels, SOD, and CAT activity (p < 0.05). In addition, HFCS consumption significantly increased plasma TNF-α, IL-6, and leptin levels compared to control, BA, and HFCS + BA groups (p < 0.05). However, BA administration significantly decreased plasma TNF-α, IL-6, and leptin levels (p < 0.05). Furthermore, BA (20 mg/kg) significantly decreased HFCS-induced histopathological and immunohistochemical alterations in the placenta, uterus, and fetal tissue. In conclusion, BA may prevent HFCS toxicity in maternal and fetal tissues, as it regulates oxidative imbalance in pregnant rat and alleviates histopathological and immunohistochemical changes. The findings indicate a need for further studies to assess the potential of boron in preventing or mitigating the effects of HFCS during pregnancy.
Collapse
Affiliation(s)
- Mehmet Başeğmez
- Department of Veterinary, Laboratory and Veterinary Health Program, Acıpayam Vocational High School, Pamukkale University, Denizli, Turkey.
| | - Duygu Yüksel
- Department of Medical Services and Techniques, Pathology Program, Vocational School of Health Services, Gümüşhane University, Gümüşhane, Turkey
| |
Collapse
|
3
|
Atteia HH, Ahmed SF, Askar MES, Sakr AT. Utilizing a Combination of Supplements Comprising Boric Acid, Magnesium, Vitamin D3, and Extra Virgin Olive Oil to Improve Metabolism in Menopausal Ovariectomized Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04476-y. [PMID: 39731655 DOI: 10.1007/s12011-024-04476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/30/2024] [Indexed: 12/30/2024]
Abstract
Metabolic syndrome during menopause can lead to diabetes, cardiovascular problems, and increased mortality rates. Hormone replacement therapy is recommended to manage climacteric complications, but it has serious adverse effects. This study, therefore, investigated the potential of supplementing some minerals, vitamins, and natural products like boric acid, magnesium, vitamin D3, and extra virgin olive oil on metabolic status of menopausal ovariectomized rats. Fourty-two female adult rats were randomly assigned to seven groups: a) Sham Control, b) Ovariectomized Control, c) Ovariectomized + Boric acid, d) Ovariectomized + Magnesium, e) Ovariectomized + Vitamin D3, f) Ovariectomized + Extra virgin olive oil, and g) Ovariectomized + Combined treatment groups. Serum inflammatory and oxidative stress markers, serum lipogram pattern, hepatic triglycerides, body weight, fasting blood glucose, serum insulin, leptin, and adiponectin, as well as hepatic insulin signaling cascade, IRS1/pAKT/GLUT4 were measured in each group to assess metabolic function. Results revealed a significant improvement in inflammation, oxidative stress, and metabolic parameters by individual and concomitant treating ovariectomized rats with boric acid, magnesium, vitamin D3, and extra virgin olive oil. Interestingly, the concurrent use of these supplements displayed a better impact than individual use, suggesting their valuable therapeutic potential for managing metabolic syndrome in menopausal women. However, the necessity of all four supplements for optimal therapeutic effects remains unsubstantiated.
Collapse
Affiliation(s)
| | - Salwa Fares Ahmed
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mervat El-Sayed Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amr Tawfik Sakr
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
4
|
Kumar M, Kumar A, Srivastav A, Ghosh A, Kumar D. Genomic and molecular landscape of gallbladder cancer elucidating pathogenic mechanisms novel therapeutic targets and clinical implications. Mutat Res 2024; 830:111896. [PMID: 39754821 DOI: 10.1016/j.mrfmmm.2024.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk. Established signaling pathways, including hormonal, apoptotic, metabolic, inflammatory, and DNA damage repair pathways, are integral to GBC progression, and evidence points to the involvement of specific germline and somatic mutations in its development. Key mutations in genes such as KRAS, TP53, IDH1/2, ERBB, PIK3CA, MET, MYC, BRAF, MGMT, CDKN2A and p16 have been identified as contributors to tumorigenesis, with additional alterations including chromosomal aberrations and epigenetic modifications. These molecular insights reveal several potential therapeutic targets that could address the limited treatment options for GBC. Promising therapeutic avenues under investigation include immune checkpoint inhibitors, tyrosine kinase inhibitors, tumor necrosis factor-related apoptosis-inducing ligands (TRAIL), and phytochemicals. Numerous clinical trials are assessing the efficacy of these targeted therapies. This review provides a detailed examination of GBC's genetic and mutational underpinnings, highlighting critical pathways and emerging therapeutic strategies. We discuss the implications of germline and somatic mutations for early detection and individualized treatment, aiming to bridge current knowledge gaps. By advancing our understanding of GBC's molecular profile, we hope to enhance diagnostic accuracy and improve treatment outcomes, ultimately paving the way for precision medicine approaches in managing GBC.
Collapse
Affiliation(s)
- Manishankar Kumar
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007, India
| | - Arun Kumar
- Mahavir Cancer Institute and Research Centre, Phulwarisharif, Patna, Bihar 801505, India
| | - Abhinav Srivastav
- Mahavir Cancer Institute and Research Centre, Phulwarisharif, Patna, Bihar 801505, India
| | - Ashok Ghosh
- Mahavir Cancer Institute and Research Centre, Phulwarisharif, Patna, Bihar 801505, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
5
|
Rezk MM. A comparative neuro-study of solo or accompanied low and high boric acid doses with date molasses in adult male albino rats. Environ Anal Health Toxicol 2024; 39:e2024026-0. [PMID: 39973072 PMCID: PMC11852289 DOI: 10.5620/eaht.2024026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 01/03/2025] Open
Abstract
Boric acid (BA) is a weak acid and the simplest compound resulting from the dissolution of boron in water. There is great competition to determine whether boron is an essential or nonessential nutrient. Date molasses is a potent type of sweetener with valuable components, such as flavonoids and phenolics, and has significant health benefits. This study investigated the neuro-essentiality and neurotoxicity of boric acid boron in adult male albino rat cortex and cerebellum brain areas and the impact of date molasses treatment. Animals were grouped into the following groups: control, low and high boric acid doses, 10 and 500 mg/kg, respectively, with or without 250 mg/kg date molasses. The results revealed the ability of BAs to cross the blood-brain barrier and accumulate in the cerebellum and cortex, revealing the ability of date molasses to decrease BA accumulation at different time intervals. Additionally, the results varied between a nonsignificant increase or decrease in calcium ion content, monoamines (norepinephrine, dopamine, and serotonin), glucose, adenosine triphosphate, malondialdehyde and glutathione, depending on the BA dose. Moreover, date molasses mitigated any unwanted BA results. In conclusion, boric acid, which is within a permissible limit, could be essential and have a neuroprotective effect, whereas at a sublethal level, it could have a neurotoxic effect. Additionally, Date molasses can have neuroprotective effects and antagonize the neurotoxic effects of boric acid through its antioxidant and scavenging effects.
Collapse
Affiliation(s)
- Mohamed M. Rezk
- Isotopes Department, Research sector, Nuclear Materials Authority, Cairo, Egypt
| |
Collapse
|
6
|
Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol 2024; 12:1475584. [PMID: 39539690 PMCID: PMC11557333 DOI: 10.3389/fbioe.2024.1475584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic wounds present a significant clinical challenge due to their prolonged healing time and susceptibility to infection. Boron, a trace element with diverse biological functions, has emerged as a promising therapeutic agent in wound healing. This review article comprehensively investigates the mechanisms underlying the beneficial effects of boron compounds in wound healing. Boron exerts its healing properties through multiple pathways, including anti-inflammatory, antimicrobial, antioxidant, and pro-proliferative effects. Inflammation is a crucial component of the wound-healing process, and boron has been shown to modulate inflammatory responses by inhibiting pro-inflammatory cytokines and promoting the resolution of inflammation. Furthermore, boron exhibits antimicrobial activity against a wide range of pathogens commonly associated with chronic wounds, thereby reducing the risk of infection and promoting wound closure. The antioxidant properties of boron help protect cells from oxidative stress, a common feature of chronic wounds that can impair healing. Additionally, boron stimulates cell proliferation and migration, as well as essential tissue regeneration and wound closure processes. Overall, this review highlights the potential of boron as a novel therapeutic approach for treating chronic wounds, offering insights into its diverse mechanisms of action and clinical implications.
Collapse
|
7
|
Alacabey NA, Coşkun D, Ateşşahin A. Effects of Boron on Learning and Behavioral Disorders in Rat Autism Model Induced by Intracerebroventricular Propionic Acid. Biol Trace Elem Res 2024:10.1007/s12011-024-04417-9. [PMID: 39397138 DOI: 10.1007/s12011-024-04417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder in which learning, communication, and social interaction are impaired. Research has sought to minimize the neural impairments associated with autism spectrum disorder and improve the quality of life. Recent studies suggest that boron may benefit nerve cells, with effects varying depending on the dosage. This study explored the impact of boron, administered as boric acid, on behavioral, biochemical, and histopathological parameters in a rat model of autism induced by propionic acid (PPA). Thirty-two male Sprague-Dawley rats were divided into control, autism model, and boron-treated groups. Behavioral tests were conducted pre- and post-PPA induction, with brain tissue analyzed post-euthanasia. Proinflammatory cytokines (tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6)) and brain-derived neurotrophic factor (BDNF) levels were assessed in the hippocampus. Histopathological evaluations were conducted on the hippocampus and cerebellum. Autism model rats displayed impaired learning, elevated BDNF and cytokine levels, microglial and astrocytic activation, and decreased Purkinje cell count. The boron-treated groups showed improvements, particularly with the 4 mg/kg dose. This dose enhanced learning and social interaction, reduced proinflammatory cytokine levels, prevented microglial and astrocytic activation, and increased Purkinje cell count. Boron treatment exhibited neuroprotective potential, ameliorating autism spectrum disorder deficits by modulating cytokines, BDNF, microglia, and astrocytes, with low doses yielding pronounced effects.
Collapse
Affiliation(s)
- Nur Akman Alacabey
- Midwifery Department, Faculty of Health Sciences, Van Yuzuncu Yil University, Van, Turkey.
| | - Devran Coşkun
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Ahmet Ateşşahin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| |
Collapse
|
8
|
Soriano-Ursúa MA, Cordova-Chávez RI, Farfan-García ED, Kabalka G. Boron-containing compounds as labels, drugs, and theranostic agents for diabetes and its complications. World J Diabetes 2024; 15:1060-1069. [PMID: 38983826 PMCID: PMC11229952 DOI: 10.4239/wjd.v15.i6.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 03/28/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a disease with a high global burden. Current strategies have failed to limit the advancement and impact of the disease. Successful early diagnosis and treatment will require the development of new agents. In this sense, boron-containing compounds have been reported as agents with the ability to reduce glycemia and lipidemia. They have also been used for labeling and measuring carbohydrates and other molecules linked to the initial stages of diabetes and its progression. In addition, certain boron compounds bind to molecules related to diabetes development and their biological activity in the regulation of elevated glycemia. Finally, it should be noted that some boron compounds appear to exert beneficial effects on diabetes complications such as accelerating wound healing while ameliorating pain in diabetic patients.
Collapse
Affiliation(s)
- Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | | | - George Kabalka
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
9
|
Jabbar AAJ, Alamri ZZ, Abdulla MA, Salehen NA, Ibrahim IAA, Hassan RR, Almaimani G, Bamagous GA, Almaimani RA, Almasmoum HA, Ghaith MM, Farrash WF, Almutawif YA. Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms. Biol Trace Elem Res 2024; 202:2702-2719. [PMID: 37770673 DOI: 10.1007/s12011-023-03864-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Boric acid (BA) is a naturally occurring weak Lewis acid containing boron, oxygen, and hydrogen elements that can be found in water, soil, and plants. Because of its numerous biological potentials including anti-proliferation actions, the present investigates the chemopreventive possessions of BA on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty laboratory rats were divided into 5 groups: negative control (A) received two subcutaneous inoculations of normal saline and nourished on 10% Tween 20; groups B-E had two injections of 15 mg/kg azoxymethane followed by ingestion of 10% Tween 20 (B, cancer control), inoculation with intraperitoneal 35 mg/kg 5-fluorouracil injection (C, reference group), or ingested with boric acid 30 mg/kg (D) and 60 mg/kg (E). The gross morphology results showed significantly increased total colonic ACF in cancer controls, while BA treatment caused a significant reduction of ACF values. Histopathological evaluation of colons from cancer controls showed bizarrely elongated nuclei, stratified cells, and higher depletion of the submucosal glands than that of BA-treated groups. Boric acid treatment up-surged the pro-apoptotic (Bax) expression and reduced anti-apoptotic (Bcl-2) protein expressions. Moreover, BA ingestion caused upregulation of antioxidant enzymes (GPx, SOD, CAT), and lowered MDA contents in colon tissue homogenates. Boric acid-treated rats had significantly lower pro-inflammatory cytokines (TNF-α and IL-6) and higher anti-inflammatory cytokines (IL-10) based on serum analysis. The colorectal cancer attenuation by BA is shown by the reduced ACF numbers, anticipated by its regulatory potentials on the apoptotic proteins, antioxidants, and inflammatory cytokines originating from AOM-induced oxidative damage.
Collapse
Affiliation(s)
- Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Zaenah Zuhair Alamri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Ghassan Almaimani
- Department of surgery, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Yahya A Almutawif
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| |
Collapse
|
10
|
Butan S, Filimon V, Bounegru AV. Human health impact and advanced chemical analysis of fructoborates: a comprehensive review. CHEMICAL PAPERS 2024; 78:5151-5167. [DOI: 10.1007/s11696-024-03428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/17/2024] [Indexed: 01/03/2025]
|
11
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
12
|
Çakir S. Effect of Boric Acid on Metabolic Peptides and Some Biochemical Parameters in Experimental Diabetic Rats. Biol Trace Elem Res 2024; 202:1001-1008. [PMID: 37872360 DOI: 10.1007/s12011-023-03910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
Boron (B) is an element that has recently been wondered and researched in many fields, especially due to its effects on energy metabolism. The aim of this study is to evaluate the effect of boric acid (BA) on newly discovered energy metabolism peptides that have not been studied before. In this study, the effects of 15 mg/kg of BA were evaluated in 24 Wistar rats. Groups were named as control group, 15 mg/kg BA group, streptozotocin (STZ)-induced experimental diabetic group, and STZ-induced experimental diabetic + 15 mg/kg BA administered group (STZ+15 mg/kg BA). Serum asprosin, nesfatin-1, preptin, insulin, total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), aspartate transaminase (AST), alanine transaminase (ALT), and glucose analyses were performed. In this study, the increase in glucose, TG, TC, LDL-C levels, and AST, ALT activities in STZ-induced groups were reduced with BA administration. While HDL-C level significantly decreased in the STZ group, the level approached the control group values after BA administration (p<0.001). As for peptides, although there was a statistically significant increase after 15 mg/kg BA administration, these levels did not approach the control group values (p<0.001). According to the findings, STZ-induced diabetes mellitus and the biochemical processes that develop accordingly change correlatively. This study showed that BA is effective in energy metabolism.
Collapse
Affiliation(s)
- Selcen Çakir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Program, Vocational School of Health Services, Çanakkale, Turkey.
- Vocational School of Health Services, Çanakkale Onsekiz Mart University, Terzioğlu Campus, SHMYO Z-9. PK:17000, Çanakkale, Turkey.
| |
Collapse
|
13
|
Bulakhova V, Ray SD. Boron. ENCYCLOPEDIA OF TOXICOLOGY 2024:241-248. [DOI: 10.1016/b978-0-12-824315-2.00880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Kan F, Kucukkurt I. The effects of boron on some biochemical parameters: A review. J Trace Elem Med Biol 2023; 79:127249. [PMID: 37413926 DOI: 10.1016/j.jtemb.2023.127249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Boron; It is used mainly in glass and ceramics, in the defense industry, in jet and rocket fuel, as a disinfectant, and even in the agricultural sector to increase or prevent vegetation development. Its use in the health field has become more widespread when studies in recent years are reviewed. Although it has been reported that boron has essential biological effects on minerals, some enzymes, and hormones, the mechanism of these biological effects has yet to be fully elucidated. This review aims to bring a new perspective to researchers by combining the results of experimental studies in the literature on the effects of boron on some biochemical parameters. METHODS Works of literature on boron were brought together using more than one database (WOS, PubMed, Scopus, Google Scholar). The animal, boron type and dose used in the experimental study, and biochemical parameters (glucose, urea, BUN (blood urea nitrogen), uric acid, creatinine, creatine kinase, blood lipid profile, minerals, liver function tests) were systematically compiled. RESULTS It was observed that the studies mainly focused on glucose and lipid profiles and had a lowering effect on these parameters. From a mineral point of view, the studies are mostly related to the bone matrix. CONCLUSION Although the mechanism of action of boron on biochemical parameters has not yet been clarified, it would be beneficial to examine its relationship with hormones in more depth. A good understanding and analysis of the effect of boron, which is widely used, on biochemical parameters will be beneficial in taking necessary precautions for human and environmental health.
Collapse
Affiliation(s)
- Fahriye Kan
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey.
| | - Ismail Kucukkurt
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
15
|
Rosalez MN, Farfán-García ED, Badillo-Romero J, Córdova-Chávez RI, Trujillo-Ferrara JG, Morales-González JA, Soriano-Ursúa MA, Martínez-Archundia M. A Boron-Containing Analogue of Acetaminophen Induces Analgesic Effect in Hot Plate Test and Limited Hepatotoxicity. INORGANICS 2023; 11:261. [DOI: 10.3390/inorganics11060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2024] Open
Abstract
Acetaminophen is the most sold drug to treat pain. The TRPV1 channel is among its main targets. Due to its over-the-counter availability, its use is known as the main cause of acute liver failure induced by drugs. In addition, boron-containing compounds (BCC) have shown higher efficiency, potency, and affinity than their carbon counterparts. The present study explored the potential analgesic effect and hepatotoxicity of a BCC with a similar chemical structure to acetaminophen. Docking studies were carried out on the TRPV1 channel. In addition, a hot plate test was carried out with three doses of acetaminophen (APAP) and equimolar doses of 4-acetamidophenylboronic acid (4APB) in C57bl/6 mice. These same mice were submitted to a partial hepatectomy and continued compound administration, then they were sacrificed at day seven of treatment to analyze the liver histology and blood chemistry markers. From the in silico assays, it was observed that APAP and 4APB shared interactions with key residues, but 4APB showed a higher affinity on the orthosteric site. Mice administered with 4APB showed a higher latency time than those administered with their equimolar dose of APAP and the control group, with no motor pathway affected. The 4APB groups did not show an increase in hepatic enzyme activity while the APAP did show an increase in activity that was dose-dependent. Although all the experimental groups did show necrosis and inflammation, all APAP groups showed a greater cellular damage than their 4APB counterparts. In addition, the LD50 of 4APB is 409 mg/kg (against APAP-LD50 of 338 mg/kg). Thus, in the current evaluation, 4APB was a better analgesic and safer than APAP.
Collapse
Affiliation(s)
- Melvin Nadir Rosalez
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Eunice D. Farfán-García
- Academy of Biochemistry & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Jesús Badillo-Romero
- Department of Anatomical Pathology, Hospital General de Zona 2A, Troncoso. Añil 144, Granjas México, Iztacalco, Mexico City 08400, Mexico
| | - Ricardo Iván Córdova-Chávez
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - José G. Trujillo-Ferrara
- Academy of Biochemistry & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Marvin A. Soriano-Ursúa
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Marlet Martínez-Archundia
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| |
Collapse
|
16
|
Ri CC, Mf CR, D RV, T PC, F TC, Ir S, A AG, Ma SU. Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders. Biol Trace Elem Res 2023; 201:2222-2239. [PMID: 35771339 DOI: 10.1007/s12011-022-03346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The application of natural and synthetic boron-containing compounds (BCC) in biomedical field is expanding. BCC have effects in the metabolism of living organisms. Some boron-enriched supplements are marketed as they exert effects in the bone and skeletal muscle; but also, BCC are being reported as acting on the enzymes and transporters of membrane suggesting they could modify the carbohydrate metabolism linked to some pathologies of high global burden, as an example is diabetes mellitus. Also, some recent findings are showing effects of BCC on lipid metabolism. In this review, information regarding the effects and interaction of these compounds was compiled, as well as the potential application for treating human metabolic disorders is suggested.
Collapse
Affiliation(s)
- Córdova-Chávez Ri
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Carrasco-Ruiz Mf
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Rodríguez-Vera D
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Pérez-Capistran T
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Tamay-Cach F
- Academia de Bioquímica Médica Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Scorei Ir
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Abad-García A
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico.
| | - Soriano-Ursúa Ma
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico.
| |
Collapse
|
17
|
Zhang G, Wang A, Zhuang L, Wang X, Song Z, Liang R, Ren M, Long M, Jia X, Li Z, Su S, Wang J, Zhang N, Shen G, Wang B. Enrichment of boron element in follicular fluid and its potential effect on the immune function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119147. [PMID: 35314206 DOI: 10.1016/j.envpol.2022.119147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The blood-follicle barrier (BFB) between the blood and follicular fluid (FF) can maintain the microenvironment balance of oocyte. Boron, an exogenous environmental trace element, has been found to possibly play an important role in oocyte maturation. This study aimed to examine the distribution characteristics of boron across the BFB and find the potential effect of boron on FF microenvironment. We analyzed the concentration of boron in paired FF and serum collected from 168 women undergoing in vitro fertilization and embryo transfer in Beijing City and Shandong Province, China. To explore the potential health impact of boron enrichment in oocyte maturation, a global proteomics analysis was conducted to tentatively correlate the protein levels with the boron enrichment. Interestingly, the results showed that the concentration of boron in FF (34.5 ng/mL) was significantly higher than that in serum (22.0 ng/mL), with a median concentration ratio of 1.52. Likewise, the concentrations of boron in FF and serum were positively correlated (r = 0.446), suggesting that boron concentration in serum can represent its concentration in follicular fluid to a large extent.. This is the first time to observe the enrichment of boron in the FF to our knowledge. It is interesting to observe a total of 13 proteins, which mainly belong to immunoglobulin class, were positively correlated with boron concentration in FF. We concluded that boron, as one environmental trace element, was enriched in FF from blood validated by two area in north china, which may be involved in an increased level of immune processes of immunoglobulins.
Collapse
Affiliation(s)
- Guohuan Zhang
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Anni Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, 264000, China
| | - Xikai Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziyi Song
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Rong Liang
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Mengyuan Ren
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Manman Long
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Shu Su
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiahao Wang
- China Center for Health Development Studies, School of Public Health, Peking University, Beijing, 100191, China
| | - Nan Zhang
- Gynecology Department, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Beijing, 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bin Wang
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
18
|
Akbari N, Ostadrahimi A, Tutunchi H, Pourmoradian S, Farrin N, Najafipour F, Soleimanzadeh H, Kafil B, Mobasseri M. Possible therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19: A pilot randomized, double-blind, clinical trial. J Trace Elem Med Biol 2022; 71:126945. [PMID: 35183882 PMCID: PMC8837486 DOI: 10.1016/j.jtemb.2022.126945] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND The present study aimed to assess the therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19. METHODS Forty adult patients with a diagnosis of COVID-19 were recruited in the present study. Patients were randomized in a 1:1:1:1 allocation ratio to 1of 4 treatment groups: (A) 5 mg of boron citrate twice a day, (B) 200 mg of oleoylethanolamide twice a day, (C) both therapies, or (D) routine treatments without any study medications. At pre-and post-intervention phase, some clinical and biochemical parameters were assessed. RESULTS Supplementation with boron citrate alone or in combination with oleoylethanolamide significantly improved O2 saturation and respiratory rate (p < 0.01). At the end of the study, significant increases in white blood cell and lymphocyte count were observed in the boron citrate and combined groups (p < 0.001). Boron citrate supplementation led to a significant decrease in serum lactate dehydrogenase (p = 0.026) and erythrocyte sedimentation rate (p = 0.014), compared with other groups. Furthermore, boron citrate in combination with oleoylethanolamide resulted in a significant reduction in the high-sensitivity C-reactive protein and interleukin-1β concentrations (p = 0.031 and p = 0.027, respectively). No significant differences were found among four groups post-intervention, in terms of hemoglobin concentrations, platelet count, and serum interleukin-6 levels. At the end of the study, common symptoms of COVID-19 including cough, fatigue, shortness of breath, and myalgia significantly improved in the supplemented groups, compared to the placebo (p < 0.05). CONCLUSION Supplementation with boron citrate alone or in combination with oleoylethanolamide could improve some clinical and biochemical parameters in COVID-19 patients.
Collapse
Affiliation(s)
- Neda Akbari
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Pourmoradian
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Farrin
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soleimanzadeh
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Iran
| | - Behnam Kafil
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Smita RM, Shuvo APR, Raihan S, Jahan R, Simin FA, Rahman A, Biswas S, Salem L, Sagor MAT. The Role of Mineral Deficiencies in Insulin Resistance and Obesity. Curr Diabetes Rev 2022; 18:e171121197987. [PMID: 34789132 DOI: 10.2174/1573399818666211117104626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Minerals are critical for maintaining overall health. These tiny chemical compounds are responsible for enzymatic activation, maintaining healthy teeth and bones, regulating energy metabolism, enhancing immunity, and aiding muscle and brain function. However, mineral deficiency in the form of inadequate or under nourished intake affects millions of people throughout the world, with well-documented adverse health consequences of malnutrition. Conversely, mineral deficiency may also be a risk factor for Insulin Resistance (IR) and obesity. This review focuses on another, more "less discussed" form of malnutrition, namely mineral deficiency and its contribution to metabolic disorders. At the cellular level, minerals maintain not only molecular communication but also trigger several key biochemical pathways. Disturbances in these processes due to mineral insufficiency may gradually lead to metabolic disorders such as insulin resistance, pre-diabetes, and central obesity, which might lead to renal failure, cardiac arrest, hepatic carcinoma, and various neurodegenerative diseases. Here we discuss the burden of disease promoted by mineral deficiencies and the medical, social, and economic consequences. Mineral deficiency-mediated IR and obesity have a considerable negative impact on individual well-being, physical consideration, and economic productivity. We discuss possible molecular mechanisms of mineral deficiency that may lead to IR and obesity and suggest strategies to counter these metabolic disorders. To protect mankind from mineral nutrient deficiencies, the key is to take a variety of foods in reasonable quantities, such as organic and pasture-raised eggs, low fat dairy, and grass-fed and finished meats, insecticide, and pesticide-free vegetables and fruits.
Collapse
Affiliation(s)
| | | | - Sabbir Raihan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Rajib Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Faria Anjum Simin
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ashiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Soumick Biswas
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Sayın Z, Uslu A, Erganiş O, Başoglu A, Özdemir Ö, Sakmanoğlu A, Uçan US, Aras Z. Evaluation of Boron's Adjuvant Activity in Inactive Bacterin Vaccines Using the Mice Model. Biol Trace Elem Res 2021; 199:1037-1043. [PMID: 32557105 DOI: 10.1007/s12011-020-02233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022]
Abstract
Vaccination is the most effective, reliable, and economical way of preventing or reducing the effect of infectious diseases. When preparing inactive vaccines, a range of additives called adjuvants are necessary to enhance the magnitude of the immune response. Boron has a wide range of industrial and medical applications, and its positive effects on distinct functions have been described in plants, humans, and animals. However, no studies exist about the possible adjuvant activities of boron compounds in vaccines. Hence, in this study, the potential adjuvant effect of boric acid was explored and compared with common veterinary adjuvants in a mice model. Staphylococcus aureus (S. aureus) used as vaccine antigen was isolated from dairy cows with bovine mastitis. Vaccines adjuvanted with boric acid, aluminum hydroxide, Montanide ISA 50 and ISA 206, and Montanide + boric acid combinations were prepared. The efficacy of vaccines was evaluated according to local reactions at the injection site, C-reactive protein, total Ig G, total Ig M, and anti-S. aureus antibody levels in mice. Boric acid reduced local inflammatory reactions induced by the Montanide adjuvants. Moreover, mice vaccinated with boric acid-adjuvanted vaccine had higher levels of anti-S. aureus antibody than those in the controls (P < 0.05) and were similar to the levels found in mice sensitized with aluminum hydroxide. Total Ig G and Ig M results were, however, unsuitable for the assessment of adjuvant activity for this study. In conclusion, this study revealed that boric acid has an adjuvant potential in inactive bacterin vaccines, but further target animal studies are needed.
Collapse
Affiliation(s)
- Zafer Sayın
- Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey.
| | - Ali Uslu
- Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Osman Erganiş
- Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Abdullah Başoglu
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Özgür Özdemir
- Department of Pathology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Aslı Sakmanoğlu
- Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Uçkun Sait Uçan
- Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Zeki Aras
- Department of Microbiology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
21
|
Lee MH, Gao YT, Huang YH, McGee EE, Lam T, Wang B, Shen MC, Rashid A, Pfeiffer RM, Hsing AW, Koshiol J. A Metallomic Approach to Assess Associations of Serum Metal Levels With Gallstones and Gallbladder Cancer. Hepatology 2020; 71:917-928. [PMID: 31318976 PMCID: PMC6980252 DOI: 10.1002/hep.30861] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Exposure to metals may promote the risk for cancers. We evaluated the associations of a broad spectrum of metals with gallbladder cancer (GBC) and gallstones. APPROACH AND RESULTS A total of 259 patients with GBC, 701 patients with gallstones, and 851 population-based controls were enrolled in Shanghai, China. A metallome panel was used to simultaneously detect 18 metals in serum through inductively coupled plasma-mass spectrometry. Logistic regression models were used to estimate crude or adjusted odds ratios (ORadj ) with 95% confidence intervals (CIs) for the association between metal levels and gallbladder disease. Among the 18 metals tested, 12 were significantly associated with GBC and six with gallstones (Pcorrected < 0.002). Boron, lithium, molybdenum, and arsenic levels were associated with GBC compared to gallstones as well as with gallstones compared to population-based controls. Elevated levels of cadmium, chromium, copper, molybdenum, and vanadium were positively associated with GBC versus gallstones; and the ORadj for the highest tertile (T3) compared to the lowest tertile (T1) ranged from 1.80 to 7.28, with evidence of dose-response trends (P < 0.05). Arsenic, boron, iron, lithium, magnesium, selenium, and sulfur were inversely associated with GBC, with the T3 versus T1 ORadj ranging from 0.20 to 0.69. Arsenic, boron, calcium, lithium, molybdenum, and phosphorus were negatively associated with gallstones, with the T3 versus T1 ORadj ranging from 0.50 to 0.75 (P < 0.05). CONCLUSIONS Metals were associated with both GBC and gallstones, providing cross-sectional evidence of association across the natural history of disease. Longitudinal studies are needed to evaluate the temporality of metal exposure and gallbladder diseases and to investigate the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Yu-Han Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Emma E. McGee
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD;,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Tram Lam
- Division of Cancer Control and Population Sciences, Epidemiology and Genomics Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Bingsheng Wang
- Department of General Surgery, Zhongshan Hospital, School of Medicine, Fudan University, Shanghai, China
| | - Ming-Chang Shen
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Asif Rashid
- Department of Pathology, MD Anderson Cancer Center, Houston, TX
| | - Ruth M. Pfeiffer
- Biostatistics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Ann W. Hsing
- Stanford Cancer Institute, Stanford University, Stanford, CA
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| |
Collapse
|
22
|
N Rosalez M, Estevez-Fregoso E, Alatorre A, Abad-García A, A Soriano-Ursúa M. 2-Aminoethyldiphenyl Borinate: A Multitarget Compound with Potential as a Drug Precursor. Curr Mol Pharmacol 2020; 13:57-75. [PMID: 31654521 DOI: 10.2174/1874467212666191025145429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Boron is considered a trace element that induces various effects in systems of the human body. However, each boron-containing compound exerts different effects. OBJECTIVE To review the effects of 2-Aminoethyldiphenyl borinate (2-APB), an organoboron compound, on the human body, but also, its effects in animal models of human disease. METHODS In this review, the information to showcase the expansion of these reported effects through interactions with several ion channels and other receptors has been reported. These effects are relevant in the biomedical and chemical fields due to the application of the reported data in developing therapeutic tools to modulate the functions of the immune, cardiovascular, gastrointestinal and nervous systems. RESULTS Accordingly, 2-APB acts as a modulator of adaptive and innate immunity, including the production of cytokines and the migration of leukocytes. Additionally, reports show that 2-APB exerts effects on neurons, smooth muscle cells and cardiomyocytes, and it provides a cytoprotective effect by the modulation and attenuation of reactive oxygen species. CONCLUSION The molecular pharmacology of 2-APB supports both its potential to act as a drug and the desirable inclusion of its moieties in new drug development. Research evaluating its efficacy in treating pain and specific maladies, such as immune, cardiovascular, gastrointestinal and neurodegenerative disorders, is scarce but interesting.
Collapse
Affiliation(s)
- Melvin N Rosalez
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Elizabeth Estevez-Fregoso
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Alberto Alatorre
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Antonio Abad-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| |
Collapse
|
23
|
Aydın S, Demirci S, Doğan A, Sağraç D, Kaşıkcı E, Şahin F. Boron containing compounds promote the survival and the maintenance of pancreatic β-cells. Mol Biol Rep 2019; 46:5465-5478. [PMID: 31368021 DOI: 10.1007/s11033-019-05002-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus is worldwide disease. The life of diabetic patients are dependent on exogenous insulin. Pancreas or particularly islet transplantations are performed for reducing external insulin dependency. External substances are also used to protect the β-cells from the death or increase insulin secretion. In the current study, two different boron containing compounds (sodium pentaborate pentahydrate-NaB and boric acid-BA) were investigated for their effect on pancreatic cells in terms of pro-apoptotic and anti-apoptotic markers, genes related to insulin production mechanism, pancreatic development and glucose metabolism, some antioxidant enzymes, and genes for the initiation of diabetes, insulin secretion and antioxidant enzyme activities in vitro. The results revealed that boron containing compounds did not lead to apoptosis. On the contrary, they increased cell viability, antioxidant enzyme activities and the level of genes related to insulin production. Overall evaluation, data in the current study showed that boron containing compounds might be promising therapeutic agents for type 1 diabetes. However, additional investigations are strictly needed to elucidate molecular mechanisms of boron containing compounds.
Collapse
Affiliation(s)
- Safa Aydın
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes and National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Ezgi Kaşıkcı
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
24
|
Wu L, Wei Y, Zhou WB, Zhang YS, Chen QH, Liu MX, Zhu ZP, Zhou J, Yang LH, Wang HM, Wei GM, Wang S, Tang ZG. Gene expression alterations of human liver cancer cells following borax exposure. Oncol Rep 2019; 42:115-130. [PMID: 31180554 PMCID: PMC6549072 DOI: 10.3892/or.2019.7169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Borax is a boron compound that is becoming widely recognized for its biological effects, including lipid peroxidation, cytotoxicity, genotoxicity, antioxidant activity and potential therapeutic benefits. However, it remains unknown whether exposure of human liver cancer (HepG2) cells to borax affects the gene expression of these cells. HepG2 cells were treated with 4 mM borax for either 2 or 24 h. Gene expression analysis was performed using Affymetrix GeneChip Human Gene 2.0 ST Arrays, which was followed by gene ontology analysis and pathway analysis. The clustering result was validated using reverse transcription-quantitative polymerase chain reaction. A cell proliferation assay was performed using Celigo Image Cytometer Instrumentation. Following this, 2- or 24-h exposure to borax significantly altered the expression level of a number of genes in HepG2 cells, specifically 530 genes (384 upregulated and 146 downregulated) or 1,763 genes (1,044 upregulated and 719 downregulated) compared with the control group, respectively (≥2-fold; P<0.05). Twenty downregulated genes were abundantly expressed in HepG2 cells under normal conditions. Furthermore, the growth of HepG2 cells was inhibited through the downregulation of PRUNE1, NBPF1, PPcaspase-1, UPF2 and MBTPS1 (≥1.5-fold, P<0.05). The dysregulated genes potentially serve important roles in various biological processes, including the inflammation response, stress response, cellular growth, proliferation, apoptosis and tumorigenesis/oncolysis.
Collapse
Affiliation(s)
- Lun Wu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ying Wei
- Liver Surgery Institute of The Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Wen-Bo Zhou
- Liver Surgery Institute of The Experiment Center of Medicine, Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, Shiyan, Hubei 442001, P.R. China
| | - You-Shun Zhang
- Liver Surgery Institute of The Experiment Center of Medicine, Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, Shiyan, Hubei 442001, P.R. China
| | - Qin-Hua Chen
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Experiment Center of Medicine, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Ming-Xing Liu
- Department of Pediatrics, YunXi Health for Women And Children, Children's Hospital, Maternal & Child Care and Family Planning Service Centre, Shiyan, Hubei 442600, P.R. China
| | - Zheng-Peng Zhu
- Department of Pathology, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Jiao Zhou
- Liver Surgery Institute of The Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Li-Hua Yang
- Subject Construction Office, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Hong-Mei Wang
- Liver Surgery Institute of The Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Guang-Min Wei
- Liver Surgery Institute of The Experiment Center of Medicine, Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, Shiyan, Hubei 442001, P.R. China
| | - Sheng Wang
- Liver Surgery Institute of The Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
25
|
Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED, Campos-Rodríguez R, Reséndiz-Albor AA, Soriano-Ursúa MA. Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin Ther Pat 2019; 29:339-351. [PMID: 31064237 DOI: 10.1080/13543776.2019.1612368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Boron-containing compounds induce effects on immune responses. Such effects are interesting to the biomedical field for the development of therapeutic tools to modulate the immune system. AREAS COVERED The scope of BCC use to modify immune responses is expanding, mainly with regard to inflammatory diseases. The information was organized to demonstrate the breadth of reported effects. BCCs act as modulators of innate and adaptive immunity, with the former including regulation of cluster differentiation and cytokine production. In addition, BCCs exert effects on inflammation induced by infectious and noninfectious agents, and there are also reports regarding their effects on mechanisms involving hypersensitivity and transplants. Finally, the authors discuss the beneficial effects of BCCs on pathologies involving various targets and mechanisms. EXPERT OPINION Some BCCs are currently used as drugs in humans. The mechanisms by which these BCCs modulate immune responses, as well as the required structure-activity relationship for each observed mechanism of action, should be clarified. The former will allow for the development of improved immunomodulatory drugs with extensive applications in medicine. Patenting trends involve claims concerning the synthesis and actions of identified molecules with a defined profile regarding cytokines, cell differentiation, proliferation, and antibody production.
Collapse
Affiliation(s)
- Karla S Romero-Aguilar
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Ivonne M Arciniega-Martínez
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Eunice D Farfán-García
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Rafael Campos-Rodríguez
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Aldo A Reséndiz-Albor
- b Departamento de Inmunología de Mucosas, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| | - Marvin A Soriano-Ursúa
- a Departamento de Fisiología, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina del Instituto Politécnico Nacional , México City , México
| |
Collapse
|