1
|
He Z, Su S, Zhang B, Chen D, Yuan S, Guan W, Zhang S. Selenium Yeast Attenuated Lipopolysaccharide-Induced Inflammation in Porcine Mammary Epithelial Cells by Modulating MAPK and NF-κB Signaling Pathways. Antioxidants (Basel) 2025; 14:334. [PMID: 40227414 PMCID: PMC11939497 DOI: 10.3390/antiox14030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Mastitis, a prevalent inflammatory disease in mammals, disrupts mammary gland function, compromises milk quality, and can contribute to increased offspring morbidity and mortality. Maintaining the health of porcine mammary epithelial cells (PMECs), the primary cell type in the mammary gland, is crucial for minimizing the adverse effects of this disease. Selenium yeast (SeY), an organic selenium compound known for its antioxidant and immune-enhancing properties, has yet to be fully understood in its role in modulating inflammation in mammary gland. In this study, lipopolysaccharide (LPS) (50 µg/mL, 24 h) significantly upregulated the expression of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β) (p < 0.05). Pretreatment with 1 µM SeY significantly attenuated the LPS-induced inflammatory response by reducing the levels of TNF-α, IL-6, IL-8, and IL-1β (p < 0.05). Additionally, SeY enhanced cellular antioxidant defenses by increasing total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, glutathione (GSH) levels, and glutathione peroxidase (GSH-Px) activity, while concurrently decreasing malondialdehyde (MDA) accumulation (p < 0.05). SeY also restored both intracellular and extracellular triglyceride levels and rescued lipid droplet formation, which were disrupted by LPS treatment. Furthermore, SeY upregulated key regulators involved in milk synthesis (p < 0.05). These findings suggest that SeY effectively mitigates LPS-induced inflammation and oxidative stress while preserving critical pathways for milk fat and protein synthesis in PMECs.
Collapse
Affiliation(s)
- Zhenting He
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Senlin Su
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Bing Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Dongpang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Siyu Yuan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (S.S.); (B.Z.); (D.C.); (S.Y.); (W.G.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhou W, Yang Z, Han J, Chen X, Zou T, You J, Chen J. An Updated Review of Emerging Sources of Selenium in Weaned Piglet Nutrition. Animals (Basel) 2024; 14:2599. [PMID: 39272383 PMCID: PMC11394156 DOI: 10.3390/ani14172599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The antioxidant and immune systems of weaned piglets are not fully mature and are also subjected to serious stress challenges related to oxidative stress and inflammation. Selenium (Se) is an essential element for pigs, with documented roles encompassing antioxidative and anti-inflammatory properties via selenoproteins. Sodium selenite and Se-enriched yeast are commonly acknowledged as conventional sources of Se for piglets. In the past decade, several novel Se sources have emerged in the field of weaned piglet nutrition. In this review, we will initially outline the historical timeline of Se sources as reported in weaned piglet nutrition. Afterwards, our attention will turn towards the nutritional regulation of Se sources in relation to the antioxidant and anti-inflammatory aspects of healthy weaned piglets. Ultimately, we will provide a detailed review highlighting the potential of emerging Se sources in alleviating various adverse effects of stress challenges faced by weaned piglets. These challenges include oxidative stress, enterotoxigenic Escherichia coli infection, lipopolysaccharide-induced inflammation, heat stress, and exposure to feed mycotoxins. The output of this review will emphasize the fundamental importance of incorporating emerging Se sources in the diet of weaned piglets.
Collapse
Affiliation(s)
- Wenyue Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zheng Yang
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiajun Han
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingping Chen
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Jung HY, Lee HJ, Lee HJ, Kim YY, Jo C. Exploring effects of organic selenium supplementation on pork loin: Se content, meat quality, antioxidant capacity, and metabolomic profiling during storage. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:587-602. [PMID: 38975577 PMCID: PMC11222120 DOI: 10.5187/jast.2023.e62] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2024]
Abstract
This research was conducted to study the effects of organic selenium (Se) supplements at different levels on pork loin quality during storage. Fifteen pork loins were procured randomly from three groups, Con (fed basal diet), Se15 (fed 0.15 ppm organic Se along with 0.10 ppm inorganic Se), and Se45 (fed 0.45 ppm organic Se along with 0.10 ppm inorganic Se). Each sample was analyzed for Se contents, antioxidant properties (glutathione peroxidase [GPx] activity, 2,2'-azinobis-[3-ethylbenzothiazoline-6-sulfonic acid] [ABTS] and 2,2-diphenyl-1-picrylhydrazyl [DPPH] radical scavenging activities, 2-thiobarbituric acid reactive substances), physicochemical properties (water holding capacity, pH, color), and metabolomic analysis during 14-day storage period. Se45-supplemented group showed significantly higher Se contents and GPx activity than the other groups throughout the storage period. However, other antioxidant properties were not significantly affected by Se supplementation. Selenium supplementation did not have an adverse impact on physicochemical properties. Nuclear Magnetic Resonance-based metabolomic analysis indicated that the selenium supply conditions were insufficient to induce metabolic change. These results suggest that organic Se (0.15 and 0.45 ppm) can accumulate high Se content in pork loins without compromising quality.
Collapse
Affiliation(s)
- Hyun Young Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hyun Jung Lee
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Hag Ju Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
4
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
5
|
Liu X, Wei X, Feng Y, Liu H, Tang J, Gao F, Shi B. Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality. Antioxidants (Basel) 2023; 13:22. [PMID: 38275642 PMCID: PMC10812556 DOI: 10.3390/antiox13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
This study investigated the nutritional benefits of complex dietary fiber (beta-glucan and fructo-oligosaccharides, CDF) supplementation in sows and piglets during late pregnancy and lactation. Twenty-four sows were randomly divided into two groups: the control group was fed a basal diet (n = 12), and the experimental group was fed a CDF diet (0.25% CDF replaced the same proportion of corn in the basal diet, n = 12). Dietary treatment was given from day 107 of pregnancy to day 25 of lactation. The results of this experiment showed that CDF increased the average daily feed intake (ADFI) of sows during lactation and the weaning body weight (BW) and average daily gain of piglets. Dietary CDF supplementation improved the antioxidant capacity and immune level of sows and decreased the serum zonulin level. Dietary supplementation with CDF increased the levels of antioxidant activity, immunoglobulin, and anti-inflammatory factor interleukin-10 (IL-10) in milk. Meanwhile, piglets in the CDF group had increased serum antioxidant activity, immunoglobulin, and growth-related hormone levels; decreased malondialdehyde (MDA), interleukin-6 (IL-6), and D-lactic acid (D-LA) levels; and increased fecal short-chain fatty acid content. In addition, the CDF group increased the diversity of microorganisms in sow feces. In conclusion, the supplementation of a diet with CDF in late pregnancy and lactation can alleviate the oxidative stress of sows, improve milk quality, and have significant positive effects on the antioxidant capacity and growth performance of piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.L.); (X.W.); (Y.F.); (H.L.); (J.T.); (F.G.)
| |
Collapse
|
6
|
Ma S, Zhu G, Parhat R, Jin Y, Wang X, Wu W, Xu W, Wang Y, Chen W. Exogenous Selenium and Biochar Application Modulate the Growth and Selenium Uptake of Medicinal Legume Astragalus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1957. [PMID: 37653874 PMCID: PMC10222297 DOI: 10.3390/plants12101957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Astragalus species have a certain capacity to enrich selenium (Se) and are the strongest Se hyperaccumulator legumes known globally at present. The biochar application to medicinal plants has been reported to affect plant metabolites. In this study, we aimed to employ hyperaccumulating Astragalus species in the plant growth of selenium-lacked soil, while also investigating the impact of varying selenium doses and biochar application on legumes growth, selenium content, and secondary metabolite production. Applying biochar to soil, along with a Se concentration of 6 mg/kg, significantly enhanced the growth, Se content, total polysaccharide content, and calycosin-7-glucoside content of Astragalus species (p < 0.05). Importantly, the Se and biochar application also led to a significant improvement in Se content in ABH roots (p < 0.05). Meanwhile, the content of total flavonoids in ABH roots could be promoted by a Se concentration of 3 mg/kg and biochar application in soil. Additionally, the Se enrichment coefficients of Astragalus species under Se treatments were significantly higher than those under control treatment, with a marked difference observed across all treatments, whether roots or above-ground (p < 0.05). Remarkably, the Se transport coefficients of Astragalus species were observed to be lower than one, except for the transport coefficient of AB in the Se concentration of the control treatment (0 mg/kg). This result showed that a medium concentration treatment of Se and biochar application in soil not only promotes the growth of Astragalus species and the uptake of exogenous Se but also increases the active component content, meanwhile enhancing the Se enrichment and transport capacity. Taken as a whole, the present findings offer a more comprehensive understanding of the interplay between distinct Se levels, as well as the addition of biochar in soil, providing valuable insight for the cultivation of Se-rich Astragalus in Se-deficient soil-plant systems.
Collapse
Affiliation(s)
- Shengjun Ma
- College of Food and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guangwei Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rozi Parhat
- College of Food and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yuanyuan Jin
- College of Food and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xueshuang Wang
- College of Food and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenping Wu
- College of Food and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wanli Xu
- Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yanling Wang
- College of Food and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Research Progress on Lycopene in Swine and Poultry Nutrition: An Update. Animals (Basel) 2023; 13:ani13050883. [PMID: 36899740 PMCID: PMC10000198 DOI: 10.3390/ani13050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Oxidative stress and in-feed antibiotics restrictions have accelerated the development of natural, green, safe feed additives for swine and poultry diets. Lycopene has the greatest antioxidant potential among the carotenoids, due to its specific chemical structure. In the past decade, increasing attention has been paid to lycopene as a functional additive for swine and poultry feed. In this review, we systematically summarized the latest research progress on lycopene in swine and poultry nutrition during the past ten years (2013-2022). We primarily focused on the effects of lycopene on productivity, meat and egg quality, antioxidant function, immune function, lipid metabolism, and intestinal physiological functions. The output of this review highlights the crucial foundation of lycopene as a functional feed supplement for animal nutrition.
Collapse
|
8
|
Xiong Y, Huang Y, Li L, Liu Y, Liu L, Wang L, Tong L, Wang F, Fan B. A Review of Plant Selenium-Enriched Proteins/Peptides: Extraction, Detection, Bioavailability, and Effects of Processing. Molecules 2023; 28:1223. [PMID: 36770890 PMCID: PMC9919150 DOI: 10.3390/molecules28031223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
As an essential trace element in the human body, selenium (Se) has various physiological activities, such as antioxidant and anticancer activity. Selenium-enriched proteins/peptides (SePs/SePPs) are the primary forms of Se in plants and animals, and they are the vital carriers of its physiological activities. On the basis of current research, this review systematically describes the extraction methods (aqueous, alkaline, enzymatic, auxiliary, etc.) and detection methods (HPLC-MS/MS, GC-ICP-MS, etc.) for SePs/SePPs in plants. Their bioavailability and bioactivity, and the effect of processing are also included. Our review provides a comprehensive understanding and theoretical guidance for the utilization of selenium-enriched proteins/peptides.
Collapse
Affiliation(s)
- Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
9
|
Gu X, Gao CQ. New horizons for selenium in animal nutrition and functional foods. ANIMAL NUTRITION 2022; 11:80-86. [PMID: 36157130 PMCID: PMC9464886 DOI: 10.1016/j.aninu.2022.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022]
Abstract
Selenium (Se), one of the indispensable nutrients for both human health and animal growth, participates in various physiological functions, such as antioxidant and immune responses and metabolism. The role of dietary Se, in its organic and inorganic forms, has been well documented in domestic animals. Furthermore, many feeding strategies for different animals have been developed to increase the Se concentration in animal products to address Se deficiency and even as a potential nutritional strategy to treat free radical-associated diseases. Nevertheless, studies on investigating the optimum addition of Se in feed, the long-term consequences of Se usage in food for animal nutrition, the mechanism of metallic Se nanoparticle (SeNP) transformation in vivo, and the nutritional effects of SeNPs on feed workers and the environment are urgently needed. Starting from the absorption and metabolism mechanism of Se, this review discusses the antioxidant role of Se in detail. Based on this characteristic, we further investigated the application of Se in animal health and described some unresolved issues and unanswered questions warranting further investigation. This review is expected to provide a theoretical reference for improving the quality of food animal meat as well as for the development of Se-based biological nutrition enhancement technology.
Collapse
Affiliation(s)
- Xin Gu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangdong, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chun-qi Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangdong, China
- Corresponding author.
| |
Collapse
|
10
|
Lin Y, Yan H, Cao L, Mou D, Ding D, Qin B, Che L, Fang Z, Xu S, Zhuo Y, Li J, Wang J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal organic selenium supplementation during gestation enhances muscle fiber area and muscle fiber maturation of offspring in porcine model. J Anim Sci Biotechnol 2022; 13:121. [PMID: 36329544 PMCID: PMC9635109 DOI: 10.1186/s40104-022-00773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022] Open
Abstract
Background Organic selenium supplementation during gestation improves the antioxidant status and reproductive performance of sows and increases the antioxidative capacity of the intestines of their offspring. This study was conducted to investigate the effect of maternal basel diet (control) supplemented with an organic Se, 2-hydroxy-4-methylselenobutanoic acid (HMSeBA), or inorganic sodium selenite (Na2SeO3) during gestation on the antioxidant status and development of muscle in newborn and weaned piglets. Newborn piglets before colostrum intake and weaned piglets were selected for longissimus dorsi (LD) muscle collection and analysis. Results The results showed that maternal HMSeBA supplementation increased the muscle area and content of Se in the LD muscle of newborn piglets, improved gene expression of selenoproteins, and decreased oxidative status in the LD muscle of both newborn and weaned piglets compared with the control. The expression of muscle development-related genes of newborn piglets in the HMSeBA group was lower than in the control group, whereas the expression of MRF4 in weaned piglets was higher in the HMSeBA group than in the control and Na2SeO3 groups. In addition, HMSeBA supplementation decreased the mRNA expressions of myosin heavy chains (MyHC) IIx and MyHC IIb and the percentage of MyHC IIb; increased the expression of PGC-1α in the LD muscle of newborn piglets; increased the gene expression of MyHC IIa; and decreased the protein expression of slow MyHC and the activity of malate dehydrogenase in the LD muscle of weaned piglets compared with the control group. Conclusions Maternal HMSeBA supplementation during gestation can improve the antioxidative capacity of the muscle of their offspring and promote the maturity of muscle fibres in weaned offspring.
Collapse
Affiliation(s)
- Yan Lin
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lei Cao
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Dajiang Ding
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Binting Qin
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- grid.80510.3c0000 0001 0185 3134College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yuanfeng Zou
- grid.80510.3c0000 0001 0185 3134College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lixia Li
- grid.80510.3c0000 0001 0185 3134College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - De Wu
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Zhu C, Yang J, Nie X, Wu Q, Wang L, Jiang Z. Influences of Dietary Vitamin E, Selenium-Enriched Yeast, and Soy Isoflavone Supplementation on Growth Performance, Antioxidant Capacity, Carcass Traits, Meat Quality and Gut Microbiota in Finishing Pigs. Antioxidants (Basel) 2022; 11:antiox11081510. [PMID: 36009229 PMCID: PMC9405041 DOI: 10.3390/antiox11081510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022] Open
Abstract
This study investigated the effects of dietary compound antioxidants on growth performance, antioxidant capacity, carcass traits, meat quality, and gut microbiota in finishing pigs. A total of 36 barrows were randomly assigned to 2 treatments with 6 replicates. The pigs were fed with a basal diet (control) or the basal diet supplemented with 200 mg/kg vitamin E, 0.3 mg/kg selenium-enriched yeast, and 20 mg/kg soy isoflavone. Dietary compound antioxidants decreased the average daily feed intake (ADFI) and feed to gain ratio (F/G) at d 14−28 in finishing pigs (p < 0.05). The plasma total protein, urea nitrogen, triglyceride, and malondialdehyde (MDA) concentrations were decreased while the plasma glutathione (GSH) to glutathione oxidized (GSSG) ratio (GSH/GSSG) was increased by compound antioxidants (p < 0.05). Dietary compound antioxidants increased loin area and b* value at 45 min, decreased backfat thickness at last rib, and drip loss at 48 h (p < 0.05). The relative abundance of colonic Peptococcus at the genus level was increased and ileal Turicibacter_sp_H121 abundance at the species level was decreased by dietary compound antioxidants. Spearman analysis showed a significant negative correlation between the relative abundance of colonic Peptococcus and plasma MDA concentration and meat drip loss at 48 h. Collectively, dietary supplementation with compound antioxidants of vitamin E, selenium-enrich yeast, and soy isoflavone could improve feed efficiency and antioxidant capacity, and modify the backfat thickness and meat quality through modulation of the gut microbiota community.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Jingsen Yang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (C.Z.); (J.Y.); (X.N.)
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (L.W.); (Z.J.)
| |
Collapse
|
12
|
Li R, Geng C, Xiong Z, Cui Y, Liao E, Peng L, Jin W, Wang H. Evaluation of protein degradation and flavor compounds during the processing of Xuan'en ham. J Food Sci 2022; 87:3366-3385. [PMID: 35842841 DOI: 10.1111/1750-3841.16242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Protein degradation occurs during the processing of dry-cured ham, which has important influences on the flavor and quality of products. The aim of this work was to study the degradation kinetics of myofibrillar proteins (MPs) and sarcoplasmic proteins (SPs) extracted from the biceps femoris muscle during the processing of Xuan'en ham. A relationship between protein degradation and the flavor formation was found. During the processing of Xuan'en ham, MPs and SPs were mainly degraded in the salting stage and incipient fermentation. Accompanied by protein degradation, the content of carbonyl group in SPs increased gradually, but in MPs, it first increased and then decreased. Interconversion between sulfhydryl and disulfide bonds was investigated during this processing. Oxidation, degradation, and thermal effects significantly affected the surface hydrophobicity of proteins. More than one hundred volatile compounds have been identified at each stage of ham preparation. Among them, organic acids were the predominant group, followed by hydrocarbons, aldehydes, alcohols, ketones, and esters.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Cuizhu Geng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhemin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yingying Cui
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Lijuan Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| |
Collapse
|
13
|
Effects of fermented soybean meal on growth performance, meat quality, and antioxidant capacity in finishing pigs. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Pecoraro BM, Leal DF, Frias-De-Diego A, Browning M, Odle J, Crisci E. The health benefits of selenium in food animals: a review. J Anim Sci Biotechnol 2022; 13:58. [PMID: 35550013 PMCID: PMC9101896 DOI: 10.1186/s40104-022-00706-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 12/01/2022] Open
Abstract
Selenium is an essential trace mineral important for the maintenance of homeostasis in animals and humans. It evinces a strong antioxidant, anti-inflammatory and potential antimicrobial capacity. Selenium biological function is primarily achieved by its presence in selenoproteins as a form of selenocysteine. Selenium deficiency may result in an array of health disorders, affecting many organs and systems; to prevent this, dietary supplementation, mainly in the forms of organic (i.e., selenomethionine and selenocysteine) inorganic (i.e., selenate and selenite) sources is used. In pigs as well as other food animals, dietary selenium supplementation has been used for improving growth performance, immune function, and meat quality. A substantial body of knowledge demonstrates that dietary selenium supplementation is positively associated with overall animal health especially due to its immunomodulatory activity and protection from oxidative damage. Selenium also possesses potential antiviral activity and this is achieved by protecting immune cells against oxidative damage and decreasing viral replication. In this review we endeavor to combine established and novel knowledge on the beneficial effects of dietary selenium supplementation, its antioxidant and immunomodulatory actions, and the putative antimicrobial effect thereof. Furthermore, our review demonstrates the gaps in knowledge pertaining to the use of selenium as an antiviral, underscoring the need for further in vivo and in vitro studies, particularly in pigs.
Collapse
Affiliation(s)
- Brittany M Pecoraro
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA
| | - Diego F Leal
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA
| | - Alba Frias-De-Diego
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew Browning
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Elisa Crisci
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
15
|
Wu C, Cui C, Zheng X, Wang J, Ma Z, Zhu P, Lin G, Zhang S, Guan W, Chen F. The Selenium Yeast vs Selenium Methionine on Cell Viability, Selenoprotein Profile and Redox Status via JNK/ P38 Pathway in Porcine Mammary Epithelial Cells. Front Vet Sci 2022; 9:850935. [PMID: 35433920 PMCID: PMC9011133 DOI: 10.3389/fvets.2022.850935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
Comprehensive studies have been conducted to compare the effect of organic and inorganic selenium previously, but there is still limited knowledge about the difference between organic selenium (Se) from varied sources despite the widely use of organic Se in both animal and human being nutrient additives. In the present study, we systemically compared the effect of two different types of organic Se including selenium yeast (SeY) and selenium methionine (Sel-Met) on cell viability, selenoprotein transcriptome, and antioxidant status in porcine mammary epithelial cells (PMECs) and the results indicated that appropriate addition of SeY and Sel-Met both significantly promoted cell viability and up-regulated the mRNA expression of most selenopreoteins including DIOs, GPXs, and TrxRs family et al. (P < 0.05). Besides, two different sources of Se supplementation both greatly improved redox status with higher levels of T-AOC, SOD, and CAT (P < 0.05), while less content of MDA (P < 0.05), and reduced protein expression of cleaved-caspase-3 (P < 0.05) to mitigate cell apoptosis. Furthermore, the key proteins related to p38/JNK pathway including p38, p-p38, JNK, and p-JNK were apparently reduced in the groups with both of SeY and Sel-Met (P < 0.05). Interestingly we found that the changes induced by SeY supplementation in cell viability, selenoprotein transcriptome, antioxidative capacity, and anti-apoptosis were comprehensively greater compared with same levels addition of Sel-Met in PEMCs (P < 0.05). In conclusion, both SeY and Sel-Met promoted cell viability and attenuated cell apoptosis by regulating the selenoprotein expression and antioxidative capacity via p38/JNK signaling pathway in PMEC, but SeY has more efficient benefits than that of Sel-Met.
Collapse
Affiliation(s)
- Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Lin
- Key Laboratory of Agrifood Safety and Quality, Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Wutai Guan
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Fang Chen
| |
Collapse
|
16
|
Hydroxy Selenomethionine Improves Meat Quality through Optimal Skeletal Metabolism and Functions of Selenoproteins of Pigs under Chronic Heat Stress. Antioxidants (Basel) 2021; 10:antiox10101558. [PMID: 34679693 PMCID: PMC8533020 DOI: 10.3390/antiox10101558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic heat stress (CHS) induces metabolic changes in skeletal muscle from growth to maintenance that jeopardizes growth performance, carcass traits, and meat quality of pigs. We investigated the protective effect of dietary organic selenium (hydroxy-4-methylselenobutanoic acid, OH-SeMet) on CHS-induced skeletal muscle damages of growing pigs, and the corresponding responses of selenoproteins. A total of 40 ((Landrace ×Yorkshire) × Duroc) pigs with an average live weight of 49.64 ± 2.48 kg were used in this 4-week trial. Pigs were randomly allotted to 5 groups: The control group was raised on a basal diet in a thermoneutral environment (22 ± 2 °C); and four CHS groups were raised on a basal diet and supplemented with Se 0.0, 0.2, 0.4, and 0.6 mg/kg as OH-SeMet, respectively, in hyperthermal condition (33 ± 2 °C). CHS resulted in significant decrease of growth performance, carcass traits, and meat quality, which were associated with reduced (p < 0.05) serum alkaline phosphatase (ALP) and total superoxide dismutase (T-SOD) and increased (p < 0.05) serum creatine (CK), sarcous heat shock protein 70 (HSP70), glucokinase (GCK), phosphoenolpyruvate carboxykinase (PEPCK), and malondialdehyde (MDA) contents. Meanwhile, four metabolism-related genes and seven selenoprotein encoding genes were abnormally expressed in skeletal muscle. Dietary OH-SeMet addition partially alleviated the negative impact of CHS on carcass traits and improved meat quality. These improvements were accompanied by the increase in Se deposition, the anti-oxidative capacity of serum and muscle, and protein abundance of GPX1, GPX3, GPX4, and SELENOP. Supplementation with 0.6 mg Se/kg (OH-SeMet) restored the sarcous PEPCK, and 0.4 and 0.6 mg Se/kg (OH-SeMet) restored all abnormally expressed metabolism-related and selenoprotein encoding genes. In summary, dietary supplementation with OH-SeMet beyond Se requirement mitigated CHS-induced depression of carcass traits and meat quality of pigs associated with optimal skeletal metabolism, enhanced antioxidant capacity, and regulation of selenoproteins in skeletal muscle of pigs.
Collapse
|
17
|
Effects of Selenium Auricularia cornea Culture Supplementation on Growth Performance, Antioxidant Status, Tissue Selenium Concentration and Meat Quality in Growing-Finishing Pigs. Animals (Basel) 2021; 11:ani11092701. [PMID: 34573667 PMCID: PMC8470304 DOI: 10.3390/ani11092701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Selenium Auricularia cornea culture (SAC) is a dried product via full fermentation, containing organic-Se, Auricularia cornea (AC) mycelium, and various metabolites of AC. The objective of this study was to evaluate whether SAC could effectively improve the health, growth, meat quality, and oxidative stability of meat in growing-finishing pigs. Currently, dietary SAC supplementation positively impacts growth performance and oxidative stability of fresh meat. Abstract Selenium Auricularia cornea culture (SAC) is a new source of organic selenium. Two experiments were conducted to determine the available energy of SAC fed to pigs and to evaluate the effects of dietary SAC supplementation on growth performance, serum biochemical profiles, fecal short chain fatty acids (SCFA), meat quality, tissue selenium concentration, and oxidative stability of fresh meat in growing-finishing pigs. In Experiment (Exp.) 1, 12 barrows with average body weight (BW) of 42.40 ± 5.30 kg were randomly allotted to two groups and fed the basal diet and SAC-supplemented diet, individually. In Exp. 2, 96 growing-finishing pigs (BW: 91.96 ± 7.55 kg) were grouped into four dietary treatments; each treatment contained six replicates with four pigs per replicate. The four treatments fed a control diet and three experimental diets supplemented with 0.6%, 1.2%, and 2.4% SAC, respectively. The trial lasted for 45 days. The results revealed that digestible energy (DE) of SAC was 11.21 MJ/kg. The average daily gain (ADG) was improved in pigs fed 1.2% and 2.4% SAC during day 24 to 45 and the overall period. Dietary 1.2% and 2.4% SAC supplementation had a lower F/G (p < 0.05) than the control diet during different stages. Dietary SAC supplementation increased fecal butyrate contents (p < 0.05), and pigs fed 1.2% and 2.4% SAC diets had a higher MCT1 mRNA expression (p = 0.04) in the colon. Pigs fed 2.4% SAC had higher GSH-Px contents (p < 0.05) in serum, liver, and longissimus dorsi muscle (LDM) than those in the control group. The 2.4% SAC-supplemented group revealed a higher Se content (p < 0.05) in LDM and a lower MDA concentration (p < 0.05) in fresh meat during the simulated retail display on day six. In conclusion, this study suggested that SAC was more effective in improving growth, enhancing the antioxidant status, depositing Se in muscle, and increasing meat oxidative stability of pigs.
Collapse
|
18
|
Tang JY, He Z, Liu YG, Jia G, Liu GM, Chen XL, Tian G, Cai JY, Kang B, Zhao H. Effect of supplementing hydroxy selenomethionine on meat quality of yellow feather broiler. Poult Sci 2021; 100:101389. [PMID: 34428646 PMCID: PMC8385448 DOI: 10.1016/j.psj.2021.101389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 01/24/2023] Open
Abstract
This study was conducted to evaluate the effect of supplementing hydroxy selenomethionine (OH-SeMet) on performance, selenium (Se) deposition in the breast muscle, quality and oxidative stability, and expression of selenoprotein encoding genes of breast meat of the native slow-growing yellow-feathered broiler birds. A total of 375 one-day-old local yellow male birds were randomly assigned into 5 dietary treatments, supplemented with Se 0.0, 0.2, 0.4, 0.6, and 0.8 mg/kg in the form of OH-SeMet. Each treatment consisted of 5 replicates and each replicate had 15 birds, the birds were fed on basal diet containing corn and soybean meal, and the experiment lasted for 63 d. The results showed that dietary Se supplementation linearly increased (P < 0.001) Se contents in both serum and muscle, no significant changes (P > 0.05) were observed on growth performance, yield of breast, meat color, and intramuscular fat deposition of the breast muscle. Dietary Se addition improved water-holding capacity, the pH24h value, and tenderness of breast muscle, evidenced by a linear decreases of shear force (P < 0.05), accompanied by lower thiobarbituric acid reactive substances and higher glutathione reductase activity. The mRNA abundance of selenoprotein encoding genes also responded to dietary Se levels. It is concluded that, dietary supplementation with OH-SeMet improved muscular Se deposition and meat quality of the native yellow birds, with enhanced antioxidant capability and regulation in selenogenome.
Collapse
Affiliation(s)
- J Y Tang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Z He
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Y G Liu
- Adisseo Asia Pacific P/L, 188778, Singapore
| | - G Jia
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - G M Liu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - X L Chen
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - G Tian
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - J Y Cai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - B Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - H Zhao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
19
|
Chojnacka K, Mikula K, Izydorczyk G, Skrzypczak D, Witek-Krowiak A, Gersz A, Moustakas K, Iwaniuk J, Grzędzicki M, Korczyński M. Innovative high digestibility protein feed materials reducing environmental impact through improved nitrogen-use efficiency in sustainable agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112693. [PMID: 33962281 DOI: 10.1016/j.jenvman.2021.112693] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Sustainable development in agriculture brings both environmental and economic benefits. Contemporary agriculture is also about increasing nutrient use efficiency, especially nitrogen, as the critical nutrient causing the most significant environmental pressure. This creates the need to produce highly digestible protein feed with high bioavailability, reducing losses of biogenic elements to feces. In this review, the latest trends and the potential for their implementation in sustainable agriculture have been compared, as well as the need to reduce the negative environmental impact of agriculture has been demonstrated. Applying local protein sources to feed animals reduces greenhouse gas emissions associated with transportation. The production of highly digestible fodder leads to a reduction in environmental pollution caused by excessive nitrogen outflows. Another approach indecreasing ammonia emissions from livestock farming is feed protein reduction and amino acid supplementation. All of the aforementioned approaches may result in beneficial long-term changes, contributing to environmental safety, animal welfare and human health.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland.
| | - Dawid Skrzypczak
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Aleksandra Gersz
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-372, ul. M. Smoluchowskiego 25, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | | | | | - Mariusz Korczyński
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Science, ul. Chełmońskiego 38C, 55-630, Wrocław, Poland
| |
Collapse
|
20
|
Tian M, Chen J, Liu J, Chen F, Guan W, Zhang S. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. ACTA ACUST UNITED AC 2020; 6:397-403. [PMID: 33364455 PMCID: PMC7750804 DOI: 10.1016/j.aninu.2020.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Dietary fiber is a critical nutrient in sow diet and has attracted interest of animal nutritionists for many years. In addition to increase sows’ satiety, dietary fiber has been found to involve in the regulation of multiple biological functions in the sow production. The interaction of dietary fiber and gut microbes can produce bioactive metabolites, which are of great significance to sows' metabolism and reproductive performance. This article reviewed the interaction between dietary fiber and gut microbes in regulating sows' gut microbial diversity, intestinal immune system, lactation, and production performance, with the aim to provide a new strategy for the use of dietary fiber in sow diets.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxin Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 516042, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 516042, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 516042, China
| |
Collapse
|
21
|
Chen J, Zhang Y, You J, Song H, Zhang Y, Lv Y, Qiao H, Tian M, Chen F, Zhang S, Guan W. The Effects of Dietary Supplementation of Saccharomyces cerevisiae Fermentation Product During Late Pregnancy and Lactation on Sow Productivity, Colostrum and Milk Composition, and Antioxidant Status of Sows in a Subtropical Climate. Front Vet Sci 2020; 7:71. [PMID: 32133379 PMCID: PMC7041407 DOI: 10.3389/fvets.2020.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/28/2020] [Indexed: 11/30/2022] Open
Abstract
This study aimed to evaluate the effects of dietary supplementation of Saccharomyces cerevisiae fermentation product (SCFP) during late pregnancy and lactation on sow productivity, colostrum and milk composition, and antioxidant status of sows in a subtropical climate. The study was a 2 × 2 factorial treatment design where the first factor was environmental THI level [Low THI (08:00-19:00: 70.76 ± 0.45, 19:00-08:00: 67.91 ± 0.18, L-THI) or High THI (08:00-19:00: 75.14 ± 0.98, 19:00-08:00: 68.35 ± 0.18, H-THI], and the second factor was dietary treatment (supplemented with or without 3 kg/t SCFP). A total of 120 sows were randomly allotted to the four treatments (n = 30). The feeding trial was conducted from 85-days post-breeding until 21-days post-partum. Compared with L-THI group, sows from H-THI group had lesser individual piglet birth weight, individual piglet weight at weaning, preweaning average daily gain of piglets, average daily feed intake of sows during lactation, and protein percentage in 14-days milk. Additionally, sows from H-THI group had lesser antioxidant status, indicated by lesser serum total antioxidant capacity (T-AOC), and superoxide dismutase (SOD) activity at parturition; lesser serum T-AOC and glutathione peroxidase (GSH-Px) activity at 14-days post-partum, as well as lesser SOD activity in colostrum. Compared with sows fed the control diet, sows fed the SCFP diet had greater number of piglets weaned, litter weight at weaning, and preweaning average daily gain of piglets. Moreover, sows fed the SCFP diet had improved antioxidant status as indicated by higher serum T-AOC at parturition, and lesser malondialdehyde (MDA) content in colostrum and 21-days milk. In conclusion, H-THI negatively affected the productivity, milk composition, antioxidant status, and lactation feed intake of sows. Dietary supplementation of SCFP partially alleviated the adverse effects of H-THI, by improving lactation performance and antioxidant status of sows without influencing reproductive performance and colostrum and milk composition in a subtropical climate.
Collapse
Affiliation(s)
- Jun Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Yufeng Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Hanqing Song
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yinzhi Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yantao Lv
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hanzhen Qiao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Yang H, Qazi IH, Pan B, Angel C, Guo S, Yang J, Zhang Y, Ming Z, Zeng C, Meng Q, Han H, Zhou G. Dietary Selenium Supplementation Ameliorates Female Reproductive Efficiency in Aging Mice. Antioxidants (Basel) 2019; 8:antiox8120634. [PMID: 31835711 PMCID: PMC6969897 DOI: 10.3390/antiox8120634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Female reproductive (ovarian) aging is distinctively characterized by a markedly reduced reproductive function due to a remarkable decline in quality and quantity of follicles and oocytes. Selenium (Se) has been implicated in playing many important biological roles in male fertility and reproduction; however, its potential roles in female reproduction, particularly in aging subjects, remain poorly elucidated. Therefore, in the current study we used a murine model of female reproductive aging and elucidated how different Se-levels might affect the reproductive efficiency in aging females. Our results showed that at the end of an 8-week dietary trial, whole-blood Se concentration and blood total antioxidant capacity (TAOC) were significantly reduced in Se-deficient (0.08 mg Se/kg; Se-D) mice, whereas both of these biomarkers were significantly higher in inorganic (0.33 mg/kg; ISe-S) and organic (0.33 mg/kg; OSe-S) Se-supplemented groups. Similarly, compared to the Se-D group, Se supplementation significantly ameliorated the maintenance of follicles and reduced the rate of apoptosis in ovaries. Meanwhile, the rate of in vitro-produced embryos resulting from germinal vesicle (GV) oocytes was also significantly improved in Se-supplemented (ISe-S and OSe-S) groups compared to the Se-D mice, in which none of the embryos developed to the hatched blastocyst stage. RT-qPCR results revealed that mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, p21, and Bcl-2 genes in ovaries of aging mice was differentially modulated by dietary Se levels. A considerably higher mRNA expression of Gpx1, Gpx3, Gpx4, and Selenof was observed in Se-supplemented groups compared to the Se-D group. Similarly, mRNA expression of Bcl-2 and p21 was significantly lower in Se-supplemented groups. Immunohistochemical assay also revealed a significantly higher expression of GPX4 in Se-supplemented mice. Our results reasonably indicate that Se deficiency (or marginal levels) can negatively impact the fertility and reproduction in females, particularly those of an advancing age, and that the Se supplementation (inorganic and organic) can substantiate ovarian function and overall reproductive efficiency in aging females.
Collapse
Affiliation(s)
- Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Shichao Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Jingyu Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Zhang Ming
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Changjun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China;
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.); Tel.: +86-10-6273-2681 (H.H.); +86-159-081-89189 (G.Z.)
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (H.Y.); (I.H.Q.); (B.P.); (S.G.); (J.Y.); (Y.Z.); (Z.M.); (C.Z.)
- Correspondence: (H.H.); (G.Z.); Tel.: +86-10-6273-2681 (H.H.); +86-159-081-89189 (G.Z.)
| |
Collapse
|