1
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
2
|
Pérez-Picazo SE, Martínez-Morales P, Conde-Rodríguez I, Reyes-Leyva J, Vallejo-Ruiz V. High serum levels of soluble PD‑1 and PD‑L1 are associated with advanced clinical stages in patients with cervical cancer. Biomed Rep 2025; 22:70. [PMID: 40017501 PMCID: PMC11865715 DOI: 10.3892/br.2025.1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
The binding of programmed cell death receptor-ligand 1 (PD-L1) to programmed cell death protein 1 (PD-1) inhibits T-cell activation, playing a negative role in the anticancer immune response. The soluble forms of these proteins, found in blood circulation, have recently received increasing attention and their function in the cancer immune response remains unclear. The present study evaluated the serum levels of soluble (s)PD-1 and sPD-L1 in patients with cervical cancer and healthy controls, and their associations with clinicopathological characteristics and clinical outcomes. The serum concentrations of both soluble proteins were determined via ELISA. The concentrations of sPD-1 and sPD-L1 were higher in patients with cervical cancer and advanced clinical stages. The evaluation of sPD-1 and clinical outcome revealed higher levels in deceased patients than in total remission patients. sPD-1 and sPD-L1 concentrations were moderately positively correlated; however, in patients with clinical stage IV disease, a very strong correlation was observed. sPD-1 and sPD-L1 could be used as potential diagnostic biomarkers for patients with cervical cancer. Considering the higher levels in advanced clinical stages, their role in cervical cancer progression or treatment response must be explored.
Collapse
Affiliation(s)
| | | | - Ileana Conde-Rodríguez
- Eastern Biomedical Research Center, Mexican Institute of Social Security, Atlixco, Puebla 72760, Mexico
| | - Julio Reyes-Leyva
- Faculty of Chemical Sciences, Autonomous University of Puebla, Puebla 72570, Mexico
| | - Verónica Vallejo-Ruiz
- Eastern Biomedical Research Center, Mexican Institute of Social Security, Atlixco, Puebla 72760, Mexico
| |
Collapse
|
3
|
Miller JW, Johnson JS, Guske C, Mannam G, Hatoum F, Nassar M, Potez M, Fazili A, Spiess PE, Chahoud J. Immune-Based and Novel Therapies in Variant Histology Renal Cell Carcinomas. Cancers (Basel) 2025; 17:326. [PMID: 39858107 PMCID: PMC11763753 DOI: 10.3390/cancers17020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease that represents the most common type of kidney cancer. The classification of RCC is primarily based on distinct morphological and molecular characteristics, with two broad categories: clear cell RCC (ccRCC) and non-clear cell RCC (nccRCC). Clear cell RCC is the predominant subtype, representing about 70-80% of all RCC cases, while non-clear cell subtypes collectively make up the remaining 20-30%. Non-clear cell RCC encompasses many histopathological variants, each with unique biological and clinical characteristics. Additionally, any RCC subtype can undergo sarcomatoid dedifferentiation, which is associated with poor prognosis and rapid disease progression. Recent advances in molecular profiling have also led to the identification of molecularly defined variants, further highlighting the complexity of this disease. While immunotherapy has shown efficacy in some RCC variants and subpopulations, significant gaps remain in the treatment of rare subtypes. This review explores the outcomes of immunotherapy across RCC subtypes, including rare variants, and highlights opportunities for improving care through novel therapies, biomarker-driven approaches, and inclusive clinical trial designs.
Collapse
Affiliation(s)
- Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher Guske
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Firas Hatoum
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Marine Potez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
4
|
He X, Liu Y, Gao X, Tang F, Tian Y, Gong S, Shen J, Wang A, Sun L, Wei W, Weng L. N-terminal acetylation of transcription factor LIP induces immune therapy resistance via suppression of PD-L1 expression in non-small cell lung cancer. J Immunother Cancer 2024; 12:e009905. [PMID: 39615895 PMCID: PMC11624798 DOI: 10.1136/jitc-2024-009905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Programmed death-1 (PD-1) checkpoint blockade has revolutionized cancer therapy, yet its clinical success is confined to a subset of patients, underscoring the urgent need to understand the molecular underpinnings of programmed cell death ligand 1 (PD-L1) expression to combat immunotherapy resistance. METHODS Employing CRISPR/Cas9 screening, we identified key regulators of PD-L1 in non-small cell lung cancer (NSCLC) cells, focusing on the transcription factor CEBPB and its isoform liver-enriched inhibitory protein (LIP). Through chromatin immunoprecipitation (ChIP) and luciferase reporter assays, we explored the interaction between LIP and basic-helix-loop-helix E22 (BHLHE22) in controlling PD-L1 transcription. We also used immunofluorescence and NBD-CI assays to examine how N-terminal acetylation affects LIP's subcellular localization. The impact of LIP on tumor growth was assessed via subcutaneous tumorigenicity assays, while immunohistochemistry and immunofluorescence were used to analyze LIP-induced alterations in the tumor immune microenvironment. RESULTS Our research indicates that CEBPB, particularly its LIP isoform, significantly suppresses PD-L1 expression in NSCLC cells. This suppression is contingent on LIP's N-terminal acetylation by the N-terminal acetyltransferase A complex, which facilitates LIP's nuclear entry and interaction with BHLHE22. This interaction leads to the formation of a co-repressor complex at the PD-L1 promoter, effectively reducing PD-L1 expression and enhancing the tumor immune response. CONCLUSIONS Identifying CEBPB, especially the LIP isoform, as a pivotal regulator of PD-L1 expression sheds light on the mechanisms behind PD-1 blockade resistance in NSCLC. Our findings suggest that modulating LIP's function or its molecular interactions might offer a novel approach to boosting the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Yongshuo Liu
- Department of Pathology and Lab Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xing Gao
- Department of Stomatology, Xiangya Hospital Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Feiyu Tang
- Center for Biotherapy, Sun Yat-Sen University, Guangzhou, China
| | - Yuxi Tian
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Siyuan Gong
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Jia Shen
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Aimin Wang
- Department of Emergency, Xiangya Hospital Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, Peking University School of Life Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Liang Weng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Liu C, Qian X, Yu C, Xia X, Li J, Li Y, Xie Y, Gao G, Song Y, Zhang M, Xue H, Wang X, Sun H, Liu J, Deng W, Guo X. Inhibition of ATM promotes PD-L1 expression by activating JNK/c-Jun/TNF-α signaling axis in triple-negative breast cancer. Cancer Lett 2024; 586:216642. [PMID: 38278470 DOI: 10.1016/j.canlet.2024.216642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer. Anti-PD-1/PD-L1 treatment for advanced TNBC is still limited to PD-L1-positive patients. Ataxia telangiectasia mutated (ATM) is a switch molecule for homologous recombination and repair. In this study, we found a significant negative correlation between ATM and PD-L1 in 4 TNBC clinical specimens by single-cell RNA sequencing (scRNA-seq), which was confirmed by immunochemical staining in 86 TNBC specimens. We then established ATM knockdown TNBC stable cell lines to perform in vitro studies and animal experiments, proving the negative regulation of PD-L1 by ATM via suppression of tumor necrosis factor-alpha (TNF-α), which was confirmed by cytokine array analysis of TNBC cell line and analysis of clinical specimens. We further found that ATM inhibits TNF-α via inactivating JNK/c-Jun by scRNA-seq, Western blot and luciferase reporter assays. Finally, we identified a negative correlation between changes in phospho-ATMS1981 and PD-L1 levels in TNBC post- and pre-neoadjuvant therapy. This study reveals a novel mechanism by which ATM negatively regulates PD-L1 by downregulating JNK/c-Jun/TNF-α in TNBC, shedding light on the wide application of immune checkpoint blockade therapy for treating multi-line-resistant TNBC.
Collapse
Affiliation(s)
- Chenying Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaolong Qian
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chunyan Yu
- Tianjin Institute of Immunology, Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoqing Xia
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiazhen Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yaqing Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Guangshen Gao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuanming Song
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Meiyan Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Huiqin Xue
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaozi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jing Liu
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Weimin Deng
- Tianjin Institute of Immunology, Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaojing Guo
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
6
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
7
|
Guo J, Yuan H, Zhu Y, Che Z, Zhang B, Zhang D, Zhou Y, Xiong L. PD-L1 expression and its correlation with clinicopathological and molecular characteristics in Chinese patients with non-small cell lung cancer. Medicine (Baltimore) 2024; 103:e36770. [PMID: 38394518 PMCID: PMC11309668 DOI: 10.1097/md.0000000000036770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/01/2023] [Indexed: 02/25/2024] Open
Abstract
Little is known about the relationship between programmed cell death-ligand 1 (PD-L1) expression and histologic and genetic features in real-world Chinese non-small cell lung cancer patients. From November 2017 to June 2019, tumor tissues were collected from 2674 non-small cell lung cancer patients. PD-L1 expression was detected with immunohistochemistry using the 22C3 and SP263 antibodies, and patients were stratified into subgroups based on a tumor proportion score of 1%, 1% to 49%, and ≥ 50%. Genetic alterations were profiled using targeted next-generation sequencing. In the total population, 50.5% had negative PD-L1 expression (tumor proportion score < 1%), 32.0% had low-positive expression (1%-49%), and 17.5% had high-positive expression (≥50%). The PD-L1 positive rate was 39.0% in squamous cell carcinomas and 53.6% in adenocarcinomas. PD-L1 expression was higher in squamous cell carcinomas (P < .001) and lower in adenocarcinomas (P < .001). Of the overall patient population, 11.2% had Kirsten rat sarcoma viral oncogene (KRAS) mutations, 44.9% had epidermal growth factor receptor (EGFR) mutations, 2.1% had BRAF V600E mutations, 0.3% had MET exon 14 skipping mutations, 5.4% had anaplastic lymphoma kinase translocations, and 0.9% had ROS proto-oncogene 1 translocations. Patients carrying ROS proto-oncogene 1 translocations (P = .006), KRAS (P < .001), and MET (P = .023) mutations had significantly elevated expression of PD-L1, while those harboring EGFR (P < .001) mutations had lower PD-L1 expression. In our study, PD-L1 expression was significantly higher in squamous cell carcinomas and lower in adenocarcinomas, and was positively associated with MET and KRAS mutations, as well as the wild-type EGFR gene state. Nonetheless, additional studies are needed to further validate those associations and determine the clinical significance for immune checkpoint inhibitors of these factors.
Collapse
Affiliation(s)
- Jindong Guo
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Yuan
- Department of Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Che
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Bei Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Ding Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Ying Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Liwen Xiong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P, Raska M. NSCLC: from tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol 2024; 15:1342086. [PMID: 38384472 PMCID: PMC10879685 DOI: 10.3389/fimmu.2024.1342086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is largely promoted by a multistep tumorigenesis process involving various genetic and epigenetic alterations, which essentially contribute to the high incidence of mortality among patients with NSCLC. Clinical observations revealed that NSCLC also co-opts a multifaceted immune checkpoint dysregulation as an important driving factor in NSCLC progression and development. For example, a deregulated PI3K/AKT/mTOR pathway has been noticed in 50-70% of NSCLC cases, primarily modulated by mutations in key oncogenes such as ALK, EGFR, KRAS, and others. Additionally, genetic association studies containing patient-specific factors and local reimbursement criteria expose/reveal mutations in EGFR/ALK/ROS/BRAF/KRAS/PD-L1 proteins to determine the suitability of available immunotherapy or tyrosine kinase inhibitor therapy. Thus, the expression of such checkpoints on tumors and immune cells is pivotal in understanding the therapeutic efficacy and has been extensively studied for NSCLC treatments. Therefore, this review summarizes current knowledge in NSCLC tumorigenesis, focusing on its genetic and epigenetic intricacies, immune checkpoint dysregulation, and the evolving landscape of targeted therapies. In the context of current and future therapies, we emphasize the significance of antibodies targeting PD-1/PD-L1 and CTLA-4 interactions as the primary therapeutic strategy for immune system reactivation in NSCLC. Other approaches involving the promising potential of nanobodies, probodies, affibodies, and DARPINs targeting immune checkpoints are also described; these are under active research or clinical trials to mediate immune regulation and reduce cancer progression. This comprehensive review underscores the multifaceted nature, current state and future directions of NSCLC research and treatment.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| | - Joanna M. Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Prosenjit Chakraborty
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Petr Jakubec
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Ondrej Fischer
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
10
|
Choi S, Kim HS, Min KW, Noh YK, Lee JY, Moon JY, Jung US, Kwon MJ, Kim DH, Son BK, Pyo JS, Ro SK. JAK2 Loss Arising From Tumor-Spread-Through-Air-Spaces (STAS) Promotes Tumor Progression by Suppressing CD8+ T Cells in Lung Adenocarcinoma: A Machine Learning Approach. J Korean Med Sci 2024; 39:e16. [PMID: 38225784 PMCID: PMC10789524 DOI: 10.3346/jkms.2024.39.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Tumor spread through air spaces (STAS) is a recently discovered risk factor for lung adenocarcinoma (LUAD). The aim of this study was to investigate specific genetic alterations and anticancer immune responses related to STAS. By using a machine learning algorithm and drug screening in lung cancer cell lines, we analyzed the effect of Janus kinase 2 (JAK2) on the survival of patients with LUAD and possible drug candidates. METHODS This study included 566 patients with LUAD corresponding to clinicopathological and genetic data. For analyses of LUAD, we applied gene set enrichment analysis (GSEA), in silico cytometry, pathway network analysis, in vitro drug screening, and gradient boosting machine (GBM) analysis. RESULTS The patients with STAS had a shorter survival time than those without STAS (P < 0.001). We detected gene set-related downregulation of JAK2 associated with STAS using GSEA. Low JAK2 expression was related to poor prognosis and a low CD8+ T-cell fraction. In GBM, JAK2 showed improved survival prediction performance when it was added to other parameters (T stage, N stage, lymphovascular invasion, pleural invasion, tumor size). In drug screening, mirin, CCT007093, dihydroretenone, and ABT737 suppressed the growth of lung cancer cell lines with low JAK2 expression. CONCLUSION In LUAD, low JAK2 expression linked to the presence of STAS might serve as an unfavorable prognostic factor. A relationship between JAK2 and CD8+ T cells suggests that STAS is indirectly related to the anticancer immune response. These results may contribute to the design of future experimental research and drug development programs for LUAD with STAS.
Collapse
Affiliation(s)
- Soohwan Choi
- Department of Thoracic and Cardiovascular Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Hyung Suk Kim
- Division of Breast Surgery, Department of Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea.
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.
| | - Jeong-Yeon Lee
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Ji-Yong Moon
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Un Suk Jung
- Department of Obstetrics and Gynecology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| | - Jung Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| | - Sun Kyun Ro
- Department of Thoracic and Cardiovascular Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| |
Collapse
|
11
|
Wu JJ, Tseng JS, Zheng ZR, Chu CH, Chen KC, Lin MW, Huang YH, Hsu KH, Yang TY, Yu SL, Chen JS, Ho CC, Chang GC. Primary tumor consolidative therapy improves the outcomes of patients with advanced EGFR-mutant lung adenocarcinoma treated with first-line osimertinib. Ther Adv Med Oncol 2024; 16:17588359231220606. [PMID: 38188463 PMCID: PMC10768585 DOI: 10.1177/17588359231220606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Background Patients with advanced epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LAD) inevitably experience drug resistance following treatment with EGFR-tyrosine kinase inhibitors (TKIs). Objectives We aimed to analyze the effect of primary tumor consolidative therapy (PTCT) on patients treated with first-line osimertinib. Design and methods This retrospective cohort study was conducted in patients with advanced stage III or stage IV LAD with EGFR-sensitizing mutations (exon 19 deletion or L858R mutation) with disease control after first-line osimertinib. A curative dose of primary tumor radiotherapy or primary tumor resection was classified as PTCT. We compared the progression-free survival (PFS) and overall survival (OS) of patients with and without PTCT. Results This study included 106 patients with a median age of 61.0 years, and of those, 42% were male and 73.6% were never-smokers. Exon 19 deletion was observed in 67.9%, 30.2% had a programmed cell death ligand 1 (PD-L1) tumor proportion score <1%, 33.0% had brain metastasis, and 40.6% had oligometastasis. In all, 53 (50%) patients underwent PTCT. Patients who underwent PTCT demonstrated significantly better PFS [30.3 (95% confidence interval (CI), 24.1-36.4) versus 18.2 (95% CI, 16.1-20.2) months; p = 0.005] and OS [not reached versus 36.7 (95% CI, 32.5-40.9) months; p = 0.005] than patients who did not. A multivariate analysis showed that PTCT was an independent factor associated with better PFS [hazard ratio (HR), 0.22; 95% CI, 0.10-0.49; p < 0.001] and OS [HR, 0.10; 95% CI, 0.01-0.82; p = 0.032]. The PFS benefits of PTCT were consistent across subgroups, and the HR tended to be lower in patients aged <65 years, males, smokers, stage IVB disease, L858R, PD-L1 expression ⩾1%, non-oligometastasis, and brain metastasis. Conclusion Of the patients with advanced EGFR-mutant LAD, those who underwent PTCT had a significantly better survival outcome than those who did not. The survival benefits were consistent across different subgroups.
Collapse
Affiliation(s)
- Jia-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhe-Rong Zheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Hsiang Chu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kun-Chieh Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mong-Wei Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Hsiang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Hsuan Hsu
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Shing Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei 10002, Taiwan
- Department of Surgical Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10002, Taiwan
| | - Gee-Chen Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien-kuo North Road, Taichung 402, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
12
|
Fang Q, Shen G, Xie Q, Guan Y, Liu X, Ren D, Zhao F, Liu Z, Ma F, Zhao J. Development of Tumor Markers for Breast Cancer Immunotherapy. Curr Mol Med 2024; 24:547-564. [PMID: 37157196 DOI: 10.2174/1566524023666230508152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Although breast cancer treatment has been developed remarkably in recent years, it remains the primary cause of death among women. Immune checkpoint blockade therapy has significantly altered the way breast cancer is treated, although not all patients benefit from the changes. At present, the most effective mechanism of immune checkpoint blockade application in malignant tumors is not clear and efficacy may be influenced by many factors, including host, tumor, and tumor microenvironment dynamics. Therefore, there is a pressing need for tumor immunomarkers that can be used to screen patients and help determine which of them would benefit from breast cancer immunotherapy. At present, no single tumor marker can predict treatment efficacy with sufficient accuracy. Multiple markers may be combined to more accurately pinpoint patients who will respond favorably to immune checkpoint blockade medication. In this review, we have examined the breast cancer treatments, developments in research on the role of tumor markers in maximizing the clinical efficacy of immune checkpoint inhibitors, prospects for the identification of novel therapeutic targets, and the creation of individualized treatment plans. We also discuss how tumor markers can provide guidance for clinical practice.
Collapse
Affiliation(s)
- Qianqian Fang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yumei Guan
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinlan Liu
- Department of Oncology, General Hospital of Ningxia Medical University, No. 804 Shengli Road, Xingqing District, Yinchuan, 750004, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| |
Collapse
|
13
|
Chen Z, Yao MW, Ao X, Gong QJ, Yang Y, Liu JX, Lian QZ, Xu X, Zuo LJ. The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells. Chin J Traumatol 2024; 27:1-10. [PMID: 38065706 PMCID: PMC10859298 DOI: 10.1016/j.cjtee.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 02/05/2024] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of Orthopedics, 953 Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, Tibet Autonomous Region, China
| | - Qing-Jia Gong
- College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Xia Liu
- Department of Obstetrics and Gynecology, Chongqing People's Hospital, Chongqing, 401121, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Ling-Jing Zuo
- Department of Nuclear Medicine, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650034, China.
| |
Collapse
|
14
|
Tang Q, Zhang H, Tang R. Identification of two immune subtypes and four hub immune-related genes in ovarian cancer through multiple analysis. Medicine (Baltimore) 2023; 102:e35246. [PMID: 37800814 PMCID: PMC10553066 DOI: 10.1097/md.0000000000035246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Immune classification of ovarian cancer (OV) becomes more and more influential for its immunotherapy. However, current studies had few immune subtypes of OV. It is urgent to explore the immune subtypes and deeper hub immune-related genes (IRGs) of OV for follow-up treatment. A total number of 379 OV samples were obtained from UCSC online website. Single sample gene set enrichment analysis of 29 immune gene sets was used for identifying immune subtypes of OV and gene set variation analysis were used for exploring the hallmarks and Kyoto Encyclopedia of Genes and Genomes pathways of immune types. Two immunity subtypes (Immunity_H and Immunity_L) were identified by single sample gene set enrichment analysis. The OV patients in Immunity_H group had longer overall survival compared with those in Immunity_L group. The Immunity_H had higher stromal score, immune score and estimate score and the tumor purity had the adverse tendency. Besides, the gene set variation analysis enrichment results showed positive relationship between improved immunoreaction and pathways correlated to classical signaling pathway (PI3K/AKT/MTOR, P53, TNFA/NFkB signaling pathways) and immune responses (T/B cell receptor signaling pathways and primary immunodeficiency). Furthermore, 4 hub IRGs (CCR5, IL10RA, ITGAL and PTPRC) were jointly dug by weighted gene co-expression network construction and Cytoscape. Our team also explored the mutations of 4 hub IRGs and PTPRC showed nearly 7% amplification. Besides, 8 immune-checkpoint genes had higher expression in Immuity_H group compared with Immuity_L group, except CD276. The correlation between PD-1/PD-L1 and 4 hub IRGs were explored and gene set enrichment analysis were conducted to explore the underlying mechanisms of PTPRC in OV. Finally, western-blotting showed PTPRC could regulate immune checkpoint PD-L1 expression via JAK-STAT signaling pathway. In a word, 2 immune subtypes and 4 hub IRGs of OV were identified by multiple analysis.
Collapse
Affiliation(s)
- Qin Tang
- Department of Obstetrics and Gynecology, The Jingmen Center Hospital, Jingmen, PR China
| | - Haojie Zhang
- Department of Operating Room, The Jingmen Center Hospital, Jingmen, PR China
| | - Rong Tang
- Department of Pathology, The Jingmen Center Hospital, Jingmen, PR China
| |
Collapse
|
15
|
Hong TH, Bang YH, Joe C, Choi YL, Lee SH. Comment on "Leveraging NGS Data to Refine Immunotherapy Response Prediction in NSCLC: PD-L1 Copy Number, Tumor Mutation Burden, and Beyond". J Thorac Oncol 2023; 18:e88-e90. [PMID: 37599051 DOI: 10.1016/j.jtho.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023]
Affiliation(s)
- Tae Hee Hong
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea; Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeong Hak Bang
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - CheolYong Joe
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Feng C, Zhang L, Chang X, Qin D, Zhang T. Regulation of post-translational modification of PD-L1 and advances in tumor immunotherapy. Front Immunol 2023; 14:1230135. [PMID: 37554324 PMCID: PMC10405826 DOI: 10.3389/fimmu.2023.1230135] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The immune checkpoint molecules programmed cell death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) are one of the most promising targets for tumor immunotherapy. PD-L1 is overexpressed on the surface of tumor cells and inhibits T cell activation upon binding to PD⁃1 on the surface of T cells, resulting in tumor immune escape. The therapeutic strategy of targeting PD-1/PD-L1 involves blocking this binding and restoring the tumor-killing effect of immune cells. However, in clinical settings, a relatively low proportion of cancer patients have responded well to PD-1/PD-L1 blockade, and clinical outcomes have reached a bottleneck and no substantial progress has been made. In recent years, PD-L1 post-translation modifications (PTMs) have gradually become a hot topic in the field of PD-L1 research, which will provide new insights to improve the efficacy of current anti-PD-1/PD-L1 therapies. Here, we summarized and discussed multiple PTMs of PD-L1, including glycosylation, ubiquitination, phosphorylation, acetylation and palmitoylation, with a major emphasis on mechanism-based therapeutic strategies (including relevant enzymes and targets that are already in clinical use and that may become drugs in the future). We also summarized the latest research progress of PTMs of PD-L1/PD-1 in regulating immunotherapy. The review provided novel strategies and directions for tumor immunotherapy research based on the PTMs of PD-L1/PD-1.
Collapse
Affiliation(s)
- Chong Feng
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lening Zhang
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Chang
- Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dongliang Qin
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Zhang
- Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Lin Q, Wang X, Hu Y. The opportunities and challenges in immunotherapy: Insights from the regulation of PD-L1 in cancer cells. Cancer Lett 2023:216318. [PMID: 37454966 DOI: 10.1016/j.canlet.2023.216318] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The immunosuppressive molecule programmed death-ligand 1 (PD-L1) is frequently upregulated in human cancers. Binding of PD-L1 to its receptor, programmed death-1 (PD-1), on activated T cells facilitates cancer cells to evade the host immune system. Antibody-based PD-1/PD-L1 inhibitors can inhibit PD-1/PD-L1 interaction allowing reactivate cytotoxic T cells to eradicate advanced cancer cells. However, the majority of cancer patients fail to respond to anti-PD-1/PD-L1 therapies and the molecular mechanisms for this remain poorly understood. Recent studies show that PD-L1 expression level on tumor cells affect the clinical efficacy of immune checkpoint therapies. Thus, furthering our understanding of the regulatory mechanisms of PD-L1 expression in cancer cells will be critical to improve clinical response rates and the efficacy of PD-1/PD-L1 immune therapies. Here we review recent studies, primarily focusing on the mechanisms that regulate PD-L1 expression at the transcriptional, post-transcriptional and protein level, with the purpose to drive the development of more targeted and effective anti-PD-1/PD-L1 cancer therapies.
Collapse
Affiliation(s)
- Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, China.
| |
Collapse
|
18
|
Zhao Y, Qu Y, Hao C, Yao W. PD-1/PD-L1 axis in organ fibrosis. Front Immunol 2023; 14:1145682. [PMID: 37275876 PMCID: PMC10235450 DOI: 10.3389/fimmu.2023.1145682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Fibrosis is a pathological tissue repair activity in which many myofibroblasts are activated and extracellular matrix are excessively accumulated, leading to the formation of permanent scars and finally organ failure. A variety of organs, including the lung, liver, kidney, heart, and skin, can undergo fibrosis under the stimulation of various exogenous or endogenous pathogenic factors. At present, the pathogenesis of fibrosis is still not fully elucidated, but it is known that the immune system plays a key role in the initiation and progression of fibrosis. Immune checkpoint molecules are key regulators to maintain immune tolerance and homeostasis, among which the programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) axis has attracted much attention. The exciting achievements of tumor immunotherapy targeting PD-1/PD-L1 provide new insights into its use as a therapeutic target for other diseases. In recent years, the role of PD-1/PD-L1 axis in fibrosis has been preliminarily explored, further confirming the close relationship among PD-1/PD-L1 signaling, immune regulation, and fibrosis. This review discusses the structure, expression, function, and regulatory mechanism of PD-1 and PD-L1, and summarizes the research progress of PD-1/PD-L1 signaling in fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | - Wu Yao
- *Correspondence: Wu Yao, ; Changfu Hao,
| |
Collapse
|
19
|
Fan L, Wang X, Cheng C, Wang S, Li X, Cui J, Zhang B, Shi L. Inhibitory Effect and Mechanism of Ursolic Acid on Cisplatin-Induced Resistance and Stemness in Human Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1307323. [PMID: 37089712 PMCID: PMC10121351 DOI: 10.1155/2023/1307323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023]
Abstract
The survival rate of lung cancer patients remains low largely due to chemotherapy resistance during treatment, and cancer stem cells (CSCs) may hold the key to targeting this resistance. Cisplatin is a chemotherapy drug commonly used in cancer treatment, yet the mechanisms of intrinsic cisplatin resistance have not yet been determined because lung CSCs are hard to identify. In this paper, we proposed a mechanism relating to the function of ursolic acid (UA), a new drug, in reversing the cisplatin resistance of lung cancer cells regulated by CSCs. Human lung cancer cell line A549 was selected as the model cell and treated to become a cisplatin-resistant lung cancer cell line (A549-CisR), which was less sensitive to cisplatin and showed an enhanced capability of tumor sphere formation. Furthermore, in the A549-CisR cell line expression, levels of pluripotent stem cell transcription factors Oct-4, Sox-2, and c-Myc were increased, and activation of the Jak2/Stat3 signaling pathway was promoted. When UA was applied to the cisplatin-resistant cells, levels of the pluripotent stem cell transcription factors were restrained by the inhibition of the Jak2/Stat3 signaling pathway, which reduced the enrichment of tumor stem cells, and in turn, reversed cisplatin resistance in lung cancer cells. Hence, as a potential antitumor drug, UA may be able to inhibit the enrichment of the lung CSC population by inhibiting the activation of the Jak2-Stat3 pathway and preventing the resistance of lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Luxin Fan
- Department of Respiratory, Weifang People's Hospital, Weifang 261041, China
| | - Xiaodong Wang
- Microbiological Laboratory, Weifang Inspection and Testing Center, Weifang 261100, China
| | - Congcong Cheng
- Department of Oncology, Yidu Central Hospital of Weifang, Qingzhou 262500, China
| | - Shuxiao Wang
- Intravenous Drug Dispensing Center, Second Hospital of Shandong University, Jinan 250033, China
| | - Xuesong Li
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jiayu Cui
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Baogang Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Lihong Shi
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
20
|
Hu XC, Gan CX, Zheng HM, Wu XP, Pan WS. Immunotherapy in combination with chemotherapy for Peutz-Jeghers syndrome with advanced cervical cancer: A case report. World J Gastrointest Surg 2023; 15:480-487. [PMID: 37032790 PMCID: PMC10080604 DOI: 10.4240/wjgs.v15.i3.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 03/04/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant disorder, and female patients may develop gynecologic tumours. The prognosis for such patients is poor and the specific pathogenesis remains uncertain. Therefore, there are currently no uniform treatment options.
CASE SUMMARY Herein, we introduce the case of a 45-year-old female who was diagnosed with PJS for 45 years and cervical cancer for 3 years. Postoperative pathological examination showed metastases in the right external iliac lymph nodes. The patient was initially treated with a combination of doxorubicin and carboplatin chemotherapy and pelvic magnetic resonance showed that the metastases had grown. Subsequently, we performed whole exome sequencing in this patient and identified the relevant causative gene. In addition to the chemotherapy regimen, sindilizumab was administered and the patient was followed up. After 4 cycles of treatment, the metastases were substantially reduced and were not enlarged after six months of follow-up. This case report suggests that patients with PJS combined with cervical cancer may have a sustained response to immune-combination chemotherapy regimens.
CONCLUSION Clinicians should be aware of the importance of immunotherapy in patients with PJS combined with advanced cervical cancer.
Collapse
Affiliation(s)
- Xiang-Cheng Hu
- Department of Gastroenterology, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Chen-Xiao Gan
- Department of Gastroenterology, Zhejiang Provincial People’s hospital, Hangzhou 310014, Zhejiang Province, China
| | - Hui-Min Zheng
- Department of Gastroenterology, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Xue-Ping Wu
- Department of Gastroenterology, Zhejiang Provincial People’s hospital, Hangzhou 310014, Zhejiang Province, China
| | - Wen-Sheng Pan
- Department of Gastroenterology, Zhejiang Provincial People’s hospital, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
21
|
PD-L1: expression regulation. BLOOD SCIENCE 2023; 5:77-91. [DOI: 10.1097/bs9.0000000000000149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
|
22
|
Roesler AS, Malasi S, Koslosky L, Hartmayer P, Naab TJ, Carter JM, Zahrieh D, Hillman D, Leon-Ferre RA, Couch FJ, Goetz MP, Anderson KS, Pockaj BA, Barrett MT. PDJ amplicon in triple negative breast cancer. Sci Rep 2023; 13:618. [PMID: 36635351 PMCID: PMC9837184 DOI: 10.1038/s41598-023-27887-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Amplification of chromosome 9p24.1 targeting PD-L1, PD-L2, and JAK2 (PDJ amplicon) is present in subsets of triple negative breast cancers (TNBCs) and is associated with poor clinical outcomes. However, the prevalence of PDJ+ TNBCs varies extensively across studies applying different methods for interrogating samples of interest. To rigorously assess the prevalence of PDJ amplicons in TNBC, its prognostic value and whether it is enriched by chemotherapy, we interrogated 360 TNBC samples including 74 surgical resections from patients treated in the neoadjuvant setting, and tissue microarrays (TMAs) with 31 cases from African American women and 255 resected non-metastatic cases, with a 3 color fluorescence in situ hybridization (FISH) assay targeting the 9p24.1 PDJ amplicon, 9q24.3, and 9q34.1. Samples with mean PDJ signal of > 4.5 copies, and ratios of PDJ/9q24 ≥ 2 and/or PDJ/9q34.1 ≥ 2 were called amplified (PDJ+). Correlative analyses included the association of tumor infiltrating lymphocytes (TILs) with PDJ amplicons in TNBCs. In addition, we investigated intratumor copy number of PDJ amplicons in PDJ+ and PDJ- TNBCs. Matched pre- and post-neoadjuvant treatment biopsies were available from patients (n = 6) to evaluate the effects of therapy on PDJ status. Our study provides a rigorous analysis of the prevalence, distribution, and clinical correlatives of the PDJ amplicon in TNBC.
Collapse
Affiliation(s)
- Alexander S Roesler
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA
- School of Medicine, Duke University, Durham, NC, USA
| | - Smriti Malasi
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | | | | | - Tammey J Naab
- Department of Pathology, Howard University Hospital, Washington, DC, USA
| | - Jodi M Carter
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Departments of Surgery, Mayo Clinic, Rochester, MN, USA
| | - David Zahrieh
- Departments of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David Hillman
- Departments of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Fergus J Couch
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Karen S Anderson
- Division of Hematology-Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Barbara A Pockaj
- Division of General Surgery, Section of Surgical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Michael T Barrett
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
23
|
Shen Q, He Y, Qian J, Wang X. Identifying tumor immunity-associated molecular features in liver hepatocellular carcinoma by multi-omics analysis. Front Mol Biosci 2022; 9:960457. [PMID: 36339710 PMCID: PMC9632276 DOI: 10.3389/fmolb.2022.960457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Although current immunotherapies have achieved some successes for hepatocellular carcinoma (HCC) patients, their benefits are limited for most HCC patients. Therefore, the identification of biomarkers for promoting immunotherapeutic responses in HCC is urgently needed. Methods: Using the TCGA HCC cohort, we investigated correlations of various molecular features with antitumor immune signatures (CD8+ T cell infiltration and cytolytic activity) and an immunosuppressive signature (PD-L1 expression) in HCC. These molecular features included mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), proteins, and pathways. Results: We found that the mutations of several oncogenes and tumor suppressor genes significantly correlated with reduced antitumor immune signatures, including TTN, CTNNB1, RB1, ZFHX4, and TP53. It indicates that these genes’ mutations may inhibit antitumor immune responses in HCC. Four proteins (Syk, Lck, STAT5, and Caspase-7) had significant positive expression correlations with CD8+ T cell enrichment, cytolytic activity, and PD-L1 expression in HCC. It suggests that these proteins’ expression could be useful biomarkers for the response to immune checkpoint inhibitors Similiarly, we identified other types of biomarkers potentially useful for predicting the response to ICIs, including miRNAs (hsa-miR-511-5p, 150-3p, 342-3p, 181a-3p, 625-5p, 4772-3p, 155-3p, 142-5p, 142-3p, 155-5p, 625-3p, 1976, 7702), many lncRNAs, and pathways (apoptosis, cytokine-cytokine receptor interaction, Jak-STAT signaling, MAPK signaling, PI3K-AKT signaling, HIF-1 signaling, ECM receptor interaction, focal adhesion, and estrogen signaling). Further, tumor mutation burden showed no significant correlation with antitumor immunity, while tumor aneuploidy levels showed a significant negative correlation with antitumor immunity. Conclusion: The molecular features significantly associated with HCC immunity could be predictive biomarkers for immunotherapeutic responses in HCC patients. They could also be potential intervention targets for boosting antitumor immunity and immunotherapeutic responses in HCC.
Collapse
Affiliation(s)
- Qianyun Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Jiajie Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- *Correspondence: Xiaosheng Wang,
| |
Collapse
|
24
|
Gao Z, Ling X, Shi C, Wang Y, Lin A. Tumor immune checkpoints and their associated inhibitors. J Zhejiang Univ Sci B 2022; 23:823-843. [PMID: 36226537 PMCID: PMC9561405 DOI: 10.1631/jzus.b2200195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
Immunological evasion is one of the defining characteristics of cancers, as the immune modification of an immune checkpoint (IC) confers immune evasion capabilities to tumor cells. Multiple ICs, such as programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), can bind to their respective receptors and reduce tumor immunity in a variety of ways, including blocking immune cell activation signals. IC blockade (ICB) therapies targeting these checkpoint molecules have demonstrated significant clinical benefits. This is because antibody-based IC inhibitors and a variety of specific small molecule inhibitors can inhibit key oncogenic signaling pathways and induce durable tumor remission in patients with a variety of cancers. Deciphering the roles and regulatory mechanisms of these IC molecules will provide crucial theoretical guidance for clinical treatment. In this review, we summarize the current knowledge on the functional and regulatory mechanisms of these IC molecules at multiple levels, including epigenetic regulation, transcriptional regulation, and post-translational modifications. In addition, we provide a summary of the medications targeting various nodes in the regulatory pathway, and highlight the potential of newly identified IC molecules, focusing on their potential implications for cancer diagnostics and immunotherapy.
Collapse
Affiliation(s)
- Zerui Gao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China
| | - Xingyi Ling
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
- International School of Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
- ZJU-QILU Joint Research Institute, Hangzhou 310058, China.
| |
Collapse
|
25
|
Denize T, Hou Y, Pignon JC, Walton E, West DJ, Freeman GJ, Braun DA, Wu CJ, Gupta S, Motzer RJ, Atkins MB, McDermott D, Choueiri TK, Shukla SA, Signoretti S. Transcriptomic Correlates of Tumor Cell PD-L1 Expression and Response to Nivolumab Monotherapy in Metastatic Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2022; 28:4045-4055. [PMID: 35802667 PMCID: PMC9481706 DOI: 10.1158/1078-0432.ccr-22-0923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE PD-L1 expression on tumor cells (TC) is associated with response to anti-PD-1-based therapies in some tumor types, but its significance in clear cell renal cell carcinoma (ccRCC) is uncertain. We leveraged tumor heterogeneity to identify molecular correlates of TC PD-L1 expression in ccRCC and assessed their role in predicting response to anti-PD-1 monotherapy. EXPERIMENTAL DESIGN RNA sequencing was performed on paired TC PD-L1 positive and negative areas isolated from eight ccRCC tumors and transcriptomic features associated with PD-L1 status were identified. A cohort of 232 patients with metastatic ccRCC from the randomized CheckMate-025 (CM-025) trial was used to confirm the findings and correlate transcriptomic profiles with clinical outcomes. RESULTS In both the paired samples and the CM-025 cohort, TC PD-L1 expression was associated with combined overexpression of immune- and cell proliferation-related pathways, upregulation of T-cell activation signatures, and increased tumor-infiltrating immune cells. In the CM-025 cohort, TC PD-L1 expression was not associated with clinical outcomes. A molecular RCC subtype characterized by combined overexpression of immune- and cell proliferation-related pathways (previously defined by unsupervised clustering of transcriptomic data) was enriched in TC PD-L1 positive tumors and displayed longer progression-free survival (HR, 0.32; 95% confidence interval, 0.13-0.83) and higher objective response rate (30% vs. 0%, P = 0.04) on nivolumab compared with everolimus. CONCLUSIONS Both TC-extrinsic (immune-related) and TC-intrinsic (cell proliferation-related) mechanisms are likely intertwined in the regulation of TC PD-L1 expression in ccRCC. The quantitation of these transcriptional programs may better predict benefit from anti-PD-1-based therapy compared with TC PD-L1 expression alone in ccRCC.
Collapse
Affiliation(s)
- Thomas Denize
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Yue Hou
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jean-Christophe Pignon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Emily Walton
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Destiny J. West
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Gordon J. Freeman
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - David A. Braun
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - Catherine J. Wu
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Robert J. Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - David McDermott
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Toni K. Choueiri
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sachet A. Shukla
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Hematopoietic Biology and Malignancy, The University of Texas M.D. Anderson Cancer Center, Houston, TX
- Corresponding authors: Sabina Signoretti, M.D., Brigham and Women’s Hospital, Thorn Building 504A, 75 Francis Street; Boston, MA 02115, +1 617-525-7437, , Sachet A. Shukla, Ph.D. Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA, +1 515-708-1252,
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Corresponding authors: Sabina Signoretti, M.D., Brigham and Women’s Hospital, Thorn Building 504A, 75 Francis Street; Boston, MA 02115, +1 617-525-7437, , Sachet A. Shukla, Ph.D. Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA, +1 515-708-1252,
| |
Collapse
|
26
|
Tong L, Shan M, Zou W, Liu X, Felsher DW, Wang J. Cyclic adenosine monophosphate/phosphodiesterase 4 pathway associated with immune infiltration and PD-L1 expression in lung adenocarcinoma cells. Front Oncol 2022; 12:904969. [PMID: 35978822 PMCID: PMC9376450 DOI: 10.3389/fonc.2022.904969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background The cyclic adenosine monophosphate/phosphodiesterase 4 (cAMP/PDE4) pathway is involved in inflammation and immune regulation; however, the effect of cAMP/PDE4 on immune infiltration and immune evasion in lung adenocarcinoma (LUAD) remains unclear. Methods CBioPortal, which is the The Cancer Genome Atlas (TCGA) online database, and the Kaplan Meier plotter were used to analyze the association between genes and the prognosis of TCGA-LUAD. Tumor Immune Estimation Resource (TIMER) was used to analyze the association between gene expression and immune infiltration. The Genecards database was used to identify the transcription factors of related genes. The lung adenocarcinoma cell line H1299 and A549 were treated with cAMP pathway drugs. Flow cytometry and qRT-PCR were used to detect the PD-L1 protein and gene expression, respectively. A one-way analysis of variance with Tukey’s post-hoc test or a Student’s t-test were used. Results It was found that PDE4B and CREB1, which are downstream genes of the cAMP/PDE4 axis, were differentially expressed in LUAD and adjacent tissues and are correlated with the prognosis and immune infiltration of LUAD. In the CBioPortal database, cAMP pathway genes are closely related to programmed cell death-ligand 1 (PD-L1) expression in TCGA-LUAD. The protein-protein interaction revealed that there was a direct interaction between CREB1/CREBBP, which are the downstream molecules of the cAMP/PDE4 axis, and MYC; additionally, MYC was predicted to bind to the PD-L1 transcription site and regulate PD-L1 expression. CREB1 was also predicted to transcriptionally bind to both MYC and PD-L1. These results predicted the interaction network of cAMP/PDE4/CREB1/CREBP/MYC/PD-L1, and the core factor may be related to MYC. In the cell experiment, forskolin (an adenylate cyclase activator) and zardaverine (a PDE4 inhibitor) enhance the cAMP pathway and decrease PD-L1 expression, while SQ2253 (an adenylate cyclase inhibitor) inhibits the cAMP pathway and increases PD-L1 expression of the LUAD cell lines H1299 and A549, and MYC regulation by these drugs was positively correlated with PD-L1 regulation, which verified the regulation of the cAMP/PDE4 pathway on MYC and PD-L1. Conclusions This study showed that the cAMP/PDE4 pathway may play an important role in PD-L1 regulation and immune infiltration in LUAD.
Collapse
Affiliation(s)
- Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Minjie Shan
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - XianLing Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jingjing Wang,
| |
Collapse
|
27
|
Shen DD, Bi YP, Pang JR, Zhao LJ, Zhao LF, Gao Y, Wang B, Liu HM, Liu Y, Wang N, Zheng YC, Liu HM. Generation, secretion and degradation of cancer immunotherapy target PD-L1. Cell Mol Life Sci 2022; 79:413. [PMID: 35819633 PMCID: PMC11073444 DOI: 10.1007/s00018-022-04431-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is a rapidly developing and effective method for the treatment of a variety of malignancies in recent years. As a significant immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) play the most significant role in cancer immune escape and cancer immunotherapy. Though PD-L1 have become an important target for drug development and there have been various approved drugs and clinic trials targeting it, and various clinical response rate and adverse reactions prevent many patients from benefiting from it. In recent years, combination trials have become the main direction of PD-1/PD-L1 antibodies development. Here, we summarized PD-L1 biofunctions and key roles in various cancers along with the development of PD-L1 inhibitors. The regulators that are involved in controlling PD-L1 expression including post-translational modification, mRNA level regulation as well as degradation and exosome secretory pathway of PD-L1 were focused. This systematic summary may provide comprehensive understanding of different regulations on PD-L1 as well as a broad prospect for the search of the important regulator of PD-L1. The regulatory factors of PD-L1 can be potential targets for immunotherapy and increase strategies of immunotherapy in combination.
Collapse
Affiliation(s)
- Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya-Ping Bi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Wang
- The School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi-Chao Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
28
|
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022; 13:901277. [PMID: 35865534 PMCID: PMC9294178 DOI: 10.3389/fimmu.2022.901277] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that drives the generation of myeloid cell subsets including neutrophils, monocytes, macrophages, and dendritic cells in response to stress, infections, and cancers. By modulating the functions of innate immune cells that serve as a bridge to activate adaptive immune responses, GM-CSF globally impacts host immune surveillance under pathologic conditions. As with other soluble mediators of immunity, too much or too little GM-CSF has been found to promote cancer aggressiveness. While too little GM-CSF prevents the appropriate production of innate immune cells and subsequent activation of adaptive anti-cancer immune responses, too much of GM-CSF can exhaust immune cells and promote cancer growth. The consequences of GM-CSF signaling in cancer progression are a function of the levels of GM-CSF, the cancer type, and the tumor microenvironment. In this review, we first discuss the secretion of GM-CSF, signaling downstream of the GM-CSF receptor, and GM-CSF’s role in modulating myeloid cell homeostasis. We then outline GM-CSF’s anti-tumorigenic and pro-tumorigenic effects both on the malignant cells and on the non-malignant immune and other cells in the tumor microenvironment. We provide examples of current clinical and preclinical strategies that harness GM-CSF’s anti-cancer potential while minimizing its deleterious effects. We describe the challenges in achieving the Goldilocks effect during administration of GM-CSF-based therapies to patients with cancer. Finally, we provide insights into how technologies that map the immune microenvironment spatially and temporally may be leveraged to intelligently harness GM-CSF for treatment of malignancies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- *Correspondence: Srividya Swaminathan,
| |
Collapse
|
29
|
Dobosz P, Stempor PA, Ramírez Moreno M, Bulgakova NA. Transcriptional and post-transcriptional regulation of checkpoint genes on the tumour side of the immunological synapse. Heredity (Edinb) 2022; 129:64-74. [PMID: 35459932 PMCID: PMC9273643 DOI: 10.1038/s41437-022-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours. The expression of many genes is the product of the complex interplay between several factors, including the organism's genotype (in most cases Mendelian-inherited), genetic instability, epigenetic factors (non-Mendelian-inherited) as well as the immune response of the host, to name just a few. In recent years the importance of the immune system has been elevated, especially in the light of the immune checkpoint genes discovery and the subsequent development of their inhibitors. As the expression of these genes normally suppresses self-immunoreactivity, their expression by tumour cells prevents the elimination of the tumour by the immune system. These discoveries led to the rapid growth of the field of immuno-oncology that offers new possibilities of long-lasting and effective treatment options. Here we discuss the recent advances in the understanding of the key mechanisms controlling the expression of immune checkpoint genes in tumour cells.
Collapse
Affiliation(s)
- Paula Dobosz
- Central Clinical Hospital of the Ministry of Interior Affairs and Administration in Warsaw, Warsaw, Poland
| | | | - Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
30
|
Single B Cell Gene Co-Expression Networks Implicated in Prognosis, Proliferation, and Therapeutic Responses in Non-Small Cell Lung Cancer Bulk Tumors. Cancers (Basel) 2022; 14:cancers14133123. [PMID: 35804895 PMCID: PMC9265014 DOI: 10.3390/cancers14133123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This study presents novel insights on dysregulated B cell proliferation networks in non-small cell lung cancer (NSCLC). Within this network, a nine-gene signature demonstrated prognostic and predictive indications in more than 1400 NSCLC patients using their gene and protein expression profiles in bulk tumors. Furthermore, novel therapeutic candidates are identified to improve NSCLC treatment outcomes. Abstract In NSCLC, there is a pressing need for immunotherapy predictive biomarkers. The processes underlying B-cell dysfunction, as well as their prognostic importance in NSCLC, are unknown. Tumor-specific B-cell gene co-expression networks were constructed by comparing the Boolean implication modeling of single-cell RNA sequencing of NSCLC tumor B cells and normal B cells. Proliferation genes were selected from the networks using in vitro CRISPR-Cas9/RNA interfering (RNAi) screening data in more than 92 human NSCLC epithelial cell lines. The prognostic and predictive evaluation was performed using public NSCLC transcriptome and proteome profiles. A B cell proliferation and prognostic gene co-expression network was present only in normal lung B cells and missing in NSCLC tumor B cells. A nine-gene signature was identified from this B cell network that provided accurate prognostic stratification using bulk NSCLC tumor transcriptome (n = 1313) and proteome profiles (n = 103). Multiple genes (HLA-DRA, HLA-DRB1, OAS1, and CD74) differentially expressed in NSCLC B cells, peripheral blood lymphocytes, and tumor T cells had concordant prognostic indications at the mRNA and protein expression levels. The selected genes were associated with drug sensitivity/resistance to 10 commonly used NSCLC therapeutic regimens. Lestaurtinib was discovered as a potential repositioning drug for treating NSCLC.
Collapse
|
31
|
Kosai‑Fujimoto Y, Itoh S, Yugawa K, Fukuhara T, Okuzaki D, Toshima T, Harada N, Oda Y, Yoshizumi T, Mori M. Impact of JMJD6 on intrahepatic cholangiocarcinoma. Mol Clin Oncol 2022; 17:131. [PMID: 35911665 PMCID: PMC9326512 DOI: 10.3892/mco.2022.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
The association of Jumonji domain-containing 6 (JMJD6) with the prognosis of various types of cancer has been demonstrated, except in intrahepatic cholangiocarcinoma (ICC). The present study aimed to clarify the impact of JMJD6 on ICC. The liver specimens of 51 patients who underwent surgery for ICC were analyzed for JMJD6 expression using immunohistochemistry staining. The relationship between clinicopathological factors and JMJD6 expression was investigated. The cellular activity was also evaluated in JMJD6 knocked down cells with Transwell migration assay and viability assay. In the immunohistochemistry staining of clinical samples, high expression of JMJD6 was seen in 32 of 51 samples. High expression was also associated with improved overall survival (OS) and recurrence-free survival (RFS) (P=0.0033 and 0.048, respectively). Further analyses revealed that higher JMJD6 expression was one of the improved independent prognostic factors of OS and RFS. Expression of JMJD6 was knocked down in commercial culture cell lines of ICC, and RNA and protein were extracted to analyze the downstream gene expression using RNA-sequencing and western blotting. JMJD6 knockdown was associated with higher programmed death-ligand 1 (PD-L1) expression in RNA-sequencing and western blotting. In addition, PD-L1 expression was higher in JMJD6 low expression clinical samples when measured using immunohistochemistry staining. In conclusion, high expression of JMJD6 was an independent favorable prognostic factor of ICC. JMJD6 may influence the prognosis of ICC through the regulation of PD-L1 expression.
Collapse
Affiliation(s)
- Yukiko Kosai‑Fujimoto
- Department of Surgery and Science, School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shinji Itoh
- Department of Surgery and Science, School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kyohei Yugawa
- Department of Surgery and Science, School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8638, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565‑0871, Japan
| | - Takeo Toshima
- Department of Surgery and Science, School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Noboru Harada
- Department of Surgery and Science, School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Masaki Mori
- Department of Surgery and Science, School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
32
|
Hundal J, Lopetegui-Lia N, Vredenburgh J. Discovery, Significance, and Utility of JAK2 Mutation in Squamous Cell Carcinoma of the Lung. Cureus 2022; 14:e25913. [PMID: 35844327 PMCID: PMC9279128 DOI: 10.7759/cureus.25913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. Many studies show lung cancer is a histologically and molecularly heterogeneous group, even within the same histological subtype. Liquid biopsies are a new tool that can identify targetable genomic mutations and impact management. JAK2 p.V617F is a mutation commonly found in myeloproliferative neoplasms but rarely identified in non-small cell lung cancer (NSCLCs). The significance of Janus Kinase (JAK2) mutation in lung cancer is not clearly understood. However, it is thought that it may have a role in treating solid tumors, such as lung cancer. We present two cases of patients diagnosed with NSCLC who were discovered to have JAK2 V617F mutation on liquid biopsy.
Collapse
|
33
|
Wang JC, Sun L. PD-1/PD-L1, MDSC Pathways, and Checkpoint Inhibitor Therapy in Ph(-) Myeloproliferative Neoplasm: A Review. Int J Mol Sci 2022; 23:5837. [PMID: 35628647 PMCID: PMC9143160 DOI: 10.3390/ijms23105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
There has been significant progress in immune checkpoint inhibitor (CPI) therapy in many solid tumor types. However, only a single failed study has been published in treating Ph(-) myeloproliferative neoplasm (MPN). To make progress in CPI studies on this disease, herein, we review and summarize the mechanisms of activation of the PD-L1 promoter, which are as follows: (a) the extrinsic mechanism, which is activated by interferon gamma (IFN γ) by tumor infiltration lymphocytes (TIL) and NK cells; (b) the intrinsic mechanism of EGFR or PTEN loss resulting in the activation of the MAPK and AKT pathways and then stat 1 and 3 activation; and (c) 9p24 amplicon amplification, resulting in PD-L1 and Jak2 activation. We also review the literature and postulate that many of the failures of CPI therapy in MPN are likely due to excessive MDSC activities. We list all of the anti-MDSC agents, especially those with ruxolitinib, IMID compounds, and BTK inhibitors, which may be combined with CPI therapy in the future as part of clinical trials applying CPI therapy to Ph(-) MPN.
Collapse
Affiliation(s)
- Jen-Chin Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA;
| | | |
Collapse
|
34
|
Yamaguchi H, Hsu JM, Yang WH, Hung MC. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol 2022; 19:287-305. [DOI: 10.1038/s41571-022-00601-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
|
35
|
PD-L1 copy number loss in NSCLC associates with reduced PD-L1 tumour staining and a cold immunophenotype. J Thorac Oncol 2022; 17:675-687. [DOI: 10.1016/j.jtho.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
|
36
|
Liu J, Peng X, Yang S, Li X, Huang M, Wei S, Zhang S, He G, Zheng H, Fan Q, Yang L, Li H. Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies. Cell Commun Signal 2022; 20:14. [PMID: 35090497 PMCID: PMC8796536 DOI: 10.1186/s12964-021-00816-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is the ligand for programmed death protein-1 (PD-1), is associated with immunosuppression. Signaling via PD-1/PD-L1 will transmits negative regulatory signals to T cells, inducing T-cell inhibition, reducing CD8+ T-cell proliferation, or promoting T-cell apoptosis, which effectively reduces the immune response and leads to large-scale tumor growth. Accordingly, many antibody preparations targeting PD-1 or PD-L1 have been designed to block the binding of these two proteins and restore T-cell proliferation and cytotoxicity of T cells. However, these drugs are ineffective in clinical practice. Recently, numerous of studies have shown that, in addition to the surface of tumor cells, PD-L1 is also found on the surface of extracellular vesicles secreted by these cells. Extracellular vesicle PD-L1 can also interact with PD-1 on the surface of T cells, leading to immunosuppression, and has been proposed as a potential mechanism underlying PD-1/PD-L1-targeted drug resistance. Therefore, it is important to explore the production, regulation and tumor immunosuppression of PD-L1 on the surface of tumor cells and extracellular vesicles, as well as the potential clinical application of extracellular vesicle PD-L1 as tumor biomarkers and therapeutic targets. Video Abstract
Collapse
|
37
|
Zheng Y, Tang L, Liu Z. Multi-omics analysis of an immune-based prognostic predictor in non-small cell lung cancer. BMC Cancer 2021; 21:1322. [PMID: 34893051 PMCID: PMC8662860 DOI: 10.1186/s12885-021-09044-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Inhibitors targeting immune checkpoints, such as PD-1/PD-L1 and CTLA-4, have prolonged survival in small groups of non-small cell lung cancer (NSCLC) patients, but biomarkers predictive of the response to the immune checkpoint inhibitors (ICIs) remain rare. METHODS The nonnegative matrix factorization (NMF) was performed for TCGA-NSCLC tumor samples based on the LM22 immune signature to construct subgroups. Characterization of NMF subgroups involved the single sample gene set variation analysis (ssGSVA), and mutation/copy number alteration and methylation analyses. Construction of RNA interaction network was based on the identification of differentially expressed RNAs (DERs). The prognostic predictor was constructed by a LASSO-Cox regression model. Four GEO datasets were used for the validation analysis. RESULTS Four immune based NMF subgroups among NSCLC patients were identified. Genetic and epigenetic analyses between subgroups revealed an important role of somatic copy number alterations in determining the immune checkpoint expression on specific immune cells. Seven hub genes were recognized in the regulatory network closely related to the immune phenotype, and a three-gene prognosis predictor was constructed. CONCLUSIONS Our study established an immune-based prognosis predictor, which might have the potential to select subgroups benefiting from the ICI treatment, for NSCLC patients using publicly available databases.
Collapse
Affiliation(s)
- Yang Zheng
- Jilin University First Hospital, Changchun, Jilin, People's Republic of China
| | - Lili Tang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, People's Republic of China
| | - Ziling Liu
- Jilin University First Hospital, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
38
|
Yoshimura A, Yamada T, Okuma Y, Fukuda A, Watanabe S, Nishioka N, Takeda T, Chihara Y, Takemoto S, Harada T, Hiranuma O, Shirai Y, Nishiyama A, Yano S, Goto Y, Shiotsu S, Kunimasa K, Morimoto Y, Iwasaku M, Kaneko Y, Uchino J, Kenmotsu H, Takahashi T, Takayama K. Impact of tumor programmed death ligand-1 expression on osimertinib efficacy in untreated EGFR-mutated advanced non-small cell lung cancer: a prospective observational study. Transl Lung Cancer Res 2021; 10:3582-3593. [PMID: 34584858 PMCID: PMC8435385 DOI: 10.21037/tlcr-21-461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
Background Osimertinib monotherapy is currently the standard of care as a first-line treatment for patients harboring epidermal growth factor receptor (EGFR) mutations; however, some EGFR-mutated non-small cell lung cancer (NSCLC) patients exhibit primary resistance and an insufficient response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Elevated programmed death-ligand 1 (PD-L1) expression in tumors was reported as a negative predictive factor for outcomes of first- or second-generation EGFR-TKIs. Methods We prospectively assessed advanced NSCLC patients with EGFR mutations who were treated with osimertinib at 14 institutions in Japan between September 2019 and December 2020. Relationships between outcomes of osimertinib monotherapy and patients’ characteristics were reviewed. Results Seventy-one patients who underwent the tumor PD-L1 test were enrolled. Multivariate analysis identified tumor PD-L1 expression as an independent predictor for progression-free survival (PFS) with osimertinib treatment (P=0.029). The objective-response and disease-control rates for osimertinib treatment were significantly lower in patients demonstrating elevated PD-L1 levels relative to those with low or negative PD-L1 level (P=0.043 and P=0.007, respectively). Furthermore, among patients treated with osimertinib, those with high PD-L1 levels exhibited shorter PFS relative to those with low plus negative PD-L1 level (median PFS: 5.0 vs. 17.4 months; P<0.001). Conclusions Elevated tumor PD-L1 expression is associated with poor outcomes of osimertinib monotherapy in previously untreated advanced NSCLC patients with EGFR mutation. Further clinical trials are warranted to accumulate evidence demonstrating the effectiveness of combination therapy with osimertinib for EGFR-mutated advanced NSCLC patients with elevated tumor PD-L1 expression. Trial Registration UMIN000043942.
Collapse
Affiliation(s)
- Akihiro Yoshimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akito Fukuda
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medicine and Dental Hospital, Niigata, Japan
| | - Naoya Nishioka
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Taishi Harada
- Department of Medical Oncology, Fukuchiyama City Hospital, Kyoto, Japan
| | - Osamu Hiranuma
- Department of Respiratory Medicine, Otsu City Hospital, Shiga, Japan
| | - Yukina Shirai
- Department of Respiratory Medicine, Juntendo University, Tokyo, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institution, Osaka, Japan
| | - Yoshie Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
39
|
Lim WJ, Lee M, Oh Y, Fang XQ, Lee S, Lim CH, Park J, Lim JH. Statins Decrease Programmed Death-Ligand 1 (PD-L1) by Inhibiting AKT and β-Catenin Signaling. Cells 2021; 10:cells10092488. [PMID: 34572136 PMCID: PMC8472538 DOI: 10.3390/cells10092488] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022] Open
Abstract
Retrospective observational studies have reported that statins improve clinical outcomes in patients previously treated with programmed cell death protein 1 (PD-1)-targeting monoclonal antibodies for malignant pleural mesothelioma (MPM) and advanced non-small cell lung cancer (NSCLC). In multiple mouse cancer models, de novo synthesis of mevalonate and cholesterol inhibitors was found to synergize with anti-PD-1 antibody therapy. In the present study, we investigated whether statins affect programmed death-ligand 1 (PD-L1) expression in cancer cells. Four statins, namely simvastatin, atorvastatin, lovastatin, and fluvastatin, decreased PD-L1 expression in melanoma and lung cancer cells. In addition, we found that AKT and β-catenin signaling involved PD-L1 suppression by statins. Our cellular and molecular studies provide inspiring evidence for extending the clinical evaluation of statins for use in combination with immune checkpoint inhibitor-based cancer therapy.
Collapse
Affiliation(s)
- Woo-Jin Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
| | - Mingyu Lee
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Yerin Oh
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
| | - Xue-Quan Fang
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
| | - Sujin Lee
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
| | - Chang-Hoon Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
| | - Jooho Park
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea; (W.-J.L.); (Y.O.); (X.-Q.F.); (S.L.); (C.-H.L.); (J.P.)
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea
- Correspondence: ; Tel.: +82-43-840-3567
| |
Collapse
|
40
|
Gao L, Chen Y. Autophagy controls programmed death-ligand 1 expression on cancer cells (Review). Biomed Rep 2021; 15:84. [PMID: 34512972 DOI: 10.3892/br.2021.1460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a transmembrane protein mainly located on cancer cells, including renal cell carcinoma, breast, colorectal, gastric and non-small cell lung cancer. PD-L1 binds to the PD-1 receptor expressed on T lymphocytes to inhibit the activation of T lymphocytes, thus allowing tumour cells to escape immune surveillance, leading to tumour growth and the poor prognosis of patients with cancer. Inhibitors targeting the programmed death-1/PD-L1 axis have been widely used in the clinical treatment of a variety of solid tumours in recent years. However, the clinical efficacy of these inhibitors varies. Studies have demonstrated that the effect of the targeted drug is positively associated with the expression of PD-L1 on the tumour membrane. Hence, exploring the mechanism of PD-L1 expression is very important for the treatment of tumours. Autophagy is a physiological process that maintains the stability of the internal environment. Autophagy degrades aging organelles and long-lived proteins and produces nutrients for cell recycling. To the best of our knowledge, the present review is the first to summarize the research that has been conducted on autophagy-regulated PD-L1 expression, which may provide new avenues for tumour immunotherapy.
Collapse
Affiliation(s)
- Lijuan Gao
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,The First Clinical College of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,The First Clinical College of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
41
|
Chen Z, Zhao N, Wang Q, Xi Y, Tian X, Wu H, Xu Y. PD-L1 Protein Expression and Gene Amplification Correlate with the Clinicopathological Characteristics and Prognosis of Lung Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:6365-6375. [PMID: 34408496 PMCID: PMC8366785 DOI: 10.2147/cmar.s309946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/10/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate PD-L1 protein expression and gene amplification in lung squamous cell carcinoma (LUSC) and analyse their correlation with the clinicopathological characteristics and prognosis of LUSC patients. Patients and Methods Tissue samples from 164 LUSC patients were collected. PD-L1 protein was detected by immunochemistry (IHC), and PD-L1 gene amplification was investigated by fluorescence in situ hybridization in LUSC patients. Results The positive expression rate of PD-L1 in LUSC was 47.6% (78/164), and the amplification rate of PD-L1 was 6.7% (11/164); both rates were higher than those of paratumor tissue. Both PD-L1 positive expression and gene amplification were correlated with clinical stage and lymph node metastasis (P<0.05). PD-L1 protein expression, PD-L1 gene amplification, late stage, lymph node metastasis and distant metastasis were significantly correlated with the prognosis of patients. Among these factors, late stage, lymph node metastasis, PD-L1 protein expression and PD-L1 gene amplification were independent prognostic factors for LUSC. Conclusion Positive PD-L1 protein expression and gene amplification are involved in the malignant progression and metastasis of LUSC. Both PD-L1 protein expression and gene amplification are associated with poor prognosis.
Collapse
Affiliation(s)
- Zhenwen Chen
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China.,Department of Pathology, Shanxi Fenyang Hospital, Fenyang, Shanxi Province, People's Republic of China
| | - Ning Zhao
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China
| | - Qi Wang
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital (Shanxi Institute of Oncology), Taiyuan, Shanxi Province, People's Republic of China
| | - Xiaoai Tian
- Department of Pathology, Shanxi Fenyang Hospital, Fenyang, Shanxi Province, People's Republic of China
| | - Huiwen Wu
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China
| | - Yirong Xu
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China.,Department of Pathology, Shanxi Fenyang Hospital, Fenyang, Shanxi Province, People's Republic of China
| |
Collapse
|
42
|
Simundza I, Krnic D, Juricic J, Benzon B, Simundza R, Stanicic IM, Capkun V, Vukojevic K, Glavina Durdov M. Expression of PD-L1 Is Associated with Inflammatory Microenvironment in Surgical Specimens of Non-Small Cell Lung Cancer. J Pers Med 2021; 11:jpm11080767. [PMID: 34442411 PMCID: PMC8398962 DOI: 10.3390/jpm11080767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to analyse the expression of PD-L1 in non-small cell lung cancer (NSCLC) and its correlation with immune microenvironment response (IMR), clinic-pathological parameters, and outcome. The sample included 76 male and 32 female patients who underwent surgical resection. The mean age of the males was 66 years, and that of the females was 64 years. Adenocarcinoma (ADC) was diagnosed in 68 (63%) cases, squamous cell carcinoma in 35 (32%) cases, and NSCLC (not otherwise specified) in 5 (5%) cases. Metastatic lymph nodes were found in 38 (36%) patients, 18 with N1 nodes and 20 with N2 nodes. PD-L1 expression was valuated as the percentage of positive cancer cells among all cancer cells. Gender, age, and histologic type were not associated with PD-L1 expression (all p > 0.05). The subtypes of ADC were associated with PD-L1 expression (p = 0.050). The papillary subtype was 4.3 times more common among PD-L1 negative than PD-L1 positive ADC; the solid subtype was 1.9 times more common among PD-L1 positive than PD-L1 negative ADC. IMR was predominantly strong in 19 cases, weak in 36, and absent in 53 cases. The median value of PD-L1 expression in cancer cells was positively correlated with IMR (p = 0.039). PD-L1 expression was not correlated with overall survival (p = 0.643). The patients with strong, inflammatory-like IMR had an average survival time that was 12 months longer than patients with absent/low IMR (LR = 2.8; p = 0.132). In conclusion, the papillary subtype was more commonly PD-L1 negative in comparison with other subtypes of ADC. Positive PD-L1 expression in tumour cells was connected with strong, inflammatory-like IMR. Patients with strong IMR tended to experience better outcomes. Further investigations are needed on larger-scale cohorts to elucidate the insights of this descriptive study.
Collapse
Affiliation(s)
- Ivan Simundza
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia; (I.S.); (D.K.); (J.J.)
| | - Dragan Krnic
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia; (I.S.); (D.K.); (J.J.)
| | - Josko Juricic
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia; (I.S.); (D.K.); (J.J.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (V.C.)
| | - Rina Simundza
- Department of Gynaecology, University Hospital of Split, 21000 Split, Croatia;
| | - Ivan Mario Stanicic
- Department of Pathology, University Hospital of Split, 21000 Split, Croatia;
| | - Vesna Capkun
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (V.C.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (V.C.)
- Correspondence: (K.V.); (M.G.D.)
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital of Split, 21000 Split, Croatia;
- Correspondence: (K.V.); (M.G.D.)
| |
Collapse
|
43
|
Wang YJ, Wang QW, Yu DH, Song CK, Guo ZX, Liu XP, Chen C, Yao J, Wang AF, Hu WD. Osteopontin improves sensitivity to tyrosine kinase inhibitor in lung adenocarcinoma in vitro by promoting epidermal growth factor receptor phosphorylation. J Cancer Res Clin Oncol 2021; 147:3245-3254. [PMID: 34255150 DOI: 10.1007/s00432-021-03731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) improve the prognosis of lung adenocarcinoma (LUAD). However, the factors affecting its clinical efficacy remain unclear. This study aimed to determine the correlation between Osteopontin (OPN) and EGFR, and explore the inhibitory effect of first-generation TKI gefitinib on LUAD cells. METHODS The correlation between OPN and EGFR was determined through bioinformatics technology, and the clinical information as well as samples of related patients were collected to verify the relationship between them. Using three different NSCLC cell lines A549, H1299 and PC9, we studied the effects of OPN expression and EGFR phosphorylation on the first-generation TKI's efficacy in vitro. RESULTS Our data revealed that OPN staining positively linked to a more advanced clinical stage. Compared with the control group, LUAD cells with elevated OPN levels are more sensitive to the growth inhibitory effect of TKI. Knocking down of OPN decreased the response of cells to gefitinib. Besides, OPN also upregulated the phosphorylation of EGFR, thereby affecting the effect of TKI. CONCLUSION OPN enhanced the sensitivity of LUAD cells to gefitinib by promoting EGFR phosphorylation. OPN may be a potential target for evaluating TKI efficacy and a potential target for molecular therapy.
Collapse
Affiliation(s)
- Yu-Jin Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Qing-Wen Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Dong-Hu Yu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Cong-Kuan Song
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Zi-Xin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ai-Fen Wang
- Department of Obstetrics and Gynecology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 S Changan Road, Zhangjiagang, Jiangsu, China
| | - Wei-Dong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, No. 169, East Lake Road, Wuchang, Wuhan, 430071, Hubei, China.
| |
Collapse
|
44
|
Mechanisms Driving Immune-Related Adverse Events in Cancer Patients Treated with Immune Checkpoint Inhibitors. Curr Cardiol Rep 2021; 23:98. [PMID: 34196833 DOI: 10.1007/s11886-021-01530-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW In the past decade, immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer treatment. With the continuing rise in the number of cancer patients eligible for ICIs, a corresponding rise in immune-related adverse events (irAEs) is occurring. IrAEs are inflammatory reactions against normal, healthy tissue that occur due to ICI-induced activation of the immune system. Although the exact immune pathogenesis driving irAE development remains unknown, we review the main proposed mechanisms, highlighting how they may inform irAE prediction and treatment. RECENT FINDINGS IrAEs are common and diverse, varying in incidence, timing, and severity. The possible mechanisms driving irAEs include (1) activation of cytotoxic T cells; (2) activation of B cells and increased autoantibody production; (3) direct molecular mimicry and off-target toxicity; (4) activation of intracellular signaling and pro-inflammatory cytokine production; and (5) environmental modifiers of immune system activation, including composition of the host gut microbiome. These mechanisms may help identify predictive biomarkers and targeted treatment strategies. IrAEs are driven by multiple components of the immune system. More research is needed to understand their immunopathogenesis so that clinicians across all specialties may more effectively monitor and manage these increasingly common conditions.
Collapse
|
45
|
PD-L1 regulation revisited: impact on immunotherapeutic strategies. Trends Mol Med 2021; 27:868-881. [PMID: 34187739 DOI: 10.1016/j.molmed.2021.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
A particularly promising cancer treatment is the use of monoclonal antibodies (mAbs) against immune checkpoints (i.e., immune checkpoint inhibitors; ICIs). However, many patients experience relapse and severe adverse events. To overcome these negative issues and improve efficiency, current approaches rely on combinatorial treatments, including some modulating the expression of programmed cell death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoints directly. In this review, we examine the recently discovered pathways involved in PD-L1 expression and highlight the relevant druggable strategies that are being developed to both improve the response rate and avoid the onset of resistance. Altogether, these new strategies will pave the way for effective treatment combinations in future oncology clinical trials.
Collapse
|
46
|
Ramachandran P, Boyapati L, Joseph G. Scalp Metastasis as the First Presentation of an Underlying Aggressive Pancreatic Cancer. J Investig Med High Impact Case Rep 2021; 8:2324709620931667. [PMID: 32525403 PMCID: PMC7290257 DOI: 10.1177/2324709620931667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma, an extremely aggressive cancer, has high metastatic potential. Cutaneous metastasis is very uncommon, representing only <10% of all cases, presenting mostly around the umbilical region. Non-umbilical metastasis is even rarer, and the significance remains unknown. In this article, we describe a case of a 76-year-old gentleman who initially presented with an asymptomatic scalp lesion, which on biopsy revealed metastatic adenocarcinoma of pancreatic origin. Detailed workup revealed extremely high tumor burden with metastases involving muscles, subcutaneous tissues, bone, lung, spleen, liver, and colon. Cutaneous involvement in pancreatic cancer represents poor survival with widespread dissemination of the disease. The involvement of some sites and not others and the extreme degree of aggressiveness might reflect subgroups of this cancer with different molecular biology. Identifying these groups may have utility in determining prognosis and stratifying treatment for patients. This will hopefully translate into better diagnostic tests and therapies in the near future.
Collapse
Affiliation(s)
| | - Lakshmi Boyapati
- Brookdale University Hospitals and Medical Center, Brooklyn, NY, USA
| | - Gardith Joseph
- Brookdale University Hospitals and Medical Center, Brooklyn, NY, USA
| |
Collapse
|
47
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021; 40:184. [PMID: 34088360 PMCID: PMC8178863 DOI: 10.1186/s13046-021-01987-7] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023] Open
Abstract
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed death 1 (PD-1)/ programmed cell death-ligand 1 (PD-L1) are two most representative immune checkpoint pathways, which negatively regulate T cell immune function during different phases of T-cell activation. Inhibitors targeting CTLA-4/B7 and PD1/PD-L1 pathways have revolutionized immunotherapies for numerous cancer types. Although the combined anti-CTLA-4/B7 and anti-PD1/PD-L1 therapy has demonstrated promising clinical efficacy, only a small percentage of patients receiving anti-CTLA-4/B7 or anti-PD1/PD-L1 therapy experienced prolonged survival. Regulation of the expression of PD-L1 and CTLA-4 significantly impacts the treatment effect. Understanding the in-depth mechanisms and interplays of PD-L1 and CTLA-4 could help identify patients with better immunotherapy responses and promote their clinical care. In this review, regulation of PD-L1 and CTLA-4 is discussed at the levels of DNA, RNA, and proteins, as well as indirect regulation of biomarkers, localization within the cell, and drugs. Specifically, some potential drugs have been developed to regulate PD-L1 and CTLA-4 expressions with high efficiency.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
48
|
Rong QX, Wang F, Guo ZX, Hu Y, An SN, Luo M, Zhang H, Wu SC, Huang HQ, Fu LW. GM-CSF mediates immune evasion via upregulation of PD-L1 expression in extranodal natural killer/T cell lymphoma. Mol Cancer 2021; 20:80. [PMID: 34051805 PMCID: PMC8164269 DOI: 10.1186/s12943-021-01374-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Background Granulocyte-macrophage colony stimulating factor (GM-CSF) is a cytokine that is used as an immunopotentiator for anti-tumor therapies in recent years. We found that some of the extranodal natural killer/T cell lymphoma (ENKTL) patients with the treatment of hGM-CSF rapidly experienced disease progression, but the underlying mechanisms remain to be elucidated. Here, we aimed to explore the mechanisms of disease progression triggered by GM-CSF in ENKTL. Methods The mouse models bearing EL4 cell tumors were established to investigate the effects of GM-CSF on tumor growth and T cell infiltration and function. Human ENKTL cell lines including NK-YS, SNK-6, and SNT-8 were used to explore the expression of programmed death-ligand 1 (PD-L1) induced by GM-CSF. To further study the mechanisms of disease progression of ENKTL in detail, the mutations and gene expression profile were examined by next-generation sequence (NGS) in the ENKTL patient’s tumor tissue samples. Results The mouse-bearing EL4 cell tumor exhibited a faster tumor growth rate and poorer survival in the treatment with GM-CSF alone than in treatment with IgG or the combination of GM-CSF and PD-1 antibody. The PD-L1 expression at mRNA and protein levels was significantly increased in ENKTL cells treated with GM-CSF. STAT5A high-frequency mutation including p.R131G, p.D475N, p.F706fs, p.V707E, and p.S710F was found in 12 ENKTL cases with baseline tissue samples. Importantly, STAT5A-V706fs mutation tumor cells exhibited increased activation of STAT5A pathway and PD-L1 overexpression in the presence of GM-CSF. Conclusions These findings demonstrate that GM-CSF potentially triggers the loss of tumor immune surveillance in ENKTL patients and promotes disease progression, which is associated with STAT5 mutations and JAK2 hyperphosphorylation and then upregulates the expression of PD-L1. These may provide new concepts for GM-CSF application and new strategies for the treatment of ENKTL. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01374-y.
Collapse
Affiliation(s)
- Qi-Xiang Rong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhi-Xing Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Sai-Nan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Shao-Cong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Hui-Qiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Li-Wu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
49
|
Peng Z, Lin H, Zhou K, Deng S, Mei J. Predictive value of pretreatment PD-L1 expression in EGFR-mutant non-small cell lung cancer: a meta-analysis. World J Surg Oncol 2021; 19:145. [PMID: 33964931 PMCID: PMC8106834 DOI: 10.1186/s12957-021-02254-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Objective To investigate the predictive value of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients treated with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Methods We conducted a systemic search of PubMed, EMBASE, and the Cochrane Library from 1 January 2000 to 30 August 2020, to identify related studies. We combined the hazard ratio (HR) and 95% confidence interval (CI) to assess the correlation of PD-L1 expression with progression-free survival (PFS) and overall survival (OS). We assessed the quality of the included studies by the Newcastle–Ottawa Scale (NOS). We performed subgroup analyses based on immunohistochemistry (IHC) scoring system, IHC antibodies, sample size, countries, and survival analysis mode. Sensitivity analysis and evaluation of publication bias were also performed. Results Twelve studies including 991 patients met the criteria. The mean NOS score was 7.42 ± 1.19. Patients with high PD-L1 expression was associated with poorer PFS (HR = 1.90; 95% CI = 1.16–3.10; P = 0.011), while there was no association between PD-L1 expression and OS (HR = 1.19; 95% CI = 0.99–1.43; P = 0.070). Subgroup analysis prompted IHC scoring systems, IHC antibodies, and sample size have important effects on heterogeneity. The pooled results were robust according to the sensitivity analysis. Conclusions The result of this meta-analysis suggested that PD-L1 expression might be a predictive biomarker for EGFR-mutant non-small cell lung cancer treated with EGFR-TKIs. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02254-x.
Collapse
Affiliation(s)
- Zhiyu Peng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Chest Oncology Institute, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Huahang Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Senyi Deng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Chest Oncology Institute, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Jiandong Mei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China. .,Chest Oncology Institute, West China Hospital, Sichuan University, Chengdu, China. .,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Grenda A, Krawczyk P, Kucharczyk T, Błach J, Reszka K, Chmielewska I, Buczkowski J, Kieszko R, Siwiec J, Kubiatowski T, Bożyk A, Krukowska K, Jarosz B, Paśnik I, Pankowski J, Świniuch D, Stencel K, Gil M, Lew K, Ramlau R, Szczęsna A, Fidler S, Sieracki A, Każarnowicz A, Serwatowski P, Grodzki T, Milanowski J. Impact of copy number variant and single nucleotide polymorphism of the programmed death-ligand 1 gene, programmed death-ligand 1 protein expression and therapy regimens on overall survival in a large group of Caucasian patients with non-small cell lung carcinoma. Oncol Lett 2021; 21:449. [PMID: 33868487 PMCID: PMC8045160 DOI: 10.3892/ol.2021.12710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
Anti-programmed death-1 or anti-programmed death-ligand 1 (PD-L1) blockade may be ineffective in some patients with non-small cell lung cancer (NSCLC) with high percentage of tumor cells with PD-L1 expression. In addition, immunotherapy may provide great benefits in patients without PD-L1 expression. The present study assessed PD-L1 protein expression by immunohistochemistry, copy number variation (CNV) of PD-L1 and two single nucleotide polymorphisms (SNPs), rs822335 and rs822336, in the promoter of PD-L1 by quantitative PCR in 673 patients with NSCLC. Overall survival time of patients with NSCLC depending on the assessed predictive factors (PD-L1 CNV or SNP) and the treatment methods (immunotherapy in first/second line of treatment or chemotherapy) was analyzed. The present study revealed significantly higher PD-L1 copies number in patients with ≥10% and ≥50% of tumor cells with PD-L1 expression compared to patients with lower percentage of PD-L1-positive tumor cells (P=0.02 and P=0.0002, respectively). There was a significant positive correlation (R=0.2; P=0.01) between number of PD-L1 copies and percentage of tumor cells with PD-L1 protein expression. Percentage of tumor cells with PD-L1 expression was lower in patients with TT genotype of the rs822335 polymorphism compared to those with CC genotype (P=0.03). The present study observed significantly higher risk of death in patients treated with chemotherapy compared to those treated with immunotherapy (P<0.0001; hazard ratio=2.4768; 95% confidence interval, 2.0120–3.0490). The present study demonstrated a close relationship between PD-L1 copies number, genotype of rs822335 PD-L1 polymorphism and PD-L1 protein expression on tumor cells. However, the impact of CNV and SNPs of PD-L1 on overall survival of patients with NSCLC requires further investigation.
Collapse
Affiliation(s)
- Anna Grenda
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Tomasz Kucharczyk
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Justyna Błach
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Reszka
- Institute of Genetics and Immunology Genim LCC, 20-609 Lublin, Poland
| | - Izabela Chmielewska
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jarosław Buczkowski
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Robert Kieszko
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jan Siwiec
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Tomasz Kubiatowski
- Department of Clinical Oncology, Saint Jan of Dukla Oncology Centre of the Lublin Region, 20-090 Lublin, Poland
| | - Aleksandra Bożyk
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Krukowska
- Institute of Genetics and Immunology Genim LCC, 20-609 Lublin, Poland
| | - Bożena Jarosz
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Iwona Paśnik
- Chair and Department of Clinical Pathomorphology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Juliusz Pankowski
- Department of Pathology, Specialist Hospital for Lung Diseases 'Rebirth' Klara Jelska, 34-500 Zakopane, Poland
| | - Daria Świniuch
- Chair and Department of Clinical Oncology, Poznań University of Medical Sciences, 60-569 Poznań, Poland
| | - Katarzyna Stencel
- Chair and Department of Clinical Oncology, Poznań University of Medical Sciences, 60-569 Poznań, Poland
| | - Michał Gil
- Institute of Genetics and Immunology Genim LCC, 20-609 Lublin, Poland
| | - Kinga Lew
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Rodryg Ramlau
- Chair and Department of Clinical Oncology, Poznań University of Medical Sciences, 60-569 Poznań, Poland
| | - Aleksandra Szczęsna
- Department of Lung Diseases with Oncology Subdivision, Mazovian Center for the Treatment of Lung Diseases and Tuberculosis, 60-569 Otwock, Poland
| | - Sebastian Fidler
- Department of Oncology, Provincial Hospital Center of The Jeleniogórska Valley, 58-506 Jelenia Góra, Poland
| | - Andrzej Sieracki
- Department of Clinical Oncology, Independent Public Provincial Hospital Pope John Paul II in Zamość, 22-404 Zamość, Poland
| | - Andrzej Każarnowicz
- Department of Oncology, Chemotherapy Subdivision, Independent Public Group of Tuberculosis and Pulmonary Diseases in Olsztyn, 10-357 Olsztyn, Poland
| | - Piotr Serwatowski
- Department of Clinical Oncology and Chemotherapy, Pomeranian Medical University, 70-891 Szczecin, Poland
| | - Tomasz Grodzki
- Chair and Department of Thoracic Surgery, Pomeranian Medical University, 70-891 Szczecin, Poland
| | - Janusz Milanowski
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|