1
|
Characterization of SARS-CoV-2 Glycoprotein Using a Quantitative Cell-Cell Fusion System. Methods Mol Biol 2022; 2610:179-186. [PMID: 36534291 DOI: 10.1007/978-1-0716-2895-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coronaviruses (CoVs) infect host cells through the fusion of viral and cellular membrane and may also spread to the neighboring uninfected cells from infected cells through cell-cell fusion. The viral spike (S) glycoproteins play an essential role in mediating membrane fusion. Here, we present a luciferase-based quantitative assay to measure the efficiency of cell-cell fusion mediated by the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This method applies to S proteins of the other coronaviruses and can be adapted to fusion proteins of other enveloped viruses.
Collapse
|
2
|
Xu C, Ren XH, Han D, Peng Y, Lei JJ, Yu LX, Liu LJ, Xu WC, Cheng SX. Precise Detection on Cell-Cell Fusion by a Facile Molecular Beacon-Based Method. Anal Chem 2022; 94:17334-17340. [PMID: 36456915 DOI: 10.1021/acs.analchem.2c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell-cell fusion studies provide an experimental platform for evaluating disease progression and investigating cell infection. However, to realize sensitive and quantitative detection on cell-cell fusion is still a challenge. Herein, we report a facile molecular beacon (MB)-based method for precise detection on cell-cell fusion. By transfection of the spike protein (S protein) and enhanced green fluorescent protein (EGFP) in HEK 293 cells, the virus-mimicking fusogenic effector cells 293-S-EGFP cells were constructed to interact with target cells. Before mixing the effector cells with the target cells, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in 293-S-EGFP cells was silenced, and the MB for GAPDH mRNA detection was delivered into the GAPDH silenced 293-S-EGFP cells. Once cell-cell fusion occurred, MB migrated from the GAPDH silenced effector cells to the target cells and hybridized with GAPDH mRNA in the target cells to induce fluorescence emission. The cell-cell fusion can be easily visualized and quantitated by fluorescence microscopy and flow cytometry. The fluorescence intensity is strongly dependent on the number of fused target cells. This MB-based method can easily identify the differences in the cell fusions for various target cells with different angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) expression levels, resulting in dramatically different fluorescence intensities in fused target cells. Our study provides a convenient and efficient quantitative detection approach to study cell-cell fusion.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jin-Ju Lei
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Luo-Xiao Yu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Ling-Juan Liu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Wei-Chao Xu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
3
|
Esposito AM, Soare AY, Patel F, Satija N, Chen BK, Swartz TH. A High-throughput Cre-Lox Activated Viral Membrane Fusion Assay to Identify Inhibitors of HIV-1 Viral Membrane Fusion. J Vis Exp 2018:58074. [PMID: 30176017 PMCID: PMC6126790 DOI: 10.3791/58074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This assay is designed to specifically report on HIV-1 fusion via the expression of green fluorescent protein (GFP) detectable by flow cytometry or fluorescence microscopy. An HIV-1 reporter virus (HIV-1 Gag-iCre) is generated by inserting Cre recombinase into the HIV-1 genome between the matrix and the capsid proteins of the Gag polyprotein. This results in a packaging of Cre recombinase into virus particles, which is then released into a target cell line stably expressing a Cre recombinase-activated red fluorescent protein (RFP) to GFP switch cassette. In the basal state, this cassette expresses RFP only. Following the delivery of Cre recombinase into the target cell, the RFP, flanked by loxP sites, excises, resulting in GFP expression. This assay can be used to test any inhibitors of viral entry (specifically at the fusion step) in cell-free and cell-to-cell infection systems and has been used to identify a class of purinergic receptor antagonists as novel inhibitors of HIV-1 viral membrane fusion.
Collapse
Affiliation(s)
- Anthony M Esposito
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute; Department of Biology, New Jersey City University
| | - Alexandra Y Soare
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute
| | - Foramben Patel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute
| | - Namita Satija
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute;
| |
Collapse
|
4
|
Arnatt CK, Falls BA, Yuan Y, Raborg TJ, Masvekar RR, El-Hage N, Selley DE, Nicola AV, Knapp PE, Hauser KF, Zhang Y. Exploration of bivalent ligands targeting putative mu opioid receptor and chemokine receptor CCR5 dimerization. Bioorg Med Chem 2016; 24:5969-5987. [PMID: 27720326 DOI: 10.1016/j.bmc.2016.09.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation.
Collapse
Affiliation(s)
- Christopher K Arnatt
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Bethany A Falls
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Thomas J Raborg
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Ruturaj R Masvekar
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA 23298, USA
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA
| | - Anthony V Nicola
- Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Gordon K, Omar S, Nofemela A, Bandawe G, Williamson C, Woodman Z. Short Communication: A Recombinant Variant with Increased Envelope Entry Efficiency Emerged During Early Infection of an HIV-1 Subtype C Dual Infected Rapid Progressor. AIDS Res Hum Retroviruses 2016; 32:303-10. [PMID: 25905681 DOI: 10.1089/aid.2014.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in functionally constrained sites of the HIV envelope (Env) can affect entry efficiency and are potential targets for vaccine and drug design. We investigated Du151, a dual-infected individual with rapid disease progression. At her death 19 months postinfection (mpi), she was infected with a recombinant variant, which outgrew both parental viruses. We aimed to determine whether the recombinant virus had enhanced Env entry efficiency compared to the parental viruses and to identify the functional determinant. We generated 15 env clones at 1, 2, 8, and 19 mpi. Pseudovirus carrying a recombinant Env clone (PSV clone), C18 (19 mpi), had significantly higher entry efficiency compared to the parents, suggesting that the recombinant virus had enhanced fitness. To identify the functional determinant, we compared two recombinant PSV clones (C18 and C63)-differing in entry efficiency (2-fold) and by four and three amino acids in gp120 and gp41, respectively. The increased entry efficiency of a C18-gp41 PSV chimera indicated that the three amino acids in the C18 gp41 region were involved (K658, G671, and F717). Site-directed mutagenesis of the three amino acids of C63 showed that a single amino acid mutation, R658K, increased pseudovirion entry efficiency. The introduction of R658 into two PSV clones (C1 and C18) decreased their entry efficiency, suggesting that R658 carries a fitness cost. Thus, our data suggest that a recombinant virus emerged at 19 mpi with enhanced Env entry efficiency. Therefore, K658 in gp41 could in part be a contributing factor to the increased viral load and rapid disease progression of Du151.
Collapse
Affiliation(s)
- Kerry Gordon
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Shatha Omar
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andile Nofemela
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology and the Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| | - Zenda Woodman
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
A high throughput Cre-lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry. Virology 2016; 490:6-16. [PMID: 26803470 DOI: 10.1016/j.virol.2015.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022]
Abstract
Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes.
Collapse
|
7
|
Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia. J Virol 2015; 89:11786-800. [PMID: 26378177 PMCID: PMC4645320 DOI: 10.1128/jvi.01356-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25(+) T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4(+) cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4(+) T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4(+) malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. IMPORTANCE Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In this study, we developed a recombinant strain of vesicular stomatitis virus (VSV) that specifically targets transformed CD4(+) T cells through replacement of the G protein of VSV with a hybrid fusion protein, combining domains from gp160 of HIV-1 and VSV-G. This modification eliminated the normally broad tropism of VSV and restricted infection to primarily the transformed CD4(+) cell population. This effect greatly reduced neurotoxic risk associated with VSV infection while still allowing VSV to effectively target ATL cells.
Collapse
|
8
|
Xu R, El-Hage N, Dever SM. Fluorescently-labeled RNA packaging into HIV-1 particles: Direct examination of infectivity across central nervous system cell types. J Virol Methods 2015; 224:20-9. [PMID: 26272129 DOI: 10.1016/j.jviromet.2015.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 07/05/2015] [Accepted: 07/10/2015] [Indexed: 12/29/2022]
Abstract
HIV penetrates the central nervous system (CNS), and although it is clear that microglia and to a lesser extent astrocytes are infected, whether certain other cell types such as neurons are infected remains unclear. Here, we confirmed the finding that RNAs of both cellular and viral origins are present in native HIV-1 particles and exploited this phenomenon to directly examine HIV-1 infectivity of CNS cell types. Using in vitro transcribed mRNAs that were labeled with a fluorescent dye, we showed that these fluorescent mRNAs were packaged into HIV-1 particles by directly examining infected cells using fluorescence microscopy. Cells in culture infected with these labeled virions showed the fluorescent signals of mRNA labels by a distinct pattern of punctate, focal signals within the cells which was used to demonstrate that the CXCR4-tropic NL4-3 strain was able to enter microglia and to a lesser extent astrocytes, but not neurons. The strategy used in the present study may represent a novel approach of simplicity, robustness and reliability for versatile applications in HIV studies, such as the determination of infectivity across a broad range of cell types and within sub-populations of an individual cell type by direct visualization of viral entry into cells.
Collapse
Affiliation(s)
- Ruqiang Xu
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nazira El-Hage
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Department of Immunology, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Seth M Dever
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Department of Immunology, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, USA.
| |
Collapse
|
9
|
Hamoudi M, Simon-Loriere E, Gasser R, Negroni M. Genetic diversity of the highly variable V1 region interferes with Human Immunodeficiency Virus type 1 envelope functionality. Retrovirology 2013; 10:114. [PMID: 24156625 PMCID: PMC3826872 DOI: 10.1186/1742-4690-10-114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background The HIV envelope (Env) promotes viral entry in the host cell. During this process, Env undergoes several conformational changes to ensure its function. At the same time, the gp120 component of Env is the protein of the virus presenting the largest genetic diversity. Understanding how the virus maintains the balance between the competing requirements for maintenance of functionality and antigenic variation of this protein is central for the comprehension of its strategies of evolution and can highlight vulnerable aspects of its replication cycle. We focused on the variable domains V1 and V2 of the HIV-1 gp120 that are involved in conformational changes and are critical for viral escape from antibody neutralization. Results Despite the extensive sequence diversity found in the epidemic for these regions and their location on the external face of the protein, we observed that replacing V1V2 of one primary isolate with that of another severely interferes with Env functionality in more than half of the cases studied. Similar results were obtained for intra- and intersubtype chimeras. These observations are indicative of an interference of genetic diversity in these regions with Env functionality. Therefore, despite the extensive sequence diversity that characterizes these regions in the epidemic, our results show that functional constraints seem to limit their genetic variation. Defects in the V1V2 chimeras were not relieved by the insertion of the V3 region from the same isolate, suggesting that the decrease in functionality is not due to perturbation of potential coevolution networks between V1V2 and V3. Within the V1V2 domain, the sequence of the hypervariable loop of the V1 domain seems to be crucial for the functionality of the protein. Conclusions Besides the well-documented role of V1V2 in the interplay with the immune response, this work shows that V1 is also involved in the selection of functional envelopes. By documenting a compromise between the opposing forces of sequence diversification and retention of functionality, these observations improve our understanding of the evolutionary trajectories of the HIV-1 envelope gene.
Collapse
Affiliation(s)
| | | | | | - Matteo Negroni
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, Cedex, France.
| |
Collapse
|
10
|
Hoque SA, Ohtsuki T, Tatsumi M, Shimizu N, Islam S, Jinno-Oue A, Hoshino H. Lack of the trans-receptor mechanism of HIV-1 infection: CD4- and coreceptor-independent incorporation of HIV-1-resistant cells into syncytia induced by HIV-1. Microbes Infect 2011; 14:357-68. [PMID: 22178016 DOI: 10.1016/j.micinf.2011.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 10/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects cells through an interaction of HIV-1 envelope protein with CD4 and an appropriate coreceptor on target cells. This interaction often leads to cell fusion, and formation of syncytia. HIV-1-resistant cells expressing either CD4 or a coreceptor are often surrounding HIV-1-susceptible cells, expressing both CD4 and a compatible coreceptor, in vivo. It is therefore worthwhile to investigate whether these HIV-1-resistant cells could cooperate in HIV-1 infection or cell fusion leading to their incorporation into syncytia. When CD4-positive, coreceptor-negative cells were co-cultured with CD4-negative, coreceptor-positive cells and exposed to HIV-1, HIV-1 infection was not established, indicating that CD4 and the coreceptor expressed on different cell surfaces could not cooperate in HIV-1 entry. However, when HIV-1-resistant cells expressing CD4 or a coreceptor or lacking both were mixed with HIV-1-susceptible cells and inoculated with HIV-1, all these HIV-1-resistant cells were similarly incorporated into syncytia induced by HIV-1, indicating a CD4- and coreceptor-independent incorporation of HIV-1-resistant cells into syncytia. This incorporation was impaired by the transfection of these cells with siRNAs for adhesion molecules. Our study demonstrates that HIV-1-resistant cells can be incorporated into syncytia induced by HIV-1 and this incorporation may partially be mediated through adhesion molecules.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Kishko M, Somasundaran M, Brewster F, Sullivan JL, Clapham PR, Luzuriaga K. Genotypic and functional properties of early infant HIV-1 envelopes. Retrovirology 2011; 8:67. [PMID: 21843318 PMCID: PMC3189118 DOI: 10.1186/1742-4690-8-67] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/15/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Understanding the properties of HIV-1 variants that are transmitted from women to their infants is crucial to improving strategies to prevent transmission. In this study, 162 full-length envelope (env) clones were generated from plasma RNA obtained from 5 HIV-1 Clade B infected mother-infant pairs. Following extensive genotypic and phylogenetic analyses, 35 representative clones were selected for functional studies. RESULTS Infant quasispecies were highly homogeneous and generally represented minor maternal variants, consistent with transmission across a selective bottleneck. Infant clones did not differ from the maternal in env length, or glycosylation. All infant variants utilized the CCR5 co-receptor, but were not macrophage tropic. Relatively high levels (IC₅₀ ≥ 100 μg/ml) of autologous maternal plasma IgG were required to neutralize maternal and infant viruses; however, all infant viruses were neutralized by pooled sera from HIV-1 infected individuals, implying that they were not inherently neutralization-resistant. All infant viruses were sensitive to the HIV-1 entry inhibitors Enfuvirtide and soluble CD4; none were resistant to Maraviroc. Sensitivity to human monoclonal antibodies 4E10, 2F5, b12 and 2G12 varied. CONCLUSIONS This study provides extensive characterization of the genotypic and functional properties of HIV-1 env shortly after transmission. We present the first detailed comparisons of the macrophage tropism of infant and maternal env variants and their sensitivity to Maraviroc, the only CCR5 antagonist approved for therapeutic use. These findings may have implications for improving approaches to prevent mother-to-child HIV-1 transmission.
Collapse
Affiliation(s)
- Michael Kishko
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mohan Somasundaran
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Frank Brewster
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - John L Sullivan
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul R Clapham
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katherine Luzuriaga
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
12
|
Kondo N, Miyauchi K, Matsuda Z. Monitoring viral-mediated membrane fusion using fluorescent reporter methods. ACTA ACUST UNITED AC 2011; Chapter 26:Unit 26.9. [PMID: 21400700 DOI: 10.1002/0471143030.cb2609s50] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple and real-time cell-based assay of membrane fusion employing a pair of engineered novel reporter proteins is described. The reporter proteins are chimeras of split Renilla luciferase (RL) and split green fluorescent protein (GFP). This reporter allows us to perform both quantitative (RL mode) and visible (GFP mode) membrane fusion assays in live cells. The kinetic assay enabled by this method helps understand the mechanism of membrane fusion mediated by a viral envelope protein. This assay system is also suitable for the screening of potential inhibitors. The timing of inhibition by a particular inhibitor can be analyzed by time-dependent addition of the inhibitor. Although this unit demonstrates the application of the method for the analysis of HIV-1 envelope protein, the reporter can be applied to analyses of various other viral envelope proteins.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Cheng DC, Zhong GC, Su JX, Liu YH, Li Y, Wang JY, Hattori T, Ling H, Zhang FM. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin. Biochem Biophys Res Commun 2010; 391:1780-4. [DOI: 10.1016/j.bbrc.2009.12.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/24/2009] [Indexed: 11/17/2022]
|
14
|
Wang J, Kondo N, Long Y, Iwamoto A, Matsuda Z. Monitoring of HIV-1 envelope-mediated membrane fusion using modified split green fluorescent proteins. J Virol Methods 2009; 161:216-22. [PMID: 19559731 PMCID: PMC7112932 DOI: 10.1016/j.jviromet.2009.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 11/23/2022]
Abstract
A simple, cell-based, membrane fusion assay system that uses split green fluorescent proteins (spGFPs) as an indicator was developed. The attachment of the pleckstrin homology (PH) domain to the N-termini of each spGFP not only localized the reporter signal to the plasma membrane but also helped the stable expression of the smaller spGFP of seventeen amino acid residues. It was shown that this system allowed real-time monitoring of membrane fusion by HIV-1 envelope protein (Env) without the addition of external substrates. This method can be adapted to the analyses of other viral membrane fusion.
Collapse
Affiliation(s)
- Jianqi Wang
- China-Japan Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | |
Collapse
|
15
|
Hu L, Plafker K, Henthorn J, Ceresa BP. A non-invasive technique for quantifying and isolating fused cells. Cytotechnology 2009; 58:113-8. [PMID: 19252995 DOI: 10.1007/s10616-009-9186-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022] Open
Abstract
Cell-cell fusion is an important biological and pathological event. There are limited techniques for studying both the process of cell-cell fusion and the fate of fused cells. We have developed a non-invasive assay for the temporal analysis of cell-cell fusion, quantification of fused cells, and isolation of fused cells. Briefly, cells are transfected with either the T7 bacteriophage RNA polymerase, or yellow fluorescent protein (YFP) driven by a T7 specific promoter. Cells are mixed and induced to fuse. When cells expressing T7 RNA polymerase and T7 promoter driven YFP (T7-YFP) fuse and the cellular contents mix, the YFP is expressed. These YFP-positive cells can be detected with a fluorescent microscope, quantified by flow cytometry, or collected using fluorescence associated cell sorting. Isolated YFP-positive cells can be monitored to determine the fate of fused cells, specifically for the rates of growth, transformation, and changes in chromosome number.
Collapse
Affiliation(s)
- Lulin Hu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, College of Medicine, 940 Stanton L. Young Blvd, Biomedical Sciences Building, Rm 553, Oklahoma City, OK, 73104, USA
| | | | | | | |
Collapse
|
16
|
Huerta L, López-Balderas N, Larralde C, Lamoyi E. Discriminating in vitro cell fusion from cell aggregation by flow cytometry combined with fluorescence resonance energy transfer. J Virol Methods 2006; 138:17-23. [PMID: 16934339 DOI: 10.1016/j.jviromet.2006.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 07/08/2006] [Accepted: 07/13/2006] [Indexed: 11/23/2022]
Abstract
Expression of fusion proteins in the plasma membrane enables cells to bind and fuse with surrounding cells to form syncytia. Cell fusion can have important functional outcomes for the interacting cells, as syncytia formation does in AIDS pathogenesis. Studies on cell fusion would be facilitated by a quantitative method able to discriminate between cellular aggregates and bona fide fused cells in a cell population. Flow cytometry with fluorescence resonance energy transfer is applied here for analyzing fusion of HIV-1 envelope-expressing cells with CD4+ Jurkat cells. Fusion partners were labeled with the vital lipophilic fluorescent probes DiO (green) and DiI (red) and FRET is manifested by an enhancement of the DiI red fluorescence intensity in double fluorescent cells, thus allowing discrimination between fused and aggregated cells. The inhibitory effect of anti-CD4 monoclonal antibodies and the inhibitory peptide T-20 upon cell fusion were readily quantified by this technique. This method allows the distinction of fused and aggregated cells even when they are at low frequencies.
Collapse
Affiliation(s)
- Leonor Huerta
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Distrito Federal, C.P. 04510, Mexico.
| | | | | | | |
Collapse
|
17
|
Blanco J, Clotet-Codina I, Bosch B, Armand-Ugón M, Clotet B, Esté JA. Multiparametric assay to screen and dissect the mode of action of anti-human immunodeficiency virus envelope drugs. Antimicrob Agents Chemother 2005; 49:3926-9. [PMID: 16127073 PMCID: PMC1195414 DOI: 10.1128/aac.49.9.3926-3929.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A flow cytometry-based assay was used to simultaneously quantify X4 and R5 human immunodeficiency virus (HIV) envelope-mediated cell-to-cell viral transfer, cell death, and cell-to-cell fusion. In this assay, different anti-HIV envelope drugs showed characteristic inhibitory profiles for each measured parameter, allowing for the rapid identification of the mode of action of active compounds.
Collapse
Affiliation(s)
- Julià Blanco
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Komano J, Miyauchi K, Matsuda Z, Yamamoto N. Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses. Mol Biol Cell 2004; 15:5197-207. [PMID: 15385624 PMCID: PMC532003 DOI: 10.1091/mbc.e04-04-0279] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Characterizing cellular factors involved in the life cycle of human immunodeficiency virus type 1 (HIV-1) is an initial step toward controlling replication of HIV-1. Actin polymerization mediated by the Arp2/3 complex has been found to play a critical role in some pathogens' intracellular motility. We have asked whether this complex also contributes to the viral life cycles including that of HIV-1. We have used both the acidic domains from actin-related protein (Arp) 2/3 complex-binding proteins such as the Wiscott-Aldrich syndrome protein (N-WASP) or cortactin, and siRNA directing toward Arp2 to inhibit viral infection. HIV-1, simian immunodeficiency virus (SIV), and intracellular mature vaccinia virus (IMV) were sensitive to inhibition of the Arp2/3 complex, whereas MLV, HSV-1, and adenovirus were not. Interestingly, pseudotyping HIV-1 with vesicular stomatitis virus G protein (VSV-G) overcame this inhibition. Constitutive inhibition of the Arp2/3 complex in the T-cell line H9 also blocked replication of HIV-1. These data suggested the existence of an Arp2/3 complex-dependent event during the early phase of the life cycles of both primate lentiviruses and IMV. Inhibiting the HIV-1's ability to activate Arp2/3 complex could be a potential chemotherapeutic intervention for acquired immunodeficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Jun Komano
- Laboratory of Virology and Pathogenesis, AIDS Research Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan.
| | | | | | | |
Collapse
|