1
|
Yang Y, Wang F, Xue B, Zhou X. Field-deployable assay based on CRISPR-Cas13a coupled with RT-RPA in one tube for the detection of SARS-CoV-2 in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132077. [PMID: 37473568 DOI: 10.1016/j.jhazmat.2023.132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
CRISPR-based nucleic acid detection is easy to implement, field deployable, and always coupled with isothermal amplification to improve the sensitivity. However, the conventional detection requires two separate steps, which can cause long-lasting amplicon aerosol contaminants, hence leading to false-positive results. To address this problem, we proposed a one-tube assay based on CRISPR-Cas13a coupled with reverse transcription-recombinase polymerase amplification to avoid aerosol pollution. The one-tube assay could be completed within 40 min with a sensitivity of up to 180 copies of RNA per reaction, and exhibited no cross reactivity with two related coronaviruses. Our technology showed reproducibility with relative standard deviation of 4.6% responding to 1 fM nucleic acid for three times. It could be used to detect SARS-CoV-2 nucleic acids in raw wastewater with a limit of detection of 103 copies/mL. We also validated the practicability of this technique for viral detection in environmental water samples by detecting SARS-CoV-2 in wastewater, which were not detectable by RT-qPCR technology, showing resistance of this technology to wastewater matrix. It is anticipated that the robustness and high sensitivity will significantly promote the development of a point-of-care method in environmental virus monitoring.
Collapse
Affiliation(s)
- Yihan Yang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fan Wang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Li C, Qi C, Yang S, Li Z, Ren B, Li J, Zhou X, Cai H, Xu X, Peng X. F0F1-ATPase Contributes to the Fluoride Tolerance and Cariogenicity of Streptococcus mutans. Front Microbiol 2022; 12:777504. [PMID: 35173687 PMCID: PMC8841791 DOI: 10.3389/fmicb.2021.777504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
The phenotypic traits of Streptococcus mutans, such as fluoride tolerance, are usually associated with genotypic alterations. The aim of this study was to identify adaptive mutations of S. mutans to gradient fluoride concentrations and possible relationships between the mutations and fluoride tolerance. We identified a highly resistant S. mutans strain (FR1000) with a novel single nucleotide polymorphism (SNP, −36G→T) in the promoter region of F0F1-ATPase gene cluster (SMU_1527-SMU_1534) resistant to 1,000 ppm fluoride using the whole-genome Illumina PE250 sequencing. Thus, a −36G→T F0F1-ATPase promoter mutation from the parental strain S. mutans UA159 was constructed and named UA159-T. qRT-PCR showed that the F0F1-ATPase gene expression of both FR1000 and UA159-T was up-regulated, and fluoride tolerance of UA159-T was significantly improved. Complementation of Dicyclohexylcarbodiimide (DCCD), a specific inhibitor of F0F1-ATPase, increased fluoride susceptibility of FR1000 and UA159-T. Intracellular fluoride concentrations of fluoride tolerance strains were higher compared to UA159 strain as demonstrated by 18F analysis. Further validation with rat caries models showed that UA159-T caused more severe caries lesions under fluoride exposure compared with its parental UA159 strain. Overall, the identified −36G→T mutation in the promoter region of F0F1-ATPase gene drastically contributed to the fluoride tolerance and enhanced cariogenicity of S. mutans. These findings provided new insights into the mechanism of microbial fluoride tolerance, and suggested F0F1-ATPase as a potential target for suppressing fluoride resistant strains.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cai Qi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirui Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huawei Cai
- Laboratory of Nuclear Medicine, Department of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Xin Xu,
| | - Xian Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xian Peng,
| |
Collapse
|
3
|
Dang T, Osman F, Wang J, Rucker T, Bodaghi S, Tan SH, Pagliaccia D, Lavagi-Craddock I, Vidalakis G. High-Throughput RNA Extraction from Citrus Tissues for the Detection of Viroids. Methods Mol Biol 2022; 2316:57-64. [PMID: 34845684 DOI: 10.1007/978-1-0716-1464-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-throughput nucleic acid extraction is critical for the implementation of modern viroid detection assays. Successful large-scale nursery, field surveys, and other regulatory, quarantine, or research diagnostic programs are increasingly dependent on high-throughput tissue pulverization and nucleic acid extraction protocols. Magnetic bead-based approaches using semi-automated robotic equipment allow high-throughput extraction and purification of high-quality uniform total nucleic acids for each individual sample. Here, we describe a streamlined and optimized protocol for citrus tissue processing and RNA extraction that can be used for downstream applications such as viroid detection by reverse transcription-quantitative polymerase chain reaction.
Collapse
Affiliation(s)
- Tyler Dang
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Fatima Osman
- Department of Plant Pathology, University of California Davis, Davis, CA, USA
| | - Jinbo Wang
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
- United States Department of Agriculture-APHIS-Biotechnology Regulatory Service-Biotechnology Risk Assessment Program, Riverdale, MD, USA
| | - Tavia Rucker
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Sohrab Bodaghi
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Shih-Hua Tan
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Deborah Pagliaccia
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Irene Lavagi-Craddock
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
4
|
Hadisi Z, Walsh T, Dabiri SMH, Seyfoori A, Hamdi D, Mirani B, Pagan E, Jardim A, Akbari M. Management of Coronavirus Disease 2019 (COVID-19) Pandemic: From Diagnosis to Treatment Strategies. ADVANCED THERAPEUTICS 2021; 4:2000173. [PMID: 33614905 PMCID: PMC7883285 DOI: 10.1002/adtp.202000173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Following the emergence of severe acute respiratory syndrome (SARS) in 2002 and the Middle East respiratory syndrome (MERS) in 2012, the world is now combating a third large-scale outbreak caused by a coronavirus, the coronavirus disease 2019 (COVID-19). After the rapid spread of SARS-coronavirus (CoV)-2 (the virus causing COVID-19) from its origin in China, the World Health Organization (WHO) declared a Public Health Emergency of International Concern (PHEIC) on January 30, 2020. From the beginning of the COVID-19 pandemic, a significant number of studies have been conducted to better understand the biology and pathogenesis of the novel coronavirus, and to aid in developing effective treatment regimens, therapeutics, and vaccines. This review focuses on the recent advancements in the rapidly evolving areas of clinical care and management of COVID-19. The emerging strategies for the diagnosis and treatment of this disease are explored, and the development of effective vaccines is reviewed.
Collapse
Affiliation(s)
- Zhina Hadisi
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
| | - Tavia Walsh
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
| | - Amir Seyfoori
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
| | - David Hamdi
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
| | - Bahram Mirani
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoONM5S 3G8Canada
- Institute of Biomaterials and Biomedical Engineering (IBBME)University of TorontoTorontoONM5S 3G9Canada
- Institute of Biomedical Engineering (BME)Ted Rogers Centre for Heart ResearchUniversity of TorontoTorontoONM5G 1M1Canada
| | - Erik Pagan
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
| | - Armando Jardim
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
- Center for Biomedical ResearchUniversity of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
- Centre for Advanced Materials and Related Technology (CAMTEC)University of Victoria3800 Finnerty Rd.VictoriaBCV8P 2C5Canada
| |
Collapse
|
5
|
Dalton DT, Hilton RJ, Kaiser C, Daane KM, Sudarshana MR, Vo J, Zalom FG, Buser JZ, Walton VM. Spatial Associations of Vines Infected With Grapevine Red Blotch Virus in Oregon Vineyards. PLANT DISEASE 2019; 103:1507-1514. [PMID: 31025904 DOI: 10.1094/pdis-08-18-1306-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spread and in-field spatial patterns of vines infected with grapevine red blotch virus (GRBV) were documented in Oregon vineyards using field sampling, molecular diagnostics, and spatial analysis. Grapevine petiole tissue collected from 2013 to 2016 was tested using quantitative polymerase chain reaction for GRBV. At Jacksonville in southern Oregon, 3.1% of vines were infected with GRBV in 2014, and GRBV incidence reached 58.5% of study vines by 2016. GRBV-infected plants and GRBV-uninfected plants were spatially aggregated at this site in 2015, and infected plants were spatially associated between years 2015 and 2016. In a southern Oregon vineyard near Talent, 10.4% of vines were infected with GRBV in 2014, and infection increased annually to 21.5% in 2016. At Talent, distribution of the infected vines was spatially associated across all years. GRBV infection was highest at Yamhill, in the Willamette Valley, where 31.7% of the tested vines had GRBV infection in 2014. By 2016, 59.2% of the vines tested positive for GRBV. Areas of aggregation increased and were spatially associated across all years. From 2013 to 2015, GRBV was not detected at Milton-Freewater in eastern Oregon. Spatial patterns of GRBV infection support evidence of spread by a mobile insect vector. GRBV is a significant threat to Oregon wine grape production because of its drastic year-over-year spread in affected vineyards.
Collapse
Affiliation(s)
- Daniel T Dalton
- 1 Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | - Richard J Hilton
- 2 Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR 97502
| | - Clive Kaiser
- 3 Oregon State University Extension Service, Umatilla County, Milton-Freewater, OR 97862
| | - Kent M Daane
- 4 Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - Mysore R Sudarshana
- 5 Department of Plant Pathology, U.S. Department of Agriculture Agricultural Research Service, University of California, Davis, CA 95616
| | - Julia Vo
- 5 Department of Plant Pathology, U.S. Department of Agriculture Agricultural Research Service, University of California, Davis, CA 95616
| | - Frank G Zalom
- 6 Department of Entomology and Nematology, University of California, Davis, CA 95616
| | - Jessica Z Buser
- 1 Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | - Vaughn M Walton
- 1 Department of Horticulture, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
6
|
Mustaffa-Kamal F, Liu H, Pedersen NC, Sparger EE. Characterization of antiviral T cell responses during primary and secondary challenge of laboratory cats with feline infectious peritonitis virus (FIPV). BMC Vet Res 2019; 15:165. [PMID: 31118053 PMCID: PMC6532132 DOI: 10.1186/s12917-019-1909-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Feline infectious peritonitis (FIP) is considered highly fatal in its naturally occurring form, although up to 36% of cats resist disease after experimental infection, suggesting that cats in nature may also resist development of FIP in the face of infection with FIP virus (FIPV). Previous experimental FIPV infection studies suggested a role for cell-mediated immunity in resistance to development of FIP. This experimental FIPV infection study in specific pathogen free (SPF) kittens describes longitudinal antiviral T cell responses and clinical outcomes ranging from rapid progression, slow progression, and resistance to disease. Results Differences in disease outcome provided an opportunity to investigate the role of T cell immunity to FIP determined by T cell subset proliferation after stimulation with different viral antigens. Reduced total white blood cell (WBC), lymphocyte and T cell counts in blood were observed during primary acute infection for all experimental groups including cats that survived without clinical FIP. Antiviral T cell responses during early primary infection were also similar between cats that developed FIP and cats remaining healthy. Recovery of antiviral T cell responses during the later phase of acute infection was observed in a subset of cats that survived longer or resisted disease compared to cats showing rapid disease progression. More robust T cell responses at terminal time points were observed in lymph nodes compared to blood in cats that developed FIP. Cats that survived primary infection were challenged a second time to pathogenic FIPV and tested for antiviral T cell responses over a four week period. Nine of ten rechallenged cats did not develop FIP or T cell depletion and all cats demonstrated antiviral T cell responses at multiple time points after rechallenge. Conclusions In summary, definitive adaptive T cell responses predictive of disease outcome were not detected during the early phase of primary FIPV infection. However emergence of antiviral T cell responses after a second exposure to FIPV, implicated cellular immunity in the control of FIPV infection and disease progression. Virus host interactions during very early stages of FIPV infection warrant further investigation to elucidate host resistance to FIP.
Collapse
Affiliation(s)
- Farina Mustaffa-Kamal
- Department of Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA. .,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Hongwei Liu
- Center for Companion Animal Health, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Niels C Pedersen
- Department of Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA.,Center for Companion Animal Health, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Soustre-Gacougnolle I, Lollier M, Schmitt C, Perrin M, Buvens E, Lallemand JF, Mermet M, Henaux M, Thibault-Carpentier C, Dembelé D, Steyer D, Clayeux C, Moneyron A, Masson JE. Responses to climatic and pathogen threats differ in biodynamic and conventional vines. Sci Rep 2018; 8:16857. [PMID: 30442984 PMCID: PMC6237997 DOI: 10.1038/s41598-018-35305-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Viticulture is of high socio-economic importance; however, its prevalent practices severely impact the environment and human health, and criticisms from society are raising. Vine managements systems are further challenged by climatic changes. Of the 8 million hectares grown worldwide, conventional and organic practices cover 90% and 9% of acreage, respectively. Biodynamic cultivation accounts for 1%. Although economic success combined with low environmental impact is widely claimed by biodynamic winegrowers from California, to South Africa, and France, this practice is still controversial in viticulture and scientific communities. To rethink the situation, we encouraged stakeholders to confront conventional and biodynamic paradigms in a Participative-Action-Research. Co-designed questions were followed up by holistic comparison of conventional and biodynamic vineyard managements. Here we show that the amplitude of plant responses to climatic threats was higher in biodynamic than conventional management. The same stood true for seasonal trends and pathogens attacks. This was associated with higher expression of silencing and immunity genes, and higher anti-oxidative and anti-fungal secondary metabolite levels. This suggests that sustainability of biodynamic practices probably relies on fine molecular regulations. Such knowledge should contribute to resolving disagreements between stakeholders and help designing the awaited sustainable viticulture at large.
Collapse
Affiliation(s)
- Isabelle Soustre-Gacougnolle
- SVQV, Université de Strasbourg, INRA, 28 route de Herrlisheim 68021, BP, 20507, Colmar, France.,LVBE, EA3991, Université de Haute Alsace, 33 rue de Herrlisheim, 68000, Colmar, France
| | - Marc Lollier
- LVBE, EA3991, Université de Haute Alsace, 33 rue de Herrlisheim, 68000, Colmar, France
| | - Carine Schmitt
- SVQV, Université de Strasbourg, INRA, 28 route de Herrlisheim 68021, BP, 20507, Colmar, France
| | - Mireille Perrin
- SVQV, Université de Strasbourg, INRA, 28 route de Herrlisheim 68021, BP, 20507, Colmar, France
| | - Estelle Buvens
- SVQV, Université de Strasbourg, INRA, 28 route de Herrlisheim 68021, BP, 20507, Colmar, France
| | | | - Mélanie Mermet
- SVQV, Université de Strasbourg, INRA, 28 route de Herrlisheim 68021, BP, 20507, Colmar, France
| | - Mélanie Henaux
- SVQV, Université de Strasbourg, INRA, 28 route de Herrlisheim 68021, BP, 20507, Colmar, France
| | - Christelle Thibault-Carpentier
- GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries/BP 10142/, 67404, Illkirch, France
| | - Doulaye Dembelé
- GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries/BP 10142/, 67404, Illkirch, France
| | - Damien Steyer
- TWISTAROMA; Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400, Illkirch, France
| | - Céline Clayeux
- TWISTAROMA; Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400, Illkirch, France
| | | | - Jean E Masson
- SVQV, Université de Strasbourg, INRA, 28 route de Herrlisheim 68021, BP, 20507, Colmar, France.
| |
Collapse
|
8
|
Cooper ML, Daugherty MP, Jeske DR, Almeida RPP, Daane KM. Incidence of Grapevine Leafroll Disease: Effects of Grape Mealybug (Pseudococcus maritimus) Abundance and Pathogen Supply. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1542-1550. [PMID: 29726945 DOI: 10.1093/jee/toy124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Studies of spatiotemporal dynamics are central to efforts to characterize the epidemiology of infectious disease, such as mechanism of pathogen spread and pathogen or vector sources in the landscape, and are critical to the development of effective disease management programs. To that end, we conducted a multi-year study of 20 vineyard blocks in coastal northern California to relate the dynamics of a mealybug vector, Pseudococcus maritimus (Ehrhorn) (Hemiptera: Pseudococcidae), to incidence of grapevine leafroll disease (GLD). In each vineyard block, a subset of vines were scored visually for relative mealybug abundance, disease was quantified by visual assessment, and virus presence was verified using standard laboratory molecular assays. GLD incidence was analyzed with a classification and regression tree, and with a hierarchical model that also captured variability among blocks and heterogeneity within blocks. Both analyses found strong interannual variability in incidence, with the hierarchical model also capturing substantial between- and within-block heterogeneity, but with significant contributions of vector abundance and pathogen supply (prior disease incidence) to the frequency of newly diseased vines. These results strengthen further the conclusion that mealybug vectors are causally related to pathogen spread in this system and are therefore an important target for management. Moreover, they are consistent with relatively efficient secondary spread of the pathogen, suggesting an important role for the removal of diseased vines as a tool to mitigate further damage.
Collapse
Affiliation(s)
- Monica L Cooper
- Division of Agriculture and Natural Resources, University of California, Cooperative Extension, Napa, CA
| | | | - Daniel R Jeske
- Department of Statistics, University of California, Riverside, CA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA
| | - Kent M Daane
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA
| |
Collapse
|
9
|
Pagliaccia D, Shi J, Pang Z, Hawara E, Clark K, Thapa SP, De Francesco AD, Liu J, Tran TT, Bodaghi S, Folimonova SY, Ancona V, Mulchandani A, Coaker G, Wang N, Vidalakis G, Ma W. A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing. Front Microbiol 2017; 8:2041. [PMID: 29403441 PMCID: PMC5776943 DOI: 10.3389/fmicb.2017.02041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/06/2017] [Indexed: 11/26/2022] Open
Abstract
The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs.
Collapse
Affiliation(s)
- Deborah Pagliaccia
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Jinxia Shi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Eva Hawara
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Kelley Clark
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shree P. Thapa
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Agustina D. De Francesco
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Jianfeng Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Thien-Toan Tran
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
| | - Sohrab Bodaghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | | | - Veronica Ancona
- Texas A&M University – Kingsville Citrus Center, Weslaco, TX, United States
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
10
|
Vončina D, Al Rwahnih M, Rowhani A, Gouran M, Almeida RPP. Viral Diversity in Autochthonous Croatian Grapevine Cultivars. PLANT DISEASE 2017; 101:1230-1235. [PMID: 30682947 DOI: 10.1094/pdis-10-16-1543-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A survey was conducted on nine autochthonous grapevine cultivars grown along the Croatian coastal region. In total, 48 vines (44 from germplasm collection, 4 from vineyards) originating from 23 sites were tested for 26 viruses using molecular methods. Results revealed high infection rates with Grapevine leafroll-associated virus 3 (GLRaV-3); Grapevine virus A (GVA, both 91.7%); Grapevine fleck virus (GFkV, 87.5%); and Grapevine rupestris stem pitting-associated virus (GRSPaV, 83.3%). Other detected viruses were: Grapevine fanleaf virus (GFLV); Grapevine leafroll-associated viruses 1, 2, and strains of 4 (GLRaV-1, GLRaV-2, GLRaV-4); Grapevine viruses B, D, F (GVB, GVD, GVF); Grapevine red globe virus (GRGV); Grapevine vein feathering virus (GVFV); Grapevine Syrah virus 1 (GSyV-1); and Grapevine Pinot gris virus (GPGV). No virus-free vine was found. Mixed infections were determined in all vines, the number of viruses in a single vine ranged from three to nine. GLRaV-3 variant typing confirmed presence of group I, II, and III. Four vines with leaf deformation and mottling were positive for GPGV. Seven viruses (GLRaV-4-like group, GVD, GVE, GVF, GRGV, GSyV-1, and GVFV) were detected for the first time in Croatia. This survey confirmed the deteriorated sanitary status of autochthonous Croatian grapevine cultivars.
Collapse
Affiliation(s)
- Darko Vončina
- Department of Plant Pathology, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, USA
| | - Adib Rowhani
- Department of Plant Pathology, University of California, Davis, USA
| | | | - Rodrigo P P Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, USA
| |
Collapse
|
11
|
Osman F, Dang T, Bodaghi S, Vidalakis G. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts. J Virol Methods 2017; 245:40-52. [PMID: 28300606 DOI: 10.1016/j.jviromet.2017.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 01/23/2023]
Abstract
A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs.
Collapse
Affiliation(s)
- Fatima Osman
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Tyler Dang
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Sohrab Bodaghi
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Georgios Vidalakis
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Bahder BW, Zalom FG, Sudarshana MR. An Evaluation of the Flora Adjacent to Wine Grape Vineyards for the Presence of Alternative Host Plants of Grapevine red blotch-associated virus. PLANT DISEASE 2016; 100:1571-1574. [PMID: 30686219 DOI: 10.1094/pdis-02-16-0153-re] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grapevine red blotch-associated virus (GRBaV) is a recently discovered virus of concern to wine grape production in North America. While the vector of this virus is unknown, other elements of virus epidemiology are essential to develop guidelines for the management of the virus as well as to assist in the search for its vector. The objective of this study was to evaluate vegetation within and surrounding GRBaV-infected vineyards to identify potential virus reservoirs that may serve as sources of inoculum. In this study, 13 plant species were sampled throughout the year and were tested for the presence of GRBaV. Of the 13 species tested, two species, Rubus armeniacus and wild grapes (Vitis californica × V. vinifera), tested positive by quantitative PCR. Of these two species, only wild grapes were determined to be a true host. This study documents the first time GRBaV has been confirmed in an alternative host or in a species outside of a commercial vineyard and suggests that a mechanism exists by which GRBaV moves between plant species that is not human-mediated. The precise role that wild grapes play in the epidemiology of GRBaV remains unknown.
Collapse
Affiliation(s)
- Brian W Bahder
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616
| | - Frank G Zalom
- Department of Entomology and Nematology, University of California, One Shields Ave., Davis, CA 95616
| | - Mysore R Sudarshana
- USDA-ARS, Department of Plant Pathology, University of California, One Shields Ave., Davis, CA 95616
| |
Collapse
|
13
|
Poojari S, Alabi OJ, Okubara PA, Naidu RA. SYBR(®) Green-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses. J Virol Methods 2016; 235:112-118. [PMID: 27246908 DOI: 10.1016/j.jviromet.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
A SYBR(®) Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt-curve analysis (MCA) was optimized for the detection of nine grapevine viruses. The detection limits for simplex qRT-PCR for all nine grapevine viruses were estimated to be in the range of 214-1112 copies of the virus genome. Amplicons with melting temperatures (Tm) separated by at least 2°C in the MCA could differentiate two viruses in the same reaction. Therefore, eight of the nine viruses could be co-diagnosed in five different combinations of duplex assays. Of 305 grape leaf samples from the field or greenhouse, 162 were positive for at least one of the nine grapevine viruses using the duplex qRT-PCR assays. In contrast, only 127 samples were positive using endpoint RT-PCR and PCR assays, indicating the enhanced sensitivity of duplex real-time PCR. In addition, the duplex qRT-PCR assays were be used to detect Grapevine leafroll associated virus 3 (GLRaV-3) in its vector, the grape mealybug (Pseudococcus maritimus Ehrhorn), and Grapevine red blotch-associated virus (GRBaV) in Virginia creeper leafhopper (Erythroneura ziczac Walsh). The simplex and duplex real-time PCR assays developed in this study can be used to examine transmission of co-occruing viruses by insect vectors as well as for rapid and sensitive detection of viruses in infected grapevines.
Collapse
Affiliation(s)
- Sudarsana Poojari
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, USA; Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Olufemi J Alabi
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, USA; Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research & Extension Center, 2401 East Highway 83, Weslaco, TX, USA
| | - Patricia A Okubara
- USDA-ARS, Root Disease and Biological Control Research Unit, Pullman, WA, USA
| | - Rayapati A Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA, USA.
| |
Collapse
|
14
|
Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus. J Virol Methods 2015; 220:64-75. [PMID: 25907469 DOI: 10.1016/j.jviromet.2015.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/20/2022]
Abstract
A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory "Section 3701: Citrus Nursery Stock Pest Cleanliness Program". Adopting a compatible multiplex RT-qPCR testing protocol for these viruses as well as other RNA and DNA regulated pathogens will provide a valuable alternative tool for virus detection and efficient program implementation.
Collapse
|
15
|
Pappi PG, Chaintoutis SC, Dovas CI, Efthimiou KE, Katis NI. Development of one-tube real-time qRT-PCR and evaluation of RNA extraction methods for the detection of Eggplant mottled dwarf virus in different species. J Virol Methods 2015; 212:59-65. [DOI: 10.1016/j.jviromet.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022]
|
16
|
Minas IS, Vicente AR, Dhanapal AP, Manganaris GA, Goulas V, Vasilakakis M, Crisosto CH, Molassiotis A. Ozone-induced kiwifruit ripening delay is mediated by ethylene biosynthesis inhibition and cell wall dismantling regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:76-85. [PMID: 25443835 DOI: 10.1016/j.plantsci.2014.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/10/2014] [Accepted: 08/26/2014] [Indexed: 05/21/2023]
Abstract
Ozone treatments are used to preserve quality during cold storage of commercially important fruits due to its ethylene oxidizing capacity and its antimicrobial attributes. To address whether or not ozone also modulates ripening by directly affecting fruit physiology, kiwifruit (Actinidia deliciosa cv. 'Hayward') were stored in very low ethylene atmosphere at 0°C (95% RH) in air (control) or in the presence of ozone (0.3μLL(-1)) for 2 or 4 months and subsequently ripened at 20°C (90% RH) for up to 8d. Ozone-treated kiwifruit showed a significant delay of ripening during maintenance at 20°C, accompanied by a marked decrease in ethylene biosynthesis due to inhibited AdACS1 and AdACO1 expression and reduced ACC synthase (ACS) and ACC oxidase (ACO) enzyme activity. Furthermore, ozone-treated fruit exhibited a marked reduction in flesh softening and cell wall disassembly. This effect was associated with reduced cell wall swelling and pectin and neutral sugar solubilization and was correlated with the inhibition of cell wall degrading enzymes activity, such as polygalacturonase (PG) and endo-1,4-β-glucanase/1,4-β-glucosidase (EGase/glu). Conclusively, the present study indicated that ozone may exert major residual effects in fruit ripening physiology and suggested that ethylene biosynthesis and cell walls turnover are specifically targeted by ozone.
Collapse
Affiliation(s)
- Ioannis S Minas
- Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA 95616, United States; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Ariel R Vicente
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Facultad de Ciencias Exactas, CONICET-UNLP, 47 y 116, La Plata 1900, Argentina; LIPA, Laboratorio de Investigación en Productos Agroindustriales, Facultad de Ciencias Agrarias y Forestales Calle, 60 y 119, La Plata 1900, Argentina.
| | - Arun Prabhu Dhanapal
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA 95616, United States.
| | - George A Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Miltiadis Vasilakakis
- Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA 95616, United States.
| | - Athanassios Molassiotis
- Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| |
Collapse
|
17
|
Naidu R, Rowhani A, Fuchs M, Golino D, Martelli GP. Grapevine Leafroll: A Complex Viral Disease Affecting a High-Value Fruit Crop. PLANT DISEASE 2014; 98:1172-1185. [PMID: 30699617 DOI: 10.1094/pdis-08-13-0880-fe] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grapevine (Vitis spp.) is one of the most widely grown fruit crops in the world. It is a deciduous woody perennial vine for which the cultivation of domesticated species began approximately 6,000 to 8,000 years ago in the Near East. Grapevines are broadly classified into red- and white-berried cultivars based on their fruit skin color, although yellow, pink, crimson, dark blue, and black-berried cultivars also exist. Grapevines can be subject to attacks by many different pests and pathogens, including graft-transmissible agents such as viruses, viroids, and phytoplasmas. Among the virus and virus-like diseases, grapevine leafroll disease (GLD) is by far the most widespread and economically damaging viral disease of grapevines in many regions around the world. The global expansion of the grape and wine industry has seen a parallel increase in the incidence and economic impact of GLD. Despite the fact that GLD was recognized as a potential threat to grape production for several decades, our knowledge of the nature of the disease is still quite limited due to a variety of challenges related to the complexity of this virus disease, the association of several distinct GLD-associated viruses, and contrasting symptoms in red- and white-berried cultivars. In view of the growing significance of GLD to wine grape production worldwide, this feature article provides an overview of the state of knowledge on the biology and epidemiology of the disease and describes management strategies currently deployed in vineyards.
Collapse
Affiliation(s)
| | | | - Marc Fuchs
- Cornell University, New York State Agricultural Experiment Station, Geneva
| | | | - Giovanni P Martelli
- Università degli Studi di Bari "Aldo Moro" and Istituto di Virologia Vegetale del CNR, UOS Bari, Bari, Italy
| |
Collapse
|
18
|
Kim Y, Han MS, Kim J, Kwon A, Lee KA. Evaluation of three automated nucleic acid extraction systems for identification of respiratory viruses in clinical specimens by multiplex real-time PCR. BIOMED RESEARCH INTERNATIONAL 2014; 2014:430650. [PMID: 24868527 PMCID: PMC4020539 DOI: 10.1155/2014/430650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 01/31/2023]
Abstract
A total of 84 nasopharyngeal swab specimens were collected from 84 patients. Viral nucleic acid was extracted by three automated extraction systems: QIAcube (Qiagen, Germany), EZ1 Advanced XL (Qiagen), and MICROLAB Nimbus IVD (Hamilton, USA). Fourteen RNA viruses and two DNA viruses were detected using the Anyplex II RV16 Detection kit (Seegene, Republic of Korea). The EZ1 Advanced XL system demonstrated the best analytical sensitivity for all the three viral strains. The nucleic acids extracted by EZ1 Advanced XL showed higher positive rates for virus detection than the others. Meanwhile, the MICROLAB Nimbus IVD system was comprised of fully automated steps from nucleic extraction to PCR setup function that could reduce human errors. For the nucleic acids recovered from nasopharyngeal swab specimens, the QIAcube system showed the fewest false negative results and the best concordance rate, and it may be more suitable for detecting various viruses including RNA and DNA virus strains. Each system showed different sensitivity and specificity for detection of certain viral pathogens and demonstrated different characteristics such as turnaround time and sample capacity. Therefore, these factors should be considered when new nucleic acid extraction systems are introduced to the laboratory.
Collapse
Affiliation(s)
- Yoonjung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| | - Mi-Soon Han
- Department of Laboratory Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| | - Juwon Kim
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Aerin Kwon
- Green Cross Laboratories, Yongin, Republic of Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 135-720, Republic of Korea
| |
Collapse
|
19
|
Medici V, Schroeder DI, Woods R, LaSalle JM, Geng Y, Shibata NM, Peerson J, Hodzic E, Dayal S, Tsukamoto H, Kharbanda KK, Tillman B, French SW, Halsted CH. Methylation and gene expression responses to ethanol feeding and betaine supplementation in the cystathionine beta synthase-deficient mouse. Alcohol Clin Exp Res 2014; 38:1540-9. [PMID: 24730561 DOI: 10.1111/acer.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/12/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alcoholic steatohepatitis (ASH) is caused in part by the effects of ethanol (EtOH) on hepatic methionine metabolism. METHODS To investigate the phenotypic and epigenetic consequences of altered methionine metabolism in this disease, we studied the effects of 4-week intragastric EtOH feeding with and without the methyl donor betaine in cystathionine beta synthase (CβS) heterozygous C57BL/6J mice. RESULTS The histopathology of early ASH was induced by EtOH feeding and prevented by betaine supplementation, while EtOH feeding reduced and betaine supplementation maintained the hepatic methylation ratio of the universal methyl donor S-adenosylmethionine (SAM) to the methyltransferase inhibitor S-adenosylhomocysteine (SAH). MethylC-seq genomic sequencing of heterozygous liver samples from each diet group found 2 to 4% reduced methylation in gene bodies, but not promoter regions of all autosomes of EtOH-fed mice, each of which were normalized in samples from mice fed the betaine-supplemented diet. The transcript levels of nitric oxide synthase (Nos2) and DNA methyltransferase 1 (Dnmt1) were increased, while those of peroxisome proliferator receptor-α (Pparα) were reduced in EtOH-fed mice, and each was normalized in mice fed the betaine-supplemented diet. DNA pyrosequencing of CβS heterozygous samples found reduced methylation in a gene body of Nos2 by EtOH feeding that was restored by betaine supplementation and was correlated inversely with its expression and positively with SAM/SAH ratios. CONCLUSIONS The present study has demonstrated relationships among EtOH induction of ASH with aberrant methionine metabolism that was associated with gene body DNA hypomethylation in all autosomes and was prevented by betaine supplementation. The data imply that EtOH-induced changes in selected gene transcript levels and hypomethylation in gene bodies during the induction of ASH are a result of altered methionine metabolism that can be reversed through dietary supplementation of methyl donors.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, University of California Davis, Sacramento, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun N, Deng C, Zhao X, Zhou Q, Ge G, Liu Y, Yan W, Xia Q. Extraction of total nucleic acid based on silica-coated magnetic particles for RT-qPCR detection of plant RNA virus/viroid. J Virol Methods 2014; 196:204-11. [DOI: 10.1016/j.jviromet.2013.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
|
21
|
Shi J, Pagliaccia D, Morgan R, Qiao Y, Pan S, Vidalakis G, Ma W. Novel diagnosis for citrus stubborn disease by detection of a spiroplasma citri-secreted protein. PHYTOPATHOLOGY 2014; 104:188-195. [PMID: 23931112 DOI: 10.1094/phyto-06-13-0176-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Citrus stubborn disease (CSD), first identified in California, is a widespread bacterial disease found in most arid citrus-producing regions in the United States and the Mediterranean Region. The disease is caused by Spiroplasma citri, an insect-transmitted and phloem-colonizing bacterium. CSD causes significant tree damage resulting in loss of fruit production and quality. Detection of CSD is challenging due to low and fluctuating titer and sporadic distribution of the pathogen in infected trees. In this study, we report the development of a novel diagnostic method for CSD using an S. citri-secreted protein as the detection marker. Microbial pathogens secrete a variety of proteins during infection that can potentially disperse systemically in infected plants with the vascular flow. Therefore, their distribution may not be restricted to the pathogen infection sites and could be used as a biological marker for infection. Using mass spectrometry analysis, we identified a unique secreted protein from S. citri that is highly expressed in the presence of citrus phloem extract. ScCCPP1, an antibody generated against this protein, was able to distinguish S. citri-infected citrus and periwinkle from healthy plants. In addition, the antiserum could be used to detect CSD using a simple direct tissue print assay without the need for sample processing or specialized lab equipment and may be suitable for field surveys. This study provides proof of a novel concept of using pathogen-secreted protein as a marker for diagnosis of a citrus bacterial disease and can probably be applied to other plant diseases.
Collapse
|
22
|
Osman F, Hodzic E, Omanska-Klusek A, Olineka T, Rowhani A. Development and validation of a multiplex quantitative PCR assay for the rapid detection of Grapevine virus A, B and D. J Virol Methods 2013; 194:138-45. [DOI: 10.1016/j.jviromet.2013.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
|
23
|
Walsh HA, Pietersen G. Rapid detection of Grapevine leafroll-associated virus type 3 using a reverse transcription loop-mediated amplification method. J Virol Methods 2013; 194:308-16. [PMID: 24025344 DOI: 10.1016/j.jviromet.2013.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/21/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Grapevine leafroll disease (GLD) is the most important disease of Grapevines in South Africa. Grapevine leafroll-associated virus type 3 (GLRaV-3) has a close association with the disease and is prevalent in South African vineyards. GLD can be controlled using a combination of virus-free planting material, systemic insecticides to control vector populations and removal of infected vines by roguing. Infected vines are identified each autumn using either symptom display (in red cultivars) or ELISA (in white cultivars). While ELISA is a simple, reliable means of testing for GLRaV-3, it is time consuming, laborious and insensitive and a quicker, more sensitive method of detecting GLRaV-3 in the field is needed. A single-tube one-step reverse transcription (RT) loop-mediated isothermal amplification (LAMP) assay combined with a simple RNA extraction protocol was developed for the rapid and easy detection of GLRaV-3. Hydroxy napthol blue was included as an indicator and under isothermal conditions at 60 °C the target viral gene could be amplified in under 2h and positive results could be easily seen by examining the colour change from violet to sky blue. Using this method, 50 samples could be also pooled together with a single positive sample still being detected. A direct comparison of ELISA, nested PCR and RT-LAMP showed that RT-LAMP is as sensitive as nested PCR and could be performed in a much shorter time with less equipment. This assay is may be a possible alternative to ELISA for the detection of GLRaV-3 in the field.
Collapse
Affiliation(s)
- Helen Ann Walsh
- University of Pretoria, Department of Microbiology and Plant Pathology, Pretoria, South Africa.
| | | |
Collapse
|