1
|
Lamprou E, Kalligosfyri PM, Kalogianni DP. Beyond Traditional Lateral Flow Assays: Enhancing Performance Through Multianalytical Strategies. BIOSENSORS 2025; 15:68. [PMID: 39996970 PMCID: PMC11853705 DOI: 10.3390/bios15020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Multiplex lateral flow assays are one of the greatest advancements in the world of rapid diagnostics, achieving the performance of several tests in one. These tests meet the basic requirements of increasing ease of use, low detection limit, and high specificity, as they combine the use of novel strategies, such as the exploitation of multiple detection labels, and a variety of amplification methods. These tests have proven their usefulness in many different areas, including clinical diagnostics, food, and environmental monitoring. In this review paper, we attempt to highlight and discuss the predominant changes in multianalyte LFAs, as related to their principle, their development, and their combination with other methods. Attention is paid to their flexibility and the challenges associated with the use of LFA arrays, including strategies to improve the detectability, sensitivity, and reliability of the assays. Therefore, this review emphasizes the current advances in the field to underline the possible impact of multiplex LFAs on the future of diagnostics and analytical sciences.
Collapse
Affiliation(s)
- Eleni Lamprou
- Department of Chemistry, University of Patras, Rio, GR26504 Patras, Greece;
| | | | | |
Collapse
|
2
|
Tommeurd W, Thueng-in K, Theerawatanasirikul S, Tuyapala N, Poonsuk S, Petcharat N, Thangthamniyom N, Lekcharoensuk P. Identification of Conserved Linear Epitopes on Viral Protein 2 of Foot-and-Mouth Disease Virus Serotype O by Monoclonal Antibodies 6F4.D11.B6 and 8D6.B9.C3. Antibodies (Basel) 2024; 13:67. [PMID: 39189238 PMCID: PMC11348169 DOI: 10.3390/antib13030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious disease of cloven-hoofed animals with a significant economic impact. Early diagnosis and effective prevention and control could reduce the spread of the disease which could possibly minimize economic losses. Epitope characterization based on monoclonal antibodies provide essential information for developing diagnostic assays and vaccine designs. In this study, monoclonal antibodies raised against FMD virus (FMDV) were produced. Sixty-six monoclonal antibodies demonstrated strong reactivity and specificity to FMDV. The purified monoclonal antibodies were further used for bio-panning to select phage expressing specific epitopes from phage-displayed 12 mer-peptide library. The phage peptide sequences were analyzed using multiple sequence alignment and evaluated by peptide ELISA. Two hybridoma clones secreted monoclonal antibodies recognizing linear epitopes on VP2 of FMDV serotype O. The non-neutralizing monoclonal antibody 6F4.D11.B6 recognized the residues 67-78 on antigenic site 2 resinding in VP2, while the neutralizing monoclonal antibody 8D6.B9.C3 recognized a novel linear epitope encompassing residues 115-126 on VP2. This information and the FMDV-specific monoclonal antibodies provide valuable sources for further study and application in diagnosis, therapeutics and vaccine designs to strengthen the disease prevention and control measures.
Collapse
Affiliation(s)
- Wantanee Tommeurd
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
| | - Kanyarat Thueng-in
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Sirin Theerawatanasirikul
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nongnaput Tuyapala
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Sukontip Poonsuk
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nantawan Petcharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nattarat Thangthamniyom
- Research and Development Department, Animal Health and Diagnostic Center, CPF (Thailand) Public Company Limited, Bangkok 10530, Thailand;
| | - Porntippa Lekcharoensuk
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
3
|
Pohanka M. Current trends in digital camera-based bioassays for point-of-care tests. Clin Chim Acta 2024; 552:117677. [PMID: 38000459 DOI: 10.1016/j.cca.2023.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Point-of-care and bedside tests are analytical devices suitable for a growing role in the current healthcare system and provide the opportunity to achieve an exact diagnosis by an untrained person and in various conditions and sites where it is necessary. Using a digital camera integrated into a well-accessible device like a smartphone brings a new way in which a colorimetric point-of-care diagnostic test can provide unbiased data. This review summarizes basic facts about the colorimetric point-of-care tests, principles of how to use a portable device with a camera in the assay, applications of digital cameras for the current tests, and new devices described in the recent papers. An overview of the recent literature and a discussion of recent developments and future trends are provided.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic.
| |
Collapse
|
4
|
Kim S, Ryoo S, Park EK, Cha SH, Song HS, Kim K, Lee J. On-Site Remote Monitoring System with NIR Signal-Based Detection of Infectious Disease Virus in Opaque Salivary Samples. ACS Sens 2023; 8:1299-1307. [PMID: 36786758 DOI: 10.1021/acssensors.2c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Infectious disease viruses, such as foot-and-mouth disease virus (FMDV), are highly contagious viruses that cause significant socioeconomic damage upon spreading. Developing an on-site diagnostic tool for early clinical detection and real-time surveillance of FMDV outbreaks is essential to prevent the further spread of the disease. However, early diagnosis of FMDV is still challenging due to the limited sensitivity and time-consuming manual result entry of commercial on-site tests for salivary samples. Here, we report a near-infrared (NIR) signal nanoprobe-based highly accurate detection and remote monitoring system toward FMDVs, which automates the analysis and reporting of diagnosis data. The NIR signal lateral flow immunoassay (LFA) was assembled with a nanoprobe with a stable emission intensity at 800 nm, minimizing the interference signal of opaque salivary samples. We investigated the clinical applicability of the NIR signal LFA at biosafety level 3 (BSL-3) laboratories using 147 opaque salivary samples. The NIR signal LFA achieved a 32-fold lower limit of detection (LOD) than a commercial LFA in detecting live FMDVs, including all isolates occurring in the Republic of Korea during 2010-2017. Our results showed that the NIR signal LFA successfully discriminated the FMDV-positive clinical salivary samples from healthy controls with a sensitivity of 96.9%, specificity of 100.0%, and AUC (area under the receiver operator characteristic curve) value of 0.999. Finally, we substantiated the real-time collection of diagnostic results using a customized portable NIR reader at nine different laboratories of government-certified quarantine institutions for foot-and-mouth disease (FMD).
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Soyoon Ryoo
- Foot-and-Mouth Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | | | - Sang-Ho Cha
- Foot-and-Mouth Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | | | - Kayoung Kim
- Department of Fiber Convergence Material Engineering, Dankook University, Gyeonggi-do 16890, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Manessis G, Gelasakis AI, Bossis I. Point-of-Care Diagnostics for Farm Animal Diseases: From Biosensors to Integrated Lab-on-Chip Devices. BIOSENSORS 2022; 12:455. [PMID: 35884258 PMCID: PMC9312888 DOI: 10.3390/bios12070455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
Abstract
Zoonoses and animal diseases threaten human health and livestock biosecurity and productivity. Currently, laboratory confirmation of animal disease outbreaks requires centralized laboratories and trained personnel; it is expensive and time-consuming, and it often does not coincide with the onset or progress of diseases. Point-of-care (POC) diagnostics are rapid, simple, and cost-effective devices and tests, that can be directly applied on field for the detection of animal pathogens. The development of POC diagnostics for use in human medicine has displayed remarkable progress. Nevertheless, animal POC testing has not yet unfolded its full potential. POC devices and tests for animal diseases face many challenges, such as insufficient validation, simplicity, and portability. Emerging technologies and advanced materials are expected to overcome some of these challenges and could popularize animal POC testing. This review aims to: (i) present the main concepts and formats of POC devices and tests, such as lateral flow assays and lab-on-chip devices; (ii) summarize the mode of operation and recent advances in biosensor and POC devices for the detection of farm animal diseases; (iii) present some of the regulatory aspects of POC commercialization in the EU, USA, and Japan; and (iv) summarize the challenges and future perspectives of animal POC testing.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.G.)
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens (AUA), Iera Odos 75 Str., 11855 Athens, Greece; (G.M.); (A.I.G.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Cavalera S, Russo A, Foglia EA, Grazioli S, Colitti B, Rosati S, Nogarol C, Di Nardo F, Serra T, Chiarello M, Baggiani C, Pezzoni G, Brocchi E, Anfossi L. Design of multiplexing lateral flow immunoassay for detection and typing of foot-and-mouth disease virus using pan-reactive and serotype-specific monoclonal antibodies: Evidence of a new hook effect. Talanta 2021; 240:123155. [PMID: 34942474 DOI: 10.1016/j.talanta.2021.123155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
The foot-and-mouth disease (FMD) is the most important transboundary viral disease of livestock in the international context, because of its extreme contagiousness, widespread diffusion, and severe impact on animal trade and animal productions. The rapid and on-field detection of the virus responsible for the FMD represents an urgent demand to efficiently control the diffusion of the infection, especially in low resource setting where the FMD is endemic. Colorimetric lateral flow immunoassay (LFIA) is largely used for the development of rapid tests, due to the extreme simplicity, cost-effectiveness, and on-field operation. In this work, two multiplex LFIA devices were designed for the diagnosis of FMD and the simultaneous identification of major circulating serotypes of the FMD virus. The LFIAs relied on the sandwich-type immunoassay and combined a set of well-characterised monoclonal antibodies (mAb) pairs. One LFIA aimed at detecting and identifying O, A and Asia-1 serotypes, the second device enabled the detection and differentiation of the SAT 1 and SAT 2 serotypes. Both devices also incorporated a broad-specific test line reporting on infection from FMDV, regardless the strain and the serotype involved. Accordingly, five and four reactive zones were arranged in the two devices to achieve a total of six simultaneous analyses. The development of the two multiplex systems highlighted for the first time the relevance of the mAb positioning along the LFIA strip in connection with the use of the same or different mAb as capture and detector ligands. In fact, the excess of detector mAb typically employed for increasing the sensitivity of sandwich immunoassay induced a new type of hook effect when combined with the same ligand used as the capture. This effect strongly impacted assay sensitivity, which could be improved by an intelligent alignment of the mAb pairs along the LFIA strip. The analytical and diagnostic performances of the two LFIAs were studied by testing reference FMDV strains grown in cell cultures and some representative field samples (epithelium homogenates). Almost equivalent sensitivity and specificity to those of a reference Ag-ELISA kit were shown, except for the serotype SAT 2. These simple devices are suitable in endemic regions for in-field diagnosis of FMD accompanied by virus serotyping and, moreover, could be deployed and used for rapid confirmation of secondary outbreaks after FMD incursions in free-areas, thus contributing to promptly implement control measures.
Collapse
Affiliation(s)
- Simone Cavalera
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Alida Russo
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy; Tyndall National Institute, University College Cork, Cork, T12 R5CP, Ireland
| | - Efrem Alessandro Foglia
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, National/OIE/FAO, Reference Centre for FMD and SVD, Via A. Bianchi 9, Brescia, BS, Italy
| | - Santina Grazioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, National/OIE/FAO, Reference Centre for FMD and SVD, Via A. Bianchi 9, Brescia, BS, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Largo P. Braccini 5, Grugliasco, TO, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Largo P. Braccini 5, Grugliasco, TO, Italy
| | - Chiara Nogarol
- In3Diagnostic, Largo P.Braccini, 2, Grugliasco, TO, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Thea Serra
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Matteo Chiarello
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy
| | - Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, National/OIE/FAO, Reference Centre for FMD and SVD, Via A. Bianchi 9, Brescia, BS, Italy
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, National/OIE/FAO, Reference Centre for FMD and SVD, Via A. Bianchi 9, Brescia, BS, Italy
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via P. Giuria 5, Turin, TO, Italy.
| |
Collapse
|
7
|
Yao L, Xu J, Cheng J, Yao B, Zheng L, Liu G, Chen W. Simultaneous and accurate screening of multiple genetically modified organism (GMO) components in food on the same test line of SERS-integrated lateral flow strip. Food Chem 2021; 366:130595. [PMID: 34298393 DOI: 10.1016/j.foodchem.2021.130595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/17/2023]
Abstract
Herein, a surface-enhanced Raman scattering (SERS)-integrated LFS platform was developed for rapid and simultaneous screening of multiple genetically modified organism (GMO) components (promoter, codon, and terminator) in soybean. Research demonstrated that, on the same test line (T line) of single LFS, three different GMP components can be well distinguished with the help of three SERS nano tags. Good linear correlations between SERS signal and concentration of each GMO component were also obtained for quantitative analysis. Of greater importance, whether these multiple analytes coexisted or not, varied in the same concentration trend or not, these multiple GMP components can be rapidly (15 min) and accurately screened with satisfied sensitivity and specificity by decoding the signals on the same T line. We envision that this decoding platform can further improve the potential of LFS and SERS for practical applications and provide a promising alternative for multiple screening of GMO identification in food.
Collapse
Affiliation(s)
- Li Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China
| | - Jianguo Xu
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jigui Cheng
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bangben Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, China
| | - Lei Zheng
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China.
| | - Wei Chen
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Intelligent Manufacturing Institute of Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
8
|
Yang M, Mudabuka B, Dueck C, Xu W, Masisi K, Fana EM, Mpofu C, Nfon C. Development of two rapid lateral flow test strips for detection of foot-and-mouth disease virus SAT 1 and SAT 3. J Virol Methods 2020; 291:113967. [PMID: 32898572 DOI: 10.1016/j.jviromet.2020.113967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease that affects cattle, sheep, goats, pigs, and over 70 species of wildlife. FMD continues to be a major economic concern for livestock productivity in many countries. FMDV has seven serotypes O, A, Asia 1, C, and Southern Africa Territories (SAT) 1, 2, and 3. Although SAT 1, and SAT 3 outbreaks are not as common as serotypes O, A, Asia 1, and SAT 2, outbreaks have also been reported. The recent outbreaks of SAT 1 occurred in Cameroon, Zimbabwe, South Africa, and Uganda, while most recent SAT 3 occurred in Namibia in 2019. The development of rapid and easy-to-perform FMDV detection tests is critical to control the outbreak and spread of FMD. The current project has produced monoclonal antibodies (mAb) against FMDV serotypes SAT 1, and SAT 3. Using these mAbs, two lateral flow immunochromatographic (LFI) strip tests for the detection of FMDV SAT 1, and SAT 3 have been developed. SAT 1 strip test detected 14 out of 15 SAT 1 field isolates. The SAT 3 strip test detected all four SAT 3 isolates tested, but the signal is weak for UGA 10/97 and showed no cross-reactivity with other FMDV serotypes. The diagnostic specificities of the SAT 1 and the SAT 3 tests are 100 %, which are higher than double antibody sandwich (DAS) ELISA. The diagnostic sensitivity of the SAT 1 test strip is lower than that of DAS ELISA, while the diagnostic sensitivity of the SAT 3 test strip is similar to that of DAS ELISA. The first reported SAT 1 and SAT 3 strip test combined with the previously developed SAT 2 strip test can be used for quick diagnosis in endemic countries in Africa. Rapid identification of FMDV serotypes is critical for disease control and vaccine selection. Also, these strip tests can be used in the laboratory to quickly screen samples from the field.
Collapse
Affiliation(s)
- Ming Yang
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada.
| | - Boitumelo Mudabuka
- Botswana Institute for Technology Research and Innovation, Plot 50654, Machel Drive, Private Bag 0082, Gaborone, Botswana
| | - Codey Dueck
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada
| | - Kabo Masisi
- Botswana Institute for Technology Research and Innovation, Plot 50654, Machel Drive, Private Bag 0082, Gaborone, Botswana; Botswana International University of Science and Technology, Plot 10071 Boseja Ward, Private Bag 16, Palapye, Botswana
| | - Elliot M Fana
- Botswana Vaccine Institute, Broadhurst Industrial, Lejara Road, Plots 6385/90, Gaborone, Botswana
| | - Christopher Mpofu
- Botswana Institute for Technology Research and Innovation, Plot 50654, Machel Drive, Private Bag 0082, Gaborone, Botswana
| | - Charles Nfon
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada
| |
Collapse
|
9
|
Wong CL, Yong CY, Ong HK, Ho KL, Tan WS. Advances in the Diagnosis of Foot-and-Mouth Disease. Front Vet Sci 2020; 7:477. [PMID: 32974392 PMCID: PMC7473413 DOI: 10.3389/fvets.2020.00477] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a devastating livestock disease caused by foot-and-mouth disease virus (FMDV). Outbreaks of this disease in a country always result in conspicuous economic losses to livestock industry and subsequently lead to serious socioeconomic damages due to the immediate imposition of trade embargo. Rapid and accurate diagnoses are imperative to control this infectious virus. In the current review, enzyme-linked immunosorbent assay (ELISA)-based methods used in FMD diagnosis are extensively reviewed, particularly the sandwich, liquid-phase blocking, and solid-phase competition ELISA. The differentiation of infected animals from vaccinated animals using ELISA-based methods is also highlighted, in which the role of 3ABC polyprotein as a marker is reviewed intensively. Recently, more studies are focusing on the molecular diagnostic methods, which detect the viral nucleic acids based on reverse transcription-polymerase chain reaction (RT-PCR) and RT-loop-mediated isothermal amplification (RT-LAMP). These methods are generally more sensitive because of their ability to amplify a minute amount of the viral nucleic acids. In this digital era, the RT-PCR and RT-LAMP are progressing toward the mobile versions, aiming for on-site FMDV diagnosis. Apart from RT-PCR and RT-LAMP, another diagnostic assay specifically designed for on-site diagnosis is the lateral flow immunochromatographic test strips. These test strips have some distinct advantages over other diagnostic methods, whereby the assay often does not require the aid of an external device, which greatly lowers the cost per test. In addition, the on-site diagnostic test can be easily performed by untrained personnel including farmers, and the results can be obtained in a few minutes. Lastly, the use of FMDV diagnostic assays for progressive control of the disease is also discussed critically.
Collapse
Affiliation(s)
- Chuan Loo Wong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
10
|
Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115906] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Wang M, Guo L, Yu M, Zhao H. The application of a lateral flow immunographic assay to rapidly test for dexamethasone in commercial facial masks. Anal Bioanal Chem 2019; 411:5703-5710. [PMID: 31342091 PMCID: PMC6704111 DOI: 10.1007/s00216-019-01948-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022]
Abstract
Dexamethasone (DE) is a synthetic glucocorticoid that is frequently added to cosmetic products for its good short-term effects, especially in facial masks, but long-term use is hazardous to the health. The abuse of DE in whitening and acne cosmetic products is currently a serious problem in China. It is necessary to establish a rapid method of detecting illegal DE addition in cosmetics. In the present study, a monoclonal antibody (mAb) against DE, 2D5-3D12, was developed that displayed cross-reactivities of 124.5%, 38.8%, 6.7%, 0.9%, 1.1%, 1.82%, and 2.39% with prednisolone, betamethasone, prednisone, beclomethasone, hydrocortisone, triamcinolone, and flumetasone, respectively. A colloidal gold-based lateral flow immunographic assay based on mAb 2D5-3D12 was established and used to determine the DE contents of commercial facial masks. The indicator range of the immunographic assay for DE was 100-200 ng/mL, and the results were consistent with those afforded by LC-MS. This novel method provides the advantages of simple sample treatment, a user-friendly procedure, and rapid detection. Graphical abstract.
Collapse
Affiliation(s)
- Min Wang
- College of Science, Beijing Technology and Business University, Beijing, 102488, China.
| | - Liqun Guo
- College of Science, Beijing Technology and Business University, Beijing, 102488, China
| | - Miao Yu
- College of Science, Beijing Technology and Business University, Beijing, 102488, China
| | - Hua Zhao
- College of Science, Beijing Technology and Business University, Beijing, 102488, China
| |
Collapse
|
12
|
Hole K, Nfon C. Foot-and-mouth disease virus detection on a handheld real-time polymerase chain reaction platform. Transbound Emerg Dis 2019; 66:1789-1795. [PMID: 31077564 DOI: 10.1111/tbed.13227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that requires rapid control. Early detection is critical but transportation of samples to laboratory delays testing. Sensitive and specific field-deployable assays are therefore desirable. Real-time reverse transcription polymerase chain reaction (RRT-PCR) and RRT-loop-mediated isothermal amplification assays for FMDV on portable platforms have been described but none of these are handheld. In this report, we have evaluated a handheld Biomeme two3™ Real-Time PCR Thermocycler (two3) as a field-deployable platform for FMDV RRT-PCR targeting the 3D gene segment. Two3's performance was compared with the laboratory-based reference assay on the ABI7500 platform. RNA extraction using a rapid Biomeme proprietary sample prep technology (M1) was compared with MagMax RNA extraction. Two3 successfully detected FMDV isolates for six serotypes (O, A, Asia 1, SAT 1, 2 and 3). Serotype C was excluded since it has not been detected in the field since 2004. The limits of detection for serial 10-fold dilutions of cell culture isolates were equal or one log different between two3 and ABI7500. Furthermore, two3 detected FMDV RNA in multiple sample types including serum, vesicular fluid, tissue suspensions, oral fluid, oral and nasal swabs. Two3 also detected FMDV RNA directly in vesicular fluid and other samples without prior RNA extraction. Comparison of the time to first detection of a positive result in serial samples in MagMax RNA extraction/ABI7500 (MgMx/ABI) system vs. M1 RNA extraction/Two3 system revealed similar or slightly better analytical sensitivity for the MgMx/ABI system. Overall, RNA extraction by M1 yielded good results and FMDV RNA detection on two3 was not significantly different from the ABI7500. Therefore, two3 could potentially enable sensitive penside detection of FMDV within an hour using M1-extracted RNA or direct testing of vesicular fluid and swabs without RNA extraction thereby ensuring prompt implementation of appropriate control measures.
Collapse
Affiliation(s)
- Kate Hole
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Charles Nfon
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Lycett S, Tanya VN, Hall M, King DP, Mazeri S, Mioulet V, Knowles NJ, Wadsworth J, Bachanek-Bankowska K, Ngu Ngwa V, Morgan KL, Bronsvoort BMDC. The evolution and phylodynamics of serotype A and SAT2 foot-and-mouth disease viruses in endemic regions of Africa. Sci Rep 2019; 9:5614. [PMID: 30948742 PMCID: PMC6449503 DOI: 10.1038/s41598-019-41995-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a major livestock disease with direct clinical impacts as well as indirect trade implications. Control through vaccination and stamping-out has successfully reduced or eradicated the disease from Europe and large parts of South America. However, sub-Saharan Africa remains endemically affected with 5/7 serotypes currently known to be circulating across the continent. This has significant implications both locally for livestock production and poverty reduction but also globally as it represents a major reservoir of viruses, which could spark new epidemics in disease free countries or vaccination zones. This paper describes the phylodynamics of serotypes A and SAT2 in Africa including recent isolates from Cameroon in Central Africa. We estimated the most recent common ancestor for serotype A was an East African virus from the 1930s (median 1937; HPD 1922-1950) compared to SAT2 which has a much older common ancestor from the early 1700s (median 1709; HPD 1502-1814). Detailed analysis of the different clades shows clearly that different clades are evolving and diffusing across the landscape at different rates with both serotypes having a particularly recent clade that is evolving and spreading more rapidly than other clades within their serotype. However, the lack of detailed sequence data available for Africa seriously limits our understanding of FMD epidemiology across the continent. A comprehensive view of the evolutionary history and dynamics of FMD viruses is essential to understand many basic epidemiological aspects of FMD in Africa such as the scale of persistence and the role of wildlife and thus the opportunities and scale at which vaccination and other controls could be applied. Finally we ask endemic countries to join the OIE/FAO supported regional networks and take advantage of new cheap technologies being rolled out to collect isolates and submit them to the World Reference Laboratory.
Collapse
Affiliation(s)
- S Lycett
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK
| | - V N Tanya
- Cameroon Academy of Sciences, P.O. Box 1457, Yaoundé, Cameroon
| | - M Hall
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JR, United Kingdom
| | - D P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - S Mazeri
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK
| | - V Mioulet
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - N J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - J Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | | | - Victor Ngu Ngwa
- School of Veterinary Medicine and Sciences, B.P. 454, University of Ngaoundere, Ngaoundere, Cameroon
| | - K L Morgan
- Institute of Ageing and Chronic Disease and School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - B M de C Bronsvoort
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK.
| |
Collapse
|
14
|
Yang M, Mudabuka B, Quizon K, Nfon C. Generation of monoclonal antibodies against foot-and-mouth disease virus SAT 2 and the development of a lateral flow strip test for virus detection. Transbound Emerg Dis 2018; 66:1158-1166. [PMID: 30462886 DOI: 10.1111/tbed.13076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease (FMD) remains a major economic concern for the livestock productivity in many developing countries and a continued threat to countries that are disease free because of its potential devastating impact on agricultural, food chain and tourism sectors. FMD virus (FMDV) is recognized as having seven serotypes: O, A, C, Asia 1, South African Territories (SAT) 1, 2, 3 and multiple subtypes within each serotype. FMD outbreaks due to SAT 2 have been reported in many African countries. The development of a rapid and easily performed test for FMD detection is critical for controlling FMD outbreaks and containing its spread. The present project developed a lateral flow immunochromatographic (LFI) strip test for the rapid detection of FMDV SAT 2. A panel of monoclonal antibodies (mAbs) against FMDV serotype SAT 2 was produced and characterized. One mAb (#10) was selected as the capture mAb because it reacted to all 23 SAT 2 isolates archived at the National Center for Foreign Animal Disease. The LFI strip test was developed using biotin-conjugated mAb #10, and the colloid gold-conjugated FMDV serotype-independent mAb as the detection mAb. A generic Rapid Assay Device (gRAD) with one test line and a control line was used for the test. The LFI strip test detected all 23 tested SAT 2 isolates and recent outbreak strains. The results indicated that the diagnostic specificity and sensitivity of the LFI strip test were greater than the double antibody sandwich (DAS) DAS ELISA. The ability of the LFI strip test to produce rapid diagnostic results will be useful for early on-site diagnosis during FMD outbreaks.
Collapse
Affiliation(s)
- Ming Yang
- National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | - Boitumelo Mudabuka
- Botswana Institute for Technology Research and Innovation, Gaborone, Botswana
| | - Kaye Quizon
- National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | - Charles Nfon
- National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Brangel P, Sobarzo A, Parolo C, Miller BS, Howes PD, Gelkop S, Lutwama JJ, Dye JM, McKendry RA, Lobel L, Stevens MM. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS NANO 2018; 12:63-73. [PMID: 29303554 DOI: 10.1021/acsnano.7b07021] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ebola virus disease causes widespread and highly fatal epidemics in human populations. Today, there is still great need for point-of-care tests for diagnosis, patient management and surveillance, both during and post outbreaks. We present a point-of-care test comprising an immunochromatographic strip and a smartphone reader, which detects and semiquantifies Ebola-specific antibodies in human survivors. We developed a Sudan virus glycoprotein monoplex platform and validated it using sera from 90 human survivors and 31 local noninfected controls. The performance of the glycoprotein monoplex was 100% sensitivity and 98% specificity compared to standard whole antigen enzyme-linked immunosorbent assay (ELISA), and it was validated with freshly collected patient samples in Uganda. Moreover, we constructed a multiplex test for simultaneous detection of antibodies against three recombinant Sudan virus proteins. A pilot study comprising 15 survivors and 5 noninfected controls demonstrated sensitivity and specificity of 100% compared to standard ELISA. Finally, we developed a second multiplex subtype assay for the identification of exposure to three related EVD species: Sudan virus, Bundibugyo virus and Ebola virus (formerly Zaire) using recombinant viral glycoprotein. This multiplex test could distinguish between the host's immunity to specific viral species and identify cross-reactive immunity. These developed serological platforms consisted of capture ligands with high specificity and sensitivity, in-house developed strips and a compatible smartphone application. These platforms enabled rapid and portable testing, data storage and sharing as well as geographical tagging of the tested individuals in Uganda. This platform holds great potential as a field tool for diagnosis, vaccine development, and therapeutic evaluation.
Collapse
Affiliation(s)
- Polina Brangel
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London , London SW7 2AZ, U.K
| | - Ariel Sobarzo
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Claudio Parolo
- London Centre for Nanotechnology and Div. of Medicine, University College London , London WC1E 6B, U.K
| | - Benjamin S Miller
- London Centre for Nanotechnology and Div. of Medicine, University College London , London WC1E 6B, U.K
| | - Philip D Howes
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London , London SW7 2AZ, U.K
| | - Sigal Gelkop
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infection, Uganda Virus Research Institute , Entebbe P.O Box 49, Uganda
| | - John M Dye
- Virology Division, US Army Medical Research Institute of Infectious Diseases , Fort Detrick, Frederick, Maryland 21702, United States
| | - Rachel A McKendry
- London Centre for Nanotechnology and Div. of Medicine, University College London , London WC1E 6B, U.K
| | - Leslie Lobel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer-Sheva 8410501, Israel
- Department of Arbovirology, Emerging and Re-emerging Infection, Uganda Virus Research Institute , Entebbe P.O Box 49, Uganda
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
16
|
Vrublevskaya VV, Afanasyev VN, Grinevich AA, Skarga YY, Gladyshev PP, Ibragimova SA, Krylsky DV, Dezhurov SV, Morenkov OS. A sensitive and specific lateral flow assay for rapid detection of antibodies against glycoprotein B of Aujeszky's disease virus. J Virol Methods 2017; 249:175-180. [DOI: 10.1016/j.jviromet.2017.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|
17
|
Neethirajan S, Tuteja SK, Huang ST, Kelton D. Recent advancement in biosensors technology for animal and livestock health management. Biosens Bioelectron 2017; 98:398-407. [PMID: 28711026 DOI: 10.1016/j.bios.2017.07.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Abstract
The term biosensors encompasses devices that have the potential to quantify physiological, immunological and behavioural responses of livestock and multiple animal species. Novel biosensing methodologies offer highly specialised monitoring devices for the specific measurement of individual and multiple parameters covering an animal's physiology as well as monitoring of an animal's environment. These devices are not only highly specific and sensitive for the parameters being analysed, but they are also reliable and easy to use, and can accelerate the monitoring process. Novel biosensors in livestock management provide significant benefits and applications in disease detection and isolation, health monitoring and detection of reproductive cycles, as well as monitoring physiological wellbeing of the animal via analysis of the animal's environment. With the development of integrated systems and the Internet of Things, the continuously monitoring devices are expected to become affordable. The data generated from integrated livestock monitoring is anticipated to assist farmers and the agricultural industry to improve animal productivity in the future. The data is expected to reduce the impact of the livestock industry on the environment, while at the same time driving the new wave towards the improvements of viable farming techniques. This review focusses on the emerging technological advancements in monitoring of livestock health for detailed, precise information on productivity, as well as physiology and well-being. Biosensors will contribute to the 4th revolution in agriculture by incorporating innovative technologies into cost-effective diagnostic methods that can mitigate the potentially catastrophic effects of infectious outbreaks in farmed animals.
Collapse
Affiliation(s)
- Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Satish K Tuteja
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Sheng-Tung Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 10608, Taiwan
| | - David Kelton
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
18
|
Kulabhusan PK, Rajwade JM, Sugumar V, Taju G, Sahul Hameed AS, Paknikar KM. Field-Usable Lateral Flow Immunoassay for the Rapid Detection of White Spot Syndrome Virus (WSSV). PLoS One 2017; 12:e0169012. [PMID: 28046005 PMCID: PMC5207695 DOI: 10.1371/journal.pone.0169012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background White spot disease (WSD), a major threat to sustainable aquaculture worldwide, is caused by White spot syndrome virus (WSSV). The diagnosis of WSD relies heavily on molecular detection of the virus by one-step PCR. These procedures are neither field-usable nor rapid enough considering the speed at which the virus spreads. Thus, development of a rapid, reliable and field-usable diagnostic method for the detection of WSSV infection is imperative to prevent huge economic losses. Methods/Principal Findings Here, we report on the development of a lateral flow immunoassay (LFIA) employing gold nanoparticles conjugated to a polyclonal antibody against VP28 (envelope protein of WSSV). The LFIA detected WSSV in ~20 min and showed no cross-reactivity with other shrimp viruses, viz. Monodon Baculovirus (MBV), Hepatopancreatic parvovirus (HPV) and Infectious Hypodermal and Hematopoietic Necrosis virus (IHHNV). The limit of detection (LOD) of the assay, as determined by real-time PCR, was 103 copies of WSSV. In a time course infectivity experiment, ~104 WSSV particles were injected in Litopenaeus vannamei. The LFIA could rapidly (~ 20 min) detect the virus in different tissues after 3 h (hemolymph), 6 h (gill tissue) and 12 h (head soft tissue, eye stalk, and pleopod) of infection. Based on these findings, a validation study was performed using 75 field samples collected from different geographical locations in India. The LFIA results obtained were compared with the conventional “gold standard test”, viz. one-step PCR. The analysis of results in 2x2 matrix indicated very high sensitivity (100%) and specificity (96.77%) of LFIA. Similarly, Cohen’s kappa coefficient of 0.983 suggested "very good agreement” between the developed LFIA and the conventional one-step PCR. Conclusion The LFIA developed for the rapid detection of WSSV has an excellent potential for use in the field and could prove to be a boon to the aquaculture industry.
Collapse
Affiliation(s)
| | | | - Vimal Sugumar
- OIE Reference Laboratory for WTD, C. Abdul Hakeem College, Melvisharam, Tamilnadu, India
| | - Gani Taju
- OIE Reference Laboratory for WTD, C. Abdul Hakeem College, Melvisharam, Tamilnadu, India
| | - A. S. Sahul Hameed
- OIE Reference Laboratory for WTD, C. Abdul Hakeem College, Melvisharam, Tamilnadu, India
- * E-mail: (KMP); (ASS)
| | - Kishore M. Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, India
- * E-mail: (KMP); (ASS)
| |
Collapse
|
19
|
Development of a competitive double antibody lateral flow assay for the detection of antibodies specific to glycoprotein B of Aujeszky's disease virus in swine sera. J Virol Methods 2016; 240:54-62. [PMID: 27894861 DOI: 10.1016/j.jviromet.2016.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022]
Abstract
Three lateral flow assays (LFAs) for the detection of antibodies against glycoprotein B (gB) of Aujeszky's disease virus (ADV) in swine sera: a competitive double antibody sandwich LFA without a preincubation step (CDAS-gB-LFA), a CDAS-gB-LFA with a preincubation step (pCDAS-gB-LFA), and a competitive direct gB-LFA have been developed and were compared with each other and with a gB-ELISA. The assays are based on monoclonal antibodies to immunodominant epitopes of ADV gB. The pCDAS-gB-LFA proved to be the most specific and sensitive assay to detect antibodies directed to ADV gB. The specificity and sensitivity of the pCDAS-gB-LFA with the use of an LFA reader for test line intensity measurements were 97.6 and 94.9%, respectively. The lower diagnostic sensitivity of the pCDAS-gB-LFA compared to a gB-ELISA reflects its reduced analytical sensitivity, which was shown in titration experiments with positive sera. The pCDAS-gB-LFA, using the reader-based and visual detection modes, showed good agreement in respect to specificity; however, the LFA reader detection provided a higher diagnostic and analytical sensitivity compared to visual detection. The developed pCDAS-gB-LFA is a rapid, sensitive, and specific method for the detection of antibodies to ADV gB and can be used for screening ADV-infected swine in unvaccinated herds.
Collapse
|
20
|
Ambagala A, Fisher M, Goolia M, Nfon C, Furukawa-Stoffer T, Ortega Polo R, Lung O. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus. Transbound Emerg Dis 2016; 64:1610-1623. [PMID: 27589902 PMCID: PMC7169878 DOI: 10.1111/tbed.12554] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 12/23/2022]
Abstract
Foot‐and‐mouth disease (FMD) is a highly contagious viral disease of cloven‐hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot‐and‐mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field‐deployable assay would support local decision‐making during an FMDV outbreak. Here we report validation of a novel reverse transcription‐insulated isothermal PCR (RT‐iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT™ analyser that automatically analyses data and displays ‘+’ or ‘−’ results. The FMDV RT‐iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro‐transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross‐reactivity with viruses causing similar clinical diseases in cloven‐hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory‐based real‐time RT‐PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco™ mini transportable magnetic bead‐based, automated extraction system was used. This assay provides a potentially useful field‐deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD‐free countries or for routine diagnostics in endemic countries with less structured laboratory systems.
Collapse
Affiliation(s)
- A Ambagala
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - M Fisher
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - M Goolia
- Canadian Food Inspection Agency, National Centre for Foreign Animal Diseases, Canadian Science Centre for Human and Animal Health, Winnipeg, MB, Canada
| | - C Nfon
- Canadian Food Inspection Agency, National Centre for Foreign Animal Diseases, Canadian Science Centre for Human and Animal Health, Winnipeg, MB, Canada
| | - T Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - R Ortega Polo
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - O Lung
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| |
Collapse
|
21
|
Li J, Macdonald J. Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosens Bioelectron 2016; 83:177-92. [DOI: 10.1016/j.bios.2016.04.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022]
|
22
|
|
23
|
Lee S, Mehta S, Erickson D. Two-Color Lateral Flow Assay for Multiplex Detection of Causative Agents Behind Acute Febrile Illnesses. Anal Chem 2016; 88:8359-63. [PMID: 27490379 DOI: 10.1021/acs.analchem.6b01828] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute undifferentiated febrile illnesses (AFIs) represent a significant health burden worldwide. AFIs can be caused by infection with a number of different pathogens including dengue (DENV) and Chikungunya viruses (CHIKV), and their differential diagnosis is critical to the proper patient management. While rapid diagnostic tests (RDTs) for the detection of IgG/IgM against a single pathogen have played a significant role in enabling the rapid diagnosis in the point-of-care settings, the state-of-the-art assay scheme is incompatible with the multiplex detection of IgG/IgM to more than one pathogen. In this paper, we present a novel assay scheme that uses two-color latex labels for rapid multiplex detection of IgG/IgM. Adapting this assay scheme, we show that 4-plex detection of the IgG/IgM antibodies to DENV and CHIKV is possible in 10 min by using it to correctly identify 12 different diagnostic scenarios. We also show that blue, mixed, and red colorimetric signals corresponding to IgG, IgG/IgM, and IgM positive cases, respectively, can be associated with distinct ranges of hue intensities, which could be exploited by analyzer systems in the future for making accurate, automated diagnosis. This represents the first steps toward the development of a single RDT-based system for the differential diagnosis of numerous AFIs of interest.
Collapse
Affiliation(s)
- Seoho Lee
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, United States.,Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University , Ithaca, New York 14853, United States
| | - Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University , Ithaca, New York 14853, United States.,Division of Nutritional Sciences, Cornell University , Ithaca, New York 14853, United States
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, United States.,Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University , Ithaca, New York 14853, United States.,Division of Nutritional Sciences, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Knight-Jones TJD, Robinson L, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 4 - Diagnostics. Transbound Emerg Dis 2016; 63 Suppl 1:42-8. [DOI: 10.1111/tbed.12523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - L. L. Rodriguez
- Plum Island Animal Disease Center; ARS; USDA; Greenport NY USA
| | - C. G. Gay
- Agricultural Research Service; USDA; National Program 103-Animal Health; Beltsville MD USA
| | - K. J. Sumption
- European Commission for the Control of FMD (EuFMD); FAO; Rome Italy
| | - W. Vosloo
- Australian Animal Health Laboratory; CSIRO-Biosecurity Flagship; Geelong VIC Australia
| |
Collapse
|