1
|
Li J, Lv L, Hu M, Liu Z, Zhou S. Inhibition of N6-methyladenosine methylation of ASC by berberine ameliorates pyroptosis of renal tubular epithelial cells in acute kidney injury. Cell Signal 2025; 131:111732. [PMID: 40074191 DOI: 10.1016/j.cellsig.2025.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Acute kidney injury (AKI) lacks a definitive therapeutic approach beyond supportive care. One significant pathological mechanism involves the regulated death of tubular epithelial cells; however, the regulatory mechanisms underlying this cell death pathway require further investigation. The N6-methyladenosine (m6A) modification, recognized as the most prevalent modification in eukaryotes, plays a critical role in the regulatory processes associated with AKI. Here, this study investigates the association between methyltransferase-like 3 (METTL3) and pyroptosis in mice with folic acid (FA)-induced AKI. Both in vitro and in vivo experiments have confirmed that METTL3 plays a role in AKI progression, correlating with renal epithelial cell pyroptosis and inflammation. Moreover, RNA immunoprecipitation quantitative PCR (RIP-qPCR) analysis demonstrated that METTL3-mediated m6A methylation occurred in the mRNA of Apoptosis-associated speck-like protein containing a CARD (ASC) in H2O2-induced renal tubular epithelial (TCMK-1) cells. Notably, METTL3 knockdown resulted in reduced ASC protein expression, decreased release of inflammatory factors, and reduced pyroptosis. In addition, we verified the inhibitory effect of berberine hydrochloride, a monomer used in traditional Chinese medicine, on METTL3 expression. We also demonstrated that berberine ameliorated FA-induced AKI and H2O2-induced pyroptosis in TCMK-1 cells by inhibiting METTL3 and modulating the ASC/caspase-1/Gasdermin D axis. These findings provide insights into targeted therapies and drug development for AKI.
Collapse
Affiliation(s)
- Jiacheng Li
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Linxiao Lv
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Mingyang Hu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China.
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China.
| |
Collapse
|
2
|
Ren Z, Shao F, Chen S, Sun Y, Ding Z, Dong L, Zhang J, Zang Y. Contribution of alterations in peritubular capillary density and microcirculation to the progression of tubular injury and kidney fibrosis. J Pathol 2025; 266:95-108. [PMID: 40103536 DOI: 10.1002/path.6414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
Peritubular capillary (PTC) rarefaction is a common pathological feature of chronic kidney disease (CKD). The critical function of PTCs in maintaining blood supply for tubular epithelial cells renders PTCs a promising therapeutic target. However, the role of PTC rarefaction in the progression of kidney fibrosis remains elusive. In this study, we first characterized mice with altered PTC density. CD31 staining, together with microvascular network perfusion with FITC-labelled albumin and laser speckle contrast imaging, revealed a significant increase in PTC density in Flt1 heterozygous-deficient mice, whereas homozygous disruption of the plasminogen activator, urokinase receptor gene (Plaur/uPAR), led to a notable decrease in PTC density. Using these genetically distinct mice, we showed that preexisting higher PTC density protected against tubular injury and attenuated the progression of tubulointerstitial fibrosis in two distinct kidney injury models, namely, ischemia-reperfusion injury (IRI) and unilateral ureteral obstruction (UUO). By contrast, Plaur-deficient mice with established lower PTC density displayed exacerbated tubular injury and renal fibrosis when subjected to IRI or UUO. The pathophysiological significance of PTC density was associated with protective effects on tubular cell apoptosis and concomitant regeneration. Finally, vasodilation of the renal capillary with minoxidil, a clinically available drug, effectively prevented UUO-induced tubular injury and renal fibrosis. Moreover, minoxidil treatment abolished the detrimental effect of Plaur deficiency on the UUO-treated kidney, thus suggesting a causative role of PTC density in the susceptibility of Plaur knockout mice to tubular injury following fibrosis. Our results provide an overview of the pathologic significance of PTC density alterations in the progression of CKD, and show that improving peritubular microcirculation is effective in preventing tubular injury and the subsequent renal fibrosis. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fang Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Shuli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yanyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| |
Collapse
|
3
|
Liang BE, Long LS, Wu XY, Huang MY, Lai Y, Yuan X, Wang MH, Li M, Zheng QQ, Zhang HL, Chen MC, Liu ZD, Geng X, Lyu QQ, Wang WD, Liu QH, Liu WZ, Li CL. Alginate oligosaccharide prevents renal ischemia-reperfusion injury in rats via MRC1-mediated pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01545-3. [PMID: 40263568 DOI: 10.1038/s41401-025-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) is a clinical syndrome that is defined as a sudden decline in renal function and characterized by inflammation and tubular injury. Alginate oligosaccharide (AOSC), a natural product obtained from alginate by acidolysis and hydrolysis, shows activities of antioxidant, immunomodulation, and anti-inflammation. In this study, we investigated the potential of AOSC in the treatment of AKI. Renal ischemia-reperfusion (I/R) was induced in male rats by clipping both the renal artery and vein for 45 min followed by reperfusion for 24 h. The rats were treated with AOSC (100 mg/kg, i.g.) before surgery. At the end of the experiments, both kidneys were collected for protein, mRNA measurement, or histological analysis. We showed that AOSC pretreatment significantly improved glomerular and tubular function in the kidney of I/R rats. AOSC markedly inhibited I/R-induced activation of TLR4/MyD88/NF-κB/IL-1β inflammatory signaling and prevented apoptosis in the kidney. In HK2 cells subjected to hypoxia/reoxygenation (H/R) stimulation, AOSC (250-1000 μg/ml) dose-dependently prevented pro-inflammatory responses and cell apoptosis. Transcriptomic analysis revealed that I/R increased the expression levels of mannose receptor type C1 (MRC1) in the kidney, which was markedly inhibited by AOSC. Molecular docking showed that AOSC interacted with E725, N727, E733, T743, S745, and N747 of MRC1 through hydrogen bonds. MRC1 gene knockout significantly improved renal function and attenuated I/R-induced kidney inflammation and apoptosis in mice. In line with this, AOSC failed to prevent I/R-induced kidney injury in MRC1 gene knockout mice. UPLC analysis showed that the protection of AOSC in HK2 cells subjected to H/R was likely attributed to MRC1-mediated intracellular endocytosis. In conclusion, AOSC prevents I/R-induced AKI, which is at least partially mediated by MRC1.
Collapse
Affiliation(s)
- Bai-En Liang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Luo-Sha Long
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin-Yan Wu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mei-Ying Huang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Lai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Yuan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Hui Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Qi Zheng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hai-Ling Zhang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Man-Chun Chen
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen-de Liu
- Haitang (Jiangsu) Biotechnology Co Ltd, Nantong, 226100, China
| | - Xin Geng
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Qian-Qian Lyu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wei-Dong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Hua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
- Department of Nephrology, Jieyang People's Hospital, Jieyang, 522000, China.
| | - Wei-Zhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Chun-Ling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Wang Y, Li Q. Integrated multiomics analysis identifies potential biomarkers and therapeutic targets for autophagy associated AKI to CKD transition. Sci Rep 2025; 15:13687. [PMID: 40258914 DOI: 10.1038/s41598-025-97269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/03/2025] [Indexed: 04/23/2025] Open
Abstract
This study explored the relationship between acute kidney injury (AKI) and chronic kidney disease (CKD), focusing on autophagy-related genes and their immune infiltration during the transition from AKI to CKD. We performed weighted correlation network analysis (WGCNA) using two microarray datasets (GSE139061 and GSE66494) in the GEO database and identified autophagy signatures by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA enrichment analysis. Machine learning algorithms such as LASSO, random forest, and XGBoost were used to construct the diagnostic model, and the diagnostic performance of GSE30718 (AKI) and GSE37171 (CKD) was used as validation cohorts to evaluate its diagnostic performance. The study identified 14 autophagy candidate genes, among which ATP6V1C1 and COPA were identified as key biomarkers that were able to effectively distinguish between AKI and CKD. Immune cell infiltration and GSEA analysis revealed immune dysregulation in AKI, and these genes were associated with inflammation and immune pathways. Single-cell analysis showed that ATP6V1C1 and COPA were specifically expressed in AKI and CKD, which may be related to renal fibrosis. In addition, drug prediction and molecular docking analysis proposed SZ(+)-(S)-202-791 and PDE4 inhibitor 16 as potential therapeutic agents. In summary, this study provides new insights into the relationship between AKI and CKD and lays a foundation for the development of new treatment strategies.
Collapse
Affiliation(s)
- Yaojun Wang
- Clinical Medical College, Affiliated Hospital, Hebei University, Baoding, 071000, Hebei, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China.
| |
Collapse
|
5
|
Awasthi BW, Paulo JA, Burkhart DL, Smith IR, Collins RL, Harper JW, Gygi SP, Haigis KM. The network response to Egf is tissue-specific. iScience 2025; 28:112146. [PMID: 40171493 PMCID: PMC11960661 DOI: 10.1016/j.isci.2025.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/29/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Epidermal growth factor receptor (Egfr)-driven signaling regulates fundamental homeostatic processes. Dysregulated signaling via Egfr is implicated in numerous disease pathologies and distinct Egfr-associated disease etiologies are known to be tissue-specific. The molecular basis of this tissue-specificity remains poorly understood. Most studies of Egfr signaling to date have been performed in vitro or in tissue-specific mouse models of disease, which has limited insight into Egfr signaling patterns in healthy tissues. Here, we carried out integrated phosphoproteomic, proteomic, and transcriptomic analyses of signaling changes across various mouse tissues in response to short-term stimulation with the Egfr ligand Egf. We show how both baseline and Egf-stimulated signaling dynamics differ between tissues. Moreover, we propose how baseline phosphorylation and total protein levels may be associated with clinically relevant tissue-specific Egfr-associated phenotypes. Altogether, our analyses illustrate tissue-specific effects of Egf stimulation and highlight potential links between underlying tissue biology and Egfr signaling output.
Collapse
Affiliation(s)
- Beatrice W. Awasthi
- Center for Systems Biology, Department of Radiation Oncology, and Center for Cancer Research, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - João A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Deborah L. Burkhart
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Ian R. Smith
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan L. Collins
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Cancer Program, Broad Institute of M.I.T. and Harvard, Cambridge, MA 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Peng Y, Zhang Y, Wang R, Wang X, Liu X, Liao H, Li R. Inonotus obliquus (chaga) ameliorates folic acid-induced renal fibrosis in mice: the crosstalk analysis among PT cells, macrophages and T cells based on single-cell sequencing. Front Pharmacol 2025; 16:1556739. [PMID: 40160460 PMCID: PMC11949929 DOI: 10.3389/fphar.2025.1556739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Background Renal fibrosis, characterized by the abnormal accumulation of extracellular matrix in renal tissue and progressive loss of kidney function, is posing a significant challenge in clinical treatment. While several therapeutic options exist, effective treatments remain limited. Inonotus obliquus (Chaga), a traditional medicinal mushroom, has shown promising effects in chronic kidney disease (CKD), yet its cellular and molecular mechanisms remain largely unexplored. Methods We analysed the chemical composition of Chaga using UPLC-MS and predicted its biological targets using PubChem and Swiss Target Prediction. We used single-cell RNA sequencing to study cellular responses in a mouse model of folic acid-induced renal fibrosis, complemented by spatial transcriptomics to map cellular location patterns. Histological assessment was performed using H&E and Masson trichrome staining. Results For the first time, we employed single-cell RNA sequencing technology to investigate Chaga treatment in renal fibrosis. Histological analysis revealed that Chaga treatment significantly reduced renal tubular damage scores [from 5.00 (5.00, 5.00) to 2.00 (2.00, 2.00), p < 0.05] and decreased collagen deposition area (from 11.40% ± 3.01% to 4.06% ± 0.45%, p < 0.05) at day 14. Through analysis of 82,496 kidney cells, we identified 30 distinct cell clusters classified into eight cell types. Key findings include the downregulation of pro-inflammatory M1 macrophages and upregulation of anti-inflammatory M2 macrophages, alongside decreased T cell responses. Single-cell sequencing revealed differential gene expression in proximal tubular subpopulations associated with reduced fibrosis. Pathway and network pharmacology analyses of 60 identified compounds in Chaga and their 675 predicted targets suggested potential effects on immune and fibrotic pathways, particularly affecting Tregs and NKT cells. Cell-to-cell communication analyses revealed potential interactions between proximal tubular cells, macrophages, and T Cells, providing insights into possible mechanisms by which Chaga may ameliorate renal fibrosis. Conclusion Our study provided new insights into the potential therapeutic effects of Chaga in renal fibrosis through single-cell sequencing analysis. Our findings suggest that Chaga may represent a promising candidate for renal fibrosis treatment, though further experimental validation is needed to establish its clinical application.
Collapse
Affiliation(s)
- Yueling Peng
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Yaling Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
- Department of Nephrology, Taiyuan Central Hospital, Taiyuan, China
| | - Rui Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xinyu Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xingwei Liu
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| |
Collapse
|
7
|
Yang S, Shen Y. The polarization of macrophages participates in the repair after folic acid-induced acute kidney injury. Cell Immunol 2025; 409-410:104929. [PMID: 39933418 DOI: 10.1016/j.cellimm.2025.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Acute kidney injury (AKI) remains a major public health challenge, posing serious threats to human health. Increasing evidence indicates that renal cells undergo significant metabolic alterations following AKI, with inflammatory responses persisting throughout both injury and repair phases. Our previous research has demonstrated that heightened aerobic glycolysis after AKI leads to increased secretion of metabolic byproducts such as lactate, which plays a critical role in tissue repair. However, the relationship between metabolic reprogramming and inflammatory responses, as well as the underlying mechanisms, remain poorly understood. This study aims to clarify the regulatory effects of the glycolytic byproduct lactate on macrophage activation and phenotypic differentiation following AKI. We observed increased expression of M1/M2 macrophages and elevated secretion of inflammatory cytokines after folic acid-induced AKI. Immunofluorescence staining showed co-localization of macrophages with α-SMA. Manipulating lactate levels post-injury led to a decrease in macrophage expression and a reduction in fibroblast activation and proliferation, ultimately impairing renal tissue repair. These findings suggest that targeting lactate as a key regulator of macrophage phenotype differentiation may provide a theoretical and clinical foundation for therapeutic strategies in AKI repair.
Collapse
Affiliation(s)
- Shujie Yang
- Medical School of Nantong University, Nantong City, Jiangsu Province, China; Intensive Care Unit, The People's Hospital of Rugao, Rugao 226500, Jiangsu Province, China
| | - Yan Shen
- Medical School of Nantong University, Nantong City, Jiangsu Province, China; Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
8
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2025; 21:157-174. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
9
|
Wijaya LS, Kunnen SJ, Trairatphisan P, Fisher CP, Crosby ME, Schaefer K, Bodié K, Vaughan EE, Breidenbach L, Reich T, Clausznitzer D, Bonnet S, Zheng S, Pont C, Stevens JL, Le Dévédec SE, van de Water B. Spatio-temporal transcriptomic analysis reveals distinct nephrotoxicity, DNA damage, and regeneration response after cisplatin. Cell Biol Toxicol 2025; 41:49. [PMID: 39982567 PMCID: PMC11845422 DOI: 10.1007/s10565-025-10003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Nephrotoxicity caused by drug or chemical exposure involves complex mechanisms as well as a temporal integration of injury and repair responses in different nephron segments. Distinct cellular transcriptional programs regulate the time-dependent tissue injury and regeneration responses. Whole kidney transcriptome analysis cannot dissect the complex spatio-temporal injury and regeneration responses in the different nephron segments. Here, we used laser capture microdissection of formalin-fixed paraffin embedded sections followed by whole genome targeted RNA-sequencing-TempO-Seq and co-expression gene-network (module) analysis to determine the spatial-temporal responses in rat kidney glomeruli (GM), cortical proximal tubules (CPT) and outer-medulla proximal tubules (OMPT) comparison with whole kidney, after a single dose of the nephrotoxicant cisplatin. We demonstrate that cisplatin induced early onset of DNA damage in both CPT and OMPT, but not GM. Sustained DNA damage response was strongest in OMPT coinciding with OMPT specific inflammatory signaling, actin cytoskeletal remodeling and increased glycolytic metabolism with suppression of mitochondrial activity. Later responses reflected regeneration-related cell cycle pathway activation and ribosomal biogenesis in the injured OMPT regions. Activation of modules containing kidney injury biomarkers was strongest in OMPT, with OMPT Clu expression highly correlating with urinary clusterin biomarker measurements compared the correlation of Kim1. Our findings also showed that whole kidney responses were less sensitive than OMPT. In conclusion, our LCM-TempO-Seq method reveals a detailed spatial mechanistic understanding of renal injury/regeneration after nephrotoxicant exposure and identifies the most representative mechanism-based nephron segment specific renal injury biomarkers.
Collapse
Affiliation(s)
- Lukas S Wijaya
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Steven J Kunnen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Panuwat Trairatphisan
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
- , Sanofi, Frankfurt, Hesse, Germany
| | | | - Meredith E Crosby
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL, USA
- Drug Safety and Pharmacometrics, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Kai Schaefer
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | - Karen Bodié
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | - Erin E Vaughan
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL, USA
| | | | - Thomas Reich
- Abbvie Deutschland, GmbH & Co KG, Ludwigshafen, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sipeng Zheng
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Chantal Pont
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - James L Stevens
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
10
|
Pham DX, Hsu T. Tumor-initiating and metastasis-initiating cells of clear-cell renal cell carcinoma. J Biomed Sci 2025; 32:17. [PMID: 39920694 PMCID: PMC11806631 DOI: 10.1186/s12929-024-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common subtype of kidney malignancy. ccRCC is considered a major health concern worldwide because its numbers of incidences and deaths continue to rise and are predicted to continue rising in the foreseeable future. Therefore new strategy for early diagnosis and therapeutics for this disease is urgently needed. The discovery of cancer stem cells (CSCs) offers hope for early cancer detection and treatment. However, there has been no definitive identification of these cancer progenitors for ccRCC. A majority of ccRCC is characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene function. Recent advances in genome analyses of ccRCC indicate that in ccRCC, tumor-initiating cells (TICs) and metastasis-initiating cells (MICs) are two distinct groups of progenitors. MICs result from various genetic changes during subclonal evolution, while TICs reside in the stem of the ccRCC phylogenetic tree of clonal development. TICs likely originate from kidney tubule progenitor cells bearing VHL gene inactivation, including chromatin 3p loss. Recent studies also point to the importance of microenvironment reconstituted by the VHL-deficient kidney tubule cells in promoting ccRCC initiation and progression. These understandings should help define the progenitors of ccRCC and facilitate early detection and treatment of this disease.
Collapse
Affiliation(s)
- Dinh-Xuan Pham
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan, ROC
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan, ROC.
- Graduate Institute of Biomedical Sciences, China Medical University-Taiwan, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC.
| |
Collapse
|
11
|
Li X, Xu R, Zhang D, Cai J, Zhou H, Song T, Wang X, Kong Q, Li L, Liu Z, He Z, Tang Z, Tan J, Zhang J. Baicalin: a potential therapeutic agent for acute kidney injury and renal fibrosis. Front Pharmacol 2025; 16:1511083. [PMID: 39911847 PMCID: PMC11795133 DOI: 10.3389/fphar.2025.1511083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Acute kidney injury (AKI) is a common critical clinical disease that is linked to significant morbidity, recurrence, and mortality. It is characterized by a fast and prolonged loss in renal function arising from numerous etiologies and pathogenic pathways. Renal fibrosis, defined as the excessive accumulation of collagen and proliferation of fibroblasts within renal tissues, contributes to the structural damage and functional decline of the kidneys, playing a pivotal role in the advancement of Chronic Kidney Disease (CKD). Until now, while continuous renal replacement therapy (CRRT) has been utilized in the management of severe AKI, there remains a dearth of effective targeted therapies for AKI stemming from diverse etiologies. Similarly, the identification of specific biomarkers and pharmacological targets for the treatment of renal fibrosis remains a challenge. Baicalin, a naturally occurring compound classified within the flavonoid group and commonly found in the Chinese herb Scutellaria baicalensis, has shown a range of pharmacological characteristics, such as antioxidant, anti-inflammatory, antifibrotic, antitumor and antiviral effects, as evidenced by research studies. Research shows that Baicalin has potential in treating kidney diseases like AKI and renal fibrosis. This review aims to summarize Baicalin's progress in these areas, including its molecular mechanism, application in treatment, and absorption, distribution, metabolism, and excretion. Baicalin's therapeutic effects are achieved through various pathways, including antioxidant, anti-inflammatory, antifibrosis, and regulation of apoptosis and cell proliferation. Besides, we also hope this review may give some enlightenment for treating AKI and renal fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rui Xu
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Dan Zhang
- Zunyi Medical University Library Administrative Office, Zunyi, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
| | - Liujin Li
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaohui Liu
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Zhengzhen Tang
- Department of Pediatrics, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Prem PN, Swaminathan H, Kurian GA. The temporal relationship between mitochondrial quality and renal tissue recovery following ischemia-reperfusion injury. Heliyon 2025; 11:e41634. [PMID: 39866419 PMCID: PMC11758212 DOI: 10.1016/j.heliyon.2025.e41634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Background Growing evidence indicates that disruptions in mitochondrial quality management contribute to the development of acute kidney injury (AKI), incomplete or maladaptive kidney repair, and chronic kidney disease. However, the temporal dynamics of mitochondrial quality control alterations in relation to renal injury and its recovery remain poorly understood and are addressed in this manuscript. Method ology: Male Wistar rats (n = 60) were subjected to varying durations of ischemia and reperfusion. Ischemia was instigated by clamping both renal arteries and for reperfusion, the clamps were removed to restore the blood flow. Renal injury, physiological function, mitochondrial assessment, and cellular mediators were analyzed. Results Prolonging ischemia duration reduces bioenergetic function while disrupting the balance of mitochondrial fusion, fission, and mitophagy at the gene expression level while maintaining intact mitochondrial copy number. However, reperfusing a kidney after 45 min of ischemia with varying reperfusion times exacerbates mitochondrial dysfunction and significantly decreases mitochondrial copy number. These declines are particularly evident at 24 h of reperfusion, with some parameters improving by 7 days of reperfusion. Despite these improvements, 7 days of reperfusion did not correlate with renal injury indicators (CrCl- 0.46 ± 0.01, BUN-86.29 ± 4.9, Cr-1.75 ± 0.16) following 45 min of ischemia. Conversely, 15 min of ischemia followed by 7 days of reperfusion restored mitochondrial quality and renal function (CrCl- 7.33 ± 0.59, BUN-43.6 ± 3.16, Cr-0.93 ± 0.14). Conclusion The above findings emphasize that mitochondrial quality control alters with the extent of ischemia and subsequent reperfusion time, impacting not only mitochondrial copy number but also the resilience of mitochondria during tissue repair.
Collapse
Affiliation(s)
- Priyanka N. Prem
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- Vascular Biology Lab, Anusandhan Kendra-1, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Harish Swaminathan
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- Vascular Biology Lab, Anusandhan Kendra-1, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Gino A. Kurian
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- Vascular Biology Lab, Anusandhan Kendra-1, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| |
Collapse
|
13
|
Sun C, Zhao X, Wang X, Yu Y, Shi H, Tang J, Sun S, Zhu S. Astragalus Polysaccharide Mitigates Rhabdomyolysis-Induced Acute Kidney Injury via Inhibition of M1 Macrophage Polarization and the cGAS-STING Pathway. J Inflamm Res 2024; 17:11505-11527. [PMID: 39735897 PMCID: PMC11675321 DOI: 10.2147/jir.s494819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose This study aimed to examine the impact of APS on acute kidney injury induced by rhabdomyolysis (RIAKI), exploring its association with macrophage M1 polarization and elucidating the underlying mechanisms. Methods C57BL/6J mice were randomly assigned to one of three groups: a normal control group, a RIAKI model group, and an APS treatment group. Techniques such as flow cytometry and immunofluorescence were employed to demonstrate that APS can inhibit the transition of renal macrophages to the M1 phenotype in RIAKI. Furthermore, the raw264.7 macrophage cell line was chosen and induced into the M1 phenotype to further examine the impact of APS on this model and elucidate the underlying mechanism. Results Administration of APS led to a significant decrease in UREA levels by 25.2% and CREA levels by 60.9% within the model group. Also, APS exhibited an inhibitory effect on the infiltration of M1 macrophages and the cGAS-STING pathway in kidneys within the RIAKI, subsequently leading to decreased serum concentrations of IL-1β, IL-6 and TNF-α by 44.5%, 12.9%, and 10.3%, respectively, consistent with the results of in vitro experiments. Furthermore, APS exhibited an anti-apoptotic effect on MPC5 cells when co-cultured with M1 macrophages. Conclusion Astragalus polysaccharide (APS) potentially mitigated rhabdomyolysis-induced renal damage by impeding the M1 polarization of macrophages. This inherent mechanism might involve the suppression of the cGAS-STING pathway activation within macrophages. Furthermore, APS could endow protective effects on podocytes through the inhibition of apoptosis.
Collapse
Affiliation(s)
- Chuanchuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xinhai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, People’s Republic of China
| | - Yeye Yu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Heng Shi
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang, People’s Republic of China
| | - Jun Tang
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai(Zhuhai Sixth People’s Hospital), Zhuhai, People’s Republic of China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
14
|
Liu X, Zhou Y, Lu Z, Yang F, Wang Y, Zhang S, Zhang J, Zou H, Lin M. Network Pharmacology and Metabolomics Reveal Anti-Ferroptotic Effects of Curcumin in Acute Kidney Injury. Drug Des Devel Ther 2024; 18:6223-6241. [PMID: 39722679 PMCID: PMC11669278 DOI: 10.2147/dddt.s486286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Acute kidney injury (AKI) is linked to high rates of mortality and morbidity worldwide thereby posing a major public health problem. Evidences suggest that ferroptosis is the primary cause of AKI, while inhibition of monoamine oxidase A(MAOA) and 5-hydroxytryptamine were recognized as the defender of ferroptosis. Curcumin (Cur) is a natural polyphenol and the main bioactive compound of Curcuma longa, which has been found nephroprotection in AKI. However, the potential mechanism of Cur in alleviating AKI ferroptosis remains unknown. Objective This study aims to investigate the effects of Cur on AKI ferroptosis. Methods Folic acid (FA)-induced AKI mouse model and erastin/(rsl-3)-induced HK-2 model were constructed to assess the renoprotection of Cur. The nuclear magnetic resonance (NMR)-based metabolomics coupled network pharmacology approach was used to explore the metabolic regulation and potential targets of Cur. Molecular docking and enzyme activity assay was carried out to evaluate the effects of Cur on MAOA. Results Our results showed that in vivo Cur preserved renal functions in AKI mice by lowering levels of serum creatinine, blood urea nitrogen, while in vitro ameliorated the cell viability of HK-2 cells damaged by ferroptosis. Mechanistic studies indicated that Cur protected AKI against ferroptosis via inhibition of MAOA thereby regulating 5-hydroxy-L-tryptophan metabolism. Conclusion Our study for the first time clarified that Cur might acts as a MAOA inhibitor and alleviates ferroptosis in AKI mice, laying a scientific foundation for new insights of clinical therapy on AKI.
Collapse
Affiliation(s)
- Xi Liu
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Yu Zhou
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ziyi Lu
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Fenglin Yang
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Yizhi Wang
- School of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211169, People’s Republic of China
| | - Sijin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People’s Republic of China
| | - Jinwen Zhang
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| | - Hong Zou
- Physical Education Department, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Min Lin
- Research Center of Innovation, Entrepreneurship, Minjiang University, Fuzhou, 350100, People’s Republic of China
| |
Collapse
|
15
|
Gong Y, Zhu W, Li Y, Lu T, Tan J, He C, Yang L, Zhu Y, Gong L. Dynamic regulation of proximal tubular autophagy from injury to repair after ischemic kidney damage. Cell Mol Biol Lett 2024; 29:151. [PMID: 39639205 PMCID: PMC11619129 DOI: 10.1186/s11658-024-00663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The role of proximal tubular autophagy in repairing kidney injury following ischemia remains unclear. METHODS In this study, we utilized mice with conditional deletion of the Atg5 gene in proximal tubules and monitored the long-term dynamic regulation of autophagy following ischemic acute kidney injury (AKI). RESULTS The results showed that Atg5-deficient proximal tubule epithelial cells exhibited damaged mitochondria, concentric membranes, and lysosomal accumulation 24 h after ischemia/reperfusion. However, 28 days after ischemia/reperfusion, concentric membrane bodies remained, but lysosomal accumulation was no longer observed. Notably, the absence of Atg5 in renal tubular epithelial cells impaired renal function and led to increased tubular cell proliferation and oxidative stress in the early stage of injury. However, during the repair period following AKI, Atg5 deficiency exhibited no significant difference in the expression of proliferating cell nuclear antigen (PCNA) and 4-hydoxynonenal (4HNE), suggesting that the improvement in renal fibrosis associated with Atg5 deficiency is unlikely to result from its effect on cell proliferation or reactive oxygen species levels. Additionally, Atg5 deficiency inhibits the secretion of profibrotic factor fibroblast growth factor 2 (FGF2) from the early stage of renal injury to the recovery stage of AKI, indicating that autophagy-specific regulation of FGF2 secretion is a dynamic process overlapping with other stages of injury. Furthermore, increased co-localization of ATG5 with 4HNE and FGF2 was observed in patient samples. CONCLUSION In summary, our results suggest that the dynamic regulation of autophagy on key molecules involved in kidney injury and repair varies with the stage of kidney injury.
Collapse
Affiliation(s)
- Yuhong Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhu
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongqiang Li
- Department of General Practice, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Tao Lu
- Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou, 213011, China
| | - Jiexing Tan
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Changsheng He
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Yufeng Zhu
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Li Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Li L, Zhang Y, Wang Z, Chen X, Fang M. Glycyrrhizin attenuates renal inflammation in a mouse Con A-hepatitis model via the IL-25/M2 axis. Ren Fail 2024; 46:2356023. [PMID: 38785317 PMCID: PMC11133957 DOI: 10.1080/0886022x.2024.2356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1β by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, Hangzhou, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyue Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyan Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Chen
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Min Fang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
18
|
Wu Y, Wang Y, Chen F, Han C, Huang L, Sai W, Fan Y, Brunskill NJ, Yang B. Co-treatment with erythropoietin derived HBSP and caspase-3 siRNA: A promising approach to prevent fibrosis after acute kidney injury. J Cell Mol Med 2024; 28:e70082. [PMID: 39628378 PMCID: PMC11615408 DOI: 10.1111/jcmm.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 12/08/2024] Open
Abstract
Acute kidney injury (AKI) is a risk factor of chronic kidney disease, without specific treatment. This study investigated the effect of co-treatment using erythropoietin-derived helix B surface peptide (HBSP) and caspase-3 small interfering RNA (CASP3siRNA) on preventing fibrosis post AKI in order to achieve better efficacy by different action mechanisms. Ischemia-reperfusion (IR) in mice was induced by clamping bilateral renal pedicles for 30 min followed by 2-week reperfusion, with HBSP and/or CASP3siRNA administered at the onset of IR. Serum creatinine, apoptosis, active caspase-3 and high mobility group protein B1 (HMGB1) in kidneys were decreased by HBSP, CASP3siRNA or both, with increased PCNA. α-SMA expression and collagen I deposition were also reduced by CASP3siRNA and both. Most interestingly, the co-treatment further reduced tubulointerstitial damage and fibrosis, but raised PCNA compared to CASP3siRNA. EPOR/βcR was reduced by HBSP, and positively correlated with Sirius red staining, whereas EPOR was unchanged. In TCMK-1 cells, H2O2 raised apoptosis and α-SMA were reduced by HBSP, while the same was occurred to HMGB1. However, HMGB1 was further increased by EPOR siRNA under H2O2 stimulation with/without HBSP treatment. In conclusion, this study demonstrated synergistic long-term renoprotection post IR-AKI by HBSP and CASP3siRNA, which may be due to co-inhibiting inflammation and stimulating repair at early stage, and subsequently preventing fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of PathologyMedical School, Nantong UniversityNantongChina
- Department of Nephrology, Leicester‐Nantong Joint Institute of Kidney ScienceAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yanan Wang
- Department of Nephrology, Leicester‐Nantong Joint Institute of Kidney ScienceAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Fei Chen
- Department of Nephrology, Leicester‐Nantong Joint Institute of Kidney ScienceAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Cheng Han
- Department of Nephrology, Leicester‐Nantong Joint Institute of Kidney ScienceAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Lili Huang
- Department of Nephrology, Leicester‐Nantong Joint Institute of Kidney ScienceAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
- Department of Critical Care MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Wenli Sai
- Department of Nephrology, Leicester‐Nantong Joint Institute of Kidney ScienceAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yaping Fan
- Department of Nephrology, Leicester‐Nantong Joint Institute of Kidney ScienceAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Nigel J. Brunskill
- Department of Cardiovascular SciencesUniversity of Leicester, University Hospitals of Leicester NHS TrustLeicesterUK
| | - Bin Yang
- Department of Nephrology, Leicester‐Nantong Joint Institute of Kidney ScienceAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
- Department of Cardiovascular SciencesUniversity of Leicester, University Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
19
|
Xi M, Lu J, Qi H. TCF4 promotes apoptosis and Wnt/β-catenin signaling pathway in acute kidney injury via transcriptional regulation of COX7A2L. PLoS One 2024; 19:e0307667. [PMID: 39499704 PMCID: PMC11537394 DOI: 10.1371/journal.pone.0307667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is still a serious kidney illness with high morbidity and death rates, and it's crucial to comprehend the underlying molecular causes. METHODS Bioinformatics analysis was performed on GSE139061 and GSE30718 data sets, and COX7A2L was screened out. The role of COX7A2L in H/R-treated cells and its transcriptional regulation with TCF4 were assessed. In vitro experiments analyzed the regulation of COX7A2L and TCF4 on the proliferation, apoptosis, and Wnt/β-catenin signaling pathway of H/R-treated cells. RESULTS COX7A2L as a hub gene was downregulated in AKI samples. In H/R-treated cells, COX7A2L overexpression inhibited apoptosis and promoted cell proliferation, while COX7A2L knockdown promoted apoptosis and inhibited cell proliferation. Notably, TCF4 exhibited a significant positive correlation with COX7A2L. TCF4 overexpression-induced apoptosis was lessened and improved cell proliferation was countered by COX7A2L knockdown, according to rescue study findings. Besides, we discovered that TCF4 overexpression increased the expression of proteins linked to the Wnt/β-catenin signaling pathway (c-myc, β-catenin, and cyclin D1), while underexpression of COX7A2L counteracted this effect. CONCLUSION The study revealed the pivotal role of COX7A2L in AKI, which is regulated by TCF4 and modulates the Wnt/β-catenin signaling pathway, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Minhui Xi
- Department of Nephrology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jingyuan Lu
- Department of Nephrology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Hualin Qi
- Department of Nephrology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
20
|
Zhu J, Xiang X, Shi L, Song Z, Dong Z. Identification of Differentially Expressed Genes in Cold Storage-associated Kidney Transplantation. Transplantation 2024; 108:2057-2071. [PMID: 38632678 PMCID: PMC11424274 DOI: 10.1097/tp.0000000000005016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Although it is acknowledged that ischemia-reperfusion injury is the primary pathology of cold storage-associated kidney transplantation, its underlying mechanism is not well elucidated. METHODS To extend the understanding of molecular events and mine hub genes posttransplantation, we performed bulk RNA sequencing at different time points (24 h, day 7, and day 14) on a murine kidney transplantation model with prolonged cold storage (10 h). RESULTS In the present study, we showed that genes related to the regulation of apoptotic process, DNA damage response, cell cycle/proliferation, and inflammatory response were steadily elevated at 24 h and day 7. The upregulated gene profiling delicately transformed to extracellular matrix organization and fibrosis at day 14. It is prominent that metabolism-associated genes persistently took the first place among downregulated genes. The gene ontology terms of particular note to enrich are fatty acid oxidation and mitochondria energy metabolism. Correspondingly, the key enzymes of the above processes were the products of hub genes as recognized. Moreover, we highlighted the proximal tubular cell-specific increased genes at 24 h by combining the data with public RNA-Seq performed on proximal tubules. We also focused on ferroptosis-related genes and fatty acid oxidation genes to show profound gene dysregulation in kidney transplantation. CONCLUSIONS The comprehensive characterization of transcriptomic analysis may help provide diagnostic biomarkers and therapeutic targets in kidney transplantation.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs Medical Center, Augusta, GA
| | - Xiaohong Xiang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs Medical Center, Augusta, GA
| |
Collapse
|
21
|
Shao Y, Li X, Zhou W, Qian S, Wang L, Fang X. KLF15 ATTENUATES LIPOPOLYSACCHARIDE-INDUCED APOPTOSIS AND INFLAMMATORY RESPONSE IN RENAL TUBULAR EPITHELIAL CELLS VIA PPARΔ. Shock 2024; 62:574-581. [PMID: 39227395 DOI: 10.1097/shk.0000000000002431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ABSTRACT Background: The kidney is the most commonly affected organ in sepsis patients, and Krüppel-like transcription factor 15 (KLF15) has a kidney-protective effect and is highly enriched in the kidneys. This study aims to explore the role of KLF15 in sepsis-related acute kidney injury. Methods: A septic injury model in HK2 cells was established through the administration of lipopolysaccharide (LPS), followed by the transfection of an overexpression plasmid for KLF15. Cell viability was assessed using Cell Counting Kit-8 assay, and apoptosis was measured via flow cytometry. The levels of inflammatory cytokines were detected using ELISA, and western blot assay was employed to assess the expression of KLF15, PPARδ, as well as inflammatory and apoptosis-related proteins. The interaction between KLF15 and PPARδ was confirmed through the utilization of online databases and immunoprecipitation experiments. The mechanism was further validated using PPARδ agonists and small interfering RNA. Results: LPS-induced HK2 cells showed downregulated expression of KLF15 and PPARδ, along with decreased viability, accompanied by increased levels of apoptosis, TNFα, IL-1β, and IL-6. Additionally, LPS upregulated the expression of Bax, cytoplasmic cytochrome C [Cytc (cyt)], Cox-2, and p-NF-κB-p65 in HK2 cells, while simultaneously downregulating the expression of Bcl2 and mitochondrial cytochrome c [Cytc (mit)]. immunoprecipitation experiment revealed a possible interaction between KLF15 and PPARδ in HK2 cells. Ov-KLF15, Ov-PPARδ, or administration of PPARδ agonists effectively alleviated the aforementioned alterations induced by LPS. However, interference with PPARδ significantly attenuated the protective effect of Ov-KLF15 on HK2 cells. Conclusion: KLF15 attenuates LPS-induced apoptosis and inflammatory responses in HK2 cells via PPARδ.
Collapse
Affiliation(s)
| | - Xiaojun Li
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wang Zhou
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ligang Wang
- Center for Rehabilitation Medicine, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| |
Collapse
|
22
|
Zuo D, Luo M, Liu C, Yang A, Shen Y, Xu J, He A, Li X. HAO2 protects from proximal tubular cells injured in rats with chronic kidney disease by promoting fatty acid metabolic processes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167342. [PMID: 39002705 DOI: 10.1016/j.bbadis.2024.167342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The complex pathogenesis of kidney disease is closely related to the diversity of kidney intrinsic cells. In this study, single-cell transcriptome sequencing technology was used to sequence and analyze blood and kidney tissue cells in normal control rats and rats with chronic kidney disease (CKD), focusing on key cell populations and functional enrichment to explore the pathogenesis of CKD. Oil red O staining and enzyme-linked immunosorbent assay (ELISA) were used to detect lipid droplets and free fatty acid (FFA). Quantitative real-time polymerase chain reaction (RT-PCR), western blot (WB) were used to verify the differential gene hydroxyacid oxidase 2 (HAO2) and fatty acid metabolic process in tissue to ensure the reliability of single-cell sequencing results. We successfully established a single-cell transcriptome atlas of blood and kidney tissue in rats with CKD, which were annotated into 14 cell subsets (MPCs, PT, Tc, DCT, B-IC, A-IC, CNT, ALOH, BC, Neu, Endo, Pla, NKT, Baso) according to marker gene, and the integrated single-cell atlas of rats showed a significant increase and decrease of MPCs and PTs in the CKD group, respectively. Functional analysis found extensive enrichment of metabolic-related pathways in PT cells, includes fatty acid metabolic process, cellular amino acid metabolic process and generation of precursor metabolites and energy. Immunohistochemical experiments determined that the differential gene HAO2 was localized in the renal tubules, and its expression was significantly reduced in CKD group compared with control, and oil red O staining showed that lipid droplets increased in the CKD group, after overexpression of HAO2 the lipid droplets was inhibited. ELISA assay showed that ATP content decreased in the CKD group and FFA increased in the CKD group. Moreover, the mitochondrial membrane potential of the cells in the OE-HAO2 group was significantly increased compared with OE-NC. The acyl-CoA oxidase 1(ACOX1), peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were decreased in the CKD group, while genes and proteins were increased after overexpression of HAO2, and the AMP-activated protein kinase (AMPK) phosphorylated proteins were increased, the acetyl-CoA carboxylase (ACC) phosphorylated proteins were decreased, reversely. Therefore, HAO2 may be an important regulator of fatty acid metabolic processes in CKD, and overexpression of HAO2 can enhance fatty acid metabolism by promoting fatty acid oxidation (FAO) pathway.
Collapse
Affiliation(s)
- Deyu Zuo
- Department of Rehabilitation Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China; Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Minghao Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, China
| | - Chengxuan Liu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Youfeng Shen
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Jian Xu
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.; Cardiovascular Disease Laboratory of Chongqing Medical University, Chongqing, China.
| | - Xunjia Li
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China; Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China.
| |
Collapse
|
23
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
24
|
Li X, Yuan F, Xiong Y, Tang Y, Li Z, Ai J, Miao J, Ye W, Zhou S, Wu Q, Wang X, Xu D, Li J, Huang J, Chen Q, Shen W, Liu Y, Hou FF, Zhou L. FAM3A plays a key role in protecting against tubular cell pyroptosis and acute kidney injury. Redox Biol 2024; 74:103225. [PMID: 38875957 PMCID: PMC11226986 DOI: 10.1016/j.redox.2024.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Acute kidney injury (AKI) is in high prevalence worldwide but with no therapeutic strategies. Programmed cell death in tubular epithelial cells has been reported to accelerate a variety of AKI, but the major pathways and underlying mechanisms are not defined. Herein, we identified that pyroptosis was responsible for AKI progression and related to ATP depletion in renal tubular cells. We found that FAM3A, a mitochondrial protein that assists ATP synthesis, was decreased and negatively correlated with tubular cell injury and pyroptosis in both mice and patients with AKI. Knockout of FAM3A worsened kidney function decline, increased macrophage and neutrophil cell infiltration, and facilitated tubular cell pyroptosis in ischemia/reperfusion injury model. Conversely, FAM3A overexpression alleviated tubular cell pyroptosis, and inhibited kidney injury in ischemic AKI. Mechanistically, FAM3A promoted PI3K/AKT/NRF2 signaling, thus blocking mitochondrial reactive oxygen species (mt-ROS) accumulation. NLRP3 inflammasome sensed the overload of mt-ROS and then activated Caspase-1, which cleaved GSDMD, pro-IL-1β, and pro-IL-18 into their mature forms to mediate pyroptosis. Of interest, NRF2 activator alleviated the pro-pyroptotic effects of FAM3A depletion, whereas the deletion of NRF2 blocked the anti-pyroptotic function of FAM3A. Thus, our study provides new mechanisms for AKI progression and demonstrates that FAM3A is a potential therapeutic target for treating AKI.
Collapse
Affiliation(s)
- Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feifei Yuan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhiru Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenting Ye
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiurong Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Song Y, Wang Y, Li J, Shen Y, Hou Y, Fu Z, Fang L, Jin B, Chen L. CD226 promotes renal fibrosis by regulating macrophage activation and migration. J Leukoc Biol 2024; 116:103-117. [PMID: 38660893 DOI: 10.1093/jleuko/qiae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 04/26/2024] Open
Abstract
It has been found that CD226 plays an important role in regulating macrophage function, but its expression and function in macrophages during renal fibrogenesis have not been studied. Our data demonstrated that CD226 expression in macrophages was obviously upregulated in the unilateral ureteral obstruction model, while CD226 deficiency attenuated collagen deposition in renal interstitium along with fewer M1 within renal cortex and renal medulla and a lower level of proinflammatory factors compared to that of control littermates. Further studies demonstrated that Cd226-/- bone marrow-derived macrophages transferring could significantly reduce the tubular injury, collagen deposition, and proinflammatory cytokine secretion compared with that of Cd226+/+ bone marrow-derived macrophages transferring in the unilateral ureteral obstruction model. Mechanistic investigations revealed that CD226 promoted proinflammatory M1 macrophage accumulation in the kidney via suppressing KLF4 expression in macrophages. Therefore, our results uncovered a pathogenic role of CD226 during the development of chronic kidney disease by promoting monocyte infiltration from peripheral blood into the kidney and enhancing macrophage activation toward the inflammatory phenotype by suppressing KLF4 expression.
Collapse
Affiliation(s)
- Yun Song
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Yazhen Wang
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Juan Li
- College of Life Sciences, Northwest University, No.229, Taibai North Road, Beilin District, Xi'an 710069, ShaanXi, China
| | - Yuting Shen
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Yongli Hou
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Zhaoyue Fu
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Liang Fang
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Boquan Jin
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Lihua Chen
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
- College of Life Sciences, Northwest University, No.229, Taibai North Road, Beilin District, Xi'an 710069, ShaanXi, China
| |
Collapse
|
26
|
Zhang D, Jiang H, Yang X, Zheng S, Li Y, Liu S, Xu X. Traditional Chinese Medicine and renal regeneration: experimental evidence and future perspectives. Chin Med 2024; 19:77. [PMID: 38831435 PMCID: PMC11149241 DOI: 10.1186/s13020-024-00935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Repair of acute kidney injury (AKI) is a typical example of renal regeneration. AKI is characterized by tubular cell death, peritubular capillary (PTC) thinning, and immune system activation. After renal tubule injury, resident renal progenitor cells, or renal tubule dedifferentiation, give rise to renal progenitor cells and repair the damaged renal tubule through proliferation and differentiation. Mesenchymal stem cells (MSCs) also play an important role in renal tubular repair. AKI leads to sparse PTC, affecting the supply of nutrients and oxygen and indirectly aggravating AKI. Therefore, repairing PTC is important for the prognosis of AKI. The activation of the immune system is conducive for the body to clear the necrotic cells and debris generated by AKI; however, if the immune activation is too strong or lengthy, it will cause damage to renal tubule cells or inhibit their repair. Macrophages have been shown to play an important role in the repair of kidney injury. Traditional Chinese medicine (TCM) has unique advantages in the treatment of AKI and a series of studies have been conducted on the topic in recent years. Herein, the role of TCM in promoting the repair of renal injury and its molecular mechanism is discussed from three perspectives: repair of renal tubular epithelial cells, repair of PTC, and regulation of macrophages to provide a reference for the treatment and mechanistic research of AKI.
Collapse
Affiliation(s)
- Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huihui Jiang
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianzhen Yang
- Urinary Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sanxia Zheng
- Pediatric Department, The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
27
|
Zou Y, Wu S, Xu X, Tan X, Yang S, Chen T, Zhang J, Li S, Li W, Wang F. Cope with copper: From molecular mechanisms of cuproptosis to copper-related kidney diseases. Int Immunopharmacol 2024; 133:112075. [PMID: 38663316 DOI: 10.1016/j.intimp.2024.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Cuproptosis has recently been identified as a novel regulatory mechanism of cell death. It is characterized by the accumulation of copper in mitochondria and its binding to acylated proteins. These characteristics lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, ultimately resulting in cell death. Cuproptosis is distinct from other types of cell death, including necrosis, apoptosis, ferroptosis, and pyroptosis. Cu induces oxidative stress damage, protein acylation, and the oligomerization of acylated TCA cycle proteins. These processes lead to the downregulation of iron-sulfur cluster proteins and protein toxicity stress, disrupting cellular Cu homeostasis, and causing cell death. Cuproptosis plays a significant role in the development and progression of various kidney diseases such as acute kidney injury, chronic kidney disease, diabetic nephropathy, kidney transplantation, and kidney stones. On the one hand, inducers of cuproptosis, such as disulfiram (DSF), chloroquinolone, and elesclomol facilitate cuproptosis by promoting cell oxidative stress. In contrast, inhibitors of Cu chelators, such as tetraethylenepentamine and tetrathiomolybdate, relieve these diseases by inhibiting apoptosis. To summarize, cuproptosis plays a significant role in the pathogenesis of kidney disease. This review comprehensively discusses the molecular mechanisms underlying cuproptosis and its significance in kidney diseases.
Collapse
Affiliation(s)
- Yurong Zou
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shukun Wu
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shuang Yang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengqiang Li
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China.
| | - Wei Li
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fang Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
28
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 PMCID: PMC11091222 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
29
|
Livingston MJ, Zhang M, Kwon SH, Chen JK, Li H, Manicassamy S, Dong Z. Autophagy activates EGR1 via MAPK/ERK to induce FGF2 in renal tubular cells for fibroblast activation and fibrosis during maladaptive kidney repair. Autophagy 2024; 20:1032-1053. [PMID: 37978868 PMCID: PMC11135847 DOI: 10.1080/15548627.2023.2281156] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Macroautophagy/autophagy contributes to maladaptive kidney repair by inducing pro-fibrotic factors such as FGF2 (fibroblast growth factor 2), but the underlying mechanism remains elusive. Here, we show that EGR1 (early growth response 1) was induced in injured proximal tubules after ischemic acute kidney injury (AKI) and this induction was suppressed by autophagy deficiency in inducible, renal tubule-specific atg7 (autophagy related 7) knockout (iRT-atg7 KO) mice. In cultured proximal tubular cells, TGFB1 (transforming growth factor beta 1) induced EGR1 and this induction was also autophagy dependent. Egr1 knockdown in tubular cells reduced FGF2 expression during TGFB1 treatment, leading to less FGF2 secretion and decreased paracrine effects on fibroblasts. ChIP assay detected an increased binding of EGR1 to the Fgf2 gene promoter in TGFB1-treated tubular cells. Both Fgf2 and Egr1 transcription was inhibited by FGF2 neutralizing antibody, suggesting a positive feedback for EGR1-mediated FGF2 autoregulation. This feedback was confirmed using fgf2-deficient tubular cells and fgf2-deficient mice. Upstream of EGR1, autophagy deficiency in mice suppressed MAPK/ERK (mitogen-activated protein kinase) activation in post-ischemic renal tubules. This inhibition correlated with SQSTM1/p62 (sequestosome 1) aggregation and its sequestration of MAPK/ERK. SQSTM1/p62 interacted with MAPK/ERK and blocked its activation during TGFB1 treatment in autophagy-deficient tubular cells. Inhibition of MAPK/ERK suppressed EGR1 and FGF2 expression in maladaptive tubules, leading to the amelioration of renal fibrosis and improvement of renal function. These results suggest that autophagy activates MAPK/ERK in renal tubular cells, which induces EGR1 to transactivate FGF2. FGF2 is then secreted into the interstitium to stimulate fibroblasts for fibrogenesis.Abbreviation: 3-MA: 3-methyladenine; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB/β-actin: actin, beta; AKI: acute kidney injury; aa: amino acid; ATG/Atg: autophagy related; BUN: blood urea nitrogen; ChIP: chromatin immunoprecipitation; CKD: chronic kidney disease; CM: conditioned medium; COL1A1: collagen, type I, alpha 1; COL4A1: collagen, type IV, alpha 1; CQ: chloroquine; DBA: dolichos biflorus agglutinin; EGR1: early growth response 1; ELK1: ELK1, member of ETS oncogene family; FGF2: fibroblast growth factor 2; FN1: fibronectin 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HAVCR1/KIM-1: hepatitis A virus cellular receptor 1; IP: immunoprecipitation; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2K/MEK: mitogen-activated protein kinase kinase; MAPK: mitogen-activated protein kinase; NFKB: nuclear factor kappa B; PB1: Phox and Bem1; PFT: pifithrin α; PPIB/cyclophilin B: peptidylprolyl isomerase B; RT-qPCR: real time-quantitative PCR; SQSTM1/p62: sequestosome 1; TGFB1/TGF-β1: transforming growth factor beta 1; VIM: vimentin.
Collapse
Affiliation(s)
- Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
30
|
Wu X, Zhou L, Li Z, Rong K, Gao S, Chen Y, Zuo J, Tang W. Arylacryl amides: Design, synthesis and the protection against cisplatin-induced acute kidney injury via TLR4/STING/NF-κB pathway. Bioorg Chem 2024; 146:107303. [PMID: 38521012 DOI: 10.1016/j.bioorg.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Arylpropionic ester scaffold was found as anti-inflammatory agents for the treatment and prevention of acute kidney injury (AKI). To further study the structure-activity relationship (SAR) of this scaffold, a series of acryl amides were designed, synthesized, and evaluated their anti-inflammation. Of these, compound 9d displayed the protective effect on renal tubular epithelial cells to significantly enhance the survival rate through inhibiting NF-κB phosphorylation and promoting cell proliferation in cisplatin-induced HK2 cells. Furthermore, 9d can interact with TLR4 to inhibit TLR4/STING/NF-κB pathway in the RAW264.7 cell. In vivo AKI mice model, 9d significantly downregulated the level of serum creatinine (Scr), blood urea nitrogen (BUN) and the inflammatory factors (IL-1β, IL-6, TNF-α) to improve kidney function. Morphological and KIM-1 analyses showed that 9d alleviated cisplatin-induced tubular damage. In a word, 9d was a promising lead compound for preventive and therapeutic of AKI.
Collapse
Affiliation(s)
- Xiaoming Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Long Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Ziyun Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Kuanrong Rong
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Yun Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China
| | - Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
31
|
Jacobs ME, de Vries DK, Engelse MA, Dumas SJ, Rabelink TJ. Endothelial to mesenchymal transition in kidney fibrosis. Nephrol Dial Transplant 2024; 39:752-760. [PMID: 37968135 DOI: 10.1093/ndt/gfad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 11/17/2023] Open
Abstract
Fibrotic diseases are characterized by the uncontrolled accumulation of extracellular matrix (ECM) components leading to disruption of tissue homeostasis. Myofibroblasts as the main ECM-producing cells can originate from various differentiated cell types after injury. Particularly, the process of endothelial-to-mesenchymal transition (endMT), describing phenotypic shifts of endothelial cells to adopt a fully mesenchymal identity, may contribute to the pool of myofibroblasts in fibrosis, while leading to capillary rarefaction and exacerbation of tissue hypoxia. In renal disease, incomplete recovery from acute kidney injury (AKI) and the ensuing fibrotic reaction stand out as major contributors to chronic kidney disease (CKD) development. While the focus has largely been on impaired tubular epithelial repair as a potential fibrosis-driving mechanism, alterations in the renal microcirculation post-AKI, and in particular endMT as a maladaptive response, could hold equal significance. Dysfunctional interplays among various cell types in the kidney microenvironment can instigate endMT. Transforming growth factor beta (TGF-β) signaling, with its downstream activation of canonical/Smad-mediated and non-canonical pathways, has been identified as primary driver of this process. However, non-TGF-β-mediated pathways involving inflammatory agents and metabolic shifts in intercellular communication within the tissue microenvironment can also trigger endMT. These harmful, maladaptive cell-cell interactions and signaling pathways offer potential targets for therapeutic intervention to impede endMT and decelerate fibrogenesis such as in AKI-CKD progression. Presently, partial reduction of TGF-β signaling using anti-diabetic drugs or statins may hold therapeutic potential in renal context. Nevertheless, further investigation is warranted to validate underlying mechanisms and assess positive effects within a clinical framework.
Collapse
Affiliation(s)
- Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Dorottya K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten A Engelse
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien J Dumas
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Xiong J, Zhao J. Pyroptosis: The Determinator of Cell Death and Fate in Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:118-131. [PMID: 38751798 PMCID: PMC11095617 DOI: 10.1159/000535894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024]
Abstract
Background Acute kidney injury (AKI) is kidney damage that leads to a rapid decline in function. AKI primarily occurs when the tubular epithelium is damaged, causing swelling, loss of brush margin, and eventual apoptosis. Research has shown that tubular epithelial cell damage in AKI is linked to cell cycle arrest, autophagy, and regulation of cell death. Summary Pyroptosis, a type of programmed cell death triggered by inflammation, is believed to play a role in the pathophysiology of AKI. Cumulative evidence has shown that pyroptosis is the main cause of tubular cell death in AKI. Thus, targeted intervention of pyroptosis may be a promising therapeutic approach for AKI. This review delves deep into the cutting-edge research surrounding pyroptosis in the context of AKI, shedding light on its intricate mechanisms and potential implications for clinical practice. Additionally, we explore the exciting realm of potential preclinical treatment options for AKI, aiming to pave the way for future therapeutic advancements. Key Messages Pyroptosis, a highly regulated form of cell death, plays a crucial role in determining the fate of cells during the development of AKI. This intricate process involves the activation of inflammasomes, which are multi-protein complexes that initiate pyroptotic cell death. By understanding the mechanisms underlying pyroptosis, researchers aim to gain insights into the pathogenesis of AKI and potentially identify new therapeutic targets for this condition.
Collapse
Affiliation(s)
- Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
33
|
Chen G, Li X, Zhou X, Li Y, Yu H, Peng X, Bai X, Zhang C, Feng Z, Mei Y, Li L, Liu Y, Gou X, Jiang Y. Extracellular vesicles secreted from mesenchymal stem cells ameliorate renal ischemia reperfusion injury by delivering miR-100-5p targeting FKBP5/AKT axis. Sci Rep 2024; 14:6720. [PMID: 38509215 PMCID: PMC10954733 DOI: 10.1038/s41598-024-56950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
The incidence of acute kidney injury (AKI) due to ischemia-reperfusion (IR) injury is increasing. There is no effective treatment for AKI, and because of this clinical challenge, AKI often progresses to chronic kidney disease, which is closely associated with poor patient outcomes and high mortality rates. Small extracellular vesicles from human umbilical cord mesenchymal stem cells (hUCMSC-sEVs) play increasingly vital roles in protecting tissue function from the effects of various harmful stimuli owing to their specific biological features. In this study, we found that miR-100-5p was enriched in hUCMSC-sEVs, and miR-100-5p targeted FKBP5 and inhibited HK-2 cell apoptosis by activating the AKT pathway. HK-2 cells that were exposed to IR injury were cocultured with hUCMSC-sEVs, leading to an increase in miR-100-5p levels, a decrease in FKBP5 levels, and an increase in AKT phosphorylation at Ser 473 (AKT-473 phosphorylation). Notably, these effects were significantly reversed by transfecting hUCMSCs with an miR-100-5p inhibitor. Moreover, miR-100-5p targeted FKBP5, as confirmed by a dual luciferase reporter assay. In vivo, intravenous infusion of hUCMSC-sEVs into mice suffering from IR injury resulted in significant apoptosis inhibition, functional maintenance and renal histological protection, which in turn decreased FKBP5 expression levels. Overall, this study revealed an effect of hUCMSC-sEVs on inhibiting apoptosis; hUCMSC-sEVs reduced renal IR injury by delivering miR-100-5p to HK-2 cells, targeting FKBP5 and thereby promoting AKT-473 phosphorylation to activate the AKT pathway. This study provides novel insights into the role of hUCMSC-sEVs in the treatment of AKI.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xuesong Bai
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yuhua Mei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Li Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yu Liu
- Department of Urology, Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Road(Branch7), Jiangbei, Chongqing, 400021, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yuanbin Jiang
- Department of Urology, Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Road(Branch7), Jiangbei, Chongqing, 400021, China.
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China.
| |
Collapse
|
34
|
Zhou R, Liu H, Hou X, Liu Q, Sun S, Li X, Cao W, Nie W, Shi C, Chen W. Bi-functional KIT-PR1P peptides combine with VEGF to protect ischemic kidney in rats by targeting to Kim-1. Regen Ther 2024; 25:162-173. [PMID: 38178930 PMCID: PMC10765240 DOI: 10.1016/j.reth.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Acute kidney injury (AKI) was a disease with a high mortality mainly caused by renal ischemia/reperfusion injury (I/R). Although the current non-targeted administration of vascular endothelial growth factor (VEGF) for AKI had been revealed to facilitate the recovery of renal I/R, how to targeted deliver VEGF and to retain it efficiently in the ischemic kidney was critical for its clinical application. Methods In present study, bi-functional KIT-PR1P peptides were constructed which bond VEGF through PR1P domain, and targeted ischemic kidney through KIT domain to interact with biomarker of AKI-kidney injury molecule-1 (Kim-1). Then the targeted and therapeutic effects of KIT-PR1P/VEGF in AKI was explored in vitro and in vivo. Results The results showed KIT-PR1P exhibited better angiogenic capacity and targeting ability to hypoxia HK-2 cells with up-regulated Kim-1 in vitro. When KIT-PR1P/VEGF was used for the treatment of renal I/R through intravenous administration in vivo, KIT-PR1P could guide VEGF and retain its effective concentration in ischemic kidney. In addition, KIT-PR1P/VEGF promoted angiogenesis, alleviated renal tubular injury and fibrosis, and finally promoted functional recovery of renal I/R. Conclusion These results indicated that the bi-functional KIT-PR1P peptides combined with VEGF would be a promising strategy for the treatment of AKI by targeting to Kim-1.
Collapse
Affiliation(s)
- Runxue Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Hang Liu
- Department of Nephropathy, The Affiliated Hospital of Qingdao University, Qingdao, 266700, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics Cand Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qi Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, 266000, China
| | - Shuwei Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaoge Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Weihong Nie
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
35
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
36
|
Aggarwal S, Wang Z, Fernandez Pacheco DR, Rinaldi A, Rajewski A, Callemeyn J, Van Loon E, Lamarthée B, Covarrubias AE, Hou J, Yamashita M, Akiyama H, Karumanchi SA, Svendsen CN, Noble PW, Jordan SC, Breunig J, Naesens M, Cippà PE, Kumar S. SOX9 switch links regeneration to fibrosis at the single-cell level in mammalian kidneys. Science 2024; 383:eadd6371. [PMID: 38386758 PMCID: PMC11345873 DOI: 10.1126/science.add6371] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhanxiang Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Rincon Fernandez Pacheco
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna Rinaldi
- Division of Nephrology, Ente Ospedaliero Cantonale, CH-6900 Lugano, Switzerland
| | - Alex Rajewski
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Ambart Ester Covarrubias
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jean Hou
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu 500-8705, Japan
| | - S. Ananth Karumanchi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stanley C. Jordan
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Pietro E Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, CH-6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sanjeev Kumar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
37
|
Slaats GG, Chen J, Levtchenko E, Verhaar MC, Arcolino FO. Advances and potential of regenerative medicine in pediatric nephrology. Pediatr Nephrol 2024; 39:383-395. [PMID: 37400705 PMCID: PMC10728238 DOI: 10.1007/s00467-023-06039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 07/05/2023]
Abstract
The endogenous capacity of the kidney to repair is limited, and generation of new nephrons after injury for adequate function recovery remains a need. Discovery of factors that promote the endogenous regenerative capacity of the injured kidney or generation of transplantable kidney tissue represent promising therapeutic strategies. While several encouraging results are obtained after administration of stem or progenitor cells, stem cell secretome, or extracellular vesicles in experimental kidney injury models, very little data exist in the clinical setting to make conclusions about their efficacy. In this review, we provide an overview of the cutting-edge knowledge on kidney regeneration, including pre-clinical methodologies used to elucidate regenerative pathways and describe the perspectives of regenerative medicine for kidney patients.
Collapse
Affiliation(s)
- Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Junyu Chen
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Wang W, Ren X, Chen X, Hong Q, Cai G. Integrin β1-rich extracellular vesicles of kidney recruit Fn1+ macrophages to aggravate ischemia-reperfusion-induced inflammation. JCI Insight 2024; 9:e169885. [PMID: 38258908 PMCID: PMC10906229 DOI: 10.1172/jci.insight.169885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Ischemia-reperfusion injury-induced (IRI-induced) acute kidney injury is accompanied by mononuclear phagocyte (MP) invasion and inflammation. However, systematic analysis of extracellular vesicle-carried (EV-carried) proteins mediating intercellular crosstalk in the IRI microenvironment is still lacking. Multiomics analysis combining single-cell RNA-Seq data of kidney and protein profiling of kidney-EV was used to elucidate the intercellular communication between proximal tubular cells (PTs) and MP. Targeted adhesion and migration of various MPs were caused by the secretion of multiple chemokines as well as integrin β1-rich EV by ischemic-damaged PTs after IRI. These recruited MPs, especially Fn1+ macrophagocyte, amplified the surviving PT's inflammatory response by secreting the inflammatory factors TNF-α, MCP-1, and thrombospondin 1 (THBS-1), which could interact with integrin β1 to promote more MP adhesion and interact with surviving PT to further promote the secretion of IL-1β. However, GW4869 reduced MP infiltration and maintained a moderate inflammatory level likely by blocking EV secretion. Our findings establish the molecular bases by which chemokines and kidney-EV mediate PT-MP crosstalk in early IRI and provide insights into systematic intercellular communication.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuejing Ren
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Key Laboratory of Kidney Disease and Immunology, Zhengzhou, Henan, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Guangyan Cai
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
39
|
Li S, Hu G, Kuang L, Zhou T, Jiang H, Pang F, Li J, Chen X, Bao J, Li W, Li C, Li M, Wang L, Zhang D, Zhang J, Yang Z, Jin H. Unraveling the mechanism of ethyl acetate extract from Prismatomeris connata Y. Z. Ruan root in treating pulmonary fibrosis: insights from bioinformatics, network pharmacology, and experimental validation. Front Immunol 2024; 14:1330055. [PMID: 38259493 PMCID: PMC10801734 DOI: 10.3389/fimmu.2023.1330055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Pulmonary fibrosis is a terminal lung disease characterized by fibroblast proliferation, extracellular matrix accumulation, inflammatory damage, and tissue structure destruction. The pathogenesis of this disease, particularly idiopathic pulmonary fibrosis (IPF), remains unknown. Macrophages play major roles in organ fibrosis diseases, including pulmonary fibrosis. The phenotype and polarization of macrophages are closely associated with pulmonary fibrosis. A new direction in research on anti-pulmonary fibrosis is focused on developing drugs that maintain the stability of the pulmonary microenvironment. Methods We obtained gene sequencing data and clinical information for patients with IPF from the GEO datasets GSE110147, GSE15197, GSE24988, GSE31934, GSE32537, GSE35145, GSE53845, GSE49072, GSE70864, and GSE90010. We performed GO, KEGG enrichment analysis and GSEA analysis, and conducted weighted gene co-expression network analysis. In addition, we performed proteomic analysis of mouse lung tissue. To verify the results of bioinformatics analysis and proteomic analysis, mice were induced by intratracheal instillation of bleomycin (BLM), and gavaged for 14 days after modeling. Respiratory function of mice in different groups was measured. Lung tissues were retained for histopathological examination, Western Blot and real-time quantitative PCR, etc. In addition, lipopolysaccharide, interferon-γ and interleukin-4 were used to induce RAW264.7 cells for 12h in vitro to establish macrophage inflammation and polarization model. At the same time, HG2 intervention was given. The phenotype transformation and cytokine secretion of macrophages were investigated by Western Blot, RT-qPCR and flow cytometry, etc. Results Through bioinformatics analysis and experiments involving bleomycin-induced pulmonary fibrosis in mice, we confirmed the importance of macrophage polarization in IPF. The analysis revealed that macrophage polarization in IPF involves a change in the phenotypic spectrum. Furthermore, experiments demonstrated high expression of M2-type macrophage-associated biomarkers and inducible nitric oxide synthase, thus indicating an imbalance in M1/M2 polarization of pulmonary macrophages in mice with pulmonary fibrosis. Discussion Our investigation revealed that the ethyl acetate extract (HG2) obtained from the roots of Prismatomeris connata Y. Z. Ruan exhibits therapeutic efficacy against bleomycin-induced pulmonary fibrosis. HG2 modulates macrophage polarization, alterations in the TGF-β/Smad pathway, and downstream protein expression in the context of pulmonary fibrosis. On the basis of our findings, we believe that HG2 has potential as a novel traditional Chinese medicine component for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Sizheng Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Zhou
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Pang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Menglin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lulu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zengyan Yang
- Section of Science & Technology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| |
Collapse
|
40
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
41
|
Guo J, Chen L, Ma M. Ginsenoside Rg1 Suppresses Ferroptosis of Renal Tubular Epithelial Cells in Sepsis-induced Acute Kidney Injury via the FSP1-CoQ 10- NAD(P)H Pathway. Curr Med Chem 2024; 31:2119-2132. [PMID: 37287288 DOI: 10.2174/0929867330666230607125054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Sepsis-induced acute kidney injury is related to an increased mortality rate by modulating ferroptosis through ginsenoside Rg1. In this study, we explored the specific mechanism of it. METHODS Human renal tubular epithelial cells (HK-2) were transfected with oe-ferroptosis suppressor protein 1 and treated with lipopolysaccharide for ferroptosis induction, and they were then treated with ginsenoside Rg1 and ferroptosis suppressor protein 1 inhibitor. Ferroptosis suppressor protein 1, CoQ10, CoQ10H2, and intracellular NADH levels in HK-2 cells were assessed by Western blot, ELISA kit, and NAD/NADH kit. NAD+/NADH ratio was also calculated, and 4-Hydroxynonal fluorescence intensity was assessed by immunofluorescence. HK-2 cell viability and death were assessed by CCK-8 and propidium iodide staining. Ferroptosis, lipid peroxidation, and reactive oxygen species accumulation were assessed by Western blot, kits, flow cytometry, and C11 BODIPY 581/591 molecular probe. Sepsis rat models were established by cecal ligation and perforation to investigate whether ginsenoside Rg1 regulated the ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway in vivo. RESULTS LPS treatment diminished ferroptosis suppressor protein 1, CoQ10, CoQ10H2, and NADH contents in HK-2 cells, while facilitating NAD+/NADH ratio and relative 4- Hydroxynonal fluorescence intensity. FSP1 overexpression inhibited lipopolysaccharideinduced lipid peroxidation in HK-2 cells via the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway. The ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway suppressed lipopolysaccharide-induced ferroptosis in HK-2 cells. Ginsenoside Rg1 alleviated ferroptosis in HK-2 cells by regulating the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway. Moreover, ginsenoside Rg1 regulated the ferroptosis suppressor protein 1-CoQ10-NAD(P)H pathway in vivo. CONCLUSION Ginsenoside Rg1 alleviated sepsis-induced acute kidney injury by blocking renal tubular epithelial cell ferroptosis via the ferroptosis suppressor protein 1-CoQ10- NAD(P)H pathway.
Collapse
Affiliation(s)
- Jun Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, Jiangsu Province, China
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, No. 111, Success Road, Caidian District, Wuhan, 430100, Hubei Province, China
| | - Long Chen
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, No. 111, Success Road, Caidian District, Wuhan, 430100, Hubei Province, China
| | - Min Ma
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, No. 111, Success Road, Caidian District, Wuhan, 430100, Hubei Province, China
| |
Collapse
|
42
|
Zhai J, Chen Z, Zhu Q, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. The Protective Effects of Curcumin against Renal Toxicity. Curr Med Chem 2024; 31:5661-5669. [PMID: 38549536 DOI: 10.2174/0109298673271161231121061148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 09/25/2024]
Abstract
Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.
Collapse
Affiliation(s)
- Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| |
Collapse
|
43
|
Lindoso RS, Collino F, Kasai-Brunswick TH, Costa MR, Verdoorn KS, Einicker-Lamas M, Vieira-Beiral HJ, Wessely O, Vieyra A. Resident Stem Cells in Kidney Tissue. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:159-203. [DOI: 10.1016/b978-0-443-15289-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Ye P, Gu R, Zhu H, Chen J, Han F, Nie X. SOX family transcription factors as therapeutic targets in wound healing: A comprehensive review. Int J Biol Macromol 2023; 253:127243. [PMID: 37806414 DOI: 10.1016/j.ijbiomac.2023.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The SOX family plays a vital role in determining the fate of cells and has garnered attention in the fields of cancer research and regenerative medicine. It also shows promise in the study of wound healing, as it actively participates in the healing processes of various tissues such as skin, fractures, tendons, and the cornea. However, our understanding of the mechanisms behind the SOX family's involvement in wound healing is limited compared to its role in cancer. Gaining insight into its role, distribution, interaction with other factors, and modifications in traumatized tissues could provide valuable new knowledge about wound healing. Based on current research, SOX2, SOX7, and SOX9 are the most promising members of the SOX family for future interventions in wound healing. SOX2 and SOX9 promote the renewal of cells, while SOX7 enhances the microvascular environment. The SOX family holds significant potential for advancing wound healing research. This article provides a comprehensive review of the latest research advancements and therapeutic tools related to the SOX family in wound healing, as well as the potential benefits and challenges of targeting the SOX family for wound treatment.
Collapse
Affiliation(s)
- Penghui Ye
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rifang Gu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China
| | - Huan Zhu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jitao Chen
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
45
|
Hu Z, Zhan J, Pei G, Zeng R. Depletion of macrophages with clodronate liposomes partially attenuates renal fibrosis on AKI-CKD transition. Ren Fail 2023; 45:2149412. [PMID: 36636989 PMCID: PMC9848250 DOI: 10.1080/0886022x.2022.2149412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Clodronate liposomes are bisphosphonates encapsulated by liposomes that are known to induce macrophage depletion in vivo. In a previous study, clodronate liposomes improved renal ischemia/reperfusion (I/R) injury in mice, which may be due to effects on macrophage phenotypes. However, how inflammatory cytokines secretion participates is unknown. In this study, we investigated the effect of macrophages in the I/R kidney by depleting macrophages with clodronate liposomes and changing inflammatory cytokines. C57BL/6 mice underwent I/R injury with or without clodronate liposomes administration on Days 5 and 15. Tubular injury, collagen deposition, and fibrosis were detected and analyzed by histological staining, immunocytochemistry (IHC), flow cytometry (FACS), and reverse transcription-polymerase chain reaction (RT-PCR). Inflammatory cytokines were detected and analyzed by Western blotting and RT-PCR. We found that clodronate liposomes alleviated renal fibrosis and tissue damage on both Days 5 and 15. KIM-1, IL-10, and TGF-β were reduced significantly in the clodronate liposomes treatment group. However, TNF-α was not different between the clodronate liposomes treatment group and the phosphate-buffered saline treatment group on either Day 5 or Day 15. Thus, clodronate liposomes can alleviate renal fibrosis and tissue damage and reduce the inflammatory cytokines IL-10 and TGF-β, suggesting that clodronate liposomes alleviate renal fibrosis may because of M1/M2 polarization.
Collapse
Affiliation(s)
- Zhizhi Hu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People’s Republic of China
| | - Juan Zhan
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People’s Republic of China
| | - Guangchang Pei
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People’s Republic of China
| | - Rui Zeng
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People’s Republic of China,CONTACT Rui Zeng Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, People’s Republic of China
| |
Collapse
|
46
|
Weiss R, Meersch M, Gerke M, Wempe C, Schäfers M, Kellum JA, Zarbock A. Effect of Glutamine Administration After Cardiac Surgery on Kidney Damage in Patients at High Risk for Acute Kidney Injury: A Randomized Controlled Trial. Anesth Analg 2023; 137:1029-1038. [PMID: 36730070 DOI: 10.1213/ane.0000000000006288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication after cardiac surgery and is associated with increased morbidity and mortality. However, no specific treatment options are available, emphasizing the need for preventive measures. The aim of this study was to clarify the effect of glutamine on [TIMP2]*[IGFBP7] levels at the end of the intervention period. METHODS In a randomized clinical, double-blind pilot study, 64 eligible cardiac surgery patients at high risk for AKI identified by high urinary [TIMP2]*[IGFBP7] were randomized, and body weight-adapted intravenous glutamine or saline-control was administered continuously for 12 hours postoperatively. The primary outcome was urinary [TIMP2]*[IGFBP7] at the end of the 12-hour study period. Secondary outcomes included kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) at 12 hours, overall AKI rates at 72 hours, free days through day 28 of mechanical ventilation and vasoactive medication, renal recovery at day 90, requirement of renal replacement therapy and mortality each at days 30, 60, and 90, length of intensive care unit (ICU) and hospital stay, and major adverse kidney events consisting of mortality, dialysis dependency, and persistent renal dysfunction (serum creatinine ≥2× compared to baseline value) at day 90 (major adverse kidney event; MAKE 90 ). RESULTS Sixty-four patients (mean age, 68.38 [standard deviation {SD} ± 10.48] years; 10 of 64 women) were enrolled and randomized. Patients received coronary artery bypass graft surgery (32/64), valve surgery (18/64), coronary artery bypass graft and valve surgery (6/64), or other procedures (8/64). Mean on-pump time was 68.38 (standard deviation ± 10.48) minutes. After glutamine administration, urinary [TIMP-2]*[IGFBP7] was significantly lower in the glutamine compared to the control group (primary end point, intervention: median, 0.18 [Q1, Q3; 0.09, 0.29], controls: median, 0.44 [Q1, Q3; 0.14, 0.79]; P = .01). In addition, [KIM-1] and [NGAL] were also significantly lower in the glutamine group. The overall AKI rate within 72 hours was not different among groups: (intervention 11/31 [35.5%] versus control 8/32 [25.0%]; P = .419; relative risk [RR], 0.86% [95% confidence interval {CI}, 0.62-1.20]). There were no differences regarding secondary end points. CONCLUSIONS Glutamine significantly decreased markers of kidney damage in cardiac surgery patients at high risk for AKI. Future trials have to be performed to investigate whether the administration of glutamine might be able to reduce the occurrence of AKI after cardiac surgery.
Collapse
Affiliation(s)
- Raphael Weiss
- From the Departments of Anesthesiology, Intensive Care and Pain Medicine
| | - Melanie Meersch
- From the Departments of Anesthesiology, Intensive Care and Pain Medicine
| | - Mena Gerke
- From the Departments of Anesthesiology, Intensive Care and Pain Medicine
| | - Carola Wempe
- From the Departments of Anesthesiology, Intensive Care and Pain Medicine
| | | | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander Zarbock
- From the Departments of Anesthesiology, Intensive Care and Pain Medicine
| |
Collapse
|
47
|
Zhang S, Qian S, Liu H, Xu D, Xia W, Duan H, Wang C, Yu S, Chen Y, Ji P, Wang S, Cui X, Wang Y, Shen H. LRRK2 aggravates kidney injury through promoting MFN2 degradation and abnormal mitochondrial integrity. Redox Biol 2023; 66:102860. [PMID: 37633049 PMCID: PMC10470420 DOI: 10.1016/j.redox.2023.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Mitochondrial dysfunction is one of the key features of acute kidney injury (AKI) and associated fibrosis. Leucine-rich repeat kinase 2 (LRRK2) is highly expressed in kidneys and regulates mitochondrial homeostasis. How it functions in AKI is unclear. Herein we reported that LRRK2 was dramatically downregulated in AKI kidneys. Lrrk2-/- mice exhibited less severity of AKI when compared to wild-type counterparts with less mitochondrial fragmentation and decreased reactive oxygen species (ROS) production in proximal renal tubular cells (PTCs) due to mitofusin 2 (MFN2) accumulation. Overexpression of LRRK2 in human PTC cell lines promoted LRRK2-MKK4/JNK-dependent phosphorylation of MFN2Ser27 and subsequently ubiquitination-mediated MFN2 degradation, which in turn exaggerated mitochondrial damage upon ischemia/reperfusion (I/R) mimicry treatment. Lrrk2 deficiency also alleviated AKI-to-chronic kidney disease (CKD) transition with less fibrosis. In vivo pretreatment of LRRK2 inhibitors attenuated the severity of AKI as well as CKD, potentiating LRRK2 as a novel target to alleviate AKI and fibrosis.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Subo Qian
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ding Xu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Weimin Xia
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Huangqi Duan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Chen Wang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Shenggen Yu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Haibo Shen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
48
|
Merrick BA, Martin NP, Brooks AM, Foley JF, Dunlap PE, Ramaiahgari S, Fannin RD, Gerrish KE. Insights into Repeated Renal Injury Using RNA-Seq with Two New RPTEC Cell Lines. Int J Mol Sci 2023; 24:14228. [PMID: 37762531 PMCID: PMC10531624 DOI: 10.3390/ijms241814228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.
Collapse
Affiliation(s)
- B. Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Paul E. Dunlap
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Sreenivasa Ramaiahgari
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| |
Collapse
|
49
|
Li Z, Fan X, Fan J, Zhang W, Liu J, Liu B, Zhang H. Delivering drugs to tubular cells and organelles: the application of nanodrugs in acute kidney injury. Nanomedicine (Lond) 2023; 18:1477-1493. [PMID: 37721160 DOI: 10.2217/nnm-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with limited treatment options and high mortality rates. Proximal tubular epithelial cells (PTECs) play a key role in AKI progression. Subcellular dysfunctions, including mitochondrial, nuclear, endoplasmic reticulum and lysosomal dysfunctions, are extensively studied in PTECs. These studies have led to the development of potential therapeutic drugs. However, clinical development of those drugs faces challenges such as low solubility, short circulation time and severe systemic side effects. Nanotechnology provides a promising solution by improving drug properties through nanocrystallization and enabling targeted delivery to specific sites. This review summarizes advancements and limitations of nanoparticle-based drug-delivery systems in targeting PTECs and subcellular organelles, particularly mitochondria, for AKI treatment.
Collapse
Affiliation(s)
- Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Xiao Fan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Department of Physiology & Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| |
Collapse
|
50
|
Liang XB, Dai ZC, Zou R, Tang JX, Yao CW. The Therapeutic Potential of CDK4/6 Inhibitors, Novel Cancer Drugs, in Kidney Diseases. Int J Mol Sci 2023; 24:13558. [PMID: 37686364 PMCID: PMC10487876 DOI: 10.3390/ijms241713558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation is a crucial pathological feature in cancers and kidney diseases, playing a significant role in disease progression. Cyclin-dependent kinases CDK4 and CDK6 not only contribute to cell cycle progression but also participate in cell metabolism, immunogenicity and anti-tumor immune responses. Recently, CDK4/6 inhibitors have gained approval for investigational treatment of breast cancer and various other tumors. Kidney diseases and cancers commonly exhibit characteristic pathological features, such as the involvement of inflammatory cells and persistent chronic inflammation. Remarkably, CDK4/6 inhibitors have demonstrated impressive efficacy in treating non-cancerous conditions, including certain kidney diseases. Current studies have identified the renoprotective effect of CDK4/6 inhibitors, presenting a novel idea and potential direction for treating kidney diseases in the future. In this review, we briefly reviewed the cell cycle in mammals and the role of CDK4/6 in regulating it. We then provided an introduction to CDK4/6 inhibitors and their use in cancer treatment. Additionally, we emphasized the importance of these inhibitors in the treatment of kidney diseases. Collectively, growing evidence demonstrates that targeting CDK4 and CDK6 through CDK4/6 inhibitors might have therapeutic benefits in various cancers and kidney diseases and should be further explored in the future.
Collapse
Affiliation(s)
| | | | | | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|