1
|
Chen X, Jiang J, He B, Luo S, Tan Q, Yao Y, Wan R, Xu H, Liu S, Pan X, Chen X, Li J. Piezo1 aggravates ischemia/reperfusion-induced acute kidney injury by Ca 2+-dependent calpain/HIF-1α/Notch signaling. Ren Fail 2025; 47:2447801. [PMID: 39780511 PMCID: PMC11721879 DOI: 10.1080/0886022x.2024.2447801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Macrophages play a vital role in the inflammation and repair processes of ischemia/reperfusion-induced acute kidney injury (IR-AKI). The mechanosensitive ion channel Piezo1 is significant in these inflammatory processes. However, the exact role of macrophage Piezo1 in IR-AKI is unknown. The main purpose of this study was to determine the role of macrophage Piezo1 in the injury and repair process in IR-AKI. Genetically modified mice with targeted knockout of Piezo1 in myeloid cells were established, and acute kidney injury was induced by bilateral renal vascular clamping surgery. Additionally, hypoxia treatment was performed on bone marrow-derived macrophages in vitro. Our data indicate that Piezo1 is upregulated in renal macrophages in mice with IR-AKI. Myeloid Piezo1 knockout provided protective effects in mice with IR-AKI. Mechanistically, the regulatory effects of Piezo1 on macrophages are at least partially linked to calpain signaling. Piezo1 activates Ca2+-dependent calpain signaling, which critically upregulates HIF-1α signaling. This key pathway subsequently influences the Notch and CCL2/CCR2 pathways, driving the polarization of M1 macrophages. In conclusion, our findings elucidate the biological functions of Piezo1 in renal macrophages, underscoring its role as a crucial mediator of acute kidney injury. Consequently, the genetic or pharmacological inhibition of Piezo1 presents a promising strategy for treating IR-AKI.
Collapse
Affiliation(s)
- Xiaoting Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jintao Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin He
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangfei Luo
- Medical Research Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiaorui Tan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Youfen Yao
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rentao Wan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Xu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Silin Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianmei Pan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Chen
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical Research Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
2
|
Lin Y, Yang Q, Zeng R. Crosstalk between macrophages and adjacent cells in AKI to CKD transition. Ren Fail 2025; 47:2478482. [PMID: 40110623 PMCID: PMC11926904 DOI: 10.1080/0886022x.2025.2478482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Acute kidney injury (AKI), triggered by ischemia, sepsis, toxicity, or obstruction, is marked by a rapid impairment of renal function and could lead to the initiation and advancement of chronic kidney disease (CKD). The concept of AKI to CKD transition has gained much interest. Despite a series of studies highlighting the diverse roles of renal macrophages in the immune response following AKI, the intricate mechanisms of macrophage-driven cell-cell communication in AKI to CKD transition remains incompletely understood. In this review, we introduce the dynamic phenotype change of macrophages under the different stages of kidney injury. Importantly, we present novel perspectives on the extensive interaction of renal macrophages with adjacent cells, including tubular epithelial cells, vascular endothelial cells, fibroblasts, and other immune cells via soluble factors, extracellular vesicles, and direct contact, to facilitate the transition from AKI to CKD. Additionally, we summarize the potential therapeutic strategies based on the adverse macrophage-neighboring cell crosstalk.
Collapse
Affiliation(s)
- Yanping Lin
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Gao X, Liu X, Han Z, Liao H, Li R. Friend or foe? The role of SIRT6 on macrophage polarized to M2 subtype in acute kidney injury to chronic kidney disease. Ren Fail 2025; 47:2482121. [PMID: 40260529 PMCID: PMC12016254 DOI: 10.1080/0886022x.2025.2482121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 04/23/2025] Open
Abstract
Acute kidney injury (AKI) substantially increases the risk of developing and worsening chronic kidney disease (CKD). The shift from AKI to CKD is a complex process that involves various cell types, with macrophages playing a key role in responding to renal injury. M1 and M2 macrophages-the two main types of macrophages-have distinct functions at various stages. M1 macrophages induce kidney damage by secreting pro-inflammatory cytokines immediately after injury, whereas M2 macrophages subsequently facilitate kidney tissue repair. The conversion of macrophages from the M1 to M2 subtype is vital for effective repair after renal injury. However, when M2 macrophages infiltrate persistently, they can paradoxically cause fibrosis, thereby complicating recovery. As a key epigenetic regulatory factor, the deacetylase SIRT6 exerts various biological effects through its enzymatic reactions, including the regulation of cellular metabolism, antioxidant stress response, and inhibition of fibrosis. SIRT6 is expressed in all major types of renal resident cells and is demonstrated to protect the kidneys. SIRT6 promotes the transition from the M1 to M2 subtype; nevertheless, this process poses the risk of fibrosis if macrophages remain in the M2 subtype because of the influence of SIRT6. This review aimed (i) to delve into the intricate role of SIRT6 in macrophage polarization toward the M2 subtype in the context of the progression from AKI to CKD and (ii) to explore potential strategies that may effectively target and mitigate the progression from AKI to CKD.
Collapse
Affiliation(s)
- Xiaoqin Gao
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingwei Liu
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| |
Collapse
|
4
|
Jin X, Yuan M, Wang L, Zha H, Zheng Z, Xu Z, Shi J, Liang G, Zhou Q. Curcumol Ameliorates Cisplatin-induced Nephrotoxicity by Targeting TAK1 and Inhibiting MAPK and NF-κB Pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156752. [PMID: 40222166 DOI: 10.1016/j.phymed.2025.156752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Although cisplatin (Cis) is a foundational chemotherapeutic agent, its dose-limiting nephrotoxicity lacks clinically effective drugs. Curcumol (CUR), a bioactive sesquiterpenoid derived from Curcuma zedoariae rhizome, exhibits multi-organ protective effects. However, its therapeutic potential and molecular targets in Cis-provoked acute kidney injury (AKI) remain unexplored. PURPOSE This study systematically investigated the nephroprotection and underlying mechanism of CUR in Cis-induced nephrotoxicity. METHODS C57BL/6 mice received intraperitoneal administration of 20 mg/kg Cis to induce AKI. Dual-concentration CUR (40/80 mg/kg) was administered pre- and post-treatment in Cis-challenged mice, with longitudinal monitoring of renal function. Human tubular epithelial cells (HK-2 cells) were used to evaluate CUR's nephroprotection in vitro. RNA-sequencing transcriptomics identified pathway-level mechanisms, while structure-based molecular docking (MOD) prioritized target proteins. RESULTS CUR exhibited dose-responsive nephroprotection, reducing apoptosis, oxidative stress, and inflammation more effectively than N-acetylcysteine in pre- and post-Cis treatment regimens. Mechanistically, we revealed that nephroprotection of CUR primarily involves suppression of phosphorylation-mediated MAPK/NF-κB pathway activation, thereby mitigating the inflammatory response. Notably, MOD and Cellular thermal shift assay (CETSA) data suggested a direct interaction between CUR and TAK1. Functional validation experiments demonstrated that TAK1 silencing attenuated cisplatin-induced tubular cell injury, and TAK1 activity was essential for CUR's protective effects. CONCLUSION CUR ameliorated Cis-triggered AKI by targeting TAK1 and inhibiting MAPK and NF-κB pathways. These findings suggest that CUR may serve as a promising adjuvant to overcome the primary limitation of Cis.
Collapse
Affiliation(s)
- Xuejin Jin
- School of Pharmaceutical Sciences, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Miao Yuan
- School of Pharmaceutical Sciences, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Lingkun Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huiyan Zha
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiwei Zheng
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Zheng Xu
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Jing Shi
- School of Pharmaceutical Sciences, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Guang Liang
- School of Pharmaceutical Sciences, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Qian Zhou
- School of Pharmaceutical Sciences, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
5
|
Zhuang J, Hai Y, Lu X, Sun B, Fan R, Zhang B, Wang W, Han B, Luo L, Yang L, Zhang C, Zhao M, Wei G. A Self-Assembled Metabolic Regulator Reprograms Macrophages to Combat Cytokine Storm and Boost Sepsis Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0663. [PMID: 40171016 PMCID: PMC11959697 DOI: 10.34133/research.0663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025]
Abstract
Sepsis, a life-threatening inflammatory disorder characterized by multiorgan failure, arises from a dysregulated immune response to infection. Modulating macrophage polarization has emerged as a promising strategy to control sepsis-associated inflammation. The endogenous metabolite itaconate has shown anti-inflammatory potential by suppressing the stimulator of interferon genes (STING) pathway, but its efficacy is inhibited by hyperactive glycolysis, which sustains macrophage overactivation. Here, we revealed a critical crosstalk between the itaconate-STING axis and glycolysis in macrophage-mediated inflammation. Building on this interplay, we developed a novel nanoparticle LDO (lonidamine disulfide 4-octyl-itaconate), a self-assembled metabolic regulator integrating an itaconate derivative with the glycolysis inhibitor Lonidamine. By concurrently targeting glycolysis and STING pathways, LDO reprograms macrophages to restore balanced polarization. In sepsis models, LDO effectively attenuates CCL2-driven cytokine storms, alleviates acute lung injury, and significantly enhances survival via metabolic reprogramming. This study offers a cytokine-regulatory strategy rooted in immunometabolism, providing a foundation for the translational development of immune metabolite-based sepsis therapies.
Collapse
Affiliation(s)
- Junyan Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yongrui Hai
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Xintong Lu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Borui Sun
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Renming Fan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Bingjie Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Wenhui Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Bingxue Han
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Li Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, Shaanxi, China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, Shaanxi, China
| | - Chun Zhang
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Minggao Zhao
- Department of Pharmacy, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, Shaanxi, China
| | - Gaofei Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
6
|
Qu Z, Chu J, Jin S, Yang C, Zang J, Zhang J, Xu D, Cheng M. Tissue-resident macrophages and renal diseases: landscapes and treatment directions. Front Immunol 2025; 16:1548053. [PMID: 40230850 PMCID: PMC11994677 DOI: 10.3389/fimmu.2025.1548053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Tissue-resident macrophage (TRM) is a specialized subset of macrophage that resides within specific tissues and organs. TRMs play crucial roles in resisting pathogen invasion, maintaining the homeostasis of the immune microenvironment, and promoting tissue repair and regeneration. The development and function of TRMs exhibit significant heterogeneity across different tissues. Kidney TRMs (KTRMs) originate from both embryonic yolk sac erythro-myeloid progenitors and the fetal liver, demonstrating the capacity for self-renewal independent of bone marrow hematopoiesis. KTRMs are not only essential for the maintenance of renal homeostasis and the monitoring of microvascular environment, but contribute to renal injury due to inflammation, fibrosis and immune dysfunction in kidneys. In this review, we summarize currently available studies on the regulatory role of KTRMs in processes of renal injury and repair. The altering effects and underlying mechanisms of KTRMs in regulating local tissue cells and immune cells in different renal diseases are reviewed, primarily including lupus nephritis, diabetic nephropathy, renal fibrosis, and renal carcinoma. Understanding the plasticity and immune regulatory functions of KTRMs may offer new insights into the pathogenesis and the exploration of therapeutic strategies of kidney diseases.
Collapse
Affiliation(s)
- Zhuojian Qu
- School of Basic Medicine, Shandong Second Medical University, Weifang, China
| | - Jinjin Chu
- Center of Medical Research, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Shuyu Jin
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Chunjuan Yang
- Center of Medical Research, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Jie Zang
- Center of Medical Research, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Jin Zhang
- Department of Rheumatology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Donghua Xu
- Center of Medical Research, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
- Department of Rheumatology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Min Cheng
- School of Basic Medicine, Shandong Second Medical University, Weifang, China
| |
Collapse
|
7
|
Hao K, Hu J, Wang J, Li F. Novel composite bone cement modulates inflammatory response in vitro. Sci Rep 2025; 15:8897. [PMID: 40087513 PMCID: PMC11909224 DOI: 10.1038/s41598-025-93575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
1. To evaluate the anti-inflammatory properties of enoxaparin sodium polymethylmethacrylate bone cement within the indirect co-culture model comprising endothelial cells and macrophages. 2. To investigate the impacts of inflammatory factors IL-6 and IL-10 on macrophage M2 polarisation and endothelial cell apoptosis. An indirect co-culture system of endothelial cells and macrophages was established by utilizing 1 µg/mL of lipopolysaccharide (LPS) to trigger an inflammatory response model. The experiment was categorized into 4 groups: blank control group, LPS-indicated group, PMMA + LPS group, and ES-PMMA + LPS group. Flow cytometry was performed to ascertain the apoptosis rate of endothelial cells and macrophage polarisation trend in the co-culture system. Meanwhile, ELISA, Western blotting, and immunofluorescence were adopted to measure the expression levels of Interleukin-6(IL-6), Tumour Necrosis Factor-α(TNF-α), Intercellular Cell Adhesion Molecule (ICAM), and Interleukin-10(IL-10) in cells and supernatants. In the detection of two typical polarisation proteins, CD86 and CD206, it was observed that the expression level of the CD86 protein, which indicates M1 polarisation, was elevated in the LPS-induced group in comparison to the blank control group (**P < 0.01). The expression level was found to be down-regulated in the ES-PMMA + LPS group (*P < 0.05). In contrast, the expression level of CD206 protein, which indicates the trend of M2-polarisation, was observed to be down-regulated in the LPS-induced group compared to the blank control group (***P < 0.001). Conversely, this expression level was up-regulated in the ES-PMMA + LPS group in comparison to the LPS-induced group (**P < 0.01). The expression of IL-6, TNF-α, IL-10, and ICAM was investigated in cell culture supernatants using the Elisa assay. The results showed that the LPS-induced group had higher levels of IL-6, TNF-α, and ICAM compared to the blank control group (***P < 0.001), while the LPS-induced group had lower levels of IL-10 (***P < 0.001). Additionally, the ES-PMMA + LPS-induced group showed lower levels of the aforementioned cytokines (**P < 0.01 or *P < 0.05) and higher levels of IL-10 (*P < 0.05). Western Blot and immunofluorescence results revealed that the expression of IL-6, TNF-α, and ICAM was up-regulated (***P < 0.001) and IL-10 was down-regulated (***P < 0.001) in the LPS-induced group compared with the blank control group. Compared with the LPS-induced group and PMMA + LPS group, in the ES-PMMA + LPS group, the expression of all three proteins was down-regulated (*P < 0.05 or **P < 0.01), whereas the expression of the IL-10 protein was up-regulated (***P < 0.001). The inflammatory proteins IL-6, TNF-α, and ICAM were shown to have higher fluorescence intensity in the LPS-induced group compared to the blank control group (***P < 0.001), the intensity of IL-10 was observed to be diminished (***P < 0.001). In contrast, the fluorescence intensity of IL-6, TNF-α, and ICAM was reduced in the ES-PMMA + LPS group relative to the LPS-induced group (***P < 0.001), the intensity of IL-10 was enhanced (***P < 0.001). In terms of endothelial cell apoptosis rate detection, the rate of apoptosis considerably reduced in the ES-PMMA + LPS-induced group when compared to the LPS-induced group (***P < 0.001) and rose noticeably in the LPS-induced group when compared to the blank control group (***P < 0.001). (1) In the co-culture system, ES-PMMA bone cement fulfills anti-inflammatory functions by impeding the expression of inflammatory factor IL-6 and promoting IL-10. (2) ES-PMMA bone cement facilitates the M2 polarisation response of macrophages and declines endothelial cell apoptosis within a co-culture system. (3) ES-PMMA bone cement can modify the local inflammatory environment by modulating the expression of inflammatory factors, which is potentially valuable for the application of cement-related surgery.
Collapse
Affiliation(s)
- Kangning Hao
- Department of Orthopaedic Surgery, The Third Hospital of Shijiazhuang City, No. 15, TiYu South Street, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Jie Hu
- Medical Imaging Center, The Third Hospital of Shijiazhuang City, No. 15, TiYu South Street, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Jiangyong Wang
- Department of Orthopaedic Surgery, The Third Hospital of Shijiazhuang City, No. 15, TiYu South Street, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Fei Li
- Department of Orthopaedic Surgery, The Third Hospital of Shijiazhuang City, No. 15, TiYu South Street, Shijiazhuang City, Hebei Province, People's Republic of China.
- Department of Orthopaedic Surgery, The Third Hospital of Shijiazhuang City, Shijiazhuang City, Hebei Province, People's Republic of China.
| |
Collapse
|
8
|
Peng Y, Zhang Y, Wang R, Wang X, Liu X, Liao H, Li R. Inonotus obliquus (chaga) ameliorates folic acid-induced renal fibrosis in mice: the crosstalk analysis among PT cells, macrophages and T cells based on single-cell sequencing. Front Pharmacol 2025; 16:1556739. [PMID: 40160460 PMCID: PMC11949929 DOI: 10.3389/fphar.2025.1556739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Background Renal fibrosis, characterized by the abnormal accumulation of extracellular matrix in renal tissue and progressive loss of kidney function, is posing a significant challenge in clinical treatment. While several therapeutic options exist, effective treatments remain limited. Inonotus obliquus (Chaga), a traditional medicinal mushroom, has shown promising effects in chronic kidney disease (CKD), yet its cellular and molecular mechanisms remain largely unexplored. Methods We analysed the chemical composition of Chaga using UPLC-MS and predicted its biological targets using PubChem and Swiss Target Prediction. We used single-cell RNA sequencing to study cellular responses in a mouse model of folic acid-induced renal fibrosis, complemented by spatial transcriptomics to map cellular location patterns. Histological assessment was performed using H&E and Masson trichrome staining. Results For the first time, we employed single-cell RNA sequencing technology to investigate Chaga treatment in renal fibrosis. Histological analysis revealed that Chaga treatment significantly reduced renal tubular damage scores [from 5.00 (5.00, 5.00) to 2.00 (2.00, 2.00), p < 0.05] and decreased collagen deposition area (from 11.40% ± 3.01% to 4.06% ± 0.45%, p < 0.05) at day 14. Through analysis of 82,496 kidney cells, we identified 30 distinct cell clusters classified into eight cell types. Key findings include the downregulation of pro-inflammatory M1 macrophages and upregulation of anti-inflammatory M2 macrophages, alongside decreased T cell responses. Single-cell sequencing revealed differential gene expression in proximal tubular subpopulations associated with reduced fibrosis. Pathway and network pharmacology analyses of 60 identified compounds in Chaga and their 675 predicted targets suggested potential effects on immune and fibrotic pathways, particularly affecting Tregs and NKT cells. Cell-to-cell communication analyses revealed potential interactions between proximal tubular cells, macrophages, and T Cells, providing insights into possible mechanisms by which Chaga may ameliorate renal fibrosis. Conclusion Our study provided new insights into the potential therapeutic effects of Chaga in renal fibrosis through single-cell sequencing analysis. Our findings suggest that Chaga may represent a promising candidate for renal fibrosis treatment, though further experimental validation is needed to establish its clinical application.
Collapse
Affiliation(s)
- Yueling Peng
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Yaling Zhang
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
- Department of Nephrology, Taiyuan Central Hospital, Taiyuan, China
| | - Rui Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xinyu Wang
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Xingwei Liu
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China
| |
Collapse
|
9
|
Wu S, He Y, Li J, Zhuang H, Wang P, He X, Guo Y, Li Z, Shen H, Ye L, Lin F. TREM2 alleviates sepsis-induced acute lung injury by attenuating ferroptosis via the SHP1/STAT3 pathway. Free Radic Biol Med 2025; 229:111-126. [PMID: 39814108 DOI: 10.1016/j.freeradbiomed.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Sepsis-induced acute lung injury (ALI) is a complex and life-threatening condition characterized by excessive inflammatory responses, ferroptosis, and oxidative stress. A comprehensive investigation and effective therapeutic strategies are crucial for managing this condition. In this study, we established in vivo sepsis models using lipopolysaccharide (LPS) in wild-type (WT) mice and triggering receptor expressed on myeloid cells 2 (TREM2) knockout (TREM2-KO) mice to assess lung morphology, oxidative stress, and ferroptosis. In vitro, RAW264.7 cells with TREM2 overexpression (TREM2-OE) or knockdown (TREM2-SiRNA) were utilized to assess oxidative stress and ferroptosis. RNA sequencing of LPS-stimulated cells transfected with either vector or TREM2-OE revealed significant differences in inflammation- and ferroptosis-related pathways. LPS-induced lung injury and ferroptosis were exacerbated in TREM2-KO mice and TREM2-SiRNA cells but alleviated by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistically, TREM2-KO led to SHP1 downregulation and STAT3-P upregulation, which were reversed by the SHP1 agonist SC-43. These findings highlight the role of TREM2 in the SHP1/STAT3 signaling pathway and its regulatory effects on ferroptosis. Our study demonstrates that TREM2, via the SHP1/STAT3 pathway, suppresses oxidative stress and ferroptosis, thereby significantly mitigating sepsis-induced ALI. These results underscore the pivotal role of TREM2 in modulating inflammatory responses and immunity, providing a theoretical foundation for developing therapeutic strategies.
Collapse
Affiliation(s)
- Siyi Wu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuanjie He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jiemei Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hanhong Zhuang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Peng Wang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiaojing He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Youyuan Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhiping Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Honglei Shen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Liu Ye
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
10
|
Fan J, Xie Y, Liu D, Cui R, Zhang W, Shen M, Cao L. Crosstalk Between H-Type Vascular Endothelial Cells and Macrophages: A Potential Regulator of Bone Homeostasis. J Inflamm Res 2025; 18:2743-2765. [PMID: 40026304 PMCID: PMC11871946 DOI: 10.2147/jir.s502604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
The crosstalk between H-type endothelial cells (ECs) and macrophages is critical for maintaining angiogenesis and osteogenesis in bone homeostasis. As core components of type H vessels, ECs respond to various pro-angiogenic signals, forming specialized vascular structures characterized by high expression of platelet-endothelial cell adhesion molecule-1 (CD31) and endothelial mucin (EMCN), thereby facilitating angiogenesis-osteogenesis coupling during bone formation. Macrophages, as key immune cells in the perivascular region, are primarily classified into the classically activated pro-inflammatory M1 phenotype and the selectively activated anti-inflammatory M2 phenotype, thereby performing dual functions in regulating local tissue homeostasis and innate immunity. In recent years, the complex crosstalk between type H vessel ECs and macrophages has garnered significant interest in the context of bone-related diseases. Orderly regulation of angiogenesis and bone immunity provides a new direction for preventing bone metabolic disorders such as osteoporosis and osteoarthritis. However, their interactions in bone homeostasis remain insufficiently understood, with limited clinical data available. This review comprehensively examines the intricate interactions between type H vessel ECs and macrophages with diverse phenotypes, and Insights into the signaling pathways that regulate their crosstalk, focusing on their roles in angiogenesis and osteogenesis. Furthermore, the review discusses recent interventions targeting this crosstalk and the challenges that remain. These insights may offer new perspectives on bone homeostasis and provide a theoretical foundation for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiaxuan Fan
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yaohui Xie
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Desun Liu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Rui Cui
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Wei Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Mengying Shen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Linzhong Cao
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
11
|
Funahashi Y, Park SH, Hebert JF, Eiwaz MB, Munhall AC, Groat T, Zeng L, Kim J, Choi HS, Hutchens MP. The authors reply. Kidney Int 2025; 107:361. [PMID: 39848749 DOI: 10.1016/j.kint.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 01/25/2025]
Affiliation(s)
- Yoshio Funahashi
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Seung Hun Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica F Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Mahaba B Eiwaz
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Adam C Munhall
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Tahnee Groat
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Lingxue Zeng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Michael P Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA; Operative Care Division, Portland Veterans Administration Medical Center, Portland, Oregon, USA.
| |
Collapse
|
12
|
Yang J, Yang L, Wang Y, Huai L, Shi B, Zhang D, Xu W, Cui D. Interleukin-6 related signaling pathways as the intersection between chronic diseases and sepsis. Mol Med 2025; 31:34. [PMID: 39891057 PMCID: PMC11783753 DOI: 10.1186/s10020-025-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Sepsis is associated with immune dysregulated and organ dysfunction due to severe infection. Clinicians aim to restore organ function, rather than prevent diseases that are prone to sepsis, resulting in high mortality and a heavy public health burden. Some chronic diseases can induce sepsis through inflammation cascade reaction and Cytokine Storm (CS). Interleukin (IL)-6, the core of CS, and its related signaling pathways have been considered as contributors to sepsis. Therefore, it is important to study the relationship between IL-6 and its related pathways in sepsis-related chronic diseases. This review generalized the mechanism of sepsis-related chronic diseases via IL-6 related pathways with the purpose to take rational management for these diseases. IL-6 related signaling pathways were sought in Kyoto Encyclopedia of Genes and Genomes (KEGG), and retrieved protein-protein interaction in the Search for Interaction Genes tool (STRING). In PubMed and Google Scholar, the studies were searched out, which correlating to IL-6 related pathways and associating with the pathological process of sepsis. Focused on the interactions of sepsis and IL-6 related pathways, some chronic diseases have been studied for association with sepsis, containing insulin resistance, Alcoholic liver disease (ALD), Alzheimer disease (AD), and atherosclerosis. This article summarized the inflammatory mechanisms of IL-6 cross-talked with other mediators of some chronic diseases in vitro, animal models, and human experiments, leading to the activation of pathways and accelerating the progression of sepsis. The clinicians should be highlight to this kind of diseases and more clinical trials are needed to provide more reliable theoretical basis for health policy formulation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China.
| | - Lin Yang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Yanjiao Wang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Lu Huai
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Bohan Shi
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Di Zhang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Wei Xu
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Di Cui
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
13
|
Kurts C, von Vietinghoff S, Krebs CF, Panzer U. Kidney immunology from pathophysiology to clinical translation. Nat Rev Immunol 2025:10.1038/s41577-025-01131-y. [PMID: 39885266 DOI: 10.1038/s41577-025-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Kidney diseases are widespread and represent a considerable medical, social and economic burden. However, there has been marked progress in understanding the immunological aspects of kidney disease. This includes the identification of distinct intrarenal immunological niches and characterization of kidney disease endotypes according to the underlying molecular immunopathology, as well as a better understanding of the pathological roles for T cells, mononuclear phagocytes and B cells and the renal elements they target. These insights have improved the diagnosis of kidney disease. Here, we discuss new developments in our understanding of kidney immunology, focusing on immune mechanisms of disease and their translational implications for the diagnosis and treatment of kidney disease. We also describe the immune-mediated crosstalk between the kidney and other organs that influences kidney disease and extrarenal inflammation.
Collapse
Affiliation(s)
- Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany.
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sibylle von Vietinghoff
- Nephrology Section, University Hospital Bonn, Medical Clinic and Polyclinic I, Bonn, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Qiao N, Dai X, Chen J, Cao H, Hu G, Guo X, Liu P, Xing C, Yang F. Single nucleus RNA sequencing reveals cellular and molecular responses to vanadium exposure in duck kidneys. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136492. [PMID: 39541890 DOI: 10.1016/j.jhazmat.2024.136492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Vanadium (V) exposure is known to induce renal toxicity, yet its specific effects on renal cell types and molecular mechanisms remain incompletely understood. We used single nucleus RNA sequencing (snRNA-seq) to characterize the impact of V on duck kidney cells at a cellular resolution. Following a 44-day exposure, immunofluorescence analysis revealed a significant increase in α-SMC expression in the renal interstitium, indicative of fibrotic response. SnRNA-seq identified 12 major cell types organized into 19 clusters within the kidney. Significant changes in cell composition were observed, notably an increase in proximal tubule cells (PT2 subtype), glomerular endothelial cells, principal cells, and alterations in immune cell proportions, while collecting duct intercalated cells (CD-IC) and thick ascending limb showed decreased percentages. Differential gene expression analysis highlighted pathways implicated in V toxicity across different cell types. Changes in drug metabolism-cytochrome P450, butanoate metabolism, and actin cytoskeleton regulation were exhibited by PT cells. Alterations in collecting duct secretion, oxidative phosphorylation, and bicarbonate reclamation pathways were shown in CD-IC cells. Furthermore, immune cells displayed changes in T cell receptor and chemokine signaling pathways, indicative of altered immune responses. Taken together, these findings contribute to a better shedding light on the pathogenic mechanisms of V induced renal injury.
Collapse
Affiliation(s)
- Na Qiao
- Department of pathology department, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
15
|
Leng X, Li Q, Chen W, Feng H, Li L, Yu L, Huang P, Ma P, Xie F. C-176 inhibits macrophage polarization towards M1-subtype and ameliorates LPS induced acute kidney injury. Eur J Pharmacol 2024; 984:177028. [PMID: 39366502 DOI: 10.1016/j.ejphar.2024.177028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Sepsis-induced acute kidney injury (SI-AKI) has become a focal point in nephrology research field due to its high mortality and potential progression to chronic kidney disease (CKD). The increase of M1 macrophages within renal tissue and their associated inflammatory responses are key contributors to renal inflammation and subsequent damage. Additionally, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway is abnormally activated during the onset of acute kidney injury (AKI). However, the relationship between the activation of this pathway and the increase in M1 macrophages has not been fully elucidated. This study investigated the protective effects and underlying mechanisms of the STING pathway-specific inhibitor C-176 on LPS-induced AKI, using an LPS and IFN-γ induced M1 macrophage model and an LPS-induced sepsis AKI mouse model. The in vivo results demonstrate that C-176 intervention can alleviate acute kidney injury and improve renal function by reducing macrophage infiltration in renal tissue, decreasing the proportion of M1 macrophages, and mitigating the inflammatory response. Additionally, in vitro results indicate that C-176 intervention inhibits the polarization of M0 macrophages to M1 macrophages, promotes their polarization to M2 macrophages, and reduces the amounts of pro-inflammatory cytokines such as IL-6 and TNF-α at both the protein and gene expression levels. The biological effects of C-176 are associated with the inhibition of STING-IRF3 signaling pathway activation. In summary, the findings of this study have certain scientific significance and application value for exploring the pathogenesis and treatment methods of SI-AKI.
Collapse
Affiliation(s)
- Xiao Leng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Center for Scientific Research, Chengdu Medical College, Chengdu, China; Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Qirui Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanqi Chen
- Center for Scientific Research, Chengdu Medical College, Chengdu, China
| | - Hengwei Feng
- Center for Scientific Research, Chengdu Medical College, Chengdu, China
| | - Li Li
- Center for Scientific Research, Chengdu Medical College, Chengdu, China
| | - Leyao Yu
- Center for Scientific Research, Chengdu Medical College, Chengdu, China
| | - Ping Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Ma
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Xie
- Department of Neurosurgery, Ziyang Central Hospital, Ziyang, China.
| |
Collapse
|
16
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024; 20:789-805. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Chen H, Song J, Zeng L, Zha J, Zhu J, Chen A, Liu Y, Dong Z, Chen G. Dietary sodium modulates mTORC1-dependent trained immunity in macrophages to accelerate CKD development. Biochem Pharmacol 2024; 229:116505. [PMID: 39181336 DOI: 10.1016/j.bcp.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Chronic Kidney Disease (CKD) is a significant global health issue linked to dietary habits, especially high salt intake. However, the precise mechanisms driving this progression remain incompletely understood. This study reveals that a high-salt diet intensifies macrophage trained immunity, leading to a marked pro-inflammatory response upon repeated pathogenic exposures, as evidenced by increased renal damage and fibrosis. Under high-salt conditions, there was an induction of CD45+F4/80+ macrophage infiltration into the renal tissue, accompanied by heightened production of inflammatory cytokines. Distinct responses were observed between circulating and resident renal macrophages to a high-salt diet, with a notable upsurge in the migration of pro-inflammatory macrophages, driven by CCL2-CCR2 signaling and aberrant mTORC1 pathway activation. Treatment with rapamycin-liposome effectively reduced this inflammatory cascade by mitigating mTORC1 signaling. Transplantation of monocytes from CKD mice with a high-salt diet significantly exacerbates renal inflammatory damage in the host mice, showing increased migratory tendency and inflammatory activity. The cell co-culture experiment further confirmed that macrophages derived from CKD mice, particularly those under conditions of high salt exposure, significantly induced apoptosis and inflammatory responses in renal tubular cells. Taken together, recurrent exposure to LPS elicits the activation of trained immunity, consequently augmenting inflammatory response of monocytes/macrophages in the involved kidneys. The high-salt diet exacerbates this phenomenon, attributable at least in part to the overactivation of the mTORC1 pathway. This research emphasizes the importance of dietary modulation and targeted immunological interventions in slowing CKD progression, providing new insights into mTORC1-mediated pathophysiological mechanisms and potential management strategies for CKD.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Song
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zeng
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anqun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
18
|
Lee SH, Kim KH, Lee SM, Park SJ, Lee S, Cha RH, Lee JW, Kim DK, Kim YS, Ye SK, Yang SH. STAT3 blockade ameliorates LPS-induced kidney injury through macrophage-driven inflammation. Cell Commun Signal 2024; 22:476. [PMID: 39367511 PMCID: PMC11453053 DOI: 10.1186/s12964-024-01841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3), a multifaceted transcription factor, modulates host immune responses by activating cellular response to signaling ligands. STAT3 has a pivotal role in the pathophysiology of kidney injury by counterbalancing resident macrophage phenotypes under inflammation conditions. However, STAT3's role in acute kidney injury (AKI), particularly in macrophage migration, and in chronic kidney disease (CKD) through fibrosis development, remains unclear. METHODS Stattic (a JAK2/STAT3 inhibitor, 5 mg/kg or 10 mg/kg) was administered to evaluate the therapeutic effect on LPS-induced AKI (L-AKI) and LPS-induced CKD (L-CKD), with animals sacrificed 6-24 h and 14 days post-LPS induction, respectively. The immune mechanisms of STAT3 blockade were determined by comparing the macrophage phenotypes and correlated with renal function parameters. Also, the transcriptomic analysis was used to confirm the anti-inflammatory effect of L-AKI, and the anti-fibrotic role was further evaluated in the L-CKD model. RESULTS In the L-AKI model, sequential increases in BUN and blood creatinine levels were time-dependent, with a marked elevation of 0-6 h after LPS injection. Notably, two newly identified macrophage subpopulations (CD11bhighF4/80low and CD11blowF4/80high), exhibited population changes, with an increase in the CD11bhighF4/80low population and a decrease in the CD11blowF4/80high macrophages. Corresponding to the FACS results, the tubular injury score, NGAL, F4/80, and p-STAT3 expression in the tubular regions were elevated. STAT3 inhibitor injection in L-AKI and L-CKD mice reduced renal injury and fibrosis. M2-type subpopulation with CD206 in CD11blowF4/80high population increased in the Stattic-treated group compared with that in the LPS-alone group in the L-AKI model. Additionally, STAT3 inhibitor reduced inflammation driven by LPS-stimulated macrophages and epithelial cells injury in the co-culture system. Transcriptomic profiling identified 3 common genes in the JAK-STAT, TLR, and TNF signaling pathways and 11 common genes in the LPS with macrophage response. The PI3K-AKT (IL-6, Akt3, and Pik3r1) and JAK-STAT pathways were determined as potential Stattic targets. Further confirmation through mRNA and protein expressions analyses showed that Stattic treatment reduced inflammation in the L-AKI and fibrosis in the L-CKD mice. CONCLUSIONS STAT3 blockade effectively mitigated inflammation by retrieving the CD11blowF4/80high population, further emphasizing the role of STAT3-associated macrophage-driven inflammation in kidney injury.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Kyu Hong Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong Min Lee
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seong Joon Park
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Division of Nephrology, Kangwon National University Hospital, Chuncheon, Gangwon-Do, Republic of Korea
| | - Ran-Hui Cha
- Biomedical Research Institute, Seoul National University Hospital, Hospital, Seoul, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center of Korea, Seoul, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sang-Kyu Ye
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.
- Department of Pharmacology, Seoul National University, Seoul, Republic of Korea.
| | - Seung Hee Yang
- Department of Kidney Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Hospital, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Dong L, Xie YL, Zhang RT, Hu QY. Models of sepsis-induced acute kidney injury. Life Sci 2024; 352:122873. [PMID: 38950643 DOI: 10.1016/j.lfs.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is one of the most serious life-threatening complications of sepsis. The pathogenesis of S-AKI is complex and there is no effective specific treatment. Therefore, it is crucial to choose suitable preclinical models that are highly similar to human S-AKI to study the pathogenesis and drug treatment. In this review, we summarized recent advances in the development models of S-AKI, providing reference for the reasonable selection of experimental models as basic research and drug development of S-AKI.
Collapse
Affiliation(s)
- Liang Dong
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yi-Ling Xie
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ren-Tao Zhang
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Qiong-Ying Hu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
20
|
Fan H, He X, Tong H, Chen K. Preventive effect of hyperforin on lipopolysaccharide-induced acute kidney injury and inflammation by repressing the NF-κB/miR-21 axis. Cent Eur J Immunol 2024; 49:169-186. [PMID: 39381550 PMCID: PMC11457569 DOI: 10.5114/ceji.2024.140636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Hyperforin (HYP) has been reported to alleviate the inflammatory response. The purpose of this study was to examine the pharmacological effects of HYP on lipopolysaccharide (LPS)-induced inflammation and acute kidney injury (AKI). Material and methods In vitro and in vivo septic models were created using LPS-stimulated mice podocytes and LPS-injected mice. HYP (20 mg/kg/day) or antagomiR-21 (20 nM/0.1 ml; twice/week) was administered to mitigate LPS-induced AKI and podocyte apoptosis. Results HYP demonstrated potential as an NF-κB inhibitor, leading to enhanced survival rates in septic mice. Moreover, HYP directly hindered LPS-induced podocyte apoptosis and AKI. The underlying mechanism involves the modulation of LPS-induced transactivation of miR-21 by NF-κB. It was observed that excessive activation of the NF-κB/miR-21 signaling axis contributed to LPS-induced podocyte apoptosis and AKI. Additionally, the absence of miR-21 expression resulted in decreased LPS-induced podocyte apoptosis and amelioration of LPS-induced renal tubular injury. Conclusions The renoprotective effects of HYP were observed in septic mice through the inhibition of NF-κB/p65-mediated transactivation of miR-21. These findings suggest that targeting the NF-κB-miR-21 axis could be a potential therapeutic strategy for HYP in the prevention of AKI.
Collapse
Affiliation(s)
- Haozhe Fan
- Correspondence: Dr. Haozhe Fan, Department of Critical Care Medicine, Jinhua Municipal Central Hospital, No. 365 East Renmin Road, Jinhua 321000, Zhejiang Province, China, tel./fax: +86-057989107796, e-mail:
| | | | - Hongjie Tong
- Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China
| | - Kun Chen
- Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, China
| |
Collapse
|
21
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 PMCID: PMC11091222 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
22
|
Chen Y, Lu X, Whitney RL, Li Y, Robson MJ, Blakely RD, Chi JT, Crowley SD, Privratsky JR. Novel anti-inflammatory effects of the IL-1 receptor in kidney myeloid cells following ischemic AKI. Front Mol Biosci 2024; 11:1366259. [PMID: 38693918 PMCID: PMC11061482 DOI: 10.3389/fmolb.2024.1366259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is one of the most common causes of organ failure in critically ill patients. Following AKI, the canonical pro-inflammatory cytokine interleukin-1β (IL-1β) is released predominantly from activated myeloid cells and binds to the interleukin-1 receptor R1 (IL-1R1) on leukocytes and kidney parenchymal cells. IL-1R1 on kidney tubular cells is known to amplify the immune response and exacerbate AKI. However, the specific role of IL-1R1 on myeloid cells during AKI is poorly understood. The objective of the present study was to elucidate the function of myeloid cell IL-1R1 during AKI. As IL-1R1 is known to signal through the pro-inflammatory Toll-like receptor (TLR)/MyD88 pathway, we hypothesized that myeloid cells expressing IL-1R1 would exacerbate AKI. Methods: IL-1R1 was selectively depleted in CD11c+-expressing myeloid cells with CD11cCre + /IL-1R1 fl/fl (Myel KO) mice. Myel KO and littermate controls (CD11cCre - /IL-1R1 fl/fl-Myel WT) were subjected to kidney ischemia/reperfusion (I/R) injury. Kidney injury was assessed by blood urea nitrogen (BUN), serum creatinine and injury marker neutrophil gelatinase-associated lipocalin (NGAL) protein expression. Renal tubular cells (RTC) were co-cultured with CD11c+ bone marrow-derived dendritic cells (BMDC) from Myel KO and Myel WT mice. Results: Surprisingly, compared to Myel WT mice, Myel KO mice displayed exaggerated I/R-induced kidney injury, as measured by elevated levels of serum creatinine and BUN, and kidney NGAL protein expression. In support of these findings, in vitro co-culture studies showed that RTC co-cultured with Myel KO BMDC (in the presence of IL-1β) exhibited higher mRNA levels of the kidney injury marker NGAL than those co-cultured with Myel WT BMDC. In addition, we observed that IL-1R1 on Myel WT BMDC preferentially augmented the expression of anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1ra/Il1rn), effects that were largely abrogated in Myel KO BMDC. Furthermore, recombinant IL-1Ra could rescue IL-1β-induced tubular cell injury. Discussion: Our findings suggest a novel function of IL-1R1 is to serve as a critical negative feedback regulator of IL-1 signaling in CD11c+ myeloid cells to dampen inflammation to limit AKI. Our results lend further support for cell-specific, as opposed to global, targeting of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Xiaohan Lu
- Department of Medicine, Duke University, Durham, NC, United States
| | - Raeann L. Whitney
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yu Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Jen-Tsan Chi
- Department of Microbiology and Molecular Genetics, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Duke University, Durham, NC, United States
- Durham VA Medical Center, Durham, NC, United States
| | - Jamie R. Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
23
|
Cao Y, Chen X, Zhu Z, Luo Z, Hao Y, Yang X, Feng J, Zhang Z, Hu J, Jian Y, Zhu J, Liang W, Chen Z. STING contributes to lipopolysaccharide-induced tubular cell inflammation and pyroptosis by activating endoplasmic reticulum stress in acute kidney injury. Cell Death Dis 2024; 15:217. [PMID: 38485717 PMCID: PMC10940292 DOI: 10.1038/s41419-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.
Collapse
Affiliation(s)
- Yun Cao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College), Haikou, China
| | - Xinghua Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Jian
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Peng Y, Fang Y, Li Z, Liu C, Zhang W. Saa3 promotes pro-inflammatory macrophage differentiation and contributes to sepsis-induced AKI. Int Immunopharmacol 2024; 127:111417. [PMID: 38134592 DOI: 10.1016/j.intimp.2023.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Sepsis-induced acute kidney injury (SAKI) is a life-threatening condition with complex pathophysiology, often exacerbated by immune cell dysregulation. In this comprehensive study, we leverage publicly available single-cell RNA sequencing (scRNA-seq) datasets to unravel the intricate immune responses occurring during SAKI, shedding light on macrophages as critical players. Specifically, we identify Saa3, a gene primarily expressed in macrophages, as a potent pro-inflammatory cytokine in SAKI. Saa3hi Ccl2hi monocyte-derived infiltrated macrophages (IMs) emerge as a central effector subset, fostering inflammation, and directly engaging with renal cells. Our findings suggest that Saa3 may be a promising predictive marker of SAKI, although further exploration of human homologs is warranted.
Collapse
Affiliation(s)
- Yi Peng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yan Fang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhilan Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Chenxi Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Weiru Zhang
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
25
|
Ma G, Wu X, Qi C, Yu X, Zhang F. Development of macrophage-associated genes prognostic signature predicts clinical outcome and immune infiltration for sepsis. Sci Rep 2024; 14:2026. [PMID: 38263335 PMCID: PMC10805801 DOI: 10.1038/s41598-024-51536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
Sepsis is a major global health problem, causing a significant burden of disease and death worldwide. Risk stratification of sepsis patients, identification of severe patients and timely initiation of treatment can effectively improve the prognosis of sepsis patients. We procured gene expression datasets for sepsis (GSE54514, GSE65682, GSE95233) from the Gene Expression Omnibus and performed normalization to mitigate batch effects. Subsequently, we applied weighted gene co-expression network analysis to categorize genes into modules that exhibit correlation with macrophage activity. To pinpoint macrophage-associated genes (MAAGs), we executed differential expression analysis and single sample gene set enrichment analysis. We then established a prognostic model derived from four MAAGs that were significantly differentially expressed. Functional enrichment analysis and immune infiltration assessments were instrumental in deciphering the biological mechanisms involved. Furthermore, we employed principal component analysis and conducted survival outcome analyses to delineate molecular subgroups within sepsis. Four novel MAAGs-CD160, CX3CR1, DENND2D, and FAM43A-were validated and used to create a prognostic model. Subgroup classification revealed distinct molecular profiles and a correlation with 28-day survival outcomes. The MAAGs risk score was developed through univariate Cox, LASSO, and multivariate Cox analyses to predict patient prognosis. Validation of the risk score upheld its prognostic significance. Functional enrichment implicated ribonucleoprotein complex biogenesis, mitochondrial matrix, and transcription coregulator activity in sepsis, with an immune infiltration analysis indicating an association between MAAGs risk score and immune cell populations. The four MAAGs exhibited strong diagnostic capabilities for sepsis. The research successfully developed a MAAG-based prognostic model for sepsis, demonstrating that such genes can significantly stratify risk and reflect immune status. Although in-depth mechanistic studies are needed, these findings propose novel targets for therapy and provide a foundation for future precise clinical sepsis management.
Collapse
Affiliation(s)
- Guangxin Ma
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Cui Qi
- Qingdao Women and Children's Hospital, Qingdao, China
- Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Xiaoning Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Fengtao Zhang
- Department of Anesthesia, Dezhou Municipal Hospital, Dezhou, China.
| |
Collapse
|
26
|
Yang T, Xie S, Cao L, Li M, Ding L, Wang L, Pang S, Wang Z, Geng L. ASTRAGALOSIDE Ⅳ MODULATES GUT MACROPHAGES M1/M2 POLARIZATION BY RESHAPING GUT MICROBIOTA AND SHORT CHAIN FATTY ACIDS IN SEPSIS. Shock 2024; 61:120-131. [PMID: 37962207 PMCID: PMC11841723 DOI: 10.1097/shk.0000000000002262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
ABSTRACT M1 macrophage-mediated inflammation is critical in sepsis. We previously found the protective role of astragaloside intravenous (AS-IV) in sepsis-associated gut impairment, whose specific mechanism remains unknown. Gut microbiota modulates gut homeostatic balance to avoid excessive inflammation. Here, we aimed to investigate effects of AS-IV on gut macrophages polarization and potential roles of gut microbiota and short chain fatty acids (SCFAs) in septic gut damage. Mice were pretreated by AS-IV gavage for 7 days before cecal ligation and puncture. M1 polarization of gut lamina propria macrophages (LpMs) was promoted by cecal ligation and puncture, accompanied by abnormal cytokines release and intestinal barrier dysfunction. NLRP3 inflammasome was activated in M1 LpMs. 16S rRNA sequencing demonstrated gut microbiota imbalance. The levels of acetate, propionate, and butyrate in fecal samples decreased. Notably, AS-IV reversed LpMs M1/M2 polarization, lightened gut inflammation and barrier injury, reduced NLRP3 inflammasome expression in LpMs, restored the diversity of gut microbiome, and increased butyrate levels. Similarly, these benefits were mimicked by fecal microbiota transplantation or exogenous butyrate supplementation. In Caco-2 and THP-1 cocultured model, LPS and interferon γ caused THP-1 M1 polarization, Caco-2 barrier impairment, abnormal cytokines release, and high NLRP3 inflammasome expression in THP-1 cells, all of which were mitigated by butyrate administration. However, these protective effects of butyrate were abrogated by NLRP3 gene overexpression in THP-1. In conclusion, AS-IV can ameliorate sepsis-induced gut inflammation and barrier dysfunction by modulating M1/M2 polarization of gut macrophages, whose underlying mechanism may be restoring gut microbiome and SCFA to restrain NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Shuhua Xie
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Man Li
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Ling Ding
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Lei Wang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Shenyue Pang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Zhifen Wang
- Department of Anesthesiology, Tianjin Children's Hospital, Tianjin, China
| | - Licheng Geng
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
27
|
Ma T, Wu J, Chen Z. Regulatory networks of circRNA- centred ceRNAs in sepsis-induced acute kidney injury. Epigenetics 2023; 18:2278960. [PMID: 37979155 PMCID: PMC10768734 DOI: 10.1080/15592294.2023.2278960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023] Open
Abstract
Sepsis is the primary cause of acute kidney injury (AKI) and is associated with high mortality rates. Growing evidence suggests that noncoding RNAs are vitally involved in kidney illnesses, whereas the role of circular RNAs (circRNAs) in sepsis-induced AKI (SAKI) remains largely unknown. In this present study, caecal ligation and puncture (CLP) in mice was performed to establish an SAKI model. The expression of circRNAs and mRNAs was analysed using circRNA microarray or next-generation sequencing. The results revealed that the expressions of 197 circRNAs and 2509 mRNAs were dysregulated. Validation of the selected circRNAs was performed by qRT-PCR. Bioinformatics analyses and chromatin immunoprecipitation demonstrated that NF-κB/p65 signalling induced the upregulation of circC3, circZbtb16, and circFkbp5 and their linear counterparts by p65 transcription in mouse tubular epithelial cells (mTECs). Furthermore, competitive endogenous RNA (ceRNA) networks demonstrated that some components of NF-κB signalling were potential targets of these dysregulated circRNAs. Among them, Tnf-α was increased by circFkbp5 through the downregulation of miR-760-3p in lipopolysaccharide (LPS)-stimulated mTECs. Knocking down circFkbp5 inhibited the p65 phosphorylation and apoptosis in injured mTECs. These findings suggest that the selected circRNAs and the related ceRNA networks provide new knowledge into the fundamental mechanism of SAKI and circFkbp5/miR-760-3p/Tnf-α axis might be therapeutic targets.
Collapse
Affiliation(s)
- Tongtong Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Liu X, Shen X, Wang H, Wang J, Ren Y, Zhang M, Li S, Guo L, Li J, Wang Y. Mollugin prevents CLP-induced sepsis in mice by inhibiting TAK1-NF-κB/MAPKs pathways and activating Keap1-Nrf2 pathway in macrophages. Int Immunopharmacol 2023; 125:111079. [PMID: 38149576 DOI: 10.1016/j.intimp.2023.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023]
Abstract
Sepsis is a life-threatening organ dysfunction associated with macrophage overactivation. Targeted therapy against macrophages is considered a promising strategy for sepsis treatment. Mollugin (MLG), a compound extracted from traditional Chinese medicine Rubia cordifolia L., possesses anti-tumor and anti-inflammatory activities. This study aimed to investigate the anti-inflammatory effects and mechanisms of MLG in macrophages and its therapeutic role in CLP-induced sepsis in mice. The results demonstrated that MLG downregulated the inflammatory response induced by LPS or tumor necrosis factor α (TNF-α) in macrophages. Mechanistically, MLG suppressed the phosphorylation of TAK1, the upstream modulator of IKKα/β and MAPKs, thereby inhibiting the pro-inflammatory signaling transduction of NF-κB and MAPKs. Additionally, MLG also activated the Nrf2 antioxidant pathway, reducing intracellular reactive oxygen species. CETSA and molecular docking analyses revealed that MLG could effectively bind to TAK1 and Keap1, which may be involved in the inhibition of TAK1- NF-κB/MAPKs and activation of Nrf2 mediated by MLG. Animal study demonstrated that MLG ameliorated inflammatory injury of lung and liver in CLP-induced sepsis mice probably by reducing the levels of pro-inflammatory cytokines. Therefore, our study suggests that bi-directional roles of MLG in improving sepsis via blocking the TAK1-NF-κB/MAPKs and activating Nrf2 pathways, indicating its potential as a promising candidate drug for sepsis treatment.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Jiayi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Yanlin Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Min Zhang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Lijuan Guo
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China.
| |
Collapse
|
29
|
Gao Y, Tian X, Zhang X, Milebe Nkoua GD, Chen F, Liu Y, Chai Y. The roles of tissue-resident macrophages in sepsis-associated organ dysfunction. Heliyon 2023; 9:e21391. [PMID: 38027963 PMCID: PMC10643296 DOI: 10.1016/j.heliyon.2023.e21391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis, a syndrome caused by a dysregulated host response to infection and characterized by life-threatening organ dysfunction, particularly septic shock and sepsis-associated organ dysfunction (SAOD), is a medical emergency associated with high morbidity, high mortality, and long-term sequelae. Tissue-resident macrophages (TRMs) are a subpopulation of macrophages derived primarily from yolk sac progenitors and fetal liver during embryogenesis, located primarily in non-lymphoid tissues in adulthood, capable of local self-renewal independent of hematopoiesis, and developmentally and functionally restricted to the non-lymphoid organs in which they reside. TRMs are the first line of defense against life-threatening conditions such as sepsis, tumor growth, traumatic-associated organ injury, and surgical-associated injury. In the context of sepsis, TRMs can be considered as angels or demons involved in organ injury. Our proposal is that sepsis, septic shock, and SAOD can be attenuated by modulating TRMs in different organs. This review summarizes the pathophysiological mechanisms of TRMs in different organs or tissues involved in the development and progression of sepsis.
Collapse
Affiliation(s)
- Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
- Department of Emergency Medicine, China-Congo Friendship Hospital, Brazzaville, 999059, P. R. Congo
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, 100193, P. R. China
- Department of Medical Research, Sen Sho Ka Gi Company, Inba-gun, Chiba, 285-0905, Japan
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, 276825, P. R. China
| | | | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| |
Collapse
|
30
|
Xiang H, Wang Y, Yang L, Liu M, Sun C, Gu Y, Yao J. Novel MAGL Inhibitors Alleviate LPS-Induced Acute Kidney Injury by Inhibiting NLRP3 Inflammatory Vesicles, Modulating Intestinal Flora, Repairing the Intestinal Barrier, and Interfering with Serum Metabolism. Molecules 2023; 28:7245. [PMID: 37959665 PMCID: PMC10648159 DOI: 10.3390/molecules28217245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a complication of a wide range of serious illnesses for which there is still no better therapeutic agent. We demonstrated that M-18C has a favorable inhibitory effect on monoacylglycerol lipase (MAGL), and several studies have demonstrated that nerve inflammation could be effectively alleviated by inhibiting MAGL, suggesting that M-18C has good anti-inflammatory activity. In this study, we investigated the effect of M-18C on LPS-induced acute kidney injury (AKI), both in vivo and in vitro, by using liquid chromatography-mass spectrometry (LC-MS), 16S rRNA gene sequencing, Western blot, and immunohistochemistry. The results showed that both in vivo and in vitro M-18C reduced the release of TNF-α and IL-1β by inhibiting the expression of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) protein; in addition, M-18C was able to intervene in LPS-induced AKI by ameliorating renal pathological injury, repairing the intestinal barrier, and regulating gut bacterial flora and serum metabolism. In conclusion, this study suggests that M-18C has the potential to be a new drug for the treatment of AKI.
Collapse
Affiliation(s)
- Haixin Xiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.X.)
| | - Yangui Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.X.)
| | - Lan Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi 276005, China;
| | - Yuchao Gu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (H.X.)
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi 276005, China;
| |
Collapse
|
31
|
Ren J, Liu K, Wu B, Lu X, Sun L, Privratsky JR, Xing C, Robson MJ, Mao H, Blakely RD, Abe K, Souma T, Crowley SD. Divergent Actions of Renal Tubular and Endothelial Type 1 IL-1 Receptor Signaling in Toxin-Induced AKI. J Am Soc Nephrol 2023; 34:1629-1646. [PMID: 37545036 PMCID: PMC10561822 DOI: 10.1681/asn.0000000000000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/02/2023] [Indexed: 08/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Activation of the type 1 IL-1 receptor (IL-1R1) triggers a critical innate immune signaling cascade that contributes to the pathogenesis of AKI. However, blockade of IL-1 signaling in AKI has not consistently demonstrated kidney protection. The current murine experiments show that IL-1R1 activation in the proximal tubule exacerbates toxin-induced AKI and cell death through local suppression of apolipoprotein M. By contrast, IL-1R1 activation in endothelial cells ameliorates AKI by restoring VEGFA-dependent endothelial cell viability. Using this information, future delivery strategies can maximize the protective effects of blocking IL-1R1 while mitigating unwanted actions of IL-1R1 manipulation. BACKGROUND Activation of the type 1 IL-1 receptor (IL-1R1) triggers a critical innate immune signaling cascade that contributes to the pathogenesis of AKI. IL-1R1 is expressed on some myeloid cell populations and on multiple kidney cell lineages, including tubular and endothelial cells. Pharmacological inhibition of the IL-1R1 does not consistently protect the kidney from injury, suggesting there may be complex, cell-specific effects of IL-1R1 stimulation in AKI. METHODS To examine expression of IL-1 and IL-1R1 in intrinsic renal versus infiltrating immune cell populations during AKI, we analyzed single-cell RNA sequencing (scRNA-seq) data from kidney tissues of humans with AKI and mice with acute aristolochic acid exposure. We then investigated cell-specific contributions of renal IL-1R1 signaling to AKI using scRNA-seq, RNA microarray, and pharmacological interventions in mice with IL-1R1 deletion restricted to the proximal tubule or endothelium. RESULTS scRNA-seq analyses demonstrated robust IL-1 expression in myeloid cell populations and low-level IL-1R1 expression in kidney parenchymal cells during toxin-induced AKI. Our genetic studies showed that IL-1R1 activation in the proximal tubule exacerbated toxin-induced AKI and cell death through local suppression of apolipoprotein M. By contrast, IL-1R1 activation in endothelial cells ameliorated aristolochic acid-induced AKI by restoring VEGFA-dependent endothelial cell viability and density. CONCLUSIONS These data highlight opposing cell-specific effects of IL-1 receptor signaling on AKI after toxin exposure. Disrupting pathways activated by IL-1R1 in the tubule, while preserving those triggered by IL-1R1 activation on endothelial cells, may afford renoprotection exceeding that of global IL-1R1 inhibition while mitigating unwanted actions of IL-1R1 blockade.
Collapse
Affiliation(s)
- Jiafa Ren
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kang Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Buyun Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jamie R. Privratsky
- Division of Critical Care Medicine, Center for Perioperative Organ Protection, Durham, North Caorlina
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Randy D. Blakely
- Division of Biomedical Science, Charles E. Schmidt College of Medicine and Stiles-Nicholson FAU Brain Institute, Jupiter, Florida
| | - Koki Abe
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Durham VA Medical Center, Durham, North Carolina
| |
Collapse
|
32
|
Nagasaki T, Maeda H, Yanagisawa H, Nishida K, Kobayashi K, Wada N, Noguchi I, Iwakiri R, Taguchi K, Sakai H, Saruwatari J, Watanabe H, Otagiri M, Maruyama T. Carbon Monoxide-Loaded Red Blood Cell Prevents the Onset of Cisplatin-Induced Acute Kidney Injury. Antioxidants (Basel) 2023; 12:1705. [PMID: 37760008 PMCID: PMC10526101 DOI: 10.3390/antiox12091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin-induced acute kidney injury (AKI) is an important factor that limits the clinical use of this drug for the treatment of malignancies. Oxidative stress and inflammation are considered to be the main causes of not only cisplatin-induced death of cancer cells but also cisplatin-induced AKI. Therefore, developing agents that exert antioxidant and anti-inflammatory effects without weakening the anti-tumor effects of cisplatin is highly desirable. Carbon monoxide (CO) has recently attracted interest due to its antioxidant, anti-inflammatory, and anti-tumor properties. Herein, we report that CO-loaded red blood cell (CO-RBC) exerts renoprotective effects on cisplatin-induced AKI. Cisplatin treatment was found to reduce cell viability in proximal tubular cells via oxidative stress and inflammation. Cisplatin-induced cytotoxicity, however, was suppressed by the CO-RBC treatment. The intraperitoneal administration of cisplatin caused an elevation in the blood urea nitrogen and serum creatinine levels. The administration of CO-RBC significantly suppressed these elevations. Furthermore, the administration of CO-RBC also reduced the deterioration of renal histology and tubular cell injury through its antioxidant and anti-inflammatory effects in cisplatin-induced AKI mice. Thus, our data suggest that CO-RBC has the potential to substantially prevent the onset of cisplatin-induced AKI, which, in turn, may improve the usefulness of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Hiroki Yanagisawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Naoki Wada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Ryotaro Iwakiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (T.N.); (H.Y.); (K.N.); (K.K.); (N.W.); (I.N.); (R.I.); (H.W.)
| |
Collapse
|
33
|
Burns KD, Douvris A. Protecting the kidney in sepsis: resident macrophages to the rescue. Kidney Int 2023; 103:461-463. [PMID: 36822750 DOI: 10.1016/j.kint.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 02/24/2023]
Abstract
Kidney resident macrophages exert pro-inflammatory or reparative effects in experimental acute kidney injury, but their role in sepsis is unclear. In a mouse model of sepsis, Privratsky et al. show that kidney resident F4/80hi macrophages protect against kidney injury by expressing interleukin-1 receptor antagonist, which blocks interleukin-6 production selectively from endothelial cells. Discovery of this novel autocrine loop enhances opportunities for targeted therapies to diminish kidney injury during sepsis.
Collapse
Affiliation(s)
- Kevin D Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Adrianna Douvris
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|