1
|
Li S, Wu S, Xu M, Li X, Zuo X, Wang Y. Potential application of the bulk RNA sequencing in routine MPN clinics. BMC Cancer 2025; 25:746. [PMID: 40264064 PMCID: PMC12013061 DOI: 10.1186/s12885-025-13947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) are chronic hematological malignancies characterized by driver and nondriver mutations, leading to a deregulated immune system with aberrant cytokines and immune cells. Understanding the gene mutation landscape and immune state at various disease stages is crucial for guiding treatment decisions. While advanced techniques like single-cell RNA sequencing and mass cytometry provide valuable insights, their high costs and complexity limit clinical application. In contrast, bulk RNA sequencing (RNA-Seq) offers a cost-effective complementary approach for evaluating genetic mutations and immune profiles. METHODS Peripheral blood and bone marrow samples from treatment-naïve patients diagnosed with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) were analyzed using RNA sequencing. Additionally, data from the microarray datasets [GSE26049, GSE2191] were included in this study. Bioinformatics methods were employed to interpret gene mutations and immune landscapes in MPN patients. RESULTS Our findings demonstrate the potential value of RNA-Seq in identifying gene mutations and characterizing the immune profile, including immune cell infiltration, cytokine profiles, and distinct immune-related pathways involved in the development of MPN. CONCLUSION Bulk RNA-Seq is a feasible tool for routine clinical practice, providing comprehensive insights into the immune and genetic landscape of MPNs. This approach could enhance personalized treatment strategies and improve prognostic accuracy, ultimately contributing to better management of MPN patients.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, 430062, China
| | - Mingli Xu
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Xuedong Li
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, 430062, China.
| | - Yingying Wang
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
2
|
Jung SH, Lee SE, Yun S, Min DE, Shin Y, Chung YJ, Lee SH. Different inflammatory, fibrotic, and immunological signatures between pre-fibrotic and overt primary myelofibrosis. Haematologica 2025; 110:938-951. [PMID: 39385733 PMCID: PMC11959246 DOI: 10.3324/haematol.2024.285598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Primary myelofibrosis (PMF) is a myeloid proliferative neoplasm (MPN) characterized by bone marrow fibrosis. Pre-fibrotic PMF (pre-PMF) progresses to overt PMF. Megakaryocytes play a primary role in PMF; however, the functions of megakaryocyte subsets and those of other hematopoietic cells during PMF progression remain unclear. We, therefore, analyzed bone marrow aspirates in cases of pre-PMF, overt PMF, and other MPN using single-cell RNA sequencing. We identified 14 cell types with subsets, including hematopoietic stem and progenitor cells (HSPC) and megakaryocytes. HSPC in overt PMF were megakaryocyte-biased and inflammation/fibrosis-enriched. Among megakaryocytes, the epithelial-mesenchymal transition (EMT)-enriched subset was abruptly increased in overt PMF. Megakaryocytes in non-fibrotic/non-PMF MPN were megakaryocyte differentiation-enriched, whereas those in fibrotic/non-PMF MPN were inflammation/fibrosis-enriched. Overall, the inflammation/fibrosis signatures of the HSPC, megakaryocyte, and CD14+ monocyte subsets increased from pre-PMF to overt PMF. Cytotoxic and dysfunctional scores also increased in T and NK cells. Clinically, megakaryocyte and HSPC subsets with high inflammation/fibrosis signatures were frequent in the patients with peripheral blood blasts ≥1%. Single-cell RNA-sequencing predicted higher cellular communication of megakaryocyte differentiation, inflammation/fibrosis, immunological effector/dysfunction, and tumor-associated signaling in overt PMF than in pre-PMF. However, no decisive subset emerged during PMF progression. Our study demonstrated that HSPC, monocytes, and lymphoid cells contribute to the progression of PMF, and subset specificity existed regarding inflammation/fibrosis and immunological dysfunction. PMF progression may depend on alterations of multiple cell types, and EMT-enriched megakaryocytes may be potential targets for diagnosing and treating the progression.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Departments of Biochemistry; Departments of Precision Medicine Research Center/Integrated Research Center for Genome Polymorphism; Departments of Medical Sciences.
| | | | | | | | - Youngjin Shin
- Departments of Basic Medical Science Facilitation Program
| | - Yeun-Jun Chung
- Departments of Precision Medicine Research Center/Integrated Research Center for Genome Polymorphism; Departments of Medical Sciences; Departments of Basic Medical Science Facilitation Program; Departments of Microbiology.
| | - Sug Hyung Lee
- Departments of Medical Sciences; Departments of Cancer Evolution Research Center; Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul.
| |
Collapse
|
3
|
Spampinato M, Giallongo C, Giallongo S, Spina EL, Duminuco A, Longhitano L, Caltabiano R, Salvatorelli L, Broggi G, Pricoco EP, Del Fabro V, Dulcamare I, DI Mauro AM, Romano A, Di Raimondo F, Li Volti G, Palumbo GA, Tibullo D. Lactate accumulation promotes immunosuppression and fibrotic transformation of bone marrow microenvironment in myelofibrosis. J Transl Med 2025; 23:69. [PMID: 39810250 PMCID: PMC11734442 DOI: 10.1186/s12967-025-06083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule. METHODS To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets. Therefore, to assess the significance of its trafficking, we inhibited monocarboxylate transporter 1 (MCT1) by its selective antagonist, AZD3965, eventually finding a mitigation of lactate-mediated immunosuppressive subsets expansion. To further dig into the impact of lactate in tumor microenvironment, we evaluated the effect of this metabolite on mesenchymal stromal cells (MSCs) reprogramming. RESULTS Our results show an activation of a cancer-associated phenotype (CAF) related to mineralized matrix formation and early fibrosis development. Strikingly, MF serum, enriched in lactate, causes a strong deposition of collagen in healthy stromal cells, which was restrained by AZD3965. To corroborate these outcomes, we therefore generated for the first time a TPOhigh zebrafish model for the establishment of experimental fibrosis. By adopting this model, we were able to unveil a remarkable increase in lactate concentration and monocarboxylate transporter 1 (MCT1) expression in the site of hematopoiesis, associated with a strong downregulation of lactate export channel MCT4. Notably, exploiting MCTs expression in biopsy specimens from patients with myeloproliferative neoplasms, we found a loss of MCT4 expression in PMF, corroborating changes in MCT expression during BM fibrosis establishment. CONCLUSIONS In conclusion, our results unveil lactate as a key regulator of immune escape and BM fibrotic transformation in MF patients, suggesting MCT1 blocking as a novel antifibrotic strategy.
Collapse
Affiliation(s)
- Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Vittorio Del Fabro
- Hematology Unit with BMT, A.O.U. Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
| | - Giuseppe A Palumbo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Faiz M, Riedemann M, Jutzi JS, Mullally A. Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications. Curr Hematol Malig Rep 2025; 20:4. [PMID: 39775969 DOI: 10.1007/s11899-024-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN. RECENT FINDINGS Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface. Targeting mutant CALR utilizing antibodies is the leading therapeutic approach, while mutant CALR-directed vaccines are also in early clinical trials. Additionally, chimeric antigen receptor (CAR) T-cells directed against mutant CALR are under evaluation in preclinical models. Approaches addressing the cellular effects of mutant CALR beyond MPL-JAK-STAT activation, such as targeting the unfolded protein response, proteasome, and N-glycosylation pathways, have been tested in preclinical models. In CALR-mutant MPN, the path from discovery to mechanistic understanding to direct therapeutic targeting has advanced rapidly. The longer-term goal remains clonally-selective therapies that modify the disease course in patients.
Collapse
Affiliation(s)
- Mifra Faiz
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Merle Riedemann
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Jonas S Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Hematology Division, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
Kapor S, Radojković M, Santibanez JF. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy. Acta Histochem 2024; 126:152183. [PMID: 39029317 DOI: 10.1016/j.acthis.2024.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
Collapse
Affiliation(s)
- Suncica Kapor
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia; Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, Belgrade 11000, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, Belgrade 11129, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
6
|
Sharifi MJ, Xu L, Nasiri N, Ashja‐Arvan M, Soleimanzadeh H, Ganjalikhani‐Hakemi M. Immune-dysregulation harnessing in myeloid neoplasms. Cancer Med 2024; 13:e70152. [PMID: 39254117 PMCID: PMC11386321 DOI: 10.1002/cam4.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Myeloid malignancies arise in bone marrow microenvironments and shape these microenvironments in favor of malignant development. Immune suppression is one of the most important stages in myeloid leukemia progression. Leukemic clone expansion and immune dysregulation occur simultaneously in bone marrow microenvironments. Complex interactions emerge between normal immune system elements and leukemic clones in the bone marrow. In recent years, researchers have identified several of these pathological interactions. For instance, recent works shows that the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), from bone marrow stromal cells contributes to immune dysregulation and the selective proliferation of JAK2V617F+ clones in myeloproliferative neoplasms. Moreover, inflammasome activation and sterile inflammation result in inflamed microenvironments and the development of myelodysplastic syndromes. Additional immune dysregulations, such as exhaustion of T and NK cells, an increase in regulatory T cells, and impairments in antigen presentation are common findings in myeloid malignancies. In this review, we discuss the role of altered bone marrow microenvironments in the induction of immune dysregulations that accompany myeloid malignancies. We also consider both current and novel therapeutic strategies to restore normal immune system function in the context of myeloid malignancies.
Collapse
Affiliation(s)
- Mohammad Jafar Sharifi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan UniversityGuangzhouChina
| | - Nahid Nasiri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Mehnoosh Ashja‐Arvan
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol UniversityIstanbulTurkey
| | - Hadis Soleimanzadeh
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Mazdak Ganjalikhani‐Hakemi
- Regenerative and Restorative Medicine Research Center (REMER)Research Institute of Health sciences and Technology (SABITA), Istanbul Medipol UniversityIstanbulTurkey
- Department of Immunology, Faculty of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
7
|
Wang JC, Shi G, Chen C, Wong C, Gotlieb V, Joseph G, Nair KV, Boyapati L, Ladan E, Symanowski JT, Sun L. TLR2 Derangements Likely Play a Significant Role in the Inflammatory Response and Thrombosis in Patients with Ph(-) Classical Myeloproliferative Neoplasm. Mediators Inflamm 2024; 2024:1827127. [PMID: 39157201 PMCID: PMC11329310 DOI: 10.1155/2024/1827127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/17/2024] [Accepted: 06/17/2024] [Indexed: 08/20/2024] Open
Abstract
We investigated the role of toll-like receptors (TLRs) in inflammatory pathways in Philadelphia chromosome-negative myeloproliferative neoplasms (Ph(-)MPNs). TLR2 expression was increased in ET, PV, and MPN (grouped as (PV + (ET) + MF)), whereas TLR4 was elevated only in MPN. TLR3, 7, and 9 were not elevated. Cultured monocyte-derived dendritic cells and plasma assays in TLR2-elevated patients were found to secrete more cytokines than those from TLR2-normal patients. These facts suggest that TLR2 is the major inflammatory pathways in MPN. We also measured S100A9 and reactive oxygen species (ROS), revealing increased S100A9 in PV, MF, and MPN, while ROS were only increased in MF. These data suggests that MPNs initially involve TLR2, with minor contributions from TLR4, and with S100A9, leading to ROS formation, JAK2 mutation, and progression to MF or leukemia. Furthermore, patients with JAK2 mutations or leukocytosis exhibited higher TLR2 expression. In leukocyte-platelet interactions, cells from MPN patients displayed a stronger response to a TLR2 agonist than TLR4 agonist. A TLR2 inhibitor (but not a TLR4 inhibitor) attenuated this response. Thrombosis incidence was higher in TLR2-elevated patients (29%) than in TLR2-normal patients (19%). These findings suggest that TLR2 likely contributes to thrombosis in MPN.
Collapse
Affiliation(s)
- Jen Chin Wang
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Guanfang Shi
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Chi Chen
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Ching Wong
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Vladimir Gotlieb
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Gardith Joseph
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Kiron V Nair
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Lakshmi Boyapati
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Enayati Ladan
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - James T. Symanowski
- Department of Biostatistics and Data SciencesLevine Cancer Institute, Charlotte, NC, USA
| | - Lishi Sun
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| |
Collapse
|
8
|
Campanelli R, Carolei A, Catarsi P, Abbà C, Boveri E, Paulli M, Gentile R, Morosini M, Albertini R, Mantovani S, Massa M, Barosi G, Rosti V. Circulating Polymorphonuclear Myeloid-Derived Suppressor Cells (PMN-MDSCs) Have a Biological Role in Patients with Primary Myelofibrosis. Cancers (Basel) 2024; 16:2556. [PMID: 39061196 PMCID: PMC11275082 DOI: 10.3390/cancers16142556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by a chronic inflammatory state that plays a relevant role in the disease pathogenesis (as proven by high levels of inflammatory cytokines with prognostic significance and by a persistent oxidative stress) and by extensive neoangiogenesis in bone marrow (BM) and spleen. Myeloid-derived suppressor cells (MDSCs) are immature cells that expand in patients with cancer, sepsis or chronic inflammation, favoring tumor onset and progression mainly through the decrease in immune surveillance and the promotion of neoangiogenesis. In this paper, we evaluated the presence of circulating MDSCs in PMF patients, the plasmatic factors involved in their mobilization/expansion and the correlations with laboratory, genetic and clinical parameters. The data indicated that MDSCs could have a relevant role in PMF as a new pathogenic mechanism contributing to explaining the phenotypic diversity observed during the clinical course of the disease, or a potential new target for personalized treatment.
Collapse
Affiliation(s)
- Rita Campanelli
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Adriana Carolei
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Carlotta Abbà
- General Medicine 2-Center for Systemic Amyloidosis and High-Complexity Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Emanuela Boveri
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, 27100 Pavia, Italy
| | - Raffaele Gentile
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Monica Morosini
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Riccardo Albertini
- Chemical and Clinics Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Mantovani
- Research Department, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Margherita Massa
- General Medicine 2-Center for Systemic Amyloidosis and High-Complexity Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.C.)
| |
Collapse
|
9
|
Guijarro-Hernández A, Vizmanos JL. Transcriptomic comparison of bone marrow CD34 + cells and peripheral blood neutrophils from ET patients with JAK2 or CALR mutations. BMC Genom Data 2023; 24:40. [PMID: 37550636 PMCID: PMC10408115 DOI: 10.1186/s12863-023-01142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Essential thrombocythemia (ET) is one of the most common types of Ph-negative myeloproliferative neoplasms, an infrequent group of blood cancers that arise from a CD34 + hematopoietic stem cell (HSC) in the bone marrow (BM) primarily due to driver mutations in JAK2, CALR or MPL. These aberrations result in an overproduction of mature myeloid cells in peripheral blood (PB). To date, no targeted therapies have been approved for ET patients, so the study of the molecular mechanisms behind the disease and the identification of new therapeutic targets may be of interest. For this reason, in this study, we have compared the transcriptomic profile of undifferentiated CD34 + cells and mature myeloid cells from ET patients (CALR and JAK2-mutated) and healthy donors deposited in publicly available databases. The study of the similarities and differences between these samples might help to better understand the molecular mechanisms behind the disease according to the degree of maturation of the malignant clone and the type of mutation and ultimately help identify new therapeutic targets for these patients. RESULTS The results show that most of the altered hallmarks in neutrophils were also found in CD34 + cells. However, only a few genes showed a similar aberrant expression pattern in both types of cells. We have identified a signature of six genes common to patients with CALR and JAK2 mutations (BPI, CRISP3, LTF, MMP8, and PTGS1 upregulated, and PBXIP1 downregulated), a different signature of seven genes for patients with CALR mutations (BMP6, CEACAM8, ITK, LCN2, and PRG2 upregulated, and MAN1A1 and MME downregulated) and a signature of 13 genes for patients with JAK2 mutations (ARG1, CAST, CD177, CLEC5A, DAPP1, EPS15, IL18RAP, OLFM4, OLR1, RIOK3, SELP, and THBS1 upregulated, and IGHM downregulated). CONCLUSIONS Our results highlight transcriptomic similarities and differences in ET patients according to the degree of maturation of the malignant clone and the type of mutation. The genes and processes altered in both CD34 + cells and mature neutrophils may reveal altered sustained processes that could be studied as future therapeutic targets for ET patients.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
10
|
Yadav R, Hakobyan N, Wang JC. Role of Next Generation Immune Checkpoint Inhibitor (ICI) Therapy in Philadelphia Negative Classic Myeloproliferative Neoplasm (MPN): Review of the Literature. Int J Mol Sci 2023; 24:12502. [PMID: 37569880 PMCID: PMC10420159 DOI: 10.3390/ijms241512502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs), which include essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF), are enduring and well-known conditions. These disorders are characterized by the abnormal growth of one or more hematopoietic cell lineages in the body's stem cells, leading to the enlargement of organs and the manifestation of constitutional symptoms. Numerous studies have provided evidence indicating that the pathogenesis of these diseases involves the dysregulation of the immune system and the presence of chronic inflammation, both of which are significant factors. Lately, the treatment of cancer including hematological malignancy has progressed on the agents aiming for the immune system, cytokine environment, immunotherapy agents, and targeted immune therapy. Immune checkpoints are the molecules that regulate T cell function in the tumor microenvironment (TME). The first line of primary immune checkpoints are programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA-4). Immune checkpoint inhibitor therapy (ICIT) exerts its anti-tumor actions by blocking the inhibitory pathways in T cells and has reformed cancer treatment. Despite the impressive clinical success of ICIT, tumor internal resistance poses a challenge for oncologists leading to a low response rate in solid tumors and hematological malignancies. A Phase II trial on nivolumab for patients with post-essential thrombocythemia myelofibrosis, primary myelofibrosis, or post-polycythemia myelofibrosis was performed (Identifier: NCT02421354). This trial tested the efficacy of a PD-1 blockade agent, namely nivolumab, but was terminated prematurely due to adverse events and lack of efficacy. A multicenter, Phase II, single-arm open-label study was conducted including pembrolizumab in patients with primary thrombocythemia, post-essential thrombocythemia or post-polycythemia vera myelofibrosis that were ineligible for or were previously treated with ruxolitinib. This study showed that pembrolizumab treatment did not have many adverse events, but there were no pertinent clinical responses hence it was terminated after the first stage was completed. To avail the benefits from immunotherapy, the paradigm has shifted to new immune checkpoints in the TME such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin-containing suppressor of T cell activation (VISTA), and human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) forming the basis of next-generation ICIT. The primary aim of this article is to underscore and elucidate the significance of next-generation ICIT in the context of MPN. Specifically, we aim to explore the potential of monoclonal antibodies as targeted immunotherapy and the development of vaccines targeting specific MPN epitopes, with the intent of augmenting tumor-related immune responses. It is anticipated that these therapeutic modalities rooted in immunotherapy will not only expand but also enhance the existing treatment regimens for patients afflicted with MPN. Preliminary studies from our laboratory showed over-expressed MDSC and over-expressed VISTA in MDSC, and in progenitor and immune cells directing the need for more clinical trials using next-generation ICI in the treatment of MPN.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Narek Hakobyan
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA; (R.Y.); (N.H.)
| | - Jen-Chin Wang
- Department of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| |
Collapse
|
11
|
Grauslund JH, Holmström MO, Martinenaite E, Lisle TL, Glöckner HJ, El Fassi D, Klausen U, Mortensen REJ, Jørgensen N, Kjær L, Skov V, Svane IM, Hasselbalch HC, Andersen MH. An arginase1- and PD-L1-derived peptide-based vaccine for myeloproliferative neoplasms: A first-in-man clinical trial. Front Immunol 2023; 14:1117466. [PMID: 36911725 PMCID: PMC9996128 DOI: 10.3389/fimmu.2023.1117466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Arginase-1 (ARG1) and Programed death ligand-1 (PD-L1) play a vital role in immunosuppression in myeloproliferative neoplasms (MPNs) and directly inhibit T-cell activation and proliferation. We previously identified spontaneous T-cell responses towards PD-L1 and ARG1 derived peptide epitopes in patients with MPNs. In the present First-in-Man study we tested dual vaccinations of ARG1- derived and PD-L1-derived peptides, combined with Montanide ISA-51 as adjuvant, in patients with Janus Kinase 2 (JAK2) V617F-mutated MPN. Methods Safety and efficacy of vaccination with ARG1- derived and PD-L1-derived peptides with montanide as an adjuvant was tested in 9 patients with MPN The primary end point was safety and toxicity evaluation. The secondary end point was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT04051307). Results The study included 9 patients with JAK2-mutant MPN of which 8 received all 24 planned vaccines within a 9-month treatment period. Patients reported only grade 1 and 2 vaccine related adverse events. No alterations in peripheral blood counts were identified, and serial measurements of the JAK2V617F allelic burden showed that none of the patients achieved a molecular response during the treatment period. The vaccines induced strong immune responses against both ARG1 and PD-L1- derived epitopes in the peripheral blood of all patients, and vaccine-specific skin-infiltrating lymphocytes from 5/6 patients could be expanded in vitro after a delayed-type hypersensitivity test. In two patients we also detected both ARG1- and PD-L1-specific T cells in bone marrow samples at the end of trial. Intracellular cytokine staining revealed IFNγ and TNFγ producing CD4+- and CD8+- T cells specific against both vaccine epitopes. Throughout the study, the peripheral CD8/CD4 ratio increased significantly, and the CD8+ TEMRA subpopulation was enlarged. We also identified a significant decrease in PD-L1 mRNA expression in CD14+ myeloid cells in the peripheral blood in all treated patients and a decrease in ARG1 mRNA expression in bone marrow of 6 out of 7 evaluated patients. Conclusion Overall, the ARG1- and PD-L1-derived vaccines were safe and tolerable and induced strong T-cell responses in all patients. These results warrant further studies of the vaccine in other settings or in combination with additional immune-activating treatments.
Collapse
Affiliation(s)
- Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Research and Development, IO Biotech ApS, Copenhagen, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus E. J. Mortensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nicolai Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Kapor S, Momčilović S, Kapor S, Mojsilović S, Radojković M, Apostolović M, Filipović B, Gotić M, Čokić V, Santibanez JF. Increase in Frequency of Myeloid-Derived Suppressor Cells in the Bone Marrow of Myeloproliferative Neoplasm: Potential Implications in Myelofibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:273-290. [PMID: 37093433 DOI: 10.1007/978-3-031-26163-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs), defined as clonal disorders of the hematopoietic stem cells, are characterized by the proliferation of mature myeloid cells in the bone marrow and a chronic inflammatory status impacting the initiation, progression, and symptomatology of the malignancies. There are three main entities defined as essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), and genetically classified by JAK2V617F, CALR, or MPL mutations. In MPNs, due to the overproduction of inflammatory cytokines by the neoplastic cells and non-transformed immune cells, chronic inflammation may provoke the generation and expansion of myeloid-derived suppressors cells (MDSCs) that highly influence the adaptive immune response. Although peripheral blood MDSC levels are elevated, their frequency in the bone marrow of MPNs patients is not well elucidated yet. Our results indicated increased levels of total (T)-MDSCs (CD33+HLA-DR-/low) and polymorphonuclear (PMN)-MDSCs (CD33+/HLA-DRlow/CD15+/CD14-) in the bone marrow and peripheral blood of all three types of MPNs malignancies. However, these bone marrow MDSCs-increased frequencies did not correlate with the clinical parameters, such as hepatomegaly, leukocytes, hemoglobin, or platelet levels, or with JAK2 and CALR mutations. Besides, bone marrow MDSCs, from ET, PV, and PMF patients, exhibited immunosuppressive function, determined as T-cell proliferation inhibition. Notably, the highest T-MDSCs and PMN-MDSC levels were found in PMF samples, and the increased MDSCs frequency strongly correlated with the degree of myelofibrosis. Thus, these data together indicate that the immunosuppressive MDSCs population is increased in the bone marrow of MPNs patients and may be implicated in generating a fibrotic microenvironment.
Collapse
Affiliation(s)
- Sunčica Kapor
- Department of Hematology, Clinical and Hospital Center "Dr Dragiša Mišović-Dedinje", Heroja Milana Tepića 1, 11020, Belgrade, Serbia
| | - Sanja Momčilović
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotića 4, POB 102, 11129 Belgrade, Serbia
| | - Slobodan Kapor
- Institute of Anatomy "Niko Miljanić", Dr. Subotića Starijeg 4, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, 11000, Belgrade, Serbia
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129, Belgrade, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical and Hospital Center "Dr Dragiša Mišović-Dedinje", Heroja Milana Tepića 1, 11020, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, 11000, Belgrade, Serbia
| | - Milica Apostolović
- Department of Hematology, Clinical and Hospital Center "Dr Dragiša Mišović-Dedinje", Heroja Milana Tepića 1, 11020, Belgrade, Serbia
| | - Branka Filipović
- Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, 11000, Belgrade, Serbia
- Department of Gastroenterology, Clinical and Hospital Center "Dr. Dragiša Mišović-Dedinje", Heroja Milana Tepica 1, 11020, Belgrade, Serbia
| | - Mirjana Gotić
- Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, 11000, Belgrade, Serbia
- Clinic for Hematology, Clinical Center of Serbia, Pasterova 4, 11000, Belgrade, Serbia
| | - Vladan Čokić
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129, Belgrade, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129, Belgrade, Serbia.
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago, Chile.
| |
Collapse
|
13
|
Bonometti A, Borsani O, Rumi E, Ferretti VV, Dioli C, Lucato E, Paulli M, Boveri E. Arginase‐1+ bone marrow myeloid cells are reduced in myeloproliferative neoplasms and correlate with clinical phenotype, fibrosis, and molecular driver. Cancer Med 2022; 12:7815-7822. [PMID: 36524315 PMCID: PMC10134329 DOI: 10.1002/cam4.5542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Philadelphia-negative myeloproliferative neoplasms (MPN) are clonal myeloid proliferative disorders characterized by sustained systemic inflammation. Despite its renowned importance, the knowledge concerning the inflammatory pathophysiology of these conditions is currently limited to studies on serum cytokines, while cellular immunity has rarely been investigated. METHODS In the present study, we targeted Arginase-1 immunosuppressive myeloid cells in the bone marrow of MPN patients and healthy controls and investigated their clinical and prognostic significance. We demonstrated that MPN are characterized by a significant reduction of bone marrow immunosuppressive cells and that the number of these cells significantly correlates with several clinical and histopathological features of diagnostic and prognostic importance. Moreover, we identified an unreported correlation between a reduction of Arginase-1+ bone marrow cells and the presence of CALR mutations, linking tumor-promoting immunity and molecular drivers. Finally, we postulate that the reduction of bone marrow Arginase-1+ immunosuppressive cells may be due to the migration of these cells to the spleen, where they may exert systemic immunomodulatory function. CONCLUSION Altogether, this study preliminary investigated the contribution of cellular immunity in the pathogenesis of myeloproliferative neoplasms and identified a possible interesting therapeutic target as well as a set of new links that may contribute to unraveling the biological mechanisms behind these interesting hematological neoplasms.
Collapse
Affiliation(s)
- Arturo Bonometti
- Unit of Anatomic Pathology IRCCS San Matteo Foundation Pavia Italy
- Pathology Unit Humanitas Clinical and Research Center IRCCS Rozzano Italy
| | - Oscar Borsani
- Department of Molecular Medicine University of Pavia Pavia Italy
- Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Elisa Rumi
- Department of Molecular Medicine University of Pavia Pavia Italy
- Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | | | - Claudia Dioli
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Elena Lucato
- Unit of Anatomic Pathology IRCCS San Matteo Foundation Pavia Italy
| | - Marco Paulli
- Unit of Anatomic Pathology IRCCS San Matteo Foundation Pavia Italy
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Emanuela Boveri
- Unit of Anatomic Pathology IRCCS San Matteo Foundation Pavia Italy
| |
Collapse
|
14
|
Bizymi N, Matthaiou AM, Matheakakis A, Voulgari I, Aresti N, Zavitsanou K, Karasachinidis A, Mavroudi I, Pontikoglou C, Papadaki HA. New Perspectives on Myeloid-Derived Suppressor Cells and Their Emerging Role in Haematology. J Clin Med 2022; 11:jcm11185326. [PMID: 36142973 PMCID: PMC9504532 DOI: 10.3390/jcm11185326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells of myeloid origin that have gained researchers’ attention, as they constitute promising biomarkers and targets for novel therapeutic strategies (i.e., blockage of development, differentiation, depletion, and deactivation) in several conditions, including neoplastic, autoimmune, infective, and inflammatory diseases, as well as pregnancy, obesity, and graft rejection. They are characterised in humans by the typical immunophenotype of CD11b+CD33+HLA-DR–/low and immune-modulating properties leading to decreased T-cell proliferation, induction of T-regulatory cells (T-regs), hindering of natural killer (NK) cell functionality, and macrophage M2-polarisation. The research in the field is challenging, as there are still difficulties in defining cell-surface markers and gating strategies that uniquely identify the different populations of MDSCs, and the currently available functional assays are highly demanding. There is evidence that MDSCs display altered frequency and/or functionality and could be targeted in immune-mediated and malignant haematologic diseases, although there is a large variability of techniques and results between different laboratories. This review presents the current literature concerning MDSCs in a clinical point of view in an attempt to trigger future investigation by serving as a guide to the clinical haematologist in order to apply them in the context of precision medicine as well as the researcher in the field of experimental haematology.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Andreas M. Matthaiou
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Angelos Matheakakis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Ioanna Voulgari
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Nikoletta Aresti
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Konstantina Zavitsanou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Anastasios Karasachinidis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Irene Mavroudi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Charalampos Pontikoglou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Helen A. Papadaki
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810394637
| |
Collapse
|
15
|
Wang JC, Sun L. PD-1/PD-L1, MDSC Pathways, and Checkpoint Inhibitor Therapy in Ph(-) Myeloproliferative Neoplasm: A Review. Int J Mol Sci 2022; 23:5837. [PMID: 35628647 PMCID: PMC9143160 DOI: 10.3390/ijms23105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
There has been significant progress in immune checkpoint inhibitor (CPI) therapy in many solid tumor types. However, only a single failed study has been published in treating Ph(-) myeloproliferative neoplasm (MPN). To make progress in CPI studies on this disease, herein, we review and summarize the mechanisms of activation of the PD-L1 promoter, which are as follows: (a) the extrinsic mechanism, which is activated by interferon gamma (IFN γ) by tumor infiltration lymphocytes (TIL) and NK cells; (b) the intrinsic mechanism of EGFR or PTEN loss resulting in the activation of the MAPK and AKT pathways and then stat 1 and 3 activation; and (c) 9p24 amplicon amplification, resulting in PD-L1 and Jak2 activation. We also review the literature and postulate that many of the failures of CPI therapy in MPN are likely due to excessive MDSC activities. We list all of the anti-MDSC agents, especially those with ruxolitinib, IMID compounds, and BTK inhibitors, which may be combined with CPI therapy in the future as part of clinical trials applying CPI therapy to Ph(-) MPN.
Collapse
Affiliation(s)
- Jen-Chin Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA;
| | | |
Collapse
|
16
|
Carnaz Simões AM, Holmström MO, Aehnlich P, Rahbech A, Peeters MJW, Radziwon-Balicka A, Zamora C, Wirenfeldt Klausen T, Skov V, Kjær L, Ellervik C, Fassi DE, Vidal S, Hasselbalch HC, Andersen MH, thor Straten P. Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression. Front Immunol 2022; 13:866610. [PMID: 35603202 PMCID: PMC9120544 DOI: 10.3389/fimmu.2022.866610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are chronic cancers of the hematopoietic stem cells in the bone marrow, and patients often harbor elevated numbers of circulating platelets (PLT). We investigated the frequencies of circulating PLT-lymphocyte aggregates in MPN patients and the effect of PLT-binding on CD8 T cell function. The phenotype of these aggregates was evaluated in 50 MPN patients and 24 controls, using flow cytometry. In vitro studies compared the proliferation, cytokine release, and cytoxicity of PLT-bound and PLT-free CD8 T cells. Frequencies of PLT-CD8 T cell aggregates, were significantly elevated in MPN patients. Advanced disease stage and CALR mutation associated with the highest aggregate frequencies with a predominance of PLT-binding to antigen-experienced CD8 T cells. PLT-bound CD8 T cells showed reduction in proliferation and cytotoxic capacity. Our data suggest that CD8 T cell responses are jeopardized in MPN patients. JAK2 and CALR exon 9 mutations - the two predominant driver mutations in MPN - are targets for natural T cell responses in MPN patients. Moreover, MPN patients have more infections compared to background. Thus, PLT binding to antigen experienced CD8 T cells could play a role in the inadequacy of the immune system to control MPN disease progression and prevent recurrent infections.
Collapse
Affiliation(s)
- Ana Micaela Carnaz Simões
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Pia Aehnlich
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Anne Rahbech
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Marlies J. W. Peeters
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Aneta Radziwon-Balicka
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Carlos Zamora
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Tobias Wirenfeldt Klausen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Data and Innovation Support, Region Zealand, Sorø, Denmark
| | - Daniel El Fassi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Silvia Vidal
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Strickland M, Quek L, Psaila B. The immune landscape in BCR-ABL negative myeloproliferative neoplasms: inflammation, infections and opportunities for immunotherapy. Br J Haematol 2022; 196:1149-1158. [PMID: 34618358 PMCID: PMC9135025 DOI: 10.1111/bjh.17850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 01/06/2023]
Abstract
Breakpoint cluster region-Abelson (BCR-ABL) negative myeloproliferative neoplasms (MPNs) are chronic myeloid neoplasms initiated by the acquisition of gene mutation(s) in a haematopoietic stem cell, leading to clonal expansion and over-production of blood cells and their progenitors. MPNs encompass a spectrum of disorders with overlapping but distinct molecular, laboratory and clinical features. This includes polycythaemia vera, essential thrombocythaemia and myelofibrosis. Dysregulation of the immune system is key to the pathology of MPNs, supporting clonal evolution, mediating symptoms and resulting in varying degrees of immunocompromise. Targeting immune dysfunction is an important treatment strategy. In the present review, we focus on the immune landscape in patients with MPNs - the role of inflammation in disease pathogenesis, susceptibility to infection and emerging strategies for therapeutic immune modulation. Further detailed work is required to delineate immune perturbation more precisely in MPNs to determine how and why vulnerability to infection differs between clinical subtypes and to better understand how inflammation results in a competitive advantage for the MPN clone. These studies may help shed light on new designs for disease-modifying therapies.
Collapse
Affiliation(s)
- Marie Strickland
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxford
- National Institutes for Health Research Biomedical Research CentreUniversity of OxfordOxford
| | - Lynn Quek
- Department of Haematological MedicineKing's College Hospital NHS Foundation TrustLondon
- Department of Haematology, School of Cancer and Pharmaceutical SciencesKing's College LondonLondonUK
| | - Bethan Psaila
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxford
- National Institutes for Health Research Biomedical Research CentreUniversity of OxfordOxford
| |
Collapse
|
18
|
Campanelli R, Massa M, Rosti V, Barosi G. New Markers of Disease Progression in Myelofibrosis. Cancers (Basel) 2021; 13:5324. [PMID: 34771488 PMCID: PMC8582535 DOI: 10.3390/cancers13215324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm due to the clonal proliferation of a hematopoietic stem cell. The vast majority of patients harbor a somatic gain of function mutation either of JAK2 or MPL or CALR genes in their hematopoietic cells, resulting in the activation of the JAK/STAT pathway. Patients display variable clinical and laboratoristic features, including anemia, thrombocytopenia, splenomegaly, thrombotic complications, systemic symptoms, and curtailed survival due to infections, thrombo-hemorrhagic events, or progression to leukemic transformation. New drugs have been developed in the last decade for the treatment of PMF-associated symptoms; however, the only curative option is currently represented by allogeneic hematopoietic cell transplantation, which can only be offered to a small percentage of patients. Disease prognosis is based at diagnosis on the classical International Prognostic Scoring System (IPSS) and Dynamic-IPSS (during disease course), which comprehend clinical parameters; recently, new prognostic scoring systems, including genetic and molecular parameters, have been proposed as meaningful tools for a better patient stratification. Moreover, new biological markers predicting clinical evolution and patient survival have been associated with the disease. This review summarizes basic concepts of PMF pathogenesis, clinics, and therapy, focusing on classical prognostic scoring systems and new biological markers of the disease.
Collapse
Affiliation(s)
- Rita Campanelli
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Margherita Massa
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| |
Collapse
|
19
|
Abstract
This is the first report demonstrating the safety and lack of efficacy of pembrolizumab treatment in patients with advanced MPNs. Pembrolizumab was associated with changes in the immune milieu that could potentially support antitumor immunity in patients with advanced MPNs.
Myelofibrosis (MF) is a clonal stem cell neoplasm characterized by abnormal JAK-STAT signaling, chronic inflammation, cytopenias, and risk of transformation to acute leukemia. Despite improvements in the therapeutic options for patients with MF, allogeneic hematopoietic stem cell transplantation remains the only curative treatment. We previously demonstrated multiple immunosuppressive mechanisms in patients with MF, including increased expression of programmed cell death protein 1 (PD-1) on T cells compared with healthy controls. Therefore, we conducted a multicenter, open-label, phase 2, single-arm study of pembrolizumab in patients with Dynamic International Prognostic Scoring System category of intermediate-2 or greater primary, post-essential thrombocythemia or post-polycythemia vera myelofibrosis that were ineligible for or were previously treated with ruxolitinib. The study followed a Simon 2-stage design and enrolled a total of 10 patients, 5 of whom had JAK2V617mutation, 2 had CALR mutation, and 6 had additional mutations. Most patients were previously treated with ruxolitinib. Pembrolizumab treatment was well tolerated, but there were no objective clinical responses, so the study closed after the first stage was completed. However, immune profiling by flow cytometry, T-cell receptor sequencing, and plasma proteomics demonstrated changes in the immune milieu of patients, which suggested improved T-cell responses that can potentially favor antitumor immunity. The fact that these changes were not reflected in a clinical response strongly suggests that combination immunotherapeutic approaches rather than monotherapy may be necessary to reverse the multifactorial mechanisms of immune suppression in myeloproliferative neoplasms. This trial was registered at www.clinicaltrials.gov as #NCT03065400.
Collapse
|
20
|
Philadelphia-Negative Chronic Myeloproliferative Neoplasms during the COVID-19 Pandemic: Challenges and Future Scenarios. Cancers (Basel) 2021; 13:cancers13194750. [PMID: 34638236 PMCID: PMC8507529 DOI: 10.3390/cancers13194750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) started in December 2019 in China and then become pandemic in February 2020. Several publications investigated the possible increased rate of COVID-19 infection in hematological malignancies. Based on the published data, strategies for the management of chronic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are provided. The risk of severe COVID-19 seems high in MPN, particularly in patients with essential thrombocythemia, but not negligible in myelofibrosis. MPN patients are at high risk of both thrombotic and hemorrhagic complications and this must be accounted in the case of COVID-19 deciding on a case-by-case basis. There are currently no data to suggest that hydroxyurea or interferon may influence the risk or severity of COVID-19 infection. Conversely, while the immunosuppressive activity of ruxolitinib might pose increased risk of infection, its abrupt discontinuation during COVID-19 syndrome is associated with worse outcome. All MPN patients should receive vaccine against COVID-19; reassuring data are available on efficacy of mRNA vaccines in MPNs.
Collapse
|
21
|
The Power of Extracellular Vesicles in Myeloproliferative Neoplasms: "Crafting" a Microenvironment That Matters. Cells 2021; 10:cells10092316. [PMID: 34571965 PMCID: PMC8464728 DOI: 10.3390/cells10092316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative Neoplasms (MPN) are acquired clonal disorders of the hematopoietic stem cells and include Essential Thrombocythemia, Polycythemia Vera and Myelofibrosis. MPN are characterized by mutations in three driver genes (JAK2, CALR and MPL) and by a state of chronic inflammation. Notably, MPN patients experience increased risk of thrombosis, disease progression, second neoplasia and evolution to acute leukemia. Extracellular vesicles (EVs) are a heterogeneous population of microparticles with a role in cell-cell communication. The EV-mediated cross-talk occurs via the trafficking of bioactive molecules such as nucleic acids, proteins, metabolites and lipids. Growing interest is focused on EVs and their potential impact on the regulation of blood cancers. Overall, EVs have been suggested to orchestrate the complex interplay between tumor cells and the microenvironment with a pivotal role in "education" and "crafting" of the microenvironment by regulating angiogenesis, coagulation, immune escape and drug resistance of tumors. This review is focused on the role of EVs in MPN. Specifically, we will provide an overview of recent findings on the involvement of EVs in MPN pathogenesis and discuss opportunities for their potential application as diagnostic and prognostic biomarkers.
Collapse
|
22
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021; 10:2788. [PMID: 34202907 PMCID: PMC8268878 DOI: 10.3390/jcm10132788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, 8370993 Santiago, Chile
| |
Collapse
|
23
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021. [PMID: 34202907 DOI: 10.3390/jcm10132788.pmid:34202907;pmcid:pmc8268878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center "Dr Dragisa Misovic-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993 Santiago, Chile
| |
Collapse
|
24
|
Handlos Grauslund J, Holmström MO, Jørgensen NG, Klausen U, Weis-Banke SE, El Fassi D, Schöllkopf C, Clausen MB, Gjerdrum LMR, Breinholt MF, Kjeldsen JW, Hansen M, Koschmieder S, Chatain N, Novotny GW, Petersen J, Kjær L, Skov V, Met Ö, Svane IM, Hasselbalch HC, Andersen MH. Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With CALR-Mutant Chronic Myeloproliferative Neoplasms. Front Oncol 2021; 11:637420. [PMID: 33718228 PMCID: PMC7952976 DOI: 10.3389/fonc.2021.637420] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background The calreticulin (CALR) exon 9 mutations that are identified in 20% of patients with Philadelphia chromosome negative chronic myeloproliferative neoplasms (MPN) generate immunogenic antigens. Thus, therapeutic cancer vaccination against mutant CALR could be a new treatment modality in CALR-mutant MPN. Methods The safety and efficacy of vaccination with the peptide CALRLong36 derived from the CALR exon 9 mutations was tested in a phase I clinical vaccination trial with montanide as adjuvant. Ten patients with CALRmut MPN were included in the trial and received 15 vaccines over the course of one year. The primary end point was evaluation of safety and toxicity of the vaccine. Secondary endpoint was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT03566446). Results Patients had a median age of 59.5 years and a median disease duration of 6.5 years. All patients received the intended 15 vaccines, and the vaccines were deemed safe and tolerable as only two grade three AE were detected, and none of these were considered to be related to the vaccine. A decline in platelet counts relative to the platelets counts at baseline was detected during the first 100 days, however this did not translate into neither a clinical nor a molecular response in any of the patients. Immunomonitoring revealed that four of 10 patients had an in vitro interferon (IFN)-γ ELISPOT response to the CALRLong36 peptide at baseline, and four additional patients displayed a response in ELISPOT upon receiving three or more vaccines. The amplitude of the immune response increased during the entire vaccination schedule for patients with essential thrombocythemia. In contrast, the immune response in patients with primary myelofibrosis did not increase after three vaccines. Conclusion Therapeutic cancer vaccination with peptide vaccines derived from mutant CALR with montanide as an adjuvant, is safe and tolerable. The vaccines did not induce any clinical responses. However, the majority of patients displayed a marked T-cell response to the vaccine upon completion of the trial. This suggests that vaccines directed against mutant CALR may be used with other cancer therapeutic modalities to enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nicolai Grønne Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Claudia Schöllkopf
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Mette Borg Clausen
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Guy Wayne Novotny
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Jesper Petersen
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
25
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021; 22:ijms22041906. [PMID: 33672997 PMCID: PMC7918142 DOI: 10.3390/ijms22041906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
- Correspondence: ; Tel.: +39-059-422-2173
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| |
Collapse
|
26
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021. [PMID: 33672997 DOI: 10.3390/ijms22041906.pmid:33672997;pmcid:pmc7918142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| |
Collapse
|
27
|
Yang JS, Wang CC, Qiu JD, Ren B, You L. Arginine metabolism: a potential target in pancreatic cancer therapy. Chin Med J (Engl) 2020; 134:28-37. [PMID: 33395072 PMCID: PMC7862822 DOI: 10.1097/cm9.0000000000001216] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is an extremely malignant disease, which has an extremely low survival rate of <9% in the United States. As a new hallmark of cancer, metabolism reprogramming exerts crucial impacts on PDAC development and progression. Notably, arginine metabolism is altered in PDAC cells and participates in vital signaling pathways. In addition, arginine and its metabolites including polyamine, creatine, agmatine, and nitric oxide regulate the proliferation, growth, autophagy, apoptosis, and metastasis of cancer cells. Due to the loss of argininosuccinate synthetase 1 (ASS1) expression, the key enzyme in arginine biosynthesis, arginine deprivation is regarded as a potential strategy for PDAC therapy. However, drug resistance develops during arginine depletion treatment, along with the re-expression of ASS1, metabolic dysfunction, and the appearance of anti-drug antibody. Additionally, arginase 1 exerts crucial roles in myeloid-derived suppressor cells, indicating its potential targeting by cancer immunotherapy. In this review, we introduce arginine metabolism and its impacts on PDAC cells. Also, we discuss the role of arginine metabolism in arginine deprivation therapy and immunotherapy for cancer.
Collapse
Affiliation(s)
- Jin-Shou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | | | | | | | | |
Collapse
|
28
|
Heat Shock Proteins and PD-1/PD-L1 as Potential Therapeutic Targets in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092592. [PMID: 32932806 PMCID: PMC7563255 DOI: 10.3390/cancers12092592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Myeloproliferative neoplasms (MPN), which are a heterogeneous group of rare disorders that affect blood cell production in bone marrow, present many significant challenges for clinicians. Though considerable progress has been made, in particular with the JAK1/2 inhibitor ruxolitinib, more effective alternative therapeutic approaches are needed. In the search for new and more efficient therapies, heat shock proteins, also known as stress proteins, and the programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoint axis have been found to be of great interest in hematologic malignancies. Here, we review the therapeutic potential of stress protein inhibitors in the management of patients diagnosed with MPN and summarize the accumulating evidence of the role of the PD-1/PD-L1 axis in MPN in order to provide perspectives on future therapeutic opportunities relative to the inhibition of these targets. Abstract Myeloproliferative neoplasms (MPN) are a group of clonal disorders that affect hematopoietic stem/progenitor cells. These disorders are often caused by oncogenic driver mutations associated with persistent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. While JAK inhibitors, such as ruxolitinib, reduce MPN-related symptoms in myelofibrosis, they do not influence the underlying cause of the disease and are not curative. Due to these limitations, there is a need for alternative therapeutic strategies and targets. Heat shock proteins (HSPs) are cytoprotective stress-response chaperones involved in protein homeostasis and in many critical pathways, including inflammation. Over the last decade, several research teams have unraveled the mechanistic connection between STAT signaling and several HSPs, showing that HSPs are potential therapeutic targets for MPN. These HSPs include HSP70, HSP90 (chaperoning JAK2) and both HSP110 and HSP27, which are key factors modulating STAT3 phosphorylation status. Like the HSPs, the PD-1/PD-L1 signaling pathway has been widely studied in cancer, but the importance of PD-L1-mediated immune escape in MPN was only recently reported. In this review, we summarize the role of HSPs and PD-1/PD-L1 signaling, the modalities of their experimental blockade, and the effect in MPN. Finally, we discuss the potential of these emerging targeted approaches in MPN therapy.
Collapse
|
29
|
Masarova L, Bose P, Verstovsek S. The Rationale for Immunotherapy in Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2020; 14:310-327. [PMID: 31228096 DOI: 10.1007/s11899-019-00527-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The classic, chronic Philadelphia chromosome negative myeloproliferative neoplasms (MPN)-essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF)-are clonal malignancies of hematopoietic stem cells and are associated with myeloproliferation, organomegaly, and constitutional symptoms. Expanding knowledge that chronic inflammation and a dysregulated immune system are central to the pathogenesis and progression of MPNs serves as a driving force for the development of agents affecting the immune system as therapy for MPN. This review describes the rationale and potential impact of anti-inflammatory, immunomodulatory, and targeted agents in MPNs. RECENT FINDINGS The advances in molecular insights, especially the discovery of the Janus kinase 2 (JAK2) V617F mutation and its role in JAK-STAT pathway dysregulation, led to the development of the JAK inhibitor ruxolitinib, which currently represents the cornerstone of medical therapy in MF and hydroxyurea-resistant/intolerant PV. However, there remain significant unmet needs in the treatment of these patients, and many agents continue to be investigated. Novel, more selective JAK inhibitors might offer reduced myelosuppression or even improvement of blood counts. The recent approval of a novel, long-acting interferon for PV patients in Europe, might eventually lead to its broader clinical use in all MPNs. Targeted immunotherapy involving monoclonal antibodies, checkpoint inhibitors, or therapeutic vaccines against selected MPN epitopes could further enhance tumor-specific immune responses. Immunotherapeutic approaches are expanding and hopefully will extend the therapeutic armamentarium in patients with myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA.
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428, Houston, TX, 77030, USA
| |
Collapse
|
30
|
Holmström MO, Hasselbalch HC, Andersen MH. Cancer Immune Therapy for Philadelphia Chromosome-Negative Chronic Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:E1763. [PMID: 32630667 PMCID: PMC7407874 DOI: 10.3390/cancers12071763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPN) are neoplastic diseases of the hematopoietic stem cells in the bone marrow. MPN are characterized by chronic inflammation and immune dysregulation. Of interest, the potent immunostimulatory cytokine interferon-α has been used to treat MPN for decades. A deeper understanding of the anti-cancer immune response and of the different immune regulatory mechanisms in patients with MPN has paved the way for an increased perception of the potential of cancer immunotherapy in MPN. Therapeutic vaccination targeting the driver mutations in MPN is one recently described potential new treatment modality. Furthermore, T cells can directly react against regulatory immune cells because they recognize proteins like arginase and programmed death ligand 1 (PD-L1). Therapeutic vaccination with arginase or PD-L1 therefore offers a novel way to directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens like mutant CALR and mutant JAK2. Other therapeutic options that could be used in concert with therapeutic cancer vaccines are immune checkpoint-blocking antibodies and interferon-α. For more advanced MPN, adoptive cellular therapy is a potential option that needs more preclinical investigation. In this review, we summarize current knowledge about the immune system in MPN and discuss the many opportunities for anti-cancer immunotherapy in patients with MPN.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
31
|
Abstract
Myeloproliferative diseases, including myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS), are driven by genetic abnormalities and increased inflammatory signaling and are at high risk to transform into acute myeloid leukemia (AML). Myeloid-derived suppressor cells were reported to enhance leukemia immune escape by suppressing an effective anti-tumor immune response. MPNs are a potentially immunogenic disease as shown by their response to interferon-α treatment and allogeneic hematopoietic stem-cell transplantation (allo-HSCT). Novel immunotherapeutic approaches such as immune checkpoint inhibition, tumor vaccination, or cellular therapies using target-specific lymphocytes have so far not shown strong therapeutic efficacy. Potential reasons could be the pro-inflammatory and immunosuppressive microenvironment in the bone marrow of patients with MPN, driving tumor immune escape. In this review, we discuss the biology of MPNs with respect to the pro-inflammatory milieu in the bone marrow (BM) and potential immunotherapeutic approaches.
Collapse
|
32
|
Barone M, Catani L, Ricci F, Romano M, Forte D, Auteri G, Bartoletti D, Ottaviani E, Tazzari PL, Vianelli N, Cavo M, Palandri F. The role of circulating monocytes and JAK inhibition in the infectious-driven inflammatory response of myelofibrosis. Oncoimmunology 2020; 9:1782575. [PMID: 32923146 PMCID: PMC7458658 DOI: 10.1080/2162402x.2020.1782575] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myelofibrosis (MF) is characterized by chronic inflammation and hyper-activation of the JAK-STAT pathway. Infections are one of the main causes of morbidity/mortality. Therapy with Ruxolitinib (RUX), a JAK1/2 inhibitor, may further increase the infectious risk. Monocytes are critical players in inflammation/immunity through cytokine production and release of bioactive extracellular vesicles. However, the functional behavior of MF monocytes, particularly during RUX therapy, is still unclear. In this study, we found that monocytes from JAK2V617F-mutated MF patients show an altered expression of chemokine (CCR2, CXCR3, CCR5) and cytokine (TNF-α-R, IL10-R, IL1β-R, IL6-R) receptors. Furthermore, their ability to produce and secrete free and extracellular vesicles-linked cytokines (IL1β, TNF-α, IL6, IL10) under lipopolysaccharides (LPS) stimulation is severely impaired. Interestingly, monocytes from RUX-treated patients show normal level of chemokine, IL10, IL1β, and IL6 receptors together with a restored ability to produce intracellular and to secrete extracellular vesicles-linked cytokines after LPS stimulation. Conversely, RUX therapy does not normalize TNF-R1/2 receptors expression and the LPS-driven secretion of free pro/anti-inflammatory cytokines. Accordingly, upon LPS stimulation, in vitro RUX treatment of monocytes from MF patients increases their secretion of extracellular vesicles-linked cytokines but inhibits the secretion of free pro/anti-inflammatory cytokines. In conclusion, we demonstrated that in MF the infection-driven response of circulating monocytes is defective. Importantly, RUX promotes their infection-driven cytokine production suggesting that infections following RUX therapy may not be due to monocyte failure. These findings contribute to better interpreting the immune vulnerability of MF and to envisaging strategies to improve the infection-driven immune response.
Collapse
Affiliation(s)
- Martina Barone
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lucia Catani
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Ricci
- Immunohematology and Blood Bank, Azienda Ospedaliero-Universitaria S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Marco Romano
- School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London, UK
| | - Dorian Forte
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giuseppe Auteri
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Bartoletti
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Emanuela Ottaviani
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pier Luigi Tazzari
- Immunohematology and Blood Bank, Azienda Ospedaliero-Universitaria S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Nicola Vianelli
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Palandri
- Department of Experimental, Institute of Hematology "L. E A. "Seràgnoli", Diagnostic and Specialty Medicine, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
33
|
Rumi E, Baratè C, Benevolo G, Maffioli M, Ricco A, Sant'Antonio E. Myeloproliferative and lymphoproliferative disorders: State of the art. Hematol Oncol 2019; 38:121-128. [PMID: 31833567 DOI: 10.1002/hon.2701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
Abstract
Myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are clonal disorders complicated mainly by vascular events and transformation to myelofibrosis (for PV and ET) or leukemia. Although secondary malignancies, in particular, lymphoproliferative disorders (LPNs), are rare, they occur at a higher frequency than found in the general population, and there has been recent scientific discussion regarding a hypothetical relationship between treatment with JAK inhibitors in MPN and the risk of development of LPN. This has prompted increased interest regarding the coexistence of MPN and LPN. This review focuses on the role of JAK2 and the JAK/STAT pathway in MPN and LPN, whether there is a role for the genetic background in the occurrence of both MPN and LPN and whether there is a role for cytoreductive drugs in the occurrence of both MPN and LPN. Furthermore, whether an increased risk of lymphoma development is limited to patients who receive the JAK inhibitor ruxolitinib, is a more general phenomenon that occurs following JAK1/2 inhibition or is associated with preferential JAK1 or JAK2 targeting is discussed.
Collapse
Affiliation(s)
- Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Baratè
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Giulia Benevolo
- Hematology, Città della Salute e della Scienza, Turin, Italy
| | | | - Alessandra Ricco
- Department of Emergency and Organ Transplantation (D.E.T.O), Hematology Section, University of Bari, Bari, Italy
| | - Emanuela Sant'Antonio
- UOC Ematologia Aziendale, Azienda Usl Toscana Nord Ovest, Pisa, Italy.,Medical Genetics, University of Siena, Siena, Italy
| |
Collapse
|
34
|
Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci 2019; 20:ijms20215459. [PMID: 31683978 PMCID: PMC6862591 DOI: 10.3390/ijms20215459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
In the era of novel agents and immunotherapies in solid and liquid tumors, there is an emerging need to understand the cross-talk between the neoplastic cells, the host immune system, and the microenvironment to mitigate proliferation, survival, migration and resistance to drugs. In the microenvironment of hematological tumors there are cells belonging to the normal bone marrow, extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and neoplastic cells themselves. In this context, myeloid suppressor cells are an emerging sub-population of regulatory myeloid cells at different stages of differentiation involved in cancer progression and chronic inflammation. In this review, monocytic myeloid derived suppressor cells and their potential clinical implications are discussed to give a comprehensive vision of their contribution to lymphoproliferative and myeloid disorders.
Collapse
|
35
|
Palumbo GA, Parrinello NL, Giallongo C, D'Amico E, Zanghì A, Puglisi F, Conticello C, Chiarenza A, Tibullo D, Raimondo FD, Romano A. Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci 2019. [PMID: 31683978 DOI: 10.3390/ijms20215459.pmid:31683978;pmcid:pmc6862591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
In the era of novel agents and immunotherapies in solid and liquid tumors, there is an emerging need to understand the cross-talk between the neoplastic cells, the host immune system, and the microenvironment to mitigate proliferation, survival, migration and resistance to drugs. In the microenvironment of hematological tumors there are cells belonging to the normal bone marrow, extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and neoplastic cells themselves. In this context, myeloid suppressor cells are an emerging sub-population of regulatory myeloid cells at different stages of differentiation involved in cancer progression and chronic inflammation. In this review, monocytic myeloid derived suppressor cells and their potential clinical implications are discussed to give a comprehensive vision of their contribution to lymphoproliferative and myeloid disorders.
Collapse
Affiliation(s)
- Giuseppe Alberto Palumbo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Nunziatina Laura Parrinello
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Cesarina Giallongo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Emanuele D'Amico
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Aurora Zanghì
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Fabrizio Puglisi
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| | - Concetta Conticello
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Annalisa Chiarenza
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Daniele Tibullo
- BIOMETEC, Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, 95125 Catania, Italy.
| | - Francesco Di Raimondo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| | - Alessandra Romano
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
36
|
Prestipino A, Emhardt AJ, Aumann K, O'Sullivan D, Gorantla SP, Duquesne S, Melchinger W, Braun L, Vuckovic S, Boerries M, Busch H, Halbach S, Pennisi S, Poggio T, Apostolova P, Veratti P, Hettich M, Niedermann G, Bartholomä M, Shoumariyeh K, Jutzi JS, Wehrle J, Dierks C, Becker H, Schmitt-Graeff A, Follo M, Pfeifer D, Rohr J, Fuchs S, Ehl S, Hartl FA, Minguet S, Miething C, Heidel FH, Kröger N, Triviai I, Brummer T, Finke J, Illert AL, Ruggiero E, Bonini C, Duyster J, Pahl HL, Lane SW, Hill GR, Blazar BR, von Bubnoff N, Pearce EL, Zeiser R. Oncogenic JAK2 V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med 2019; 10:10/429/eaam7729. [PMID: 29467301 DOI: 10.1126/scitranslmed.aam7729] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 09/19/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Recent evidence has revealed that oncogenic mutations may confer immune escape. A better understanding of how an oncogenic mutation affects immunosuppressive programmed death ligand 1 (PD-L1) expression may help in developing new therapeutic strategies. We show that oncogenic JAK2 (Janus kinase 2) activity caused STAT3 (signal transducer and activator of transcription 3) and STAT5 phosphorylation, which enhanced PD-L1 promoter activity and PD-L1 protein expression in JAK2V617F-mutant cells, whereas blockade of JAK2 reduced PD-L1 expression in myeloid JAK2V617F-mutant cells. PD-L1 expression was higher on primary cells isolated from patients with JAK2V617F-myeloproliferative neoplasms (MPNs) compared to healthy individuals and declined upon JAK2 inhibition. JAK2V617F mutational burden, pSTAT3, and PD-L1 expression were highest in primary MPN patient-derived monocytes, megakaryocytes, and platelets. PD-1 (programmed death receptor 1) inhibition prolonged survival in human MPN xenograft and primary murine MPN models. This effect was dependent on T cells. Mechanistically, PD-L1 surface expression in JAK2V617F-mutant cells affected metabolism and cell cycle progression of T cells. In summary, we report that in MPN, constitutive JAK2/STAT3/STAT5 activation, mainly in monocytes, megakaryocytes, and platelets, caused PD-L1-mediated immune escape by reducing T cell activation, metabolic activity, and cell cycle progression. The susceptibility of JAK2V617F-mutant MPN to PD-1 targeting paves the way for immunomodulatory approaches relying on PD-1 inhibition.
Collapse
Affiliation(s)
- Alessandro Prestipino
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg 79104, Germany
| | - Alica J Emhardt
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Konrad Aumann
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - David O'Sullivan
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Sivahari P Gorantla
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Sandra Duquesne
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Wolfgang Melchinger
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Lukas Braun
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Slavica Vuckovic
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg 79085, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg 79085, Germany.,Institute of Experimental Dermatology, Institute of Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg 79085, Germany
| | - Sandra Pennisi
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg 79104, Germany
| | - Teresa Poggio
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg 79104, Germany
| | - Petya Apostolova
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Pia Veratti
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Michael Hettich
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Mark Bartholomä
- Department of Nuclear Medicine, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Khalid Shoumariyeh
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jonas S Jutzi
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg 79085, Germany
| | - Julius Wehrle
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.,Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Christine Dierks
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Heiko Becker
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Annette Schmitt-Graeff
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Marie Follo
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Dietmar Pfeifer
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jan Rohr
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Frederike A Hartl
- Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg 79104, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Susana Minguet
- Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg 79104, Germany.,Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg 79106, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Cornelius Miething
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Florian H Heidel
- Internal Medicine II, Department of Hematology and Oncology, University Hospital of Jena, Jena 07745, Germany.,Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ioanna Triviai
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg 79085, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Jürgen Finke
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Anna L Illert
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Eliana Ruggiero
- Unit of Experimental Hematology, San Raffaele Scientific Institute, and University of Vita-Salute San Raffaele, Milano 20132, Italy
| | - Chiara Bonini
- Unit of Experimental Hematology, San Raffaele Scientific Institute, and University of Vita-Salute San Raffaele, Milano 20132, Italy
| | - Justus Duyster
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Heike L Pahl
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Steven W Lane
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,University of Queensland, Herston, Queensland 4072, Australia
| | - Geoffrey R Hill
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,University of Queensland, Herston, Queensland 4072, Australia
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany. .,German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
37
|
Sant'Antonio E, Bonifacio M, Breccia M, Rumi E. A journey through infectious risk associated with ruxolitinib. Br J Haematol 2019; 187:286-295. [PMID: 31468506 DOI: 10.1111/bjh.16174] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ruxolitinib has proved to be effective for the treatment of patients with myelofibrosis (either primary or secondary) and polycythaemia vera, and its approval led to a significant change in the current treatment algorithm. Despite its efficacy and beyond its well described haematological toxicity, a peculiar immunosuppressive effect emerged as our clinical experience grew, both within and outside of a clinical trial setting. Definite and negative interactions with multiple pathways of the immune system of patients have been reported so far, involving both adaptive and innate immune responses. These pathophysiological mechanisms may contribute to the increased risk of reactivation of silent infections (e.g., tuberculosis, hepatitis B virus and varicella zoster virus) that have been associated with the drug. Even though such infectious events may be fatal or may lead to significant impairment of organ function, compromising the eligibility of patients for an allotransplant procedure, there are no dedicated guidelines that may help us in assessing and managing the risk of developing serious infections. On this basis, our aim for the present work was to review the current knowledge on the pathophysiological mechanisms through which ruxolitinib may exert its immunosuppressive effect, and to illustrate our personal approach to the management of three peculiar clinical scenarios, for which a risk-based algorithm is suggested.
Collapse
Affiliation(s)
- Emanuela Sant'Antonio
- Department of Oncology, Division of Haematology, Azienda USL Toscana Nord Ovest, Lucca, Italy
| | | | - Massimo Breccia
- Division of Cellular Biotechnologies and Haematology, University Sapienza, Roma, Italy
| | - Elisa Rumi
- Department of Haematology Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Cimen Bozkus C, Roudko V, Finnigan JP, Mascarenhas J, Hoffman R, Iancu-Rubin C, Bhardwaj N. Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. Cancer Discov 2019; 9:1192-1207. [PMID: 31266769 DOI: 10.1158/2159-8290.cd-18-1356] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022]
Abstract
Somatic frameshift mutations in the calreticulin (CALR) gene are key drivers of cellular transformation in myeloproliferative neoplasms (MPN). All patients carrying these mutations (CALR + MPN) share an identical sequence in the C-terminus of the mutated CALR protein (mut-CALR), with the potential for utility as a shared neoantigen. Here, we demonstrate that although a subset of patients with CALR + MPN develop specific T-cell responses against the mut-CALR C-terminus, PD-1 or CTLA4 expression abrogates the full complement of responses. Significantly, blockade of PD-1 and CLTA4 ex vivo by mAbs and of PD-1 in vivo by pembrolizumab administration restores mut-CALR-specific T-cell immunity in some patients with CALR + MPN. Moreover, mut-CALR elicits antigen-specific responses from both CD4+ and CD8+ T cells, confirming its broad applicability as an immunogen. Collectively, these results establish mut-CALR as a shared, MPN-specific neoantigen and inform the design of novel immunotherapies targeting mut-CALR. SIGNIFICANCE: Current treatment modalities for MPN are not effective in eliminating malignant cells. Here, we show that mutations in the CALR gene, which drive transformation in MPN, elicit T-cell responses that can be further enhanced by checkpoint blockade, suggesting immunotherapies could be employed to eliminate CALR + malignant cells in MPN.This article is highlighted in the In This Issue feature, p. 1143.
Collapse
Affiliation(s)
- Cansu Cimen Bozkus
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vladimir Roudko
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John P Finnigan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Camelia Iancu-Rubin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
39
|
Mejía-Ochoa M, Acevedo Toro PA, Cardona-Arias JA. Systematization of analytical studies of polycythemia vera, essential thrombocythemia and primary myelofibrosis, and a meta-analysis of the frequency of JAK2, CALR and MPL mutations: 2000-2018. BMC Cancer 2019; 19:590. [PMID: 31208359 PMCID: PMC6580484 DOI: 10.1186/s12885-019-5764-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Research into Philadelphia-negative chronic myeloproliferative neoplasms is heterogeneous. In addition, no systematization of studies of polycythemia vera (PV), essential thrombocythemia (ET) or primary myelofibrosis (PMF) have been carried out. The objective of this review is to characterize studies on BCR-ABL1-negative chronic myeloproliferative neoplasms and to compare the frequency of JAK2, MPL and CALR mutations in PV, ET and PMF. METHOD A systematic review of the scientific literature was conducted, as was meta-analysis with an ex-ante selection of protocol, according to phases of the PRISMA guide in three interdisciplinary databases. To guarantee reproducibility in the pursuit and retrieval of information, the reproducibility and methodological quality of the studies were evaluated by two researchers. RESULTS Fifty-two studies were included, the majority having been carried out in the United States, China, Brazil and Europe. The frequency of the JAK2V617F mutation ranged from 46.7 to 100% in patients with PV, from 31.3 to 72.1% in patients with ET, and from 25.0 to 85.7% in those with PMF. The frequency of the MPL mutation was 0% in PV, from 0.9 to 12.5% in ET, and from 0 to 17.1% in PMF. The CALR mutation occurred at a frequency of 0.0% in PV, whereas in ET, it ranged from 12.6 to 50%, and in PMF, it ranged from 10 to 100%. The risk of this mutation presenting in PV is 3.0 times that found for ET and 4.0 times that found for PMF. CONCLUSION Given the specificity and reported high frequencies of the JAK2V617F, MPL and CALR mutations in this group of neoplasms, the diagnosis of these diseases should not be made on clinical and hematological characteristics alone but should include genetic screening of patients.
Collapse
Affiliation(s)
- Mónica Mejía-Ochoa
- Molecular Hematopathology Research Group, School of Microbiology,University of Antioquia, Laboratorio Médico de referencia, Medellin, Colombia
| | - Paola Andrea Acevedo Toro
- Molecular Hematopathology Research Group, School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Jaiberth Antonio Cardona-Arias
- School of Microbiology University of Antioquia, School of Medicine, Cooperativa Universidad de Colombia, Calle 67 Número 53 - 108, Bloque 5, oficina 103, Medellin, Colombia.
| |
Collapse
|
40
|
PD-L1 Immunohistochemistry Highlights Bone Marrow Involvement by Classic Hodgkin Lymphoma in Staging Biopsies: Implications for Diagnosis and Tumor Microenvironment Alterations. Appl Immunohistochem Mol Morphol 2019; 27:356-363. [PMID: 29271790 DOI: 10.1097/pai.0000000000000628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed cell death ligand 1 (PD-L1) is cell surface glycoprotein that regulates the cellular immune response and serves as a targetable immune checkpoint molecule. Previous studies have demonstrated consistent expression of PD-L1 by Reed-Sternberg (RS) cells, as well as nonmalignant tumor-infiltrating macrophages in classic Hodgkin lymphoma (CHL). Bone marrow involvement by CHL is uncommon, being present in 5% to 10% of cases, but indicates Ann Arbor stage IV disease. Given the mixed inflammatory infiltrate that characterizes CHL, detection of RS cells in small bone marrow biopsies may be difficult. We sought to investigate the diagnostic utility of PD-L1 expression in staging bone marrow biopsies from patients with newly diagnosed CHL. Forty-four staging bone marrow biopsies from patients with newly diagnosed CHL were examined for PD-L1 expression by immunohistochemistry. Eight bone marrow biopsies were positive for involvement by CHL (8/44, 18%) and all were positive for PD-L1 (8/8, 100%), including a case that was originally nondiagnostic. Membranous PD-L1 expression was restricted to RS cells and the adjacent nontumor inflammatory cells admixed within areas of fibrosis. Uninvolved bone marrow biopsies and normal-appearing marrow in cases positive for CHL were negative for PD-L1. In comparison, bone marrow biopsies with myelofibrosis caused by myeloproliferative or myelodysplastic disorders were negative for significant PD-L1 staining. PD-L1 expression in RS cells and surrounding inflammatory cells is a sensitive marker for bone marrow involvement by CHL. In cases where RS cells are infrequent, PD-L1 staining in regions of fibrosis may serve as a useful diagnostic clue to involvement by CHL.
Collapse
|
41
|
Wang JC, Chen C, Kundra A, Kodali S, Pandey A, Wong C, Cheung T, Gotlieb V, Joseph G, Tribie S. Programmed Cell Death Receptor (PD-1) Ligand (PD-L1) expression in Philadelphia chromosome-negative myeloproliferative neoplasms. Leuk Res 2019; 79:52-59. [PMID: 30851544 DOI: 10.1016/j.leukres.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 02/04/2023]
Abstract
Programmed Cell Death Receptor (PD-1) and its Ligand (PD-L1) pathway inhibitor therapy has been explored in the field of oncology treatment mainly for solid tumors. In hematologic malignancies, there is limited information except for Hodgkin's lymphoma, and there is even less information regarding myeloproliferative neoplasm (MPN). Therefore, we explored this by first measuring PD-1 and PD-L1 levels (percentage of positive cells) in 63 patients with Philadelphia chromosome-negative MPN (Ph(-) MPN), including 16 MF (12 PMF, 2 post-PV-MF, 2 post-ET-MF), 29 ET, and 18 PV. We found there was no significant difference in PD-1 or PD-L1 levels between the different MPN groups but that there was a significant difference when PV, ET and MF were grouped as MPN and compared with controls, of all immune cells including CD4+, CD8+, CD14+ and CD34+ progenitor cells. We further found a higher incidence of higher expression levels (more than 50% of cells with positive expression) of PD-1 and PD-L1 (20% and 26%, respectively) in the CD34+ cells; in contrast, we found a low incidence (0.08-1.8%) in the immune cells in MPN patients. PD-1 and PD-L1 levels were also measured by MFI methods, and we obtained similar results except the measurements by percentage appeared to be more sensitive than the MFI methods. We found no correlation between PD-1 and PD-L1 expression levels and clinical features including WBC, platelet counts, hemoglobin levels, presence or absence of the JAK2, MPL, or CALR gene mutation, or splenomegaly. Since MPN represents stem cell disorders, the presence of elevated expression of PD-1 and PD-L1 in these cells suggests that the exploration of PD-1 and PD-L1 pathway inhibitor therapy may be worthwhile in Ph(-) MPN.
Collapse
Affiliation(s)
- Jen-Chin Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA.
| | - Chi Chen
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Ajay Kundra
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Sreenath Kodali
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Anita Pandey
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Ching Wong
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Tony Cheung
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Vladimir Gotlieb
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Gardith Joseph
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| | - Sophia Tribie
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA
| |
Collapse
|
42
|
Bizymi N, Bjelica S, Kittang AO, Mojsilovic S, Velegraki M, Pontikoglou C, Roussel M, Ersvær E, Santibañez JF, Lipoldová M, Papadaki HA. Myeloid-Derived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment Targets. Hemasphere 2019; 3:e168. [PMID: 31723807 PMCID: PMC6745940 DOI: 10.1097/hs9.0000000000000168] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that exist at very low numbers in healthy subjects but can expand significantly in malignant, infectious, and chronic inflammatory diseases. These cells are characterized as early-MDSCs, monocytic-MDSCs, and polymorphonuclear-MDSCs and can be studied on the basis of their immunophenotypic characteristics and their functional properties to suppress T-cell activation and proliferation. MDSCs have emerged as important contributors to tumor expansion and chronic inflammation progression by inducing immunosuppressive mechanisms, angiogenesis and drug resistance. Most experimental and clinical studies concerning MDSCs have been mainly focused on solid tumors. In recent years, however, the implication of MDSCs in the immune dysregulation associated with hematologic malignancies, immune-mediated cytopenias and allogeneic hemopoietic stem cell transplantation has been documented and the potential role of these cells as biomarkers and therapeutic targets has started to attract a particular interest in hematology. The elucidation of the molecular and signaling pathways associated with the generation, expansion and function of MDSCs in malignant and immune-mediated hematologic diseases and the clarification of mechanisms related to the circulation and the crosstalk of MDSCs with malignant cells and other components of the immune system are anticipated to lead to novel therapeutic strategies. This review summarizes all available evidence on the implication of MDSCs in hematologic diseases highlighting the challenges and perspectives arising from this novel field of research.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
- Graduate Program Molecular Basis of Human Disease, School of Medicine, University of Crete, Heraklion, Greece
| | - Sunčica Bjelica
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Astrid Olsnes Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division of Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Slavko Mojsilovic
- Laboratory of Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Maria Velegraki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
- Department of Immunology and Microbiology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Charalampos Pontikoglou
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| | - Mikael Roussel
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Laboratoire d’Hématologie, CHU Pontchaillou, Rennes Cedex, France
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education, Western Norway University of Applied Sciences, Bergen, Norway
| | - Juan Francisco Santibañez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
43
|
Holmström MO, Ahmad SM, Klausen U, Bendtsen SK, Martinenaite E, Riley CH, Svane IM, Kjær L, Skov V, Ellervik C, Pallisgaard N, Hasselbalch HC, Andersen MH. High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals. Blood Cancer J 2019; 9:8. [PMID: 30655510 PMCID: PMC6336769 DOI: 10.1038/s41408-018-0166-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Mutations in exon 9 of the calreticulin gene (CALR) frequently occur in patients with chronic myeloproliferative neoplasms (MPN). Patients exhibit spontaneous cellular immune responses to epitopes derived from the mutant CALR C-terminus, and CALR-mutant-specific T cells recognize autologous CALR-mutant malignant cells. This study investigated whether CALR-mutant-specific T cells occur naturally in CALRwt MPN-patients and in healthy individuals. Specific immune responses against epitopes in the mutant CALR peptide sequence were detected in both CALRwt MPN-patients and in healthy individuals. Healthy donors displayed more frequent and stronger CALR-mutant specific T-cell responses compared to the responses identified in CALR-mutant MPN-patients. Several T-cell responses were identified in healthy donors directly ex vivo. Importantly, by running functional analyses on live-sorted immune cells from healthy donors, we showed that circulating CALR-mutant-specific immune cells are T-memory cells. These findings suggest, that healthy individuals acquire a CALR exon 9 mutation, but the immune system reacts and clears the mutant cells, and during this reaction generates CALR-mutant specific T-memory cells. We believe that these findings provide the evidence for tumor immune surveillance in MPN.
Collapse
Affiliation(s)
- Morten O Holmström
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark. .,Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark.
| | - Shamaila M Ahmad
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Uffe Klausen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Simone K Bendtsen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | | - Inge M Svane
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Production, Research, and Innovation, Region Zealand, Sorø, Denmark.,Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niels Pallisgaard
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Mads H Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital Herlev, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Klausen U, Holmberg S, Holmström MO, Jørgensen NGD, Grauslund JH, Svane IM, Andersen MH. Novel Strategies for Peptide-Based Vaccines in Hematological Malignancies. Front Immunol 2018; 9:2264. [PMID: 30327655 PMCID: PMC6174926 DOI: 10.3389/fimmu.2018.02264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Peptides vaccination is an interesting approach to activate T-cells toward desired antigens in hematological malignancies. In addition to classical tumor associated antigens, such as cancer testis antigens, new potential targets for peptide vaccination comprise neo-antigens including JAK2 and CALR mutations, and antigens from immune regulatory proteins in the tumor microenvironment such as programmed death 1 ligands (PD-L1 and PD-L2). Immunosuppressive defenses of tumors are an important challenge to overcome and the T cell suppressive ligands PD-L1 and PD-L2 are often present in tumor microenvironments. Thus, PD-L1 and PD-L2 are interesting targets for peptide vaccines in diseases where the tumor microenvironment is known to play an essential role such as multiple myeloma and follicular lymphoma. In myelodysplastic syndromes the drug azacitidine re-exposes tumor associated antigens, why vaccination with related peptides would be an interesting addition. In myeloproliferative neoplasms the JAK2 and CALR mutations has proven to be immunogenic neo-antigens and thus possible targets for peptide vaccination. In this mini review we summarize the basis for these novel approaches, which has led to the initiation of clinical trials with various peptide vaccines in myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma, and follicular lymphoma.
Collapse
Affiliation(s)
- Uffe Klausen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
| | - Staffan Holmberg
- Department of Hematology, Herlev Hospital, Herlev, Denmark
- Division of Immunology - T cells & Cancer, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Jacob Handlos Grauslund
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Dietary Supplementation of Selenoneine-Containing Tuna Dark Muscle Extract Effectively Reduces Pathology of Experimental Colorectal Cancers in Mice. Nutrients 2018; 10:nu10101380. [PMID: 30262787 PMCID: PMC6212930 DOI: 10.3390/nu10101380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Selenoneine is an ergothioneine analog with greater antioxidant activity and is the major form of organic selenium in the blood, muscles, and other tissues of tuna. The aim of this study was to determine whether a selenoneine-rich diet exerts antioxidant activities that can prevent carcinogenesis in two types of colorectal cancer model in mice. We administrated selenoneine-containing tuna dark muscle extract (STDME) to mice for one week and used azoxymethane (AOM) and dextran sodium sulfate (DSS) for inducing colorectal carcinogenesis. Next, we examined the incidence of macroscopic polyps and performed functional analysis of immune cells from the spleen. In the AOM/DSS-induced colitis-associated cancer (CAC) model, the oral administration of STDME significantly decreased tumor incidence and inhibited the accumulation of myeloid-derived suppressor cells (MDSCs) while also inhibiting the downregulation of interferon-γ (IFN-γ) production during carcinogenesis. These results suggest that dietary STDME may be an effective agent for reducing colorectal tumor progression.
Collapse
|
46
|
Jørgensen MA, Holmström MO, Martinenaite E, Riley CH, Hasselbalch HC, Andersen MH. Spontaneous T-cell responses against Arginase-1 in the chronic myeloproliferative neoplasms relative to disease stage and type of driver mutation. Oncoimmunology 2018; 7:e1468957. [PMID: 30228936 DOI: 10.1080/2162402x.2018.1468957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/11/2023] Open
Abstract
Compelling evidence supports the existence of a profound immune dysregulation in patients with chronic myeloproliferative neoplasms (MPN). Increased Arginase-1 expression has been described in MPN patients and in solid cancers. This increase contributes to an immunosuppressive tumor microenvironment in MPN patients because of L-arginine depletion by Arginase-1-expressing regulatory cells and cancer cells, which subsequently limits the activation of circulating effector cells. In the present study, we demonstrate that Arginase-1-derived peptides are recognized by T cells among peripheral mononuclear blood cells from MPN patients. We characterized the Arginase-1-specific T cells as being CD4+ and found that the magnitude of response to the Arginase-1 peptides depends on disease stage. Activation of Arginase-1-specific T cells by vaccination could be an attractive novel immunotherapeutic approach to targeting malignant and suppressive cells in MPN patients in combination with other immunotherapeutics.
Collapse
Affiliation(s)
- Mia Aaboe Jørgensen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Deparmtent of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Holmström MO, Hasselbalch HC. Cancer immune therapy for myeloid malignancies: present and future. Semin Immunopathol 2018; 41:97-109. [PMID: 29987478 DOI: 10.1007/s00281-018-0693-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
The myelodysplastic syndromes, the chronic myeloproliferative neoplasms, and the acute myeloid leukemia are malignancies of the myeloid hematopoietic stem cells of the bone marrow. The diseases are characterized by a dysregulation of the immune system as both the cytokine milieu, immune phenotype, immune regulation, and expression of genes related to immune cell functions are deregulated. Several treatment strategies try to circumvent this deregulation, and several clinical and preclinical trials have shown promising results, albeit not in the same scale as chimeric antigen receptor T cells have had in the treatment of refractory lymphoid malignancies. The use of immune checkpoint blocking antibodies especially in combination with hypomethylating agents has had some success-a success that will likely be enhanced by therapeutic cancer vaccination with tumor-specific antigens. In the chronic myeloproliferative neoplasms, the recent identification of immune responses against the Januskinase-2 and calreticulin exon 9 driver mutations could also be used in the vaccination setting to enhance the anti-tumor immune response. This immune response could probably be enhanced by the concurrent use of immune checkpoint inhibitors or by vaccination with epitopes from immune regulatory proteins such as arginase-1 and programmed death ligand-1. Herein, we provide an overview of current cancer immune therapeutic treatment strategies as well as potential future cancer immune therapeutic treatment options for the myeloid malignancies.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark. .,Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Herlev, Denmark.
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Sygehusvej 10, 4000, Roskilde, Denmark
| |
Collapse
|
48
|
Masuda J, Shigehiro T, Matsumoto T, Satoh A, Mizutani A, Umemura C, Saito S, Kijihira M, Takayama E, Seno A, Murakami H, Seno M. Cytokine Expression and Macrophage Localization in Xenograft and Allograft Tumor Models Stimulated with Lipopolysaccharide. Int J Mol Sci 2018; 19:ijms19041261. [PMID: 29690614 PMCID: PMC5979423 DOI: 10.3390/ijms19041261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023] Open
Abstract
T cell-deficient mice such as nude mice are often used to generate tumor xenograft for the development of anticancer agents. However, the functionality of the other immune cells including macrophages, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs) in the xenograft are largely unknown. Macrophages and dendritic cells (DCs) acquire functionally distinct properties in response to various environmental stimuli; the interaction of these cells with MDSCs in tumor microenvironments regulates cancer progression. Nude mice are less likely to reject human cancer cells because of major histocompatibility complex (MHC) mismatches. The tumor microenvironment in a xenograft, comprising human and mouse cells, exhibits more complex bidirectional signaling and function than that of allograft. Here, we evaluated the differences of myeloid cells between them. Plasma interferon-γ and interleukin-18 concentrations in the xenograft tumor model after lipopolysaccharide (LPS) administration were significantly higher than those in the allograft tumor model. MHC class I, II, and CD80 expression levels were increased in CD11b+ and MDSC populations after LPS administration in the spleen of a xenograft tumor model but not in that of an allograft tumor model. Additionally, the number of CD80- and mannose receptor C type 1 (MRC1)-expressing cells was decreased upon LPS administration in the tumor of the xenograft tumor. These results suggest that functions of macrophages and DCs are sustained in the xenograft, whereas their functions in response to LPS were suppressed in the allograft. The findings will encourage the consideration of the effects of myeloid cells in the xenograft for drug development.
Collapse
Affiliation(s)
- Junko Masuda
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Tsukasa Shigehiro
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Takuma Matsumoto
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Ayano Satoh
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Akifumi Mizutani
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Chiho Umemura
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Shoki Saito
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Mayumi Kijihira
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan.
| | - Eiji Takayama
- Department of Oral Biochemistry, School of Dentistry, Asahi University, Gifu 501-0223, Japan.
| | - Akimasa Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Hiroshi Murakami
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
49
|
Holmström MO, Riley CH, Skov V, Svane IM, Hasselbalch HC, Andersen MH. Spontaneous T-cell responses against the immune check point programmed-death-ligand 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response. Oncoimmunology 2018; 7:e1433521. [PMID: 29872567 DOI: 10.1080/2162402x.2018.1433521] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
The Chronic Myeloproliferative Neoplasms (MPN) are cancers characterized by hyperinflammation and immune deregulation. Concurrently, the expression of the immune check point programmed death ligand 1 (PD-L1) is induced by inflammation. In this study we report on the occurrence of spontaneous T cell responses against a PD-L1 derived epitope in patients with MPN. We show that 71% of patients display a significant immune response against PD-L1, and patients with advanced MPN have significantly fewer and weaker PD-L1 specific immune responses compared to patients with non-advanced MPN. The PD-L1 specific T cell responses are CD4+ T cell responses, and by gene expression analysis we show that expression of PD-L1 is enhanced in patients with MPN. This could imply that the tumor specific immune response in MPN could be enhanced by vaccination with PD-L1 derived epitopes by boosting the anti-regulatory immune response hereby allowing tumor specific T cell to exert anti-tumor immunity.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.,Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University, Herlev, Denmark
| | | | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Romano M, Sollazzo D, Trabanelli S, Barone M, Polverelli N, Perricone M, Forte D, Luatti S, Cavo M, Vianelli N, Jandus C, Palandri F, Catani L. Mutations in JAK2 and Calreticulin genes are associated with specific alterations of the immune system in myelofibrosis. Oncoimmunology 2017; 6:e1345402. [PMID: 29123956 DOI: 10.1080/2162402x.2017.1345402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/11/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
Myelofibrosis (MF) is a clonal neoplasia associated with chronic inflammation due to aberrant cytokine production. Mutations in Janus Kinase-2 (JAK2), calreticulin (CALR) and myeloproliferative leukemia protein (MPL) genes have been recently associated to MF and they all activate the JAK/STAT signaling pathway. Since this pathway is essential in shaping the immune response, we investigated the role of circulating immune subsets and cytokines in 38 patients (20 carrying JAK2(V617F),13 exon-9 CALR mutation and 5 triple negative). In comparison to healthy donors, patients presented a reduced amount of circulating dendritic cells (DCs) associated with a defective ability of monocytes in differentiating into DCs. In addition, we found a reduction in circulating T-helper (Th)1 and Th17 and hypo-functional innate lymphoid cells (ILC). Results analyzed according to the mutational status showed that patients carrying JAK2(V617F) mutation had a reduction in Th17, myeloid-DCs and effector Tregs as well as increased ILC1 and cytokine producing Tregs. The CALR mutated patients revealed high ILC3 levels, reduced Th1 and their monocytes had a reduced capacity to mature in vitro into fully committed DCs. Their Tregs were also less effective in inhibiting the proliferation of autologous effector T-cells due to an increased proliferative status induced by CALR mutation. Triple negative patients presented a reduced amount of total circulating CD3, effectors Tregs and Th1 with increased ILC1. Overall, we have demonstrated that in MF different mutations lead to phenotypic and functional alterations in different immune subsets that may have a potential role in disease progression and susceptibility to infections.
Collapse
Affiliation(s)
- Marco Romano
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy.,Immunoregulation Laboratory, Division of Transplantation Immunology & Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, UK
| | - Daria Sollazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Sara Trabanelli
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Martina Barone
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Nicola Polverelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Margherita Perricone
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Dorian Forte
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Simona Luatti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Nicola Vianelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Camilla Jandus
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Francesca Palandri
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| | - Lucia Catani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," University of Bologna, Bologna, Italy
| |
Collapse
|