1
|
Yao L, Qin W, Hu L, Shi T, Yu Yang J, Li Q, Nie H, Li J, Wang X, Zhu L, Liu D, Zhang Y, Jiang S, Zhang Z, Yang X, Li D, Zhang X. Reciprocal tumor-platelet interaction through the EPHB1-EFNB1 axis in the liver metastatic niche promotes metastatic tumor outgrowth in pancreatic ductal adenocarcinoma. Cancer Commun (Lond) 2025; 45:143-166. [PMID: 39648610 PMCID: PMC11833672 DOI: 10.1002/cac2.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND The interaction between the metastatic microenvironment and tumor cells plays an important role in metastatic tumor formation. Platelets play pivotal roles in hematogenous cancer metastasis through tumor cell-platelet interaction in blood vessels. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy distinguished by its notable tendency to metastasize to the liver. However, the role of platelet in the liver metastatic niche of PDAC remains elusive. This study aimed to elucidate the role of platelets and their interactions with tumor cells in the liver metastatic niche of PDAC. METHODS An mCherry niche-labeling system was established to identify cells in the liver metastatic niche of PDAC. Platelet depletion in a liver metastasis mouse model was used to observe the function of platelets in PDAC liver metastasis. Gain-of-function and loss-of-function of erythropoietin-producing hepatocellular receptor B1 (Ephb1), tumor cell-platelet adhesion, recombinant protein, and tryptophan hydroxylase 1 (Tph1)-knockout mice were used to study the crosstalk between platelets and tumor cells in the liver metastatic niche. RESULTS The mCherry metastatic niche-labeling system revealed the presence of activated platelets in the liver metastatic niche of PDAC patients. Platelet depletion decreased liver metastatic tumor growth in mice. Mechanistically, tumor cell-expressed EPHB1 and platelet-expressed Ephrin B1 (EFNB1) mediated contact-dependent activation of platelets via reverse signaling-mediated AKT signaling activation, and in turn, activated platelet-released 5-HT, further enhancing tumor growth. CONCLUSION We revealed the crosstalk between platelets and tumor cells in the liver metastatic niche of PDAC. Reciprocal tumor-platelet interaction mediated by the EPHB1-EFNB1 reverse signaling promoted metastatic PDAC outgrowth via 5-HT in the liver. Interfering the tumor-platelet interaction by targeting the EPHB1-EFNB1 axis may represent a promising therapeutic intervention for PDAC liver metastasis.
Collapse
Affiliation(s)
- Lin‐Li Yao
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Wei‐Ting Qin
- Department of Radiation OncologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Li‐Peng Hu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Tie‐Zhu Shi
- Department of UrologyShanghai General HospitalShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jian Yu Yang
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Qing Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Hui‐Zhen Nie
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jun Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xu Wang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Lei Zhu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - De‐Jun Liu
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Yan‐Li Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Shu‐Heng Jiang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Zhi‐Gang Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xiao‐Mei Yang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Dong‐Xue Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xue‐Li Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| |
Collapse
|
2
|
Martins P, D’Souza RCJ, Skarne N, Lekieffre L, Horsefield S, Ranjankumar M, Li X, Le TT, Smith F, Smith C, Burrows J, Day BW, Khanna R. EphA3 CAR T cells are effective against glioblastoma in preclinical models. J Immunother Cancer 2024; 12:e009403. [PMID: 39111832 PMCID: PMC11308892 DOI: 10.1136/jitc-2024-009403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Adoptive T-cell therapy targeting antigens expressed in glioblastoma has emerged as a potential therapeutic strategy to prevent or delay recurrence and prolong overall survival in this aggressive disease setting. Ephrin receptor A3 (EphA3), which is highly expressed in glioblastoma; in particular, on the tumor vasculature and brain cancer stem cells, is an ideal target for immune-based therapies. METHODS We have designed an EphA3-targeted chimeric antigen receptor (CAR) using the single chain variable fragment of a novel monoclonal antibody, and assessed its therapeutic potential against EphA3-expressing patient-derived glioblastoma neurospheres, organoids and xenografted glioblastoma tumors in immunodeficient mice. RESULTS In vitro expanded EphA3 CAR T cells from healthy individuals efficiently recognize and kill EphA3-positive glioblastoma cells in vitro. Furthermore, these effector cells demonstrated curative efficacy in an orthotopic xenograft model of glioblastoma. EphA3 CAR T cells were equally effective in targeting patient-derived neurospheres and infiltrate, disaggregate, and induce apoptosis in glioblastoma-derived organoids. CONCLUSIONS This study provides compelling evidence supporting the therapeutic potential of EphA3 CAR T-cell therapy against glioblastoma by targeting EphA3 associated with brain cancer stem cells and the tumor vasculature. The ability to target patient-derived glioblastoma underscores the translational significance of this EphA3 CAR T-cell therapy in the pursuit of effective and targeted glioblastoma treatment strategies.
Collapse
Affiliation(s)
- Paulo Martins
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | | | - Niclas Skarne
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lea Lekieffre
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shane Horsefield
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | | | - Xiang Li
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Fiona Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jacqueline Burrows
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Sid Faithfull Brain Cancer Laboratory, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Lertsumitkul L, Iliopoulos M, Wang SS, McArthur SJ, Ebert LM, Davenport AJ, Endersby R, Hansford JR, Drummond KJ, Cross R, Jenkins MR. EphA3-targeted chimeric antigen receptor T cells are effective in glioma and generate curative memory T cell responses. J Immunother Cancer 2024; 12:e009486. [PMID: 39111833 PMCID: PMC11308882 DOI: 10.1136/jitc-2024-009486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND High-grade gliomas including glioblastoma (GBM) and diffuse midline gliomas (DMG) represent the most lethal and aggressive brain cancers where current treatment modalities offer limited efficacy. Chimeric antigen receptor (CAR) T cell therapies have emerged as a promising strategy, boasting tumor-specific targeting and the unique ability to penetrate the blood-brain barrier. However, the effective clinical application hinges on the optimal choice of antigen, with a limited number, currently under investigation. METHODS We employed cell surface proteomic analysis of primary human high-grade glioma samples from both adult and pediatric patients. This led to the identification of Ephrin type-A receptor 3 (EphA3) as a prevalently expressed target. We engineered a second-generation EphA3-targeted CAR T cell and assessed function using in vitro and in vivo models of GBM and DMG. RESULTS EphA3-targeted CAR T cells demonstrated robust antigen-specific killing of human GBM and DMG cell lines in vitro. In an orthotopic xenograft NSG mouse model, EphA3-targeted CAR T cells not only effectively eradicated tumors but also established a functional T cell population protective on rechallenge. Remarkably, mice rechallenged with a second contralateral orthotopic tumor implantation achieved complete tumor clearance and maintained a sustained complete response 6 months following initial treatment. CONCLUSION Building on the proven safety profile of EphA3 antibodies in clinical settings, our study provides compelling preclinical evidence supporting the efficacy of EphA3-targeted CAR T cells against high-grade gliomas. These findings underscore the potential for transitioning this innovative therapy into clinical trials, aiming to revolutionize the treatment landscape for patients afflicted with these formidable brain cancers.
Collapse
Affiliation(s)
- Leesa Lertsumitkul
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Melinda Iliopoulos
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Stacie S Wang
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sarah J McArthur
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Lisa M Ebert
- Translational Oncology, Centre for Cancer Biology, Adelaide, South Australia, Australia
- The University of Adelaide Adelaide Medical School, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Alexander J Davenport
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jordan R Hansford
- Michael Rice Children’s Hematology and Oncology Center, Women’s and Children’s Hospital; South Australia Health and Medical Research Institute; South Australia ImmmunoGenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, Royal Melbourne Hospital Department of Surgery, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - Ryan Cross
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Han Y, Rovella V, Smirnov A, Buonomo OC, Mauriello A, Perretta T, Shi Y, Woodmsith J, Bischof J, Melino G, Candi E, Bernassola F. A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient. Cell Death Discov 2023; 9:370. [PMID: 37813891 PMCID: PMC10562433 DOI: 10.1038/s41420-023-01651-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Department of Ophthalmology, The Affiliated Hospital of Jiangnan University, 214000, Wuxi, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tommaso Perretta
- Department of Diagnostic Imaging and Interventional Radiology, Policlinico Tor Vergata University, Rome, 00133, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | | | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
5
|
Peng R, Deng M. Mapping the protein-protein interactome in the tumor immune microenvironment. Antib Ther 2023; 6:311-321. [PMID: 38098892 PMCID: PMC10720949 DOI: 10.1093/abt/tbad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
The cell-to-cell communication primarily occurs through cell-surface and secreted proteins, which form a sophisticated network that coordinates systemic immune function. Uncovering these protein-protein interactions (PPIs) is indispensable for understanding the molecular mechanism and elucidating immune system aberrances under diseases. Traditional biological studies typically focus on a limited number of PPI pairs due to the relative low throughput of commonly used techniques. Encouragingly, classical methods have advanced, and many new systems tailored for large-scale protein-protein screening have been developed and successfully utilized. These high-throughput PPI investigation techniques have already made considerable achievements in mapping the immune cell interactome, enriching PPI databases and analysis tools, and discovering therapeutic targets for cancer and other diseases, which will definitely bring unprecedented insight into this field.
Collapse
Affiliation(s)
- Rui Peng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, PR China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, PR China
| | - Mi Deng
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, PR China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, PR China
- Peking University Cancer Hospital and Institute, Peking University, Beijing 100142, PR China
| |
Collapse
|
6
|
Nanamiya R, Suzuki H, Kaneko MK, Kato Y. Development of an Anti-EphB4 Monoclonal Antibody for Multiple Applications Against Breast Cancers. Monoclon Antib Immunodiagn Immunother 2023; 42:166-177. [PMID: 37824755 DOI: 10.1089/mab.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest receptor tyrosine kinase family. EphB4 is essential for cell adhesion and motility during embryogenesis. Pathologically, EphB4 is overexpressed and contributes to poor prognosis in various tumors. Therefore, specific monoclonal antibodies (mAbs) should be developed to predict the prognosis for multiple tumors with high EphB4 expression, including breast and gastric cancers. This study aimed to develop specific anti-EphB4 mAbs for multiple applications using the Cell-Based Immunization and Screening method. EphB4-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/EphB4) cells were immunized into mice, and we established an anti-EphB4 mAb (clone B4Mab-7), which is applicable for flow cytometry, Western blot, and immunohistochemistry (IHC). B4Mab-7 reacted with endogenous EphB4-positive breast cancer cell line, MCF-7, but did not react with EphB4-knockout MCF-7 (BINDS-52) in flow cytometry. Dissociation constant (KD) values were determined to be 2.9 × 10-9 M and 1.3 × 10-9 M by flow cytometric analysis for CHO/EphB4 and MCF-7 cells, respectively. B4Mab-7 detected the EphB4 protein bands from breast cancer cells in Western blot, and stained breast cancer tissues in IHC. Altogether, B4Mab-7 is very useful for detecting EphB4 in various applications.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Vail ME, Farnsworth RH, Hii L, Allen S, Arora S, Anderson RL, Dickins RA, Orimo A, Wu SZ, Swarbrick A, Scott AM, Janes PW. Inhibition of EphA3 Expression in Tumour Stromal Cells Suppresses Tumour Growth and Progression. Cancers (Basel) 2023; 15:4646. [PMID: 37760615 PMCID: PMC10527215 DOI: 10.3390/cancers15184646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mary E. Vail
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Rae H. Farnsworth
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Linda Hii
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Stacey Allen
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Sakshi Arora
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Robin L. Anderson
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Ross A. Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Akira Orimo
- Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Sunny Z. Wu
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Alexander Swarbrick
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Peter W. Janes
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
Stergiou IE, Papadakos SP, Karyda A, Tsitsilonis OE, Dimopoulos MA, Theocharis S. EPH/Ephrin Signaling in Normal Hematopoiesis and Hematologic Malignancies: Deciphering Their Intricate Role and Unraveling Possible New Therapeutic Targets. Cancers (Basel) 2023; 15:3963. [PMID: 37568780 PMCID: PMC10417178 DOI: 10.3390/cancers15153963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma receptors (EPHs) represent the largest family of receptor tyrosine kinases (RTKs). EPH interaction with ephrins, their membrane-bound ligands, holds a pivotal role in embryonic development, while, though less active, it is also implicated in various physiological functions during adult life. In normal hematopoiesis, different patterns of EPH/ephrin expression have been correlated with hematopoietic stem cell (HSC) maintenance and lineage-committed hematopoietic progenitor cell (HPC) differentiation, as well as with the functional properties of their mature offspring. Research in the field of hematologic malignancies has unveiled a rather complex involvement of the EPH/ephrinsignaling pathway in the pathophysiology of these neoplasms. Aberrations in genetic, epigenetic, and protein levels have been identified as possible players implicated both in tumor progression and suppression, while correlations have also been highlighted regarding prognosis and response to treatment. Initial efforts to therapeutically target the EPH/ephrin axis have been undertaken in the setting of hematologic neoplasia but are mainly confined to the preclinical level. To this end, deciphering the complexity of this signaling pathway both in normal and malignant hematopoiesis is necessary.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Anna Karyda
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (A.K.)
| |
Collapse
|
9
|
Norouzi A, Liaghat M, Bakhtiyari M, Noorbakhsh Varnosfaderani SM, Zalpoor H, Nabi-Afjadi M, Molania T. The potential role of COVID-19 in progression, chemo-resistance, and tumor recurrence of oral squamous cell carcinoma (OSCC). Oral Oncol 2023; 144:106483. [PMID: 37421672 DOI: 10.1016/j.oraloncology.2023.106483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Numerous studies have revealed that cancer patients are more likely to develop severe Coronavirus disease-2019 (COVID-19), which can cause mortality, as well as cancer progression and treatment failure. Among these patients who may be particularly vulnerable to severe COVID-19 and COVID-19-associated cancer progression are those with oral squamous cell carcinoma (OSCC). In this regard, therapeutic approaches must be developed to lower the risk of cancer development, chemo-resistance, tumor recurrence, and death in OSCC patients with COVID-19. It may be helpful to comprehend the cellular and molecular mechanisms by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to these problems. In this line, in this review, we described the potential cellular and molecular mechanisms that SARS-CoV-2 can exert its role and based on them pharmacological targeted therapies were suggested. However, in this study, we encourage more investigations in the future to uncover other cellular and molecular mechanisms of action of SARS-CoV-2 to develop beneficial therapeutic strategies for such patients.
Collapse
Affiliation(s)
- Ali Norouzi
- Department of Oral Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological sciences, Tarbiat Modares University, Tehran, Iran.
| | - Tahereh Molania
- Department of Oral Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
10
|
Maher J, Davies DM. CAR-Based Immunotherapy of Solid Tumours-A Survey of the Emerging Targets. Cancers (Basel) 2023; 15:1171. [PMID: 36831514 PMCID: PMC9953954 DOI: 10.3390/cancers15041171] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Immunotherapy with CAR T-cells has revolutionised the treatment of B-cell and plasma cell-derived cancers. However, solid tumours present a much greater challenge for treatment using CAR-engineered immune cells. In a partner review, we have surveyed data generated in clinical trials in which patients with solid tumours that expressed any of 30 discrete targets were treated with CAR-based immunotherapy. That exercise confirms that efficacy of this approach falls well behind that seen in haematological malignancies, while significant toxic events have also been reported. Here, we consider approximately 60 additional candidates for which such clinical data are not available yet, but where pre-clinical data have provided support for their advancement to clinical evaluation as CAR target antigens.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
11
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
12
|
Jiao Z, Feng X, Cui Y, Wang L, Gan J, Zhao Y, Meng Q. Expression characteristic, immune signature, and prognosis value of EFNA family identified by multi-omics integrative analysis in pan-cancer. BMC Cancer 2022; 22:871. [PMID: 35945523 PMCID: PMC9364540 DOI: 10.1186/s12885-022-09951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background EphrinA (EFNA) are Eph receptor ligands that regulate various disease processes. Nonetheless, the expression characteristics of EFNAs in pan-cancer, their relationship with tumor immune microenvironment, and prognostic value landscape remain unknown. Methods A comprehensive landscape of EFNAs was created using various statistical data extracted from 33 cancers. Subsequently, we identified differential expression, genetic variations, potential function enrichment, tumor immune-related analysis, and drug sensitivity. Further, we investigated the clinical features and diagnostic prognostic value of EFNAs. RT-qPCR, western blot and immunohistochemistry (IHC) were used to validate the expression level and significant clinical value of EFNA5 in lung adenocarcinoma cell lines and tissues. Results EFNAs were highly mutated in various cancers. Genomic and epigenetic alterations of EFNAs were observed in various tumors, where an oncogenic mutation in specific cancer types potentially affected EFNA expression. Moreover, tumor-derived EFNAs were significantly related to the tumor immune microenvironment, suggesting that they are promising therapeutic targets. The majority of EFNA family genes were significantly linked to patient prognosis. Eventually, EFNA5 was an independent prognostic factor in lung adenocarcinoma. Conclusion In summary, EFNAs are crucial in tumor immune regulation, and EFNA5 is a prognostic marker in lung adenocarcinoma. Our findings provide new insights into EFNAs from a bioinformatics standpoint and highlight the significance of EFNAs in cancer diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09951-0.
Collapse
Affiliation(s)
- Zonglin Jiao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiao Feng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuqing Cui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junqing Gan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbin Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
13
|
Khabibov M, Garifullin A, Boumber Y, Khaddour K, Fernandez M, Khamitov F, Khalikova L, Kuznetsova N, Kit O, Kharin L. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int J Oncol 2022; 60:69. [PMID: 35445737 PMCID: PMC9084550 DOI: 10.3892/ijo.2022.5359] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor and is associated with a poor clinical prognosis. Despite the progress in the understanding of the molecular and genetic changes that promote tumorigenesis, effective treatment options are limited. The present review intended to identify and summarize major signaling pathways and genetic abnormalities involved in the pathogenesis of GBM, as well as therapies that target these pathways. Glioblastoma remains a difficult to treat tumor; however, in the last two decades, significant improvements in the understanding of GBM biology have enabled advances in available therapeutics. Significant genomic events and signaling pathway disruptions (NF‑κB, Wnt, PI3K/AKT/mTOR) involved in the formation of GBM were discussed. Current therapeutic options may only marginally prolong survival and the current standard of therapy cures only a small fraction of patients. As a result, there is an unmet requirement for further study into the processes of glioblastoma pathogenesis and the discovery of novel therapeutic targets in novel signaling pathways implicated in the evolution of glioblastoma.
Collapse
Affiliation(s)
- Marsel Khabibov
- Department of Oncology, I. M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Airat Garifullin
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Yanis Boumber
- Division of Hematology/Oncology at The Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Karam Khaddour
- Department of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Manuel Fernandez
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Firat Khamitov
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Larisa Khalikova
- Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia
| | - Natalia Kuznetsova
- Department of Neuro-Oncology, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
| | - Oleg Kit
- Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
| | - Leonid Kharin
- Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov-on-Don, Russia
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
14
|
Indolium 1 Exerts Activity against Vemurafenib-Resistant Melanoma In Vivo. Antioxidants (Basel) 2022; 11:antiox11050798. [PMID: 35624662 PMCID: PMC9137681 DOI: 10.3390/antiox11050798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
The development of targeted therapies (BRAF/MEK inhibitors) and immunotherapy have had a major impact on the treatment of melanoma. However, the majority of patients with advanced melanomas succumb to their disease. The mechanisms of resistance to both targeted therapies and immunotherapies are numerous and have been well-described. These include the alternative activation of BRAF/MEK signaling, novel compensating mutations in additional oncogenes, and loss of neoantigens. There has been limited development of small molecules that target alternative pathways in melanoma in the last two decades. We have previously identified triphenylmethanes as a class that shows activity against a wide variety of tumors. We have synthesized a novel triphenylmethane, indolium 1, and demonstrated its efficacy against an aggressive vemurafenib-resistant melanoma in vivo. Indolium 1 has a novel mechanism of action against melanoma, in that it results in induction of the tumor-suppressor EPHA3. We believe that pre-IND studies are warranted for this novel compound, given its mechanism of action and ability to inhibit the growth of vemurafenib resistant melanoma in vivo.
Collapse
|
15
|
Protein-Protein Interaction Inhibitors Targeting the Eph-Ephrin System with a Focus on Amino Acid Conjugates of Bile Acids. Pharmaceuticals (Basel) 2022; 15:ph15020137. [PMID: 35215250 PMCID: PMC8880657 DOI: 10.3390/ph15020137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
The role of the Eph-ephrin system in the etiology of pathological conditions has been consolidated throughout the years. In this context, approaches directed against this signaling system, intended to modulate its activity, can be strategic therapeutic opportunities. Currently, the most promising class of compounds able to interfere with the Eph receptor-ephrin protein interaction is composed of synthetic derivatives of bile acids. In the present review, we summarize the progresses achieved, in terms of chemical expansions and structure-activity relationships, both in the steroidal core and the terminal carboxylic acid group, along with the pharmacological characterization for the most promising Eph-ephrin antagonists in in vivo settings.
Collapse
|
16
|
Honoré B, Andersen MD, Wilken D, Kamper P, d’Amore F, Hamilton-Dutoit S, Ludvigsen M. Classic Hodgkin Lymphoma Refractory for ABVD Treatment Is Characterized by Pathologically Activated Signal Transduction Pathways as Revealed by Proteomic Profiling. Cancers (Basel) 2022; 14:cancers14010247. [PMID: 35008410 PMCID: PMC8750842 DOI: 10.3390/cancers14010247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Classic Hodgkin lymphoma (cHL) patients refractory to standard ABVD chemo-therapy are known to have a dismal prognosis. This has led to the hypothesis that ABVD treatment-sensitive and ABVD treatment-refractory tumours are biologically distinct. In this study, cHL patients refractory to standard ABVD treatment show subtle but significant differences in protein expression that enable clustering of the two response groups, thus indicating differences between ABVD sensitive and refractory patients at the molecular level, and thereby strengthening the hypothesis that ABVD sensitive and ABVD refractory tumours may be biologically distinct. Abstract In classic Hodgkin lymphoma (cHL), the tumour microenvironment (TME) is of major pathological relevance. The paucity of neoplastic cells makes it important to study the entire TME when searching for prognostic biomarkers. Cure rates in cHL have improved markedly over the last several decades, but patients with primary refractory disease still show inferior survival. We performed a proteomic comparison of pretreatment tumour tissue from ABVD treatment-refractory versus ABVD treatment-sensitive cHL patients, in order to identify biological differences correlating with treatment outcome. Formalin-fixed paraffin-embedded tumour tissues from 36 patients with cHL, 15 with treatment-refractory disease, and 21 with treatment-sensitive disease, were processed for proteomic investigation. Label-free quantification nano liquid chromatography tandem mass spectrometry was performed on the tissues. A total of 3920 proteins were detected and quantified between the refractory and sensitive groups. This comparison revealed several subtle but significant differences in protein expression which could identify subcluster characteristics of the refractory group. Bioinformatic analysis of the biological differences indicated that a number of pathologically activated signal transduction pathways are disturbed in ABVD treatment-refractory cHL.
Collapse
Affiliation(s)
- Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (B.H.); (D.W.)
| | - Maja Dam Andersen
- Department of Haematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.D.A.); (P.K.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Diani Wilken
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (B.H.); (D.W.)
| | - Peter Kamper
- Department of Haematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.D.A.); (P.K.); (F.d.)
| | - Francesco d’Amore
- Department of Haematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.D.A.); (P.K.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Stephen Hamilton-Dutoit
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Haematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.D.A.); (P.K.); (F.d.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-22859523
| |
Collapse
|
17
|
Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression. Cancers (Basel) 2021; 13:cancers13153858. [PMID: 34359759 PMCID: PMC8345401 DOI: 10.3390/cancers13153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss of this engraftment ability (by deletion of the Lyl1 gene) did not result in any loss of leukemogenesis activity, indicating the activity of redundant oncogenic pathways in this model. Having observed an overexpression of the EphA3 protein in the NHD13 thymocytes, we hypothesized that this gene might be involved in a redundant leukaemogenic pathway. Deletion of EphA3 did not affect the engraftment ability of the thymocytes, but did reduce the incidence of T-ALL. We thus uncovered a distinct mechanism of leukaemogenesis, which we believe operates in parallel to that mediated by Lyl1. Abstract We recently characterised the NUP98-HOXD13 (NHD13) mouse as a model of T-cell pre-leukaemia, featuring thymocytes that can engraft in recipient animals and progress to T-cell acute lymphoblastic leukaemia (T-ALL). However, loss of this engraftment ability by deletion of Lyl1 did not result in any loss of leukemogenesis activity. In the present study, we observe that NHD13 thymocytes overexpress EPHA3, and we characterise thymocyte behaviour in NHD13 mice with deletion of EphA3, which show a markedly reduced incidence of T-ALL. Deletion of EphA3 from the NHD13 mice does not prevent the abnormal accumulation or transplantation ability of these thymocytes. However, upon transplantation, these cells are unable to block the normal progression of recipient wild type (WT) progenitor cells through the normal developmental pathway. This is in contrast to the EphA3+/+ NHD13 thymocytes, which block the progression of incoming WT progenitors past the DN1 stage. Therefore, EphA3 is not critical for classical self-renewal, but is essential for mediating an interaction between the abnormally self-renewing cells and healthy progenitors—an interaction that results in a failure of the healthy cells to differentiate normally. We speculate that this may orchestrate a loss of healthy cell competition, which in itself has been demonstrated to be oncogenic, and that this may explain the decrease in T-ALL incidence in the absence of EphA3. We suggest that pre-leukaemic self-renewal in this model is a complex interplay of cell-intrinsic and -extrinsic factors, and that multiple redundant pathways to leukaemogenesis are active.
Collapse
|
18
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
19
|
Hohmann MS, Habiel DM, Espindola MS, Huang G, Jones I, Narayanan R, Coelho AL, Oldham JM, Noth I, Ma SF, Kurkciyan A, McQualter JL, Carraro G, Stripp B, Chen P, Jiang D, Noble PW, Parks W, Woronicz J, Yarranton G, Murray LA, Hogaboam CM. Antibody-mediated depletion of CCR10+EphA3+ cells ameliorates fibrosis in IPF. JCI Insight 2021; 6:141061. [PMID: 33945505 PMCID: PMC8262321 DOI: 10.1172/jci.insight.141061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4-positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.
Collapse
Affiliation(s)
- Miriam S Hohmann
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M Habiel
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Milena S Espindola
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Guanling Huang
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Isabelle Jones
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rohan Narayanan
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ana Lucia Coelho
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justin M Oldham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Adrianne Kurkciyan
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jonathan L McQualter
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gianni Carraro
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Barry Stripp
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dianhua Jiang
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Paul W Noble
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - William Parks
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John Woronicz
- KaloBios Pharmaceuticals, Inc. (now Humanigen, Inc.), Burlingame, California, USA
| | - Geoffrey Yarranton
- KaloBios Pharmaceuticals, Inc. (now Humanigen, Inc.), Burlingame, California, USA
| | | | - Cory M Hogaboam
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
20
|
Glioblastoma Break-in; Try Something New. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Glioblastoma is the most invasive brain tumor with a poor prognosis and rapid progression. The standard therapy (surgical resection, adjuvant chemotherapy, and radiotherapy) ensures survival only up to 18 months. In this article, we focus on innovative types of radiotherapy, various combinations of temozolomide with novel substances, and methods of their administration and vector delivery to tumor cells. Evidence Acquisition: For a detailed study of the various options for chemotherapy and radiotherapy, Elsevier, NCBI MedLine, Scopus, Google Scholar, Embase, Web of Science, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI databases were analyzed. Results: The most available method is oral or intravenous administration of temozolomide. More efficient is the combined chemotherapy of temozolomide with innovative drugs and substances such as lomustine, histone deacetylase inhibitors, and chloroquine, as well as olaparib. These combinations improve patient survival and are effective in the treatment of resistant tumors. Compared to standard fractionated radiotherapy (60 Gy, 30 fractions, 6 weeks), hypofractionated is more effective for elderly patients due to lack of toxicity; brachytherapy reduces the risk of glioblastoma recurrence, while radiosurgery with bevacizumab is more effective against recurrent or inoperable tumors. Currently, the most effective treatment is considered to be the intranasal administration of anti-Ephrin A3 (anti-EPHA3)-modified containing temozolomide butyl ester-loaded (TBE-loaded) poly lactide-co-glycolide nanoparticles (P-NPs) coated with N-trimethylated chitosan (TMC) to overcome nasociliary clearance. Conclusions: New radiotherapeutic methods significantly increase the survival rates of glioblastoma patients. With some improvement, it may lead to the elimination of all tumor cells leaving the healthy alive. New chemotherapeutic drugs show impressive results with adjuvant temozolomide. Anti-EPHA3-modified TBE-loaded P-NPs coated with TMC have high absorption specificity and kill glioblastoma cells effectively. A new “step forward” may become a medicine of the future, which reduces the specific accumulation of nanoparticles in the lungs, but simultaneously does not affect specific absorption by tumor cells.
Collapse
|
21
|
Chatterjee D, Chowdhury UF, Shohan MUS, Mohasin M, Kabir Y. In-silico predictions of deleterious SNPs in human ephrin type-A receptor 3 (EPHA3) gene. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Gallego L, Ceña V. Nanoparticle-mediated therapeutic compounds delivery to glioblastoma. Expert Opin Drug Deliv 2020; 17:1541-1554. [DOI: 10.1080/17425247.2020.1810015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L. Gallego
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - V. Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Villatoro A, Konieczny J, Cuminetti V, Arranz L. Leukemia Stem Cell Release From the Stem Cell Niche to Treat Acute Myeloid Leukemia. Front Cell Dev Biol 2020; 8:607. [PMID: 32754595 PMCID: PMC7367216 DOI: 10.3389/fcell.2020.00607] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, complex, and deadly disease, whose treatment has hardly evolved for decades and grounds on the use of intensive chemotherapy regimens. Chemotherapy helps reduce AML bulk, but promotes relapse in the long-run by selection of chemoresistant leukemia stem cells (LSC). These may diversify and result in progression to more aggressive forms of AML. In vivo models suggest that the bone marrow stem cell niche helps LSC stay dormant and protected from chemotherapy. Here, we summarize relevant changes in stem cell niche homing and adhesion of AML LSC vs. healthy hematopoietic stem cells, and provide an overview of clinical trials aiming at targeting these processes for AML treatment and future directions within this field. Promising results with various non-mutation-targeted novel therapies directed to LSC eradication via interference with their anchoring to the stem cell niche have encouraged on-going or future advanced phase III clinical trials. In the coming years, we may see a shift in the focus of AML treatment to LSC-directed therapies if the prospect of improved cure rates holds true. In the future, AML treatment should lean toward personalized therapies using combinations of these compounds plus mutation-targeted agents and/or targeted delivery of chemotherapy, aiming at LSC eradication with reduced side effects.
Collapse
Affiliation(s)
- Alicia Villatoro
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Joanna Konieczny
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Vincent Cuminetti
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Lorena Arranz
- Stem Cell Aging and Cancer Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.,Norwegian Center for Molecular Medicine (NCMM), University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep 2020; 47:5523-5533. [PMID: 32621117 DOI: 10.1007/s11033-020-05571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
25
|
Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ. The role of Eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs 2020; 29:567-582. [PMID: 32348169 DOI: 10.1080/13543784.2020.1762566] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Erythropoietin-producing human hepatocellular (Eph) receptors are among the largest family of tyrosine kinases that are divided into two classes: EphA and EphB receptors. Over the past two decades, their role in cancer has become more evident. AREAS COVERED There is a need for new anticancer treatments and more insight in the emerging role of Eph receptors in cancer. Molecular mechanisms underlying the pro-tumorigenic effects of Eph receptors could be exploited for future therapeutic strategies. This review describes the variability in expression levels and different effects on oncogenic and tumor suppressive downstream signaling of Eph receptors in various cancer types, and the small molecules, antibodies and peptides that target these receptors. EXPERT OPINION The complexity of Eph signaling is a challenge for the definition of clear targets for cancer treatment. Nevertheless, numerous drugs that target EphA2 and EphB4 are currently in clinical trials. However, some Eph targeted drugs also inhibit other tyrosine kinases, so it is unclear to what extent the targeting of Eph receptors contributes to their efficacy. Future research is warranted for an improved understanding of the full network in which Eph receptors function. This will be critical for the improvement of the anticancer effects of drugs that target the Eph receptors.
Collapse
Affiliation(s)
- Oscar J Buckens
- Amsterdam University College , Amsterdam, The Netherlands
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Btissame El Hassouni
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
- Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza , Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk , Gdansk, Poland
| |
Collapse
|
26
|
Janes PW, Vail ME, Gan HK, Scott AM. Antibody Targeting of Eph Receptors in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13050088. [PMID: 32397088 PMCID: PMC7281212 DOI: 10.3390/ph13050088] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
The Eph subfamily of receptor tyrosine kinases mediate cell-cell communication controlling cell and tissue patterning during development. While generally less active in adult tissues, they often re-emerge in cancers, particularly on undifferentiated or progenitor cells in tumors and the tumor microenvironment, associated with tumor initiation, angiogenesis and metastasis. Eph receptors are thus attractive therapeutic targets, and monoclonal antibodies have been commonly developed and tested for anti-cancer activity in preclinical models, and in some cases in the clinic. This review summarizes 20 years of research on various antibody-based approaches to target Eph receptors in tumors and the tumor microenvironment, including their mode of action, tumor specificity, and efficacy in pre-clinical and clinical testing.
Collapse
|
27
|
Chu L, Wang A, Ni L, Yan X, Song Y, Zhao M, Sun K, Mu H, Liu S, Wu Z, Zhang C. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv 2019; 25:1634-1641. [PMID: 30176744 PMCID: PMC6127843 DOI: 10.1080/10717544.2018.1494226] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma is the most common malignant brain tumor. Efficient delivery of drugs targeting glioblastomas remains a challenge. Ephrin type-A receptor 3 (EPHA3) tyrosine kinase antibody-modified polylactide-co-glycolide (PLGA) nanoparticles (NPs) were developed to target glioblastoma via nose-to-brain delivery. Anti-EPHA3-modified, TBE-loaded NPs were prepared using an emulsion-solvent evaporation method, showed a sustained in vitro release profile up to 48 h and a mean particle size of 145.9 ± 8.7 nm. The cellular uptake of anti-EPHA3-modified NPs by C6 cells was significantly enhanced compared to that of nontargeting NPs (p < .01). In vivo imaging and distribution studies on the glioma-bearing rats showed that anti-EPHA3-modified NPs exhibited high fluorescence intensity in the brain and effectively accumulated to glioma tissues, indicating the targeting effect of anti-EPHA3. Glioma-bearing rats treated with anti-EPHA3-modified NPs resulted in significantly higher tumor cell apoptosis (p < .01) than that observed with other formulations and prolonged the median survival time of glioma-bearing rats to 26 days, which was 1.37-fold longer than that of PLGA NPs. The above results indicated that anti-EPHA3-modified NPs may potentially serve as a nose-to-brain drug carrier for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Liuxiang Chu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Aiping Wang
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Ling Ni
- b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Xiuju Yan
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Yina Song
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Mingyu Zhao
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Kaoxiang Sun
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , China
| | - Hongjie Mu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Sha Liu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Zimei Wu
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| | - Chunyan Zhang
- a School of Pharmacy , Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai , China
| |
Collapse
|
28
|
Darling TK, Lamb TJ. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front Immunol 2019; 10:1473. [PMID: 31333644 PMCID: PMC6620610 DOI: 10.3389/fimmu.2019.01473] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and mediate a myriad of essential processes in humans from embryonic development to adult tissue homeostasis through interactions with membrane-bound ephrin ligands. The ubiquitous expression of Eph receptors and ephrin ligands among the cellular players of the immune system underscores the importance of these molecules in orchestrating an optimal immune response. This review provides an overview of the various roles of Eph receptors and ephrin ligands in immune cell development, activation, and migration. We also discuss the role of Eph receptors in disease pathogenesis as well as the implications of Eph receptors as future immunotherapy targets. Given the diverse and critical roles of Eph receptors and ephrin ligands throughout the immune system during both resting and activated states, this review aims to highlight the critical yet underappreciated roles of this family of signaling molecules in the immune system.
Collapse
Affiliation(s)
- Thayer K Darling
- Immunology and Molecular Pathogenesis Program, Emory University Laney Graduate School, Atlanta, GA, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Tracey J Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
29
|
Wu B, Rockel JS, Lagares D, Kapoor M. Ephrins and Eph Receptor Signaling in Tissue Repair and Fibrosis. Curr Rheumatol Rep 2019; 21:23. [PMID: 30980212 DOI: 10.1007/s11926-019-0825-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Fibrosis is a pathological feature of many human diseases that affect multiple organs. The development of anti-fibrotic therapies has been a difficult endeavor due to the complexity of signaling pathways associated with fibrogenic processes, complicating the identification and modulation of specific targets. Evidence suggests that ephrin ligands and Eph receptors are crucial signaling molecules that contribute to physiological wound repair and the development of tissue fibrosis. Here, we discuss recent advances in the understanding of ephrin and Eph signaling in tissue repair and fibrosis. RECENT FINDINGS Ephrin-B2 is implicated in fibrosis of multiple organs. Intercepting its signaling may help counteract fibrosis. Ephrins and Eph receptors are candidate mediators of fibrosis. Ephrin-B2, in particular, promotes fibrogenic processes in multiple organs. Thus, therapeutic strategies targeting Ephrin-B2 signaling could yield new ways to treat organ fibrosis.
Collapse
Affiliation(s)
- Brian Wu
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jason S Rockel
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mohit Kapoor
- The Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Duan X, Xu X, Yin B, Hong B, Liu W, Liu Q, Tao Z. The prognosis value of EphA3 and the androgen receptor in prostate cancer treated with radical prostatectomy. J Clin Lab Anal 2019; 33:e22871. [PMID: 30958616 PMCID: PMC6595293 DOI: 10.1002/jcla.22871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to preliminarily assess the relationship between erythropoietin‐producing hepatocellular carcinoma receptor A3 (EphA3) and androgen receptor (AR) protein expression levels and prognosis in prostate cancer (PCa) to better understand the role of EphA3 in the prognosis and progression of PCa. Materials We investigated the expression of EphA3 and AR in human PCa by immunohistochemistry. Results EphA3 and AR were both significantly upregulated in PCa, with expression mainly localized to the nucleus. A high level of AR expression was found in 48.4% of 64 tumor samples, which was significantly more than in the adjacent tissue samples (15.6%) (P < 0.01). The percentage of samples expressing a high level of EphA3 was significantly greater in the PCa samples (54.7%) than in the adjacent tissue samples (20.3%) for the 64 tumors (P < 0.01). The high levels of EphA3 and AR expression in the PCa tissue samples were both correlated with the pathological stage, bladder and rectal invasion, distant metastasis, and preoperative PSA level (both P < 0.05). The survival time was significantly shorter in high levels of AR expression of patients. (P < 0.01). A high level of EphA3 in PCa patients suggests a poor prognosis (P < 0.05). Biochemical recurrence, distant metastasis, and the final scores of EphA3 and AR expression were significantly correlated with the prognosis of PCa (P < 0.05). Conclusions Increased EphA3 expression is an independent prognostic factor for a poor outcome and decreased survival in PCa.
Collapse
Affiliation(s)
- Xiuzhi Duan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoming Xu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Binbin Yin
- Department of Clinical Laboratory, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Bong Hong
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Liu
- International Medical Center Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhihua Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol 2019; 59:3-22. [PMID: 30943434 DOI: 10.1016/j.semcancer.2019.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway, one of the most commonly activated signaling pathways in human cancers, plays a crucial role in the regulation of cell proliferation, differentiation, and survival. This pathway is usually activated by receptor tyrosine kinases (RTKs), whose constitutive and aberrant activation is via gain-of-function mutations, chromosomal rearrangement, gene amplification and autocrine. Blockage of PI3K pathway by targeted therapy on RTKs with tyrosine kinases inhibitors (TKIs) and monoclonal antibodies (mAbs) has achieved great progress in past decades; however, there still remain big challenges during their clinical application. In this review, we provide an overview about the most frequently encountered alterations in RTKs and focus on current therapeutic agents developed to counteract their aberrant functions, accompanied with discussions of two major challenges to the RTKs-targeted therapy in cancer - resistance and toxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
32
|
The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models. Cancers (Basel) 2019; 11:cancers11030359. [PMID: 30871240 PMCID: PMC6468443 DOI: 10.3390/cancers11030359] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Therapies against glioblastoma (GBM) show a high percentage of failure associated with the survival of glioma stem cells (GSCs) that repopulate treated tumours. Forced differentiation of GSCs is a promising new approach in cancer treatment. Erythropoietin-producing hepatocellular (Eph) receptors drive tumourigenicity and stemness in GBM. We tested GLPG1790, a first small molecule with inhibition activity versus inhibitor of various Eph receptor kinases, in preclinical GBM models using in vitro and in vivo assays. GLPG1790 rapidly and persistently inhibited Ephrin-A1-mediated phosphorylation of Tyr588 and Ser897, completely blocking EphA2 receptor signalling. Similarly, this compound blocks the ephrin B2-mediated EphA3 and EphB4 tyrosine phosphorylation. This resulted in anti-glioma effects. GLPG1790 down-modulated the expression of mesenchymal markers CD44, Sox2, nestin, octamer-binding transcription factor 3/4 (Oct3/4), Nanog, CD90, and CD105, and up-regulated that of glial fibrillary acidic protein (GFAP) and pro-neural/neuronal markers, βIII tubulin, and neurofilaments. GLPG1790 reduced tumour growth in vivo. These effects were larger compared to radiation therapy (RT; U251 and T98G xenografts) and smaller than those of temozolomide (TMZ; U251 and U87MG cell models). By contrast, GLPG1790 showed effects that were higher than Radiotherapy (RT) and similar to Temozolomide (TMZ) in orthotopic U87MG and CSCs-5 models in terms of disease-free survival (DFS) and overall survival (OS). Further experiments were necessary to study possible interactions with radio- and chemotherapy. GLPG1790 demonstrated anti-tumor effects regulating both the differentiative status of Glioma Initiating Cells (GICs) and the quality of tumor microenvironment, translating into efficacy in aggressive GBM mouse models. Significant common molecular targets to radio and chemo therapy supported the combination use of GLPG1790 in ameliorative antiglioma therapy.
Collapse
|
33
|
EphA3 Pay-Loaded Antibody Therapeutics for the Treatment of Glioblastoma. Cancers (Basel) 2018; 10:cancers10120519. [PMID: 30562956 PMCID: PMC6316644 DOI: 10.3390/cancers10120519] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
The EphA3 receptor has recently emerged as a functional tumour-specific therapeutic target in glioblastoma (GBM). EphA3 is significantly elevated in recurrent disease, is most highly expressed on glioma stem cells (GSCs), and has a functional role in maintaining self-renewal and tumourigenesis. An unlabelled EphA3-targeting therapeutic antibody is currently under clinical assessment in recurrent GBM patients. In this study, we assessed the efficacy of EphA3 antibody drug conjugate (ADC) and radioimmunotherapy (RIT) approaches using orthotopic animal xenograft models. Brain uptake studies, using positron emission tomography/computed tomography (PET/CT) imaging, show EphA3 antibodies are effectively delivered across the blood-tumour barrier and accumulate at the tumour site with no observed normal brain reactivity. A robust anti-tumour response, with no toxicity, was observed using EphA3, ADC, and RIT approaches, leading to a significant increase in overall survival. Our current research provides evidence that GBM patients may benefit from pay-loaded EphA3 antibody therapies.
Collapse
|
34
|
Saha N, Robev D, Mason EO, Himanen JP, Nikolov DB. Therapeutic potential of targeting the Eph/ephrin signaling complex. Int J Biochem Cell Biol 2018; 105:123-133. [PMID: 30343150 DOI: 10.1016/j.biocel.2018.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
Abstract
The Eph-ephrin signaling pathway mediates developmental processes and the proper functioning of the adult human body. This distinctive bidirectional signaling pathway includes a canonical downstream signal cascade inside the Eph-bearing cells, as well as a reverse signaling in the ephrin-bearing cells. The signaling is terminated by ADAM metalloproteinase cleavage, internalization, and degradation of the Eph/ephrin complexes. Consequently, the Eph-ephrin-ADAM signaling cascade has emerged as a key target with immense therapeutic potential particularly in the context of cancer. An interesting twist was brought forth by the emergence of ephrins as the entry receptors for the pathological Henipaviruses, which has spurred new studies to target the viral entry. The availability of high-resolution structures of the multi-modular Eph receptors in complexes with ephrins and other binding partners, such as peptides, small molecule inhibitors and antibodies, offers a wealth of information for the structure-guided development of therapeutic intervention. Furthermore, genomic data mining of Eph mutants involved in cancer provides information for targeted drug development. In this review we summarize the distinct avenues for targeting the Eph-ephrin signaling pathway, including its termination by ADAM proteinases. We highlight the latest developments in Eph-related pharmacology in the context of Eph-ephrin-ADAM-based antibodies and small molecules. Finally, the future prospects of genomics- and proteomics-based medicine are discussed.
Collapse
Affiliation(s)
- Nayanendu Saha
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States
| | - Dorothea Robev
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States
| | - Emilia O Mason
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States
| | - Juha P Himanen
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States.
| | - Dimitar B Nikolov
- Sloan-Kettering Institute for Cancer Research, Structural Biology Program, 1275 York Avenue, New York, NY 10065, United States
| |
Collapse
|
35
|
Viewing the Eph receptors with a focus on breast cancer heterogeneity. Cancer Lett 2018; 434:160-171. [PMID: 30055288 DOI: 10.1016/j.canlet.2018.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Aberrant expression of different family members of the Eph/ephrin system, which comprises the Eph receptors (Ephs) and their ligands (ephrins), has been implicated in various malignancies including breast cancer. The latter presents as a heterogeneous disease with diverse molecular, morphologic and clinical behavior signatures. This review reflects the existing Eph/ephrin literature while focusing on breast cancer heterogeneity. Hormone positive, HER2 positive and triple negative breast cancer (TNBC) cell lines, xenografts/mutant animal models and patient samples are examined separately as, in humans, they represent entities with differences in prognosis and treatment. EphA2, EphB4 and EphB6 are the members most extensively studied in breast cancer. Existing research points to the potential use of various Eph/ephrin members as biomarkers for assessing prognosis and selecting the most suitable therapeutic strategies in variable clinical scenarios, also for overcoming drug resistance, in the era of breast cancer heterogeneity.
Collapse
|
36
|
Qazi MA, Vora P, Venugopal C, Adams J, Singh M, Hu A, Gorelik M, Subapanditha MK, Savage N, Yang J, Chokshi C, London M, Gont A, Bobrowski D, Grinshtein N, Brown KR, Murty NK, Nilvebrant J, Kaplan D, Moffat J, Sidhu S, Singh SK. Cotargeting Ephrin Receptor Tyrosine Kinases A2 and A3 in Cancer Stem Cells Reduces Growth of Recurrent Glioblastoma. Cancer Res 2018; 78:5023-5037. [PMID: 29945963 DOI: 10.1158/0008-5472.can-18-0267] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) carries a dismal prognosis and inevitably relapses despite aggressive therapy. Many members of the Eph receptor tyrosine kinase (EphR) family are expressed by GBM stem cells (GSC), which have been implicated in resistance to GBM therapy. In this study, we identify several EphRs that mark a therapeutically targetable GSC population in treatment-refractory, recurrent GBM (rGBM). Using a highly specific EphR antibody panel and CyTOF (cytometry by time-of-flight), we characterized the expression of all 14 EphR in primary and recurrent patient-derived GSCs to identify putative rGBM-specific EphR. EPHA2 and EPHA3 coexpression marked a highly tumorigenic cell population in rGBM that was enriched in GSC marker expression. Knockdown of EPHA2 and EPHA3 together led to increased expression of differentiation marker GFAP and blocked clonogenic and tumorigenic potential, promoting significantly higher survival in vivo Treatment of rGBM with a bispecific antibody against EPHA2/A3 reduced clonogenicity in vitro and tumorigenic potential of xenografted recurrent GBM in vivo via downregulation of AKT and ERK and increased cellular differentiation. In conclusion, we show that EPHA2 and EPHA3 together mark a GSC population in rGBM and that strategic cotargeting of EPHA2 and EPHA3 presents a novel and rational therapeutic approach for rGBM.Significance: Treatment of rGBM with a novel bispecific antibody against EPHA2 and EPHA3 reduces tumor burden, paving the way for the development of therapeutic approaches against biologically relevant targets in rGBM. Cancer Res; 78(17); 5023-37. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Carcinogenesis/genetics
- Cell Differentiation/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Ephrin-A2/antagonists & inhibitors
- Ephrin-A2/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Knockdown Techniques
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioblastoma/pathology
- Glioblastoma/radiotherapy
- Humans
- Mice
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Neoplastic Stem Cells/pathology
- Prognosis
- Radiation
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, EphA3
- Receptors, Eph Family/antagonists & inhibitors
- Receptors, Eph Family/genetics
- Temozolomide/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Maleeha A Qazi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Parvez Vora
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Chitra Venugopal
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Jarrett Adams
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mohini Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Amy Hu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Maryna Gorelik
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Minomi K Subapanditha
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Neil Savage
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Jiahe Yang
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chirayu Chokshi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Max London
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Gont
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Bobrowski
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | | | - Kevin R Brown
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Naresh K Murty
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Johan Nilvebrant
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - David Kaplan
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason Moffat
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sheila K Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada.
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
37
|
Festuccia C, Gravina GL, Giorgio C, Mancini A, Pellegrini C, Colapietro A, Delle Monache S, Maturo MG, Sferra R, Chiodelli P, Rusnati M, Cantoni A, Castelli R, Vacondio F, Lodola A, Tognolini M. UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget 2018; 9:24347-24363. [PMID: 29849945 PMCID: PMC5966254 DOI: 10.18632/oncotarget.25272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/07/2018] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor, showing high resistance to standard therapeutic approaches that combine surgery, radiotherapy, and chemotherapy. As opposed to healthy tissues, EphA2 has been found highly expressed in specimens of glioblastoma, and increased expression of EphA2 has been shown to correlate with poor survival rates. Accordingly, agents blocking Eph receptor activity could represent a new therapeutic approach. Herein, we demonstrate that UniPR1331, a pan Eph receptor antagonist, possesses significant in vivo anti-angiogenic and anti-vasculogenic properties which lead to a significant anti-tumor activity in xenograft and orthotopic models of GBM. UniPR1331 halved the final volume of tumors when tested in xenografts (p<0.01) and enhanced the disease-free survival of treated animals in the orthotopic models of GBM both by using U87MG cells (40 vs 24 days of control, p<0.05) or TPC8 cells (52 vs 16 days, p<0.01). Further, the association of UniPR1331 with the anti-VEGF antibody Bevacizumab significantly increased the efficacy of both monotherapies in all tested models. Overall, our data promote UniPR1331 as a novel tool for tackling GBM.
Collapse
Affiliation(s)
- Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Annamaria Cantoni
- Department of Veterinary Sciences, University of Parma, 43100, Parma, Italy
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | |
Collapse
|
38
|
Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, Muñoz-Calleja C. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Front Immunol 2018; 8:1936. [PMID: 29387053 PMCID: PMC5776327 DOI: 10.3389/fimmu.2017.01936] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Today, monoclonal antibodies (mAbs) are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs) have been successfully developed. Non-LSAs (NLSAs) are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs-marketed or in development-to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Ana Alcaraz-Serna
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
39
|
Giorgio C, Incerti M, Corrado M, Rusnati M, Chiodelli P, Russo S, Callegari D, Ferlenghi F, Ballabeni V, Barocelli E, Lodola A, Tognolini M. Pharmacological evaluation of new bioavailable small molecules targeting Eph/ephrin interaction. Biochem Pharmacol 2017; 147:21-29. [PMID: 29129483 DOI: 10.1016/j.bcp.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
Abstract
Eph/ephrin system is an emerging target for cancer therapy but the lack of potent, stable and orally bioavailable compounds is impairing the development of the field. Since 2009 our research group has been devoted to the discovery and development of small molecules targeting Eph/ephrin system and our research culminated with the synthesis of UniPR129, a potent but problematic Eph/ephrin antagonist. Herein, we describe the in vitro pharmacological properties of two derivatives (UniPR139 and UniPR502) stemmed from structure of UniPR129. These two compounds acted as competitive and reversible antagonists of all Eph receptors reducing both ephrin-A1 and -B1 binding to EphAs and EphBs receptors in the low micromolar range. The compounds acted as antagonists inhibiting ephrin-A1-dependent EphA2 activation and UniPR139 exerted an anti-angiogenic effect, inhibiting HUVEC tube formation in vitro and VEGF-induced vessel formation in the chick chorioallantoic membrane assay. Finally, the oral bioavailability of UniPR139 represents a step forward in the search of molecules targeting the Eph/ephrin system and offers a new pharmacological tool useful for future in vivo studies.
Collapse
Affiliation(s)
- Carmine Giorgio
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy
| | - Matteo Incerti
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy
| | - Miriam Corrado
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simonetta Russo
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy
| | | | | | - Vigilio Ballabeni
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy
| | | | - Alessio Lodola
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy.
| | | |
Collapse
|
40
|
Affiliation(s)
- Sara Charmsaz
- Sara Charmsaz: Leukaemia Foundation of Queensland Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Department of Medicine, University of Queensland, Brisbane, QLD, Australia; Department of Surgery, Royal College of Surgeons, Dublin, Ireland
| | - Andrew W Boyd
- Sara Charmsaz: Leukaemia Foundation of Queensland Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Department of Medicine, University of Queensland, Brisbane, QLD, Australia; Department of Surgery, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
41
|
Targeted therapies in hematological malignancies using therapeutic monoclonal antibodies against Eph family receptors. Exp Hematol 2017; 54:31-39. [PMID: 28751189 DOI: 10.1016/j.exphem.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
The use of monoclonal antibodies (mAbs) and molecules derived from them has achieved considerable attention and success in recent years, establishing this mode of therapy as an important therapeutic strategy in many cancers, in particular hematological tumors. mAbs recognize cell surface antigens expressed on target cells and mediate their function through various mechanisms such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, or immune system modulation. The efficacy of mAb therapy can be improved when they are conjugated to a highly potent payloads, including cytotoxic drugs and radiolabeled isotopes. The Eph family of proteins has received considerable attention in recent years as therapeutic targets for treatment of both solid and hematological cancers. High expression of Eph receptors on cancer cells compared with low expression levels in normal adult tissues makes them an attractive candidate for cancer immunotherapy. In this review, we detail the modes of action of antibody-based therapies with a focus on the Eph family of proteins as potential targets for therapy in hematological malignancies.
Collapse
|
42
|
EphA3 targeting reduces in vitro adhesion and invasion and in vivo growth and angiogenesis of multiple myeloma cells. Cell Oncol (Dordr) 2017; 40:483-496. [PMID: 28721629 DOI: 10.1007/s13402-017-0338-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Multiple myeloma (MM) is a hematologic malignancy characterized by a clonal expansion of plasma cells (PCs) in the bone marrow (BM). Since MM has so far remained incurable, further insights into its pathogenesis and the concomitant identification of new therapeutic targets are urgently needed. The tyrosine kinase receptor EphA3 is known to be involved in various cellular processes including cell viability, cell movement and cell-cell interactions. Recently, EphA3 has emerged as a potential therapeutic target in several hematologic and solid tumors. Here, we aimed to uncover the role of EphA3 in MM. METHODS EphA3 mRNA and protein expression in primary MM bone marrow plasma cells (BMPCs), in MM-derived cell lines and in healthy controls (HCs) was assessed using qRT-PCR, Western blotting and flow cytometry. The effects of siRNA-mediated EphA3 silencing and anti EphA3 antibody (EphA3mAb) treatment on MM PC trafficking and viability were evaluated using in vitro assays. The effects of EphA3mAb treatment were also assessed in two MM-derived mouse xenograft models. RESULTS We found that EphA3 was overexpressed in primary MM BMPCs and MM-derived cell lines compared to HCs. We also found that siRNA-mediated EphA3 silencing and EphA3mAb treatment significantly inhibited the ability of MM PCs to adhere to fibronectin and stromal cells and to invade in vitro, without affecting cell proliferation and viability. Gene expression profiling showed that EphA3 silencing resulted in expression modulation of several molecules that regulate adhesion, migration and invasion processes. Importantly, we found that EphA3mAb treatment significantly inhibited in vivo tumor growth and angiogenesis in two MM-derived mouse xenograft models. CONCLUSIONS Our findings suggest that EphA3 plays an important role in the pathogenesis of MM and provide support for the notion that its targeting may represent a novel therapeutic opportunity for MM.
Collapse
|
43
|
Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem 2017; 142:152-162. [PMID: 28780190 DOI: 10.1016/j.ejmech.2017.07.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022]
Abstract
It is well established that the Eph/ephrin system plays a central role in the embryonic development, with minor implications in the physiology of the adult. However, it is overexpressed and deregulated in a variety of tumors, with a primary involvement in tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. Targeting the Eph/ephrin system with biologicals, including antibodies and recombinant proteins, reduces tumor growth in animal models of hematological malignancies, breast, prostate, colon, head and neck cancers and glioblastoma. Currently, some of these biopharmaceutical agents are under investigations in phase I or phase II clinical trials. Peptides and small molecules targeting protein-protein-interaction (PPI) are in the late preclinical phase where they are showing promising activity in models of glioblastoma, ovarian and lung cancer. The present review summarizes the most critical findings proposing the Eph/ephrin signaling system as a new target in molecularly targeted oncology.
Collapse
|
44
|
Yu X, Marshall MJE, Cragg MS, Crispin M. Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering. BioDrugs 2017; 31:151-166. [DOI: 10.1007/s40259-017-0223-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Hughes A, Clarson J, Gargett T, Yu W, Brown MP, Lopez AF, Hughes TP, Yong AS. Comment on “KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: Results from a phase 1 study”. Leuk Res 2017; 55:55-57. [DOI: 10.1016/j.leukres.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/04/2017] [Indexed: 11/27/2022]
|
46
|
EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia. Leukemia 2016; 31:1779-1787. [PMID: 27922598 DOI: 10.1038/leu.2016.371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/23/2016] [Accepted: 11/28/2016] [Indexed: 01/26/2023]
Abstract
The human EphA3 gene was discovered in a pre-B acute lymphoblastic leukemia (pre-B-ALL) using the EphA3-specific monoclonal antibody (mAb), IIIA4, which binds and activates both human and mouse EphA3. We use two models of human pre-B-ALL to examine EphA3 function, demonstrating effects on pre-B-cell receptor signaling. In therapeutic targeting studies, we demonstrated antitumor effects of the IIIA4 mAb in EphA3-expressing leukemic xenografts and no antitumor effect in the xenografts with no EphA3 expression providing evidence that EphA3 is a functional therapeutic target in pre-B-ALL. Here we show that the therapeutic effect of the anti-EphA3 antibody was greatly enhanced by adding an α-particle-emitting 213Bismuth payload.
Collapse
|