1
|
Li X, Zhang H, Wang Y, Li Y, Wang Y, Zhu J, Lin Y. Screening of key miRNAs related with the differentiation of subcutaneous adipocytes and the validation of miR-133a-3p functional significance in goats. Anim Biosci 2023; 36:144-155. [PMID: 35798040 PMCID: PMC9834647 DOI: 10.5713/ab.22.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE Adipocyte differentiation is regulated by a variety of functional genes and noncoding RNAs. However, the role of miRNAs in lipid deposition of goat white adipose tissue is still unclear. Therefore, this study revealed the miRNA expression profile in goat subcutaneous adipocytes by sRNA-seq. METHODS The miRNA expressed in goat subcutaneous preadipocytes and the mature adipocytes were sequenced by sRNA-seq. The differentially expressed miRNAs (DEm) were screened and gene ontology (GO) and Kyoto encyclopedia for genes and genomes (KEGG) analyses were performed. Gain-of-function and loss-of-function combined with oil red O staining, Bodipy staining, and quantitative reverse-transcription polymerase chain reaction (qPCR) were utilized to determine the effect of miR-133a-3p on adipocyte differentiation. RESULTS A total of 218 DEm were screened out. The target genes of these DEm were significantly enriched in GO items such as biological regulation and in KEGG terms such as FAK signaling pathway and MAPK signaling pathway. qPCR verified that the expression trend of miRNA was consistent with miRNA-seq. The gain-of-function or loss-of-function of miR-133a-3p showed that it promoted or inhibited the accumulation of lipid droplets, and CCAAT enhancer binding protein α (C/EBPα) and C/EBPβ were extremely significantly up-regulated or down-regulated respectively (p<0.01), the loss-of-function also led to a significant down-regulation of peroxisome proliferator activated receptor gamma (PPARγ) (p<0.01). CONCLUSION This study successfully identified miRNAs expression patterns in goat subcutaneous adipocytes, and functional identification indicates that miR-133a-3p is a positive regulator of the differentiation process of goat subcutaneous adipocytes. Our results lay the foundation for the molecular mechanism of lipid deposition in meat-source goats from the perspective of miRNA.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Hao Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Protection and Utilization of Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu 610041,
China,College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041,
China,Corresponding Author: Yaqiu Lin, Tel: +86-02885522310, Fax: +86-02885522310, E-mail:
| |
Collapse
|
2
|
Li L, Liu Z, Liu C, Elnesr S, Guo S, Ding B, Zou X. Research Note: Disturbance of intracellular calcium signal in salpingitis simulation of laying hens. Poult Sci 2022; 102:102226. [PMID: 36402046 PMCID: PMC9673096 DOI: 10.1016/j.psj.2022.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
This study investigated whether there is disturbance of calcium signal in the simulated salpingitis of laying hens. A total of 90 Roman Pink layers (81 wk; 1.916 ± 0.17 kg) were divided into 3 groups (Control treated with PBS, 1.85 mg lipopolysaccharide (LPS)/layer as LPS group, 1.85 mg LPS/layer as LPS+organic chemical reagent (OCR) group) with 6 replicates of 5 layers. Compared with the Control, the mRNA expression of calcium/calmodulin dependent protein kinase IV (CaMK IV), sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), and plasma membrane calcium-transporting ATPase (PMCA) were not only decreased (P < 0.05) in magnum of laying hens from LPS and LPS+OCR groups, but also in isthmus and uterus of hens from LPS+OCR group. Moreover, the mRNA expression of calcium sensing receptor (CaSR) and Orai1 in uterus from LPS+OCR group were higher (P < 0.05) than that from Control. The relative fluorescence intensity of Ca2+ in uterus from LPS and LPS+OCR groups were significantly higher than that from Control (P < 0.05). In conclusion, it existed that the linkage of simulated salpingitis treated with LPS+OCR and altered intracellular calcium signals in layers, which provided a new insight for alleviating salpingitis and uterine dysfunction of laying hens.
Collapse
Affiliation(s)
- L.L. Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Z.P. Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - C.A. Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - S.S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - S.S. Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - B.Y. Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - X.T. Zou
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China,Corresponding author:
| |
Collapse
|
3
|
Baig AM, Khaleeq A. First Reports of Effects of Insulin, Human-like Insulin Receptors and Adapter Proteins in Acanthamoeba castellanii. Sci Rep 2020; 10:11759. [PMID: 32678116 PMCID: PMC7366918 DOI: 10.1038/s41598-020-63435-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/25/2020] [Indexed: 11/23/2022] Open
Abstract
The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1-R) play key roles in growth, regulation of nutrient metabolism and carbohydrate homeostasis. Insulin-like molecules in prokaryotes and other early life have been reported. However, an account of metabolic effects of insulin, transcriptomic evidence of expression of glucose transporting channels (GLUT) and homology modelling of IR and IGF1-R like proteins in unicellular life-forms have yet to be established. Acanthamoeba spp. has existed for about 2 billion years and is one of the earliest mitochondriate unicellular eukaryotic cells on Earth. Despite Acanthamoeba spp. being grown in a medium called peptone-yeast-glucose (PYG) for over 50 years, the mechanism and regulation of glucose uptake by IR or IGF1-R molecules in this microbe has not yet been reported. Several methods were utilized to validate the effects of insulin on trophozoites of A. castellanii, including: growth assays with insulin, estimation of glucose and potassium (K+) entry into the cell, and histology showing anabolic effects on proteins. Bioinformatic computational tools and homology modeling demonstrated the involvement of IR like proteins, GLUT, and adapter proteins in mediating the IR cascade. Growth assays showed proliferative effects in a dose range of 2.98-5.97 µmol/mL of insulin. After insulin exposure, A. castellanii trophozoites displayed enhanced Periodic acid-Sciff (PAS) staining. Amino acid sequence similarities and homology modelling revealed ACA1_163470 in Acanthamoeba spp. to be a homolog of human-IR. Acanthamoeba protein ACA1_336150 shares similarities with IGF1-R. Additionally, some proteins like ACA1_060920 have attributes of GLUT like channels on homology modelling and show similarity with human GLUT. Knowledge of IR and insulin effects in Acanthamoeba spp. contributes to its biology and advances current understanding behind the evolution of IR and IGF1-R signalling cascade.
Collapse
Affiliation(s)
- Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Areeba Khaleeq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
4
|
Calcium Signaling Pathways: Key Pathways in the Regulation of Obesity. Int J Mol Sci 2019; 20:ijms20112768. [PMID: 31195699 PMCID: PMC6600289 DOI: 10.3390/ijms20112768] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, high epidemic obesity-triggered hypertension and diabetes seriously damage social public health. There is now a general consensus that the body's fat content exceeding a certain threshold can lead to obesity. Calcium ion is one of the most abundant ions in the human body. A large number of studies have shown that calcium signaling could play a major role in increasing energy consumption by enhancing the metabolism and the differentiation of adipocytes and reducing food intake through regulating neuronal excitability, thereby effectively decreasing the occurrence of obesity. In this paper, we review multiple calcium signaling pathways, including the IP3 (inositol 1,4,5-trisphosphate)-Ca2+ (calcium ion) pathway, the p38-MAPK (mitogen-activated protein kinase) pathway, and the calmodulin binding pathway, which are involved in biological clock, intestinal microbial activity, and nerve excitability to regulate food intake, metabolism, and differentiation of adipocytes in mammals, resulting in the improvement of obesity.
Collapse
|
5
|
Stuart TJ, O’Neill K, Condon D, Sasson I, Sen P, Xia Y, Simmons RA. Diet-induced obesity alters the maternal metabolome and early placenta transcriptome and decreases placenta vascularity in the mouse. Biol Reprod 2018; 98:795-809. [PMID: 29360948 PMCID: PMC6454478 DOI: 10.1093/biolre/ioy010] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/19/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with an increased risk of obesity and metabolic disease in offspring. Increasing evidence suggests that the placenta plays an active role in fetal programming. In this study, we used a mouse model of diet-induced obesity to demonstrate that the abnormal metabolic milieu of maternal obesity sets the stage very early in pregnancy by altering the transcriptome of placenta progenitor cells in the preimplantation (trophectoderm [TE]) and early postimplantation (ectoplacental cone [EPC]) placenta precursors, which is associated with later changes in placenta development and function. Sphingolipid metabolism was markedly altered in the plasma of obese dams very early in pregnancy as was expression of genes related to sphingolipid processing in the early placenta. Upregulation of these pathways inhibits angiogenesis and causes endothelial dysfunction. The expression of many other genes related to angiogenesis and vascular development were disrupted in the TE and EPC. Other key changes in the maternal metabolome in obese dams that are likely to influence placenta and fetal development include a marked decrease in myo and chiro-inositol. These early metabolic and gene expression changes may contribute to phenotypic changes in the placenta, as we found that exposure to a high-fat diet decreased placenta microvessel density at both mid and late gestation. This is the first study to demonstrate that maternal obesity alters the transcriptome at the earliest stages of murine placenta development.
Collapse
Affiliation(s)
- Tami J Stuart
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathleen O’Neill
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Condon
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Issac Sasson
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Payel Sen
- Epigenetics Center, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yunwei Xia
- College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Rebecca A Simmons
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Sun C, Qi R, Wang L, Yan J, Wang Y. p38 MAPK regulates calcium signal-mediated lipid accumulation through changing VDR expression in primary preadipocytes of mice. Mol Biol Rep 2011; 39:3179-84. [PMID: 21701827 DOI: 10.1007/s11033-011-1084-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 06/11/2011] [Indexed: 01/24/2023]
Abstract
In the present study we have examined whether p38 mitogen activated protein kinase (p38 MAPK) signal pathway interacts with calcium signal on lipid accumulation in primary preadipocytes of mice. The primary preadipocytes were treated with p38 MAPK inhibitor SB203580, blockers and excitomotors of calcium channel for 24 h, respectively. Intracellular triglyceride (TG) content was measured by triglyceride kit and lipid accumulation was determined by Oil Red O staining. Meanwhile, the mRNA expressions of peroxisome proliferators-activated receptor gamma (PPARγ) gene, fatty acid synthetase (FAS) gene, lipoprotein lipase (LPL) gene, vitamin D receptor (VDR) gene and extracellular Ca(2+)-sensing receptor (CaSR) gene were analyzed with real-time PCR. The protein content and phosphorylation of VDR and p38 were tested with Western Blotting. The data showed that intracellular TG content and the mRNA expression levels of PPARγ, FAS, LPL in N group and L group as well as FAS, LPL in C group were increased significantly (P < 0.01) compared to the control. On the contrary, intracellular TG content and the mRNA expression levels of PPARγ, FAS in B group as well as intracellular TG content and PPARγ, FAS, LPL in SB group and B+SB group were decreased significantly (P < 0.01). VDR mRNA expression and protein content were decreased in B, C, and SB added groups (P < 0.01). In addition, p38 phosphorylation levels increased in N and L groups (P < 0.01) and decreased in SB added groups (P < 0.01). These findings suggest that p38 MAPK pathway through regulating VDR mRNA expression participates in mediation of calcium signal and affects calcium signal regulating lipid accumulation in mice preadipocytes through changing PPARγ, FAS and LPL mRNA expression. In addition, calcium signal have a feedback effect in phosphorylation of p38.
Collapse
Affiliation(s)
- Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China.
| | | | | | | | | |
Collapse
|
7
|
Calcium ameliorates obesity induced by high-fat diet and its potential correlation with p38 MAPK pathway. Mol Biol Rep 2011; 39:1755-63. [PMID: 21633889 DOI: 10.1007/s11033-011-0916-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/18/2011] [Indexed: 12/15/2022]
Abstract
To investigate whether and on which pathway dietary calcium influence the obesity induced by high-fat diet, thirty male Kunming mice were fed in six groups for 4 weeks and mouse preadipocytes were divided into eight groups for different treatment. Body weight gain was measured each week. Calcium in serum and tissues, intracellular free Ca(2+) concentration ([Ca(2+)]i), blood fat and intracellular lipid content were also measured. The expression of Lipid metabolism-related genes were measured by q RT-PCR. Compared with control group, body weight gain (P < 0.05) and fat pad weight (P < 0.01) in Low calcium group decreased. Triglycerides (TG) and total Cholesterol (TC) level decreased (P < 0.01), while HDL-Cholesterol (HDL) level increased (P < 0.01). And calcium supply increased calcium content in blood serum and tissues. In tissues, adipogenesis and vitamin D receptor (VDR) genes expression decreased but lipoclasis genes expression increased. These anti-obesity effects were more obvious when supplying with 2.8% calcium, but the effects were reduced while supplying Nifedipine at the same time. The results in preadipocytes indicated that calcium-treated can reduce intracellular lipid content, along with adipogenesis and lipoclasis genes expression decrease, promoted the expression levels of p38 MAPK pathway upstream gene MKK6 (P < 0.01) and downstream gene MAPKAPK2 (P < 0.01). Treated with SB203580 could increase adipogenesis genes expression, decrease lipoclasis genes expression and ([Ca(2+)]i) (P < 0.01). These results implied that dietary calcium had remarkable effect on anti-obesity effect and p38 MAPK pathway potentially participated in calcium-mediated lipid accumulation and lipolysis in mouse preadipocytes.
Collapse
|
8
|
Donovan SM, Andres A, Mathai RA, Kuhlenschmidt TB, Kuhlenschmidt MS. Soy formula and isoflavones and the developing intestine. Nutr Rev 2009; 67 Suppl 2:S192-200. [DOI: 10.1111/j.1753-4887.2009.00240.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Andres A, Donovan SM, Kuhlenschmidt MS. Soy isoflavones and virus infections. J Nutr Biochem 2009; 20:563-9. [PMID: 19596314 PMCID: PMC7125569 DOI: 10.1016/j.jnutbio.2009.04.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 04/01/2009] [Accepted: 04/15/2009] [Indexed: 11/28/2022]
Abstract
Isoflavones and their related flavonoid compounds exert antiviral properties in vitro and in vivo against a wide range of viruses. Genistein is, by far, the most studied soy isoflavone in this regard, and it has been shown to inhibit the infectivity of enveloped or nonenveloped viruses, as well as single-stranded or double-stranded RNA or DNA viruses. At concentrations ranging from physiological to supraphysiological (3.7-370 muM), flavonoids, including genistein, have been shown to reduce the infectivity of a variety of viruses affecting humans and animals, including adenovirus, herpes simplex virus, human immunodeficiency virus, porcine reproductive and respiratory syndrome virus, and rotavirus. Although the biological properties of the flavonoids are well studied, the mechanisms of action underlying their antiviral properties have not been fully elucidated. Current results suggest a combination of effects on both the virus and the host cell. Isoflavones have been reported to affect virus binding, entry, replication, viral protein translation and formation of certain virus envelope glycoprotein complexes. Isoflavones also affect a variety of host cell signaling processes, including induction of gene transcription factors and secretion of cytokines. The efficacy of isoflavones and related flavonoids in virus infectivity in in vitro bioassays is dependent on the dose, frequency of administration and combination of isoflavones used. Despite promising in vitro results, there is lack of data confirming the in vivo efficacy of soy isoflavones. Thus, investigations using appropriate in vivo virus infectivity models to examine pharmacological and especially physiological doses of flavonoids are warranted.
Collapse
Affiliation(s)
- Aline Andres
- Arkansas Children's Nutrition Center, University of Arkansas for the Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|
10
|
Li G, Ali IS, Currie RW. Insulin-induced myocardial protection in isolated ischemic rat hearts requires p38 MAPK phosphorylation of Hsp27. Am J Physiol Heart Circ Physiol 2008; 294:H74-87. [PMID: 17906111 DOI: 10.1152/ajpheart.00675.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Six hours after insulin treatment, hearts express heat shock protein 70 (Hsp70) and have improved contractile function after ischemia-reperfusion injury. In this study we examined hearts 1 h after insulin treatment for contractile function and for expression of Hsp70 and Hsp27. Adult, male Sprague-Dawley rats were assigned to groups: 1) sham, 2) control, 3) insulin injected (200 μU/g body wt), 4) heat shock treated (core body temperature, 42°C for 15 min), and 5) heat shock and insulin treated. At 1 h after these treatments, hearts were isolated, equilibrated to Langendorff perfusion for 30 min, and then subjected for 30 min no-flow global ischemia (37°C) followed by 2 h of reperfusion. Insulin-treated hearts had significantly increased contractile function compared with control hearts. At 1 h after insulin treatment, a minimal change in Hsp70 and Hsp27 content were detected. By 3 h after insulin treatment, a significant increase in Hsp70, but not Hsp27, was detected by Western blot analysis. By immunofluorescence, minimal Hsp70 was detected in insulin-treated hearts, whereas Hsp27 was detected in all hearts, indicative of its constitutive expression. Phosphospecific isoforms of Hsp27 were detected in insulin-, heat shock-, and heat shock and insulin-treated hearts. After ischemia and reperfusion, the insulin-treated hearts had significantly elevated levels of phosphorylated Hsp27. Inhibition of p38 MAPK with SB-203580 blocked the insulin-induced phosphorylation of Hsp27 and the improved functional recovery. In conclusion, insulin induces an apparent rapid phosphorylation of Hsp27 that is associated with improved functional recovery after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gefeng Li
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
11
|
Andres A, Donovan SM, Kuhlenschmidt TB, Kuhlenschmidt MS. Isoflavones at concentrations present in soy infant formula inhibit rotavirus infection in vitro. J Nutr 2007; 137:2068-73. [PMID: 17709444 DOI: 10.1093/jn/137.9.2068] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rotavirus (RV) infections are a major cause of acute gastroenteritis in children and domestic animals, infecting virtually all children within their first 5 y of life. Infants consuming soy-based infant formula (SBIF) are exposed to high levels of isoflavones that exhibit antiviral activity on numerous viruses in vitro and in vivo. Thus, the hypothesis that isoflavones would inhibit RV infection was tested. All isoflavones at SBIF concentrations were tested individually and as a mixture (MIX). Virus infectivity was assessed in MA-104 cells using a focus forming unit assay. Genistin and MIX significantly reduced RV infectivity by 33-62% and 66-74%, respectively, compared with the control and across a wide range of RV concentrations. When tested without genistin, the MIX lost its anti-RV activity, suggesting that genistin is the biologically active isoflavone in our model. In a dose response assay, genistin significantly reduced RV infectivity at a concentration as low as 30 mumol/L. We investigated several possible mechanisms of action. Isoflavones decreased RV infectivity by modulating virion attachment to the host cells and by modulating a postbinding step. Isoflavones did not alter RV triple-layered structure and genistin did not act through inhibition of protein tyrosine kinases and topoisomerase II or by mimicking the effect of estrogens. To our knowledge, this is the first study showing the inhibition of RV infectivity by isoflavones present in SBIF. The modulation of SBIF isoflavone composition and concentration represents novel nutritional approaches to potentially reduce the severity of RV infection in human and production animals.
Collapse
Affiliation(s)
- Aline Andres
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
12
|
Ebert R, Schütze N, Schilling T, Seefried L, Weber M, Nöth U, Eulert J, Jakob F. Influence of hormones on osteogenic differentiation processes of mesenchymal stem cells. Expert Rev Endocrinol Metab 2007; 2:59-78. [PMID: 30743749 DOI: 10.1586/17446651.2.1.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone development, regeneration and maintenance are governed by osteogenic differentiation processes from mesenchymal stem cells through to mature bone cells, which are directed by local growth and differentiation factors and modulated strongly by hormones. Mesenchymal stem cells develop from both mesoderm and neural crest and can give rise to development, regeneration and maintenance of mesenchymal tissues, such as bone, cartilage, muscle, tendons and discs. There are only limited data regarding the effects of hormones on early events, such as regulation of stemness and maintenance of the mesenchymal stem cell pool. Hormones, such as estrogens, vitamin D-hormone and parathyroid hormone, besides others, are important modulators of osteogenic differentiation processes and bone formation, starting off with fate decision and the development of osteogenic offspring from mesenchymal stem cells, which end up in osteoblasts and osteocytes. Hormones are involved in fetal bone development and regeneration and, in childhood, adolescence and adulthood, they control adaptive needs for growth and reproduction, nutrition, physical power and crisis adaptation. As in other tissues, aging in mesenchymal stem cells and their osteogenic offspring is accompanied by the accumulation of genomic and proteomic damage caused by oxidative burden and insufficient repair. Failsafe programs, such as apoptosis and cellular senescence avoid tumorigenesis. Hormones can influence the pace of such events, thus supporting the quality of tissue regeneration in aging organisms in vivo; for example, by delaying osteoporosis development. The potential for hormones in systemic therapeutic strategies is well appreciated and some concepts are approved for clinical use already. Their potential for cell-based therapeutic strategies for tissue regeneration is probably underestimated and could enhance the quality of tissue-engineering constructs for transplantation and the concept of in situ-guided tissue regeneration.
Collapse
Affiliation(s)
- Regina Ebert
- a University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Norbert Schütze
- b University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Tatjana Schilling
- c University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Lothar Seefried
- d University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Meike Weber
- e University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Ulrich Nöth
- f University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Jochen Eulert
- g University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Franz Jakob
- h University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| |
Collapse
|
13
|
Heo JS, Han HJ. ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells 2006; 24:2637-48. [PMID: 16916926 DOI: 10.1634/stemcells.2005-0588] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of ATP and its related signal cascades on the proliferation of mouse ESCs. ATP increased the level of [(3)H]thymidine/5-bromo-2'-deoxyuridine incorporation and the number of cells in both a time- and dose-dependent manner. AMP-CPP (a P2X(1) and P2X(3) agonist), ATP-gammaS (a P2Y agonist), and 2-methylthio-ATP (a P2X and P2Y agonist) stimulated [(3)H]thymidine incorporation. P2 purinoceptor antagonists (suramin, reactive blue 2) inhibited the ATP-induced increase in [(3)H]thymidine incorporation. Reverse transcription-polymerase chain reaction analysis revealed P2X(3), P2X(4), P2Y(1), and P2Y(2) expression in mouse ESCs. Adenylate cyclase inhibitor (SQ 22536), phospholipase C inhibitors (neomycin or U 73122), and protein kinase C (PKC) inhibitors (bisindolylmaleimide I or staurosporine) inhibited the ATP-induced increase in [(3)H]thymidine incorporation. ATP increased the level of intracellular cAMP and inositol phosphates. ATP translocated PKC alpha, delta, and zeta from the cytosol to the membrane compartment. ATP and its agonists increased [Ca(2+)](i). In addition, the ATP-induced increase in [(3)H]thymidine incorporation was completely inhibited by a combination of EGTA (extracellular Ca(2+) chelator) and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM (intracellular Ca(2+) chelator). ATP phosphorylated Akt and p44/42 mitogen-activated protein kinases (MAPKs) in a time-dependent manner, and either suramin or reactive blue 2 (RB2) blocked the ATP-induced phosphorylation of Akt. Suramin, RB2, the phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin), or the Akt inhibitor inhibited the phosphorylation of p44/42 MAPKs. The ATP-induced increase in [(3)H]thymidine incorporation was inhibited by wortmannin, the Akt inhibitor, and the MAPK kinase inhibitor (PD 98059). Suramin, RB2, PD 98059, and wortmannin blocked the ATP-induced increase in the cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 levels. In conclusion, ATP stimulates mouse ESC proliferation through PKC, PI3K/Akt, and MAPKs via the P2 purinoceptors.
Collapse
Affiliation(s)
- Jung Sun Heo
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | |
Collapse
|
14
|
Heo JS, Han HJ. PKC and MAPKs Pathways Mediate EGF-induced Stimulation of 2-Deoxyglucose Uptake in Mouse Embryonic Stem Cells. Cell Physiol Biochem 2006; 17:145-58. [PMID: 16543731 DOI: 10.1159/000092076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It has been reported that epidermal growth factor (EGF) and EGF receptor were highly expressed in embryo, suggesting that the EGF system is related to early embryo development in an autocrine and/or paracrine manner. Glucose becomes the preimplantation exogenous energy substrate and enters the blastocyst via glucose transporters. Thus, the effect of EGF on [3H]-2-deoxyglucose (2-DG) uptake and its related signaling pathways were examined in mouse embryonic stem (ES) cells. EGF significantly increased 2-DG uptake in time- and concentration- dependent manner (>12 hr, >10 ng/ ml) and increased mRNA and protein level of glucose transporter 1 (GLUT1) compared to control, respectively. Actinomycin D and cycloheximide completely blocked the effect of EGF on 2-DG uptake. EGF-induced increase of 2-DG uptake was blocked by AG1478 (EGF receptor tyrosine kinase blocker), genistein or herbimycin (tyrosine kinase inhibitors). In addition, EGF effect was blocked by neomycin and U 73122 [phospholipase C (PLC) inhibitors] as well as staurosporine and bisindolylmaleimide I [protein kinase C (PKC) inhibitors]. EGF was also observed to increase inositol phosphates (IPs) formation and activate a PKC translocation from the cytosolic to membrane fraction, suggesting a role of PLC and PKC. SB 203580 [p38 mitogen activated protein kinase (MAPK) inhibitor] or PD 98059 (p44/42 MAPKs inhibitor) blocked EGF-induced increase of 2-DG uptake. EGF also increased phosphorylation of p38 MAPK and p44/42 MAPKs, which was blocked by genistein or bisindolylmaleimide I, respectively. In conclusion, EGF partially increased 2-DG uptake via PKC, p38 MAPK, and p44/42 MAPKs in mouse ES cells.
Collapse
Affiliation(s)
- Jung Sun Heo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | |
Collapse
|