1
|
Ghasemiyeh P, Mohammadi-Samani S. siRNA-based delivery systems: Technologies, carriers, applications, and approved products. Eur J Pharmacol 2025; 996:177441. [PMID: 40023357 DOI: 10.1016/j.ejphar.2025.177441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Ribonucleic acid (RNA) therapeutics are a novel category of therapeutic agents that use different types of RNAs to regulate genes and modulate protein synthesis to treat a wide range of diseases. The main advantages of RNA therapeutics over conventional small molecule drugs would be the potential to target undruggable sites, ease of production and faster development process, and longer duration of action. Various types of RNA therapeutics including antisense oligonucleotides (ASO), RNA interference (RNAi), small interfering RNA (siRNA), microRNA (miRNA), and messenger RNA (mRNA), have been developed and used for various clinical applications, especially for gene and vaccine delivery purposes. This review is focused on various therapeutic applications of RNA-based delivery systems and then siRNA technologies are discussed in more detail. Next, the FDA-approved siRNA therapeutics and those are in clinical trials are listed and summarized. Then, various viral and non-viral vectors used for RNA delivery purposes are discussed. Finally, clinical applications of siRNA therapeutics are reviewed in detail.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Mishra B, Mohapatra D, Tripathy M, Mamidi P, Mohapatra PR. A Re-emerging Respiratory Virus: Human Metapneumovirus (hMPV). Cureus 2025; 17:e78354. [PMID: 40034641 PMCID: PMC11875555 DOI: 10.7759/cureus.78354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
Human metapneumovirus (hMPV) is identified as a pathogenic agent responsible for respiratory tract infections in paediatric, adult and elderly populations. It is a spherical, enveloped virus with a diameter of 209nm, consisting of a single-stranded, non-segmented, and negative-sense RNA genome of around 13.3 kb in length. hMPV infection is prevalent all around the globe, with peak positivity rates detected mostly during later winter and spring seasons. Mostly transmitted through droplet or aerosol contamination, this viral infection may manifest clinical characteristics indicative of both upper and lower respiratory tract infections like fever, cough, rhinorrhea, pneumonia, bronchiolitis, and croup. The recommended laboratory diagnostic approach is reverse transcription polymerase chain reaction, given the challenges associated with culturing the virus. This review article focuses on the structure, replication, genotype, epidemiology, seasonality, transmission methods, clinical manifestations in humans, treatment methodology, and outbreaks of hMPV that have been reported worldwide.
Collapse
Affiliation(s)
- Baijayantimala Mishra
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Diksha Mohapatra
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Manisha Tripathy
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Prabhudutta Mamidi
- Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Prasanta R Mohapatra
- Pulmonary Medicine and Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
3
|
Khiabani NA, Doustvandi MA, Story D, Nobari SA, Hajizadeh M, Petersen R, Dunbar G, Rossignol J. Glioblastoma therapy: State of the field and future prospects. Life Sci 2024; 359:123227. [PMID: 39537100 DOI: 10.1016/j.lfs.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GB) is a cancerous brain tumor that originates from glial cells and leads to thousands of deaths each year and a five-year survival of only 6.8 %. Treatments for GB include surgery, chemotherapy, radiation, and immunotherapy. GB is an incurable fatal disease, necessitating the development of innovative strategies to find a developing effective therapy. Genetic therapies may be crucial in treating GB by identifying the mutations and amplifications of multiple genes, which drive its proliferation and spread. Use of small interfering RNAs (siRNAs) provides a novel technology used to suppress the genes associated with disease, which forms a basis for targeted therapy in GB and its stem cell population, which are recognized for their ability to develop resistance to chemotherapy and tumorigenic capabilities. This review examines the use of siRNAs in GB, emphasizing their effectiveness in suppressing key oncogenes and signaling pathways associated with tumor development, invasion, stemness, and resistance to standard treatments. siRNA-based gene silencing is a promising approach for developing targeted therapeutics against GB and associated stem cell populations, potentially enhancing patient outcomes and survival rates in this devastating disease.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Darren Story
- Department of Psychology, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | - Robert Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
4
|
Zhang X, Wang M, Liu Z, Wang Y, Chen L, Guo J, Zhang W, Zhang Y, Yu C, Bie T, Yu Y, Guan B. Transnasal-brain delivery of nanomedicines for neurodegenerative diseases. FRONTIERS IN DRUG DELIVERY 2023; 3. [DOI: 10.3389/fddev.2023.1247162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Neurodegenerative diseases (NDs) have become a serious global health problem as the population ages. Traditionally, treatment strategies for NDs have included oral and intravenous administration; however, the blood–brain barrier (BBB) can prevent drugs from reaching the brain, rendering the treatment incomplete and the effect unsatisfactory. Additionally, the prolonged or excessive use of drugs that can cross the BBB can damage liver and kidney function. Recent studies have shown that nose-to-brain drug delivery can noninvasively bypass the BBB, allowing drugs to enter the brain through the olfactory or trigeminal nerve pathways; additionally, nanoparticle carriers can enhance drug delivery. This review introduces drug carrier nanoparticles for nose-to-brain delivery systems, compares the advantages and disadvantages of different nanoparticles, and discusses the factors influencing nose-to-brain nanomedicine delivery and enhancement strategies. We also summarize nose-to-brain delivery and nanomedicines for treating NDs, the current challenges of this approach, and the future promise of nanomedicine-based ND treatment.
Collapse
|
5
|
Vázquez-Mojena Y, León-Arcia K, González-Zaldivar Y, Rodríguez-Labrada R, Velázquez-Pérez L. Gene Therapy for Polyglutamine Spinocerebellar Ataxias: Advances, Challenges, and Perspectives. Mov Disord 2021; 36:2731-2744. [PMID: 34628681 DOI: 10.1002/mds.28819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.
Collapse
|
6
|
Chadar R, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int J Pharm 2021; 605:120835. [PMID: 34197908 DOI: 10.1016/j.ijpharm.2021.120835] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by absence of estrogen (ER) receptor, progesterone (PR) receptor, and human epidermal growth factor-2 (HER-2) receptor. TNBC is an aggressive disease that develops early Chemoresistance. The major pitfall associated is its poor prognosis, low overall survival, high relapse, and mortality as compared to other types of breast cancer. Chemotherapy could be helpful but do not contribute to an increase in survival of patient. To overcome such obstacles, in our article we explored advanced therapy using genes and nanocarrier along with its conjugation to achieve high therapeutic profile with reduced side effect. siRNAs are one of the class of RNA associated with gene silencing. They also regulate the expression of certain proteins that are involved in development of tumor cells. But they are highly unstable. So, for efficient delivery of siRNA, very intelligent, efficient delivery systems are required. Several nanotechnologies based non-viral vectors such as liposome, micelles, nanoparticles, dendrimers, exosomes, nanorods and nanobubbles etc. offers enormous unique properties such as nanometric size range, targeting potential with the capability to link with several targeting moieties for the gene delivery. These non-viral vectors are much safer, effective and efficient system for the delivery of genes along with chemotherapeutics. This review provides an overview of TNBC, conventional and advanced treatment approach of TNBC along with understanding of current status of several nanocarriers used for the delivery of siRNA for the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Akita T, Kimura R, Akaguma S, Nagai M, Nakao Y, Tsugane M, Suzuki H, Oka JI, Yamashita C. Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. J Control Release 2021; 335:575-583. [PMID: 34116136 DOI: 10.1016/j.jconrel.2021.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/19/2023]
Abstract
Neuropeptides are expected as therapeutic drug candidates for central nervous system (CNS) disorders. Intracerebroventricular (i.c.v.) administration of glucagon-like peptide-2 (GLP-2) has an antidepressant-like effect not only in depression model mice but also in treatment-resistant depression model mice. However, because i.c.v. administration is very invasive, research is progressing on brain delivery using intranasal administration as a non-invasive method. After intranasal administration of the drug, there are two routes to the brain. That of direct delivery from the paracellular route of olfactory epithelium to the brain via the olfactory bulb has been studied, and that of systemic absorption via the paracellular route of respiratory epithelium has been put to practical use. The high degree of vascularization and permeability of the nasal mucosa enables drug delivery via the paracellular route that leads to systemic delivery. Therefore, suppressing systemic absorption may increase drug delivery to brain, so we focused on the transcellular route. We created a GLP-2 derivative by adding cell-penetrating peptides (CPP) and penetration accelerating sequences (PAS), which are reported to provide efficient intracellular uptake, to GLP-2. However, to deliver GLP-2 by the transcellular route, GLP-2 must not only be taken up into cells but also move out of the cells. We investigated in vitro and in vivo function of PAS-CPP-GLP-2 to enable the translocation of GLP-2 directly from the nose to the brain. Derivatization of PAS-CPP-GLP-2 prevented its degradation. In the evaluation of intracellular dynamics, PAS-CPP-GLP-2 enhanced cellular uptake by macropinocytosis with CPP and promoted escape from endosomal vesicles by PAS. This study also showed that PAS-CPP-GLP-2 can move out of cells. Furthermore, only this PAS-CPP-GLP-2 showed an antidepression-like effect within 20 min of intranasal administration. Intranasal administered PAS-CPP-GLP-2 surprisingly showed the effect at the same dose with i.c.v. administration, but intravenous administered PAS-CPP-GLP-2 did not show the effect. These results suggested that PAS-CPP-GLP-2 can be efficiently delivered from the nose to the CNS and show a pharmacological effect, demonstrating the usefulness of PAS and CPP for nose-to-brain delivery of GLP-2.
Collapse
Affiliation(s)
- Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryosuke Kimura
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Saki Akaguma
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mio Nagai
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yusuke Nakao
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Jun-Ichiro Oka
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
8
|
Mayilsamy K, Markoutsa E, Das M, Chopade P, Puro D, Kumar A, Gulick D, Willing AE, Mohapatra SS, Mohapatra S. Treatment with shCCL20-CCR6 nanodendriplexes and human mesenchymal stem cell therapy improves pathology in mice with repeated traumatic brain injury. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102247. [PMID: 32599163 DOI: 10.1016/j.nano.2020.102247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a devastating neurological disorder, although the underlying pathophysiology is poorly understood. TBI causes blood-brain barrier (BBB) disruption, immune cell trafficking, neuroinflammation and neurodegeneration. CCL20 is an important chemokine mediating neuroinflammation. Human mesenchymal stem cell (hMSC) therapy is a promising regenerative approach but the inflammatory microenvironment in the brain tends to decrease the efficacy of the hMSC transplantation. Reducing the inflammation prior to hMSC therapy improves the outcome. We developed a combined nano-cell therapy by using dendrimers complexed with plasmids (dendriplexes) targeting CCL20 and its sole receptor CCR6 to reduce inflammation followed by hMSC transplantation. Treatment of TBI mice with shRNA conjugated dendriplexes followed by hMSC administration downregulated the inflammatory markers and significantly increased brain-derived neurotrophic factor (BDNF) expression in the cerebral cortex indicating future possible neurogenesis and improved behavioral deficits. Taken together, this nano-cell therapy ameliorates neuroinflammation and promotes brain tissue repair after TBI.
Collapse
Affiliation(s)
- Karthick Mayilsamy
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA
| | - Eleni Markoutsa
- Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA
| | - Pratik Chopade
- College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Durga Puro
- College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Akanksha Kumar
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Danielle Gulick
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Shyam S Mohapatra
- Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA; Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida, Tampa, FL, USA; James A Haley VA Hospital, Tampa, FL, USA.
| |
Collapse
|
9
|
Johnson EO, Hung DT. A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chem Biol 2019; 14:2497-2511. [PMID: 31613592 DOI: 10.1021/acschembio.9b00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the past several decades, chemical biologists have been leveraging chemical principles for understanding biology, tackling disease, and biomanufacturing, while systems biologists have holistically applied computation and genome-scale experimental tools to the same problems. About a decade ago, the benefit of combining the philosophies of chemical biology with systems biology into systems chemical biology was advocated, with the potential to systematically understand the way small molecules affect biological systems. Recently, there has been an explosion in new technologies that permit massive expansion in the scale of biological experimentation, increase access to more diverse chemical space, and enable powerful computational interpretation of large datasets. Fueled by these rapidly increasing capabilities, systems chemical biology is now at an inflection point, poised to enter a new era of more holistic and integrated scientific discovery. Systems chemical biology is primed to reveal an integrated understanding of fundamental biology and to discover new chemical probes to comprehensively dissect and systematically understand that biology, thereby providing a path to novel strategies for discovering therapeutics, designing drug combinations, avoiding toxicity, and harnessing beneficial polypharmacology. In this Review, we examine the emergence of new capabilities driving us to this inflection point in systems chemical biology, and highlight holistic approaches and opportunities that are arising from integrating chemical biology with a systems-level understanding of the intersection of biology and chemistry.
Collapse
Affiliation(s)
- Eachan O. Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Chooi WH, Ong W, Murray A, Lin J, Nizetic D, Chew SY. Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells. Biomater Sci 2018; 6:3019-3029. [PMID: 30277233 DOI: 10.1039/c8bm01034j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) is an attractive therapeutic option for damaged nerve tissues. To direct neuronal differentiation of stem cells, we have previously developed an electrospun polycaprolactone nanofiber scaffold that was functionalized with siRNA targeting Re-1 silencing transcription factor (REST), by mussel-inspired bioadhesive coating. However, the efficacy of nanofiber-mediated RNA interference on hiPSC-NPCs differentiation remains unknown. Furthermore, interaction between such cell-seeded scaffolds with injured tissues has not been tested. In this study, scaffolds were optimized for REST knockdown in hiPSC-NPCs to enhance neuronal differentiation. Specifically, the effects of two different mussel-inspired bioadhesives and transfection reagents were analyzed. Scaffolds functionalized with RNAiMAX Lipofectamine-siREST complexes enhanced the differentiation of hiPSC-NPCs into TUJ1+ cells (60% as compared to 22% in controls with scrambled siNEG after 9 days) without inducing high cytotoxicity. When cell-seeded scaffolds were transplanted to transected spinal cord organotypic slices, similar efficiency in neuronal differentiation was observed. The scaffolds also supported the migration of cells and neurite outgrowth from the spinal cord slices. Taken together, the results suggest that this scaffold can be effective in enhancing hiPSC-NPC neuronal commitment by gene-silencing for the treatment of injured spinal cords.
Collapse
Affiliation(s)
- Wai Hon Chooi
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - William Ong
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - Aoife Murray
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Junquan Lin
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg and Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| |
Collapse
|
11
|
Xie Y, Wang L, Xie Z, Zeng C, Shu K. Transcriptomics Evidence for Common Pathways in Human Major Depressive Disorder and Glioblastoma. Int J Mol Sci 2018; 19:234. [PMID: 29329273 PMCID: PMC5796182 DOI: 10.3390/ijms19010234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Depression as a common complication of brain tumors. Is there a possible common pathogenesis for depression and glioma? The most serious major depressive disorder (MDD) and glioblastoma (GBM) in both diseases are studied, to explore the common pathogenesis between the two diseases. In this article, we first rely on transcriptome data to obtain reliable and useful differentially expressed genes (DEGs) by differential expression analysis. Then, we used the transcriptomics of DEGs to find out and analyze the common pathway of MDD and GBM from three directions. Finally, we determine the important biological pathways that are common to MDD and GBM by statistical knowledge. Our findings provide the first direct transcriptomic evidence that common pathway in two diseases for the common pathogenesis of the human MDD and GBM. Our results provide a new reference methods and values for the study of the pathogenesis of depression and glioblastoma.
Collapse
Affiliation(s)
- Yongfang Xie
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Ling Wang
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Zengyan Xie
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Chuisheng Zeng
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Kunxian Shu
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
12
|
Sanchez-Ramos J, Song S, Kong X, Foroutan P, Martinez G, Dominguez-Viqueria W, Mohapatra S, Mohapatra S, Haraszti RA, Khvorova A, Aronin N, Sava V. Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J Drug Deliv Sci Technol 2017; 43:453-460. [PMID: 29805475 DOI: 10.1016/j.jddst.2017.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The overall objective of the present research was to develop a nanocarrier system for non-invasive delivery to brain of molecules useful for gene therapy. Manganese-containing nanoparticles (mNPs) carrying anti-eGFP siRNA were tested in cell cultures of eGFP-expressing cell line of mouse fibroblasts (NIH3T3). The optimal mNPs were then tested in vivo in mice. Following intranasal instillation, mNPs were visualized by 7T MRI throughout brain at 24 and 48 hrs. mNPs were effective in significantly reducing GFP mRNA expression in Tg GFP+ mice in olfactory bulb, striatum, hippocampus and cortex. Intranasal instillation of mNPS loaded with dsDNA encoding RFP also resulted in expression of the RFP in multiple brain regions. In conclusion, mNPs carrying siRNA, or dsDNA were capable of delivering the payload from nose to brain. This approach for delivery of gene therapies to humans, if successful, will have a significant impact on disease-modifying therapeutics of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shijie Song
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Xiaoyuan Kong
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | - Gary Martinez
- Mofftt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vasyl Sava
- Department of Neurology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
13
|
Huleihel L, Scarritt ME, Badylak SF. The Influence of Extracellular RNA on Cell Behavior in Health, Disease and Regeneration. CURRENT PATHOBIOLOGY REPORTS 2017; 5:13-22. [PMID: 28944104 PMCID: PMC5604481 DOI: 10.1007/s40139-017-0121-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW An overview of the role of extracellular RNAs (exRNA) in the regulation of homeostasis, disease progression, and regeneration is provided herein. Several exRNAs have been identified as potential biomarkers for disease and disease progression. In addition, the potential of exRNAs as a therapeutic modality is discussed. RECENT FINDINGS Fibrotic diseases of the lung, liver, and heart, among other organs share a number of identical exRNAs which play key roles in disease pathogenesis. Though regeneration is limited to only a few tissues in humans, small RNAs (e.g. microRNA) have been shown to be involved in the regenerative process of tissues such as liver and bone. The regulation of healing versus disease appears to be balanced by small RNAs. Because small RNAs are critical to health, they are being investigated as drug targets in multiple ongoing clinical trials. Preclinical studies suggest that promoting or blocking specific small RNAs can provide a novel therapeutic approach. SUMMARY exRNA can be utilized for both detection and treatment of disease. Natural and synthetic RNA carriers are being investigated as delivery methods for small RNA molecules. Current and future investigations are likely to lead to expanded applications for exRNAs.
Collapse
Affiliation(s)
- Luai Huleihel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michelle E. Scarritt
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
14
|
Malhotra M, Toulouse A, Godinho BMDC, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. MOLECULAR BIOSYSTEMS 2016; 11:2635-57. [PMID: 26135606 DOI: 10.1039/c5mb00278h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
15
|
Bahi A. Sustained lentiviral-mediated overexpression of microRNA124a in the dentate gyrus exacerbates anxiety- and autism-like behaviors associated with neonatal isolation in rats. Behav Brain Res 2016; 311:298-308. [PMID: 27211062 DOI: 10.1016/j.bbr.2016.05.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorders (ASD) are highly disabling psychiatric disorders. Despite a strong genetic etiology, there are no efficient therapeutic interventions that target the core symptoms of ASD. Emerging evidence suggests that dysfunction of microRNA (miR) machinery may contribute to the underlying molecular mechanisms involved in ASD. Here, we report a stress model demonstrating that neonatal isolation-induced long-lasting hippocampal elevation of miR124a was associated with reduced expression of its target BDNF mRNA. In addition, we investigated the impact of lentiviral-mediated overexpression of miR124a into the dentate gyrus (DG) on social interaction, repetitive- and anxiety-like behaviors in the neonatal isolation (Iso) model of autism. Rats isolated from the dams on PND 1 to PND 11 were assessed for their social interaction, marble burying test (MBT) and repetitive self-grooming behaviors as adults following miR124a overexpression. Also, anxiety-like behavior and locomotion were evaluated in the elevated plus maze (EPM) and open-field (OF) tests. Results show that, consistent with previously published reports, Iso rats displayed decreased social interaction contacts but increased repetitive- and anxiety-like behaviors. Interestingly, across both autism- and anxiety-like behavioral assays, miR124a overexpression in the DG significantly exacerbated repetitive behaviors, social impairments and anxiety with no effect on locomotor activity. Our novel findings attribute neonatal isolation-inducible cognitive impairments to induction of miR124a and consequently suppressed BDNF mRNA, opening venues for intercepting these miR124a-mediated damages. They also highlight the importance of studying microRNAs in the context of ASD and identify miR124a as a novel potential therapeutic target for improving mood disorders.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
16
|
Kealy J, Campbell M. The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-46505-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Karimi M, Solati N, Ghasemi A, Estiar MA, Hashemkhani M, Kiani P, Mohamed E, Saeidi A, Taheri M, Avci P, Aref AR, Amiri M, Baniasadi F, Hamblin MR. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv 2015; 12:1089-105. [PMID: 25613837 PMCID: PMC4475451 DOI: 10.1517/17425247.2015.1004309] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Carbon nanotubes (CNT) have recently been studied as novel and versatile drug and gene delivery vehicles. When CNT are suitably functionalized, they can interact with various cell types and are taken up by endocytosis. AREAS COVERED Anti-cancer drugs cisplatin and doxorubicin have been delivered by CNT, as well as methotrexate, taxol and gemcitabine. The delivery of the antifungal compound amphotericin B and the oral administration of erythropoietin have both been assisted using CNT. Frequently, targeting moieties such as folic acid, epidermal growth factor or various antibodies are attached to the CNT-drug nanovehicle. Different kinds of functionalization (e.g., polycations) have been used to allow CNT to act as gene delivery vectors. Plasmid DNA, small interfering RNA and micro-RNA have all been delivered by CNT vehicles. Significant concerns are raised about the nanotoxicology of the CNT and their potentially damaging effects on the environment. EXPERT OPINION CNT-mediated drug delivery has been studied for over a decade, and both in vitro and in vivo studies have been reported. The future success of CNTs as vectors in vivo and in clinical application will depend on achievement of efficacious therapy with minimal adverse effects and avoidance of possible toxic and environmentally damaging effects.
Collapse
Affiliation(s)
- Mahdi Karimi
- Iran University of Medical Sciences, School of Advanced Technologies in Medicine, Department of Nanotechnology, Tehran, Iran
| | - Navid Solati
- Iran University of Science and Technology, School of Metallurgy and Materials Engineering, Tehran, Iran
| | - Amir Ghasemi
- Sharif University of Technology, Department of Materials Science and Engineering, Polymeric Materials Research Group, Tehran, 11365-9466, Iran
| | - Mehrdad Asghari Estiar
- Tehran University of Medical Sciences, School of Medicine, Department of Medical Genetics, Tehran, Iran
| | - Mahshid Hashemkhani
- Iran University of Science and Technology, School of Metallurgy and Materials Engineering, Tehran, Iran
| | - Parnian Kiani
- Iran University of Science and Technology, School of Metallurgy and Materials Engineering, Tehran, Iran
| | - Elmira Mohamed
- Iran University of Science and Technology, School of Metallurgy and Materials Engineering, Tehran, Iran
| | - Ahad Saeidi
- Iran University of Science and Technology, School of Metallurgy and Materials Engineering, Tehran, Iran
| | - Mahdiar Taheri
- Iran University of Science and Technology, School of Metallurgy and Materials Engineering, Tehran, Iran
| | - Pinar Avci
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA 02114, USA
- Harvard Medical School, Department of Dermatology, Boston, MA 02115, USA
| | - Amir R Aref
- Dana-Farber Cancer Institute, Center for Cancer Systems Biology, Department of Cancer Biology, Boston, MA 02215, USA
- Harvard Medical School, Department of Genetics, Boston, MA 02215, USA
| | - Mohammad Amiri
- Sharif University of Technology, Department of Materials Science and Engineering, Polymeric Materials Research Group, Tehran, 11365-9466, Iran
| | - Fazel Baniasadi
- Sharif University of Technology, Department of Materials Science and Engineering, Polymeric Materials Research Group, Tehran, 11365-9466, Iran
| | - Michael R Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA 02114, USA
- Harvard Medical School, Department of Dermatology, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Low WC, Rujitanaroj PO, Lee DK, Kuang J, Messersmith PB, Chan JKY, Chew SY. Mussel-Inspired Modification of Nanofibers for REST siRNA Delivery: Understanding the Effects of Gene-Silencing and Substrate Topography on Human Mesenchymal Stem Cell Neuronal Commitment. Macromol Biosci 2015; 15:1457-68. [DOI: 10.1002/mabi.201500101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Ching Low
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
| | - Pim-On Rujitanaroj
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
| | - Dong-Keun Lee
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Jinghao Kuang
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Phillip B. Messersmith
- Department of Biomedical Engineering; Northwestern University, Evanston; Illinois 60208, USA
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine; KK Women's and Children's Hospital; 100 Bukit Timah Road Singapore 229899
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
- Lee Kong Chian School of Medicine; Nanyang Technological University; Singapore 308232
| |
Collapse
|
19
|
Germershaus O, Nultsch K. Localized, non-viral delivery of nucleic acids: Opportunities, challenges and current strategies. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
20
|
Abstract
RNA interference or post-transcriptional gene silencing is one of the latest, innovative, highly specific, and efficient technologies for gene therapy application in molecular oncology. It is already a well-established research tool for analyses of molecular mechanisms for various diseases including cancer as it efficiently silences the expression of genes of interest. However, for its proper therapeutic use, an efficient tumor-specific in-vivo delivery mechanism is essential. Many scientific groups and companies are involved in the development of efficient in-vivo delivery mechanisms for small interfering RNA, but are still struggling. The present article suggests utilization of albumin as a delivery module for small interfering RNA as it is an endogenous natural nanoparticle known for its binding properties to various endogenous metabolites, drugs, and metal ions.
Collapse
Affiliation(s)
- Anshoo Malhotra
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
21
|
Zhang J, Li X, Huang L. Non-viral nanocarriers for siRNA delivery in breast cancer. J Control Release 2014; 190:440-50. [PMID: 24874288 PMCID: PMC4142098 DOI: 10.1016/j.jconrel.2014.05.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy in American women. While significant progress has been made in the development of modern diagnostic tools and surgical treatments, only marginal improvements have been achieved with relapsed metastatic breast cancer. Small interfering RNAs (siRNAs) mediate gene silencing of a target protein by disrupting messenger RNAs in an efficient and sequence-specific manner. One application of this technology is the knockdown of genes responsible for tumorigenesis, including those driving oncogenesis, survival, proliferation and death of cells, angiogenesis, invasion and metastasis, and resistance to treatment. Non-viral nanocarriers have attracted attention based on their potential for targeted delivery of siRNA and efficient gene silencing without toxicity. Here, we review promising, non-viral delivery strategies employing liposomes, nanoparticles and inorganic materials in breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Wang Z, Liu G, Zheng H, Chen X. Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities. Biotechnol Adv 2014; 32:831-843. [PMID: 24013011 PMCID: PMC3947394 DOI: 10.1016/j.biotechadv.2013.08.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 01/03/2023]
Abstract
Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized.
Collapse
Affiliation(s)
- Zhiyong Wang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; MOE key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Godinho BMDC, Ogier JR, Quinlan A, Darcy R, Griffin BT, Cryan JF, O'Driscoll CM. PEGylated cyclodextrins as novel siRNA nanosystems: correlations between polyethylene glycol length and nanoparticle stability. Int J Pharm 2014; 473:105-12. [PMID: 24992319 DOI: 10.1016/j.ijpharm.2014.06.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
Silencing disease-related genes in the central nervous system (CNS) using short interfering RNA (siRNA) holds great promise for treating neurological disorders. Yet, delivery of RNAi therapeutics to the brain poses major challenges to non-viral systems, especially when considering systemic administration. Cationic nanoparticles have been widely investigated for siRNA delivery, but the tendency of these to aggregate in physiological environments limits their intravenous application. Thus, strategies to increase the stability of nanoparticles have been developed. Here, we investigated the ability of modified cationic amphiphilic or PEGylated amphiphilic cyclodextrins (CD) to formulate stable CD.siRNA nanoparticles. To this end, we describe a simple method for post-modification of pre-formed cationic CD.siRNA nanoparticles at their surface using PEGylated CDs of different PEG lengths. PEGylated CD.siRNA nanoparticles presented reduced surface charges and increased stability in physiological salt conditions. Stability of PEGylated CD.siRNA nanoparticles in vitro increased with both PEG length and PEG density at the surface. Furthermore, in a comparative pharmacokinetic study, increased systemic exposure and reduced clearance were achieved with CD-formulations when compared to naked siRNAs. However, no significant differences were observed among non-PEGylated and PEGylated CD.siRNAs suggesting that longer PEG lengths might be required for improving stability in vivo.
Collapse
Affiliation(s)
- Bruno M D C Godinho
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland; Department Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Julien R Ogier
- Centre for synthesis and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Aoife Quinlan
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Centre for synthesis and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Brendan T Griffin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - John F Cryan
- Department Anatomy and Neuroscience, University College Cork, Cork, Ireland; Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Cork, Ireland
| | | |
Collapse
|
24
|
Godinho BM, McCarthy DJ, Torres-Fuentes C, Beltrán CJ, McCarthy J, Quinlan A, Ogier JR, Darcy R, O'Driscoll CM, Cryan JF. Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system. Biomaterials 2014; 35:489-99. [DOI: 10.1016/j.biomaterials.2013.09.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022]
|
25
|
Abstract
This is a review of RNA as a target for small molecules (ribosomes, riboswitches, regulatory RNAs) and RNA-derived oligonucleotides as tools (antisense/small interfering RNA, ribozymes, aptamers/decoy RNA and microRNA). This review highlights the present state of research using RNA as a drug target or as a potential drug candidate and explains at which stage and to what extent rational design could eventually be involved. Special attention has been paid to the recent potential clinical applications of RNA either as drugs or drug targets. The review deals mainly with mechanistic approaches rather than with physicochemical or computational aspects of RNA-based drug design.
Collapse
Affiliation(s)
- Irene M Lagoja
- Katholieke Universiteit Leuven, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium +32 16 337396 ; +32 16 337340 ;
| | | |
Collapse
|
26
|
Recent Advances in Ribonucleic Acid Interference (RNAi). NATIONAL ACADEMY SCIENCE LETTERS 2013. [DOI: 10.1007/s40009-012-0102-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Dhama K, Chakraborty S, Wani MY, Verma AK, Deb R, Tiwari R, Kapoor S. Novel and emerging therapies safeguarding health of humans and their companion animals: a review. Pak J Biol Sci 2013; 16:101-111. [PMID: 24171271 DOI: 10.3923/pjbs.2013.101.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modern medicine has helped to a great extent to eradicate and cure several diseases of mankind and animals. But the existence of incurable diseases like cancer, Acquired Immunodeficiency Syndrome (AIDS), diabetes or rheumatoid arthritis, side effects of allopathic medicine, increasing trend of antibiotic resistance and chemicals and biopesticides causing dietary risk have made the situation more critical than ever before. Thus, it has become a matter of concern for the scientists and researchers to develop novel therapies. Bacteriophage therapy to treat pathogenic bacterial infections, virophage therapy for conservation of global system and avian egg yolk antibody therapy for designing prophylactic strategies against Gastrointestinal (GI) diseases are interesting approaches. Others include the use of cytokines as adjunctive immunomodulators, gene therapy focusing on diseases caused by single gene defects, RNAi technology to suppress specific gene of interest and apoptins for cancer treatment. Stem cell therapy against several diseases and ailments has also been discussed. The use of nanoparticles for better drug delivery, even though costly, has been given equal importance. Nevertheless, immunomodulation, be it through physiological, chemical or microbial products, or through essential micronutrients, probiotics, herbs or cow therapy prove to be cost-effective, causing minimum adverse reactions when compared to allopathy. Development in the field of molecular biology has created an enormous impact on vaccine development. The present review deals with all these novel and emerging therapies essential to safeguard the health of humans and companion animals.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Iztnagar, Bareilly,. U.P., 243122, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Vicentini FTMDC, Borgheti-Cardoso LN, Depieri LV, de Macedo Mano D, Abelha TF, Petrilli R, Bentley MVLB. Delivery systems and local administration routes for therapeutic siRNA. Pharm Res 2013; 30:915-31. [PMID: 23344907 PMCID: PMC7088712 DOI: 10.1007/s11095-013-0971-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 01/03/2013] [Indexed: 01/28/2023]
Abstract
With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.
Collapse
|
29
|
Godinho BMDC, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Self-assembling Modified β-Cyclodextrin Nanoparticles as Neuronal siRNA Delivery Vectors: Focus on Huntington’s Disease. Mol Pharm 2013; 10:640-9. [DOI: 10.1021/mp3003946] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bruno M. D. C. Godinho
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Cork,
Ireland
- Department of Anatomy
and Neuroscience, University College Cork, Cork, Ireland
| | - Julien R. Ogier
- Centre for
Synthesis and Chemical
Biology, University College Dublin, Dublin,
Ireland
| | - Raphael Darcy
- Centre for
Synthesis and Chemical
Biology, University College Dublin, Dublin,
Ireland
| | | | - John F. Cryan
- Department of Anatomy
and Neuroscience, University College Cork, Cork, Ireland
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Cork, Ireland
| |
Collapse
|
30
|
Haas LEM, Thijsen SFT, van Elden L, Heemstra KA. Human metapneumovirus in adults. Viruses 2013; 5:87-110. [PMID: 23299785 PMCID: PMC3564111 DOI: 10.3390/v5010087] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/16/2022] Open
Abstract
Human metapneumovirus (HMPV) is a relative newly described virus. It was first isolated in 2001 and currently appears to be one of the most significant and common human viral infections. Retrospective serologic studies demonstrated the presence of HMPV antibodies in humans more than 50 years earlier. Although the virus was primarily known as causative agent of respiratory tract infections in children, HMPV is an important cause of respiratory infections in adults as well. Almost all children are infected by HMPV below the age of five; the repeated infections throughout life indicate transient immunity. HMPV infections usually are mild and self-limiting, but in the frail elderly and the immunocompromised patients, the clinical course can be complicated. Since culturing the virus is relatively difficult, diagnosis is mostly based on a nucleic acid amplification test, such as reverse transcriptase polymerase chain reaction. To date, no vaccine is available and treatment is supportive. However, ongoing research shows encouraging results. The aim of this paper is to review the current literature concerning HMPV infections in adults, and discuss recent development in treatment and vaccination.
Collapse
Affiliation(s)
- Lenneke E. M. Haas
- Department of Intensive Care Medicine, Diakonessenhuis, Utrecht, 3582 KE, The Netherlands
| | - Steven F. T. Thijsen
- Department of Microbiology, Diakonessenhuis, Utrecht, 3582 KE, The Netherlands; E-Mails: (S.F.T.T.); (K.A.H.)
| | - Leontine van Elden
- Department of Pulmonary Diseases, Diakonessenhuis, Utrecht, 3582 KE, The Netherlands; E-Mail:
| | - Karen A. Heemstra
- Department of Microbiology, Diakonessenhuis, Utrecht, 3582 KE, The Netherlands; E-Mails: (S.F.T.T.); (K.A.H.)
| |
Collapse
|
31
|
Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials 2012; 33:7138-50. [DOI: 10.1016/j.biomaterials.2012.06.068] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
32
|
Zhao E, Zhao Z, Wang J, Yang C, Chen C, Gao L, Feng Q, Hou W, Gao M, Zhang Q. Surface engineering of gold nanoparticles for in vitro siRNA delivery. NANOSCALE 2012; 4:5102-5109. [PMID: 22782309 DOI: 10.1039/c2nr31290e] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cellular uptake, endosomal/lysosomal escape, and the effective dissociation from the carrier are a series of hurdles for specific genes to be delivered both in vitro and in vivo. To construct siRNA delivery systems, poly(allylamine hydrochloride) (PAH) and siRNA were alternately assembled on the surface of 11.8 ± 0.9 nm Au nanoparticles (GNP), stabilized by denatured bovine serum albumin, by the ionic layer-by-layer (LbL) self-assembly method. By manipulating the outmost PAH layer, GNP-PAH vectors with different surface electric potentials were prepared. Then, the surface potential-dependent cytotoxicity of the resultant GNP-PAH particles was evaluated via sulforhodamine B (SRB) assay, while the surface potential-dependent cellular uptake efficiency was quantitatively analyzed by using the flow cytometry method based on carboxyfluorescein (FAM)-labeled siRNA. It was revealed that the GNP-PAH particles with surface potential of +25 mV exhibited the optimal cellular uptake efficiency and cytotoxicity for human breast cancer MCF-7 cells. Following these results, two more positively charged polyelectrolytes with different protonating abilities in comparison with PAH, i.e., polyethylenimine (PEI), and poly(diallyl dimethyl ammonium chloride) (PDDA), were chosen to fabricate similarly structured vectors. Confocal fluorescence microscopy studies indicated that siRNA delivered by GNP-PAH and GNP-PEI systems was better released than that delivered by the GNP-PDDA system. Further flow cytometric assays based on immunofluorescence staining of the epidermal growth factor receptor (EGFR) revealed that EGFR siRNA delivered by GNP-PAH and GNP-PEI exhibited similar down-regulation effects on EGFR expression in MCF-7 cells. The following dual fluorescence flow cytometry assays by co-staining phosphatidylserine and DNA suggested the EGFR siRNA delivered by GNP-PAH exhibited an improved silencing effect in comparison with that delivered by the commercial transfection reagent Lipofectamine 2000.
Collapse
Affiliation(s)
- Enyu Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ling S, Zhou J, Rudd JA, Hu Z, Fang M. The recent updates of therapeutic approaches against aβ for the treatment of Alzheimer's disease. Anat Rec (Hoboken) 2011; 294:1307-18. [PMID: 21717585 DOI: 10.1002/ar.21425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/30/2011] [Indexed: 12/21/2022]
Abstract
One of the main neuropathological lesions observed in brain autopsy of Alzheimer's disease (AD) patients is the extracellular senile plaques mainly composed of amyloid-beta (Aβ) peptide. Recently, treatment strategies have focused on modifying the formation, clearance, and accumulation of this potentially neurotoxic peptide. β- and γ-secretase are responsible for the cleavage of amyloid precursor protein (APP) and the generation of Aβ peptide. Treatments targeting these two critical secretases may therefore reduce Aβ peptide levels and positive impact on AD. Vaccination is also an advanced approach against Aβ. This review focuses on recent advances of our understanding of this key peptide, with emphasis on Aβ peptide synthesis, accumulation and neurotoxicity, and current therapies including vaccination and two critical secretase inhibitors. MicroRNAs (miRNAs) are a class of conserved endogenous small noncoding RNAs, known to regulate the expression of complementary messenger RNAs, involved in AD development. We therefore address the relationship of miRNAs in the brain and Aβ generation, as a novel therapeutic approach to the treatment of AD while also providing new insights on the etiology of this neurological disorder.
Collapse
Affiliation(s)
- Shucai Ling
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
34
|
Noori-Daloii MR, Mojarrad M, Rashidi-Nezhad A, Kheirollahi M, Shahbazi A, Khaksari M, Korzebor A, Goodarzi A, Ebrahimi M, Noori-Daloii AR. Use of siRNA in knocking down of dopamine receptors, a possible therapeutic option in neuropsychiatric disorders. Mol Biol Rep 2011; 39:2003-10. [PMID: 21633887 DOI: 10.1007/s11033-011-0947-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/26/2011] [Indexed: 12/25/2022]
Abstract
Heightened dopaminergic activity has been shown to be implicated in some major neuropsychiatric disorders such as schizophrenia. Use of dopaminergic antagonists was limited by some serious side effects related to unspecific blocking of dopamine receptors. Thus a target specific dopamine receptor gene silencing method such as using small interfering RNA (siRNA) might be useful. In this study recombinant plasmids expressing siRNA against dopamine receptors (D1-D5DRs) were produced, and their efficiency in knocking down of receptors in were assessed in rat neuroblastoma cell line (B65), using Real-time PCR method. Furthermore, D2DR siRNA expressing plasmid was injected into the rat nucleus accumbens bilaterally to investigate whether it can prevent the hyperactivity induced by apomorphine. Locomotion was measured in 10 min intervals, 50 min before and 60 min after apomorphine injection (0.5 mg/kg, S.C). Our results indicated that the mRNA level of dopamine receptors were reduced between 25 and 75% in B65 cells treated with the plasmids in vitro. In behavioral tests, locomotion was lower at least in the second 10 min after apomorphine injection in rats treated with plasmid expressing D2DR siRNA compare to control group [F (4,24) = 2.77, (P < 0.05)]. The spontaneous activity of treated rats was normal. In conclusion, dopamine receptors can be downregulated by use of siRNA expressing plasmids in nucleus accumbens. Although our work may have some possible clinical applications; the potentially therapeutic application of siRNA in knocking down of dopamine receptors needs further studies.
Collapse
Affiliation(s)
- Mohammad-Reza Noori-Daloii
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Poursina Ave, P.O.Box 14155-6447, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Seyhan AA. RNAi: a potential new class of therapeutic for human genetic disease. Hum Genet 2011; 130:583-605. [PMID: 21537948 DOI: 10.1007/s00439-011-0995-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/17/2011] [Indexed: 12/19/2022]
Abstract
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.
Collapse
Affiliation(s)
- Attila A Seyhan
- Pfizer Inc., Translational Immunology, Inflammation and Immunology, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
36
|
Experimental Models of HD and Reflection on Therapeutic Strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:419-81. [DOI: 10.1016/b978-0-12-381328-2.00016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Abstract
OBJECTIVE The rapid emergence of translational developmental neuroscience as the key driver in understanding the onset of mental illness, the restructuring of academic health science centers on the NIH Roadmap, and dramatic shifts in drug, biological, device, and psychosocial intervention development all have important consequences for pediatric anxiety disorders as a field. METHOD This article, which tracks the final presentation at a day-long symposium on pediatric anxiety disorders at the 2010 annual meeting of the Anxiety Disorders Association of America (ADAA), will try to outline where the field will head over the next decade as these forces combine to shape research and practice. RESULTS After 20 years of large comparative treatment trials that have defined the place of current generation treatments, the field is shifting toward interventions that will emerge from the revolution in translational developmental neuroscience and that herald the dawn of stratified and ultimately personalized medicine. With a much more efficient discovery to translational continuum, intervention development and dissemination will benefit from the concurrent transformation of the clinical and clinical research enterprise. CONCLUSION Dramatic advances in science and changes in the structure of medicine will condition the future of clinical research across every therapeutic area in medicine. For the field of pediatric anxiety disorders to thrive it will be important to embrace and actively participate in this revolution so that anxious youth are viewed as a key target population and, consequently, preemptive, preventive, and curative interventions will be developed for children by first intent.
Collapse
Affiliation(s)
- John S March
- Division of Neurosciences Medicine, Duke Clinical Research Institute, Duke University Medical Center, 2400 Pratt Street, Durham, NC 27705, USA.
| |
Collapse
|
38
|
Cioffi JA, Yue WY, Mendolia-Loffredo S, Hansen KR, Wackym PA, Hansen MR. MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otol Neurotol 2010; 31:1455-62. [PMID: 20856158 PMCID: PMC2978772 DOI: 10.1097/mao.0b013e3181f20655] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
HYPOTHESIS Elevated levels of hsa-microRNA-21 (miR-21) in vestibular schwannomas (VSs) may contribute to tumor growth by downregulating the tumor suppressor phosphatase and tensin homolog (PTEN) and consequent hyperactivation of protein kinase B (AKT), a key signaling protein in the cellular pathways that lead to tumor growth. BACKGROUND Vestibular schwannomas are benign tumors that arise from the vestibular nerve. Left untreated, VSs can result in hearing loss, tinnitus, vestibular dysfunction, trigeminal nerve dysfunction, and can even become life threatening. Despite efforts to characterize the VS transcriptome, the molecular pathways that lead to tumorigenesis are not completely understood. MicroRNAs are small RNA molecules that regulate gene expression posttranscriptionally by blocking the production of specific target proteins. METHODS We examined miR-21 expression in VSs. To determine the functional significance of miR-21 expression in VS cells, we transfected primary human VS cultures with anti-miR-21 or control, scrambled oligonucleotides. RESULTS We found consistent overexpression of miR-21 when compared with normal vestibular nerve tissue. Furthermore, elevated levels of miR-21 correlated with decreased levels of PTEN, a known molecular target of miR-21. Anti-miR-21 decreased VS cell proliferation in response to platelet-derived growth factor stimulation and increased apoptosis, suggesting that increased miR-21 levels contributes to VS growth. CONCLUSION Because PTEN regulates signaling through the growth-promoting phosphoinositide 3-kinase/AKT pathway, our findings suggest that miR-21 may be a suitable molecular target for therapies aimed specifically at reducing VS growth.
Collapse
Affiliation(s)
- Joseph A Cioffi
- Legacy Clinical Research and Technology Center, Portland, Oregon 97232, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
IMPORTANCE OF THE FIELD Despite numerous advances made during the last decade in brain tumor therapy, the prognosis of glioblastoma has not improved and these tumors inevitably recur with no effective treatment. Thus, any new therapeutic strategy to target this most malignant tumor will be of significant benefit. RNAi is a powerful gene silencing method that might be used in combination with other agents to improve the efficacy of glioblastoma treatment. AREAS COVERED IN THIS REVIEW Recent progress and challenges of pre-clinical and clinical research of RNAi therapy for glioblastoma. The review covers literature from 2003 to 2009. WHAT THE READER WILL GAIN The principle of RNA interference therapy, three categories of RNAi triggers, different RNAi delivery system and pre-clinical and clinical studies that are currently underway to evaluate the validity of RNAi as a potential therapeutic strategy against glioblastoma are discussed. TAKE HOME MESSAGE RNA inference therapy combined with other therapeutics may offer therapeutic potential for glioblastoma multiforme. Further studies are required to develop more efficient and specific delivery systems, select suitable gene targets, optimize treatment dose and administration schedule, evaluate the efficacy of combination treatment strategies, establish a validated clinical response measure system etc.
Collapse
Affiliation(s)
- Dongsheng Guo
- Department of Neurosurgery, Huazhong University of Sciences and Technology, Tongji Medical College, Tongji Hospital, Wuhan, China.
| | | | | | | |
Collapse
|
40
|
Zhang Y, Wu F, Yuan W, Jin T. Polymersomes of asymmetric bilayer membrane formed by phase-guided assembly. J Control Release 2010; 147:413-9. [PMID: 20691739 DOI: 10.1016/j.jconrel.2010.07.121] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 07/14/2010] [Accepted: 07/28/2010] [Indexed: 11/26/2022]
Abstract
Encapsulating delicate biomolecules into submicron-sized polymer particulate systems with preserved native conformation and sufficient loading efficiency is of great challenge. To address this issue, we developed a unique polymersome which differs from reported polymersome in that its bilayer membrane was formed of two different amphiphilic diblock copolymers in an "asymmetric" way. By adding two diblock copolymers, poly (ethylene glycol)-block-poly (ε-caprolactone) (PEG-PCL) and dextran-block-poly (ε-caprolactone) (DEX-PCL), into a so-called dextran-in-PEG aqueous two-phase system, DEX-PCL formed the inner leaflet around the dispersed dextran phase and PEG-PCL formed the outer leaflet with the PEG block facing the PEG continuous phase. We name this unique assembly process as "phase-guided assembly". Polymersomes of asymmetric bilayer membrane possess a series of advantages over "symmetric" polymer bilayer vesicles previously reported. The asymmetric bilayer created a different chemical environment of the interior to which proteins were encapsulated highly efficiently (up to 90%) by thermodynamically favored partition. Probably due to the thermodynamic preference, erythropoietin (EPO) encapsulated in this system showed a well-preserved bioactivity in cell proliferation assay. The core of the polymersomes may be cross-linked to enhance their mechanical strength. Phase-guided assembly system and asymmetric bilayer polymersomes demonstrated in this study may serve the high demands for delivering nucleotide and protein medicines and other biological applications.
Collapse
Affiliation(s)
- Yulong Zhang
- Laboratory of Drug Delivery and Biomaterials, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | | | | | | |
Collapse
|
41
|
Abstract
RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine.
Collapse
Affiliation(s)
- Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
42
|
Abstract
Linking genes with the underlying mechanisms of diseases is one of the biggest challenges of genomics-driven drug discovery research. Designing an inhibitor for any neurodegenerative disease that effectively halts the pathogenicity of the disease is yet to be achieved. The challenge lies in crossing the blood-brain barrier (BBB)/blood-cerebrospinal fluid barrier (BCSFB) to reach the catalytic pockets of the enzyme/protein involved in the molecular mechanism of the disease process. Designing siRNA with exquisite specificity may result in selective suppression of the disease-linked gene. Although siRNA is the most promising method, it loses its potency in downregulating the gene due to its inherent instability, off-target effects, and lack of on-target effective delivery systems. Viral as well as nonviral delivery methods have been effectively tested in vivo for silencing of molecular targets and have resulted in significant efficacy in animal models of Alzheimer's disease, amyotrophic lateral sclerosis (ALS), anxiety, depression, encephalitis, glioblastoma, Huntington's disease, neuropathic pain, and spinocerebellar ataxia. To realize the full therapeutic potential of siRNA for neurodegenerative diseases, we need to overcome many hurdles and challenges such as selecting suitable tissue-specific delivery vectors, minimizing the off-target effects, and achieving distribution in sufficient concentrations at the target tissue without any side effects. Cationic nanoparticle-mediated targeted siRNA delivery for therapeutic purposes has gained considerable clinical importance as a result of its promising efficacy.
Collapse
|
43
|
Chen CH, Zhou YL, Wu YF, Cao Y, Gao JS, Tang JB. Effectiveness of microRNA in Down-regulation of TGF-beta gene expression in digital flexor tendons of chickens: in vitro and in vivo study. J Hand Surg Am 2009; 34:1777-84.e1. [PMID: 19969188 DOI: 10.1016/j.jhsa.2009.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 02/02/2023]
Abstract
PURPOSE Transforming growth factor (TGF)-beta is considered to be responsible for the formation of scars such as adhesions around healing digital flexor tendons. We proposed to deliver microRNAs (miRNAs) to silence expression of the TGF-beta1 gene and to investigate the effectiveness of miRNAs in down-regulation of the TGF-beta1 gene in vitro and in vivo. METHODS We designed and engineered 4 miRNAs according to genetic sequences of chicken TGF-beta1. Four plasmid vectors harboring the respective engineered miRNAs and 1 control vector were constructed. We transfected 30 wells of cultured tenocytes with these vectors and harvested them 48 hours later. The gene expression levels were quantified using real-time polymerase chain reactions. Subsequently, the miRNA that most effectively silenced TGF-beta gene in vitro was tested on 25 chickens in vivo. The miRNA and control vectors were injected into the injured tendons, respectively. At 1 and 6 weeks after surgery, the tendons were analyzed for gene expression and protein production. RESULTS In both in vitro and in vivo settings, delivery of miRNA to the tendon substantially down-regulated expression of the TGF-beta gene but did not affect expression of the collagen I gene. In the healing tendon, TGF-beta gene expression was significantly down-regulated by 50% to 60% at 1 and 6 weeks. At 6 weeks, the collagen III gene expression was significantly down-regulated by 55% at 6 weeks and the connective tissue growth factor gene was significantly down-regulated by 25%. At 6 weeks, TGF-beta protein was substantially decreased. CONCLUSIONS MicroRNA significantly down-regulates expression of the TGF-beta in vitro and in vivo. Application of miRNA did not down-regulate expression of the collagen I, but downregulated the collagen III gene. Application of miRNA treatment to modulate TGF-beta expression holds great promise in preventing tendon adhesion formation.
Collapse
Affiliation(s)
- Chuan Hao Chen
- Department of Hand Surgery, Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
44
|
Zhang QL, Niu Q, Shi YT, Niu PY, Liu CY, Zhang L, Zhang C. Therapeutic potential of BAK gene silencing in aluminum induced neural cell degeneration. J Inorg Biochem 2009; 103:1514-20. [PMID: 19740541 DOI: 10.1016/j.jinorgbio.2009.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 02/04/2023]
Abstract
Previous studies have demonstrated robust BAK gene silencing via RNA interference (RNAi). To investigate whether BAK RNAi may serve as a co-therapeutic agent in neural cell death, we herein established a cell degeneration model using a human neuroblastoma cell line (SH-SY5Y) treated by aluminum (Al). Combining cell viability assays and expression analyses by QRT (quantitative real-time)-PCR and immunocytochemistry, we selected and validated the optimal small interfering RNA (siRNA) from three candidate siRNAs for the BAK gene. Our data identified siRNA1 as the most effective siRNA; the optimal concentration of the transfection agent was 10nM and the optimal incubation period was 24h. The transfection and knockdown efficiency was 93% and 58%, respectively, which closely correlated with the BAK protein expression. SH-SY5Y cells with BAK knockdown showed a clear resistance against cell death and Al-induced apoptosis. These results indicate that genetic inactivation of BAK could be an effective strategy in delaying the onset of apoptosis in Al-treated cells, and exemplify the therapeutic potential of RNAi-based methods for the treatment of neural cell degeneration.
Collapse
Affiliation(s)
- Q L Zhang
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
MicroRNAs (miRNAs) are non-protein-coding small RNA molecules that negatively regulate target messenger RNA through degradation or suppression of protein translation. MiRNAs play important roles in the control of many biologic processes, such as development, differentiation, proliferation, and apoptosis. Increasing evidence shows that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in a variety of cancers. MiRNAs function as oncogenes or tumor suppressors during tumor development and progression. Experimental evidence demonstrates that correction of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotype in cancerous cells. MiRNA-based gene therapy provides an attractive anti-tumor approach for integrated cancer therapy. In this review, we focus on miRNA-based treatment for cancers, summarize the delivery systems used in experimental and preclinical research, such as liposomes, viral vectors, and nanoparticles, and consider the safety and toxicity of miRNA therapy.
Collapse
Affiliation(s)
- Vivien Wang
- Department of Pathology, Evanston Northwestern Hospital, Evanston, Illinois, USA
| | | |
Collapse
|
46
|
Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:8-20. [DOI: 10.1016/j.nano.2008.06.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/21/2008] [Accepted: 06/04/2008] [Indexed: 11/21/2022]
|
47
|
Abstract
OBJECTIVE Given striking advances in translational developmental neuroscience and its convergence with developmental psychopathology and developmental epidemiology, it is now clear that mental illnesses are best thought of as neurodevelopmental disorders. This simple fact has enormous implications for the nature and organization of psychotherapy for mentally ill children, adolescents and adults. METHOD This article reviews the 'trajectory' of psychosocial interventions in pediatric psychiatry, and makes some general predictions about where this field is heading over the next several decades. RESULTS Driven largely by scientific advances in molecular, cellular and systems neuroscience, psychotherapy in the future will focus less on personal narratives and more on the developing brain. In place of disorders as intervention targets, modularized psychosocial treatment components derived from current cognitive-behavior therapies will target corresponding central nervous system (CNS) information processes and their functional behavioral consequences. Either preventive or rehabilitative, the goal of psychotherapy will be to promote development along typical developmental trajectories. In place of guilds, psychotherapy will be organized professionally much as physical therapy is organized today. As with other forms of increasingly personalized health care, internet-based delivery of psychotherapy will become commonplace. CONCLUSION Informed by the new field of translational developmental neuroscience, psychotherapy in the future will take aim at the developing brain in a service delivery model that closely resembles the place and role of psychosocial interventions in the rest of medicine. Getting there will be, as they say, interesting.
Collapse
Affiliation(s)
- John S March
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
48
|
Tf-lipoplexes for neuronal siRNA delivery: A promising system to mediate gene silencing in the CNS. J Control Release 2008; 132:113-23. [DOI: 10.1016/j.jconrel.2008.08.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/16/2008] [Accepted: 08/22/2008] [Indexed: 01/15/2023]
|
49
|
Central delivery of Dicer-substrate siRNA: a direct application for pain research. Mol Ther 2008; 16:1331-9. [PMID: 18523447 DOI: 10.1038/mt.2008.98] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RNA interference (RNAi) is gaining acceptance as a potential therapeutic strategy against peripheral disease, and several clinical trials are already underway with 21-mer small-interfering RNA (siRNA) as the active pharmaceutical agent. However, for central affliction like pain, such innovating therapies are limited but nevertheless crucial to improve pain research and management. We demonstrate here the proof-of-concept of the use of 27-mer Dicer-substrate siRNA (DsiRNA) for silencing targets related to CNS disorders such as pain states. Indeed, low dose DsiRNA (0.005 mg/kg) was highly efficient in reducing the expression of the neurotensin receptor-2 (NTS2, a G-protein-coupled receptor (GPCR) involved in ascending nociception) in rat spinal cord through intrathecal (IT) administration formulated with the cationic lipid i-Fect. Along with specific decrease in NTS2 mRNA and protein, our results show a significant alteration in the analgesic effect of a selective-NTS2 agonist, reaching 93% inhibition up to 3-4 days after administration of DsiRNA. In order to ensure that these findings were not biased by unsuspected off-target effects (OTEs), we also demonstrated that treatment with a second NTS2-specific DsiRNA also reversed NTS2-induced antinociception, and that NTS2-specific 27-mer duplexes did not alter signaling through NTS1, a closely related receptor. Altogether, DsiRNAi represents a potent tool for dissecting nociceptive pathways and could further lead to a new class of central active drugs.
Collapse
|
50
|
Prakash S, Malhotra M. Recent Advancements in Targeted Delivery of Therapeutic Molecules in Neurodegenerative Disease–-Spinocerebellar Ataxia–-Opportunities and Challenges. Drug Target Insights 2008. [DOI: 10.4137/dti.s378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology, Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Meenakshi Malhotra
- Biomedical Technology and Cell Therapy Research Laboratory, Departments of Biomedical Engineering and Physiology, Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|