1
|
Merah S, Neggad A, Metidji H, Nouasri A, Missoum A, Ainouz L, Dahmane D, Dob T, Krimat S. Chromatographic Analysis, Antioxidant, Antimicrobial, Cytotoxic, and Antalgic Activities of Hydromethanolic Extract and Essential Oil From Inula viscosa L. Roots. Chem Biodivers 2025:e202402804. [PMID: 40133211 DOI: 10.1002/cbdv.202402804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
This study investigates the chemical composition and biological properties of the hydromethanolic extract (HME) and essential oil (EO) derived from Inula viscosa L. roots. HPLC-DAD analysis revealed the presence of hesperidin (29.05%), naringenin (10.55%), kaempferide (1.08%), and tangeretin (0.36%) in HME. GC-FID and GC-MS analysis of EO indicated that the predominant compounds were β-acorenol (11.36%) and 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester (9.83%). The HME contained a significant amount of polyphenols (34.58 mg GAE g-1 extract). All extracts exhibited high antioxidant activity, outperforming standard antioxidants such as BHT and vitamins E and C. Furthermore, the extracts demonstrated moderate antimicrobial and high cytotoxic activity against selected microbial strains and Artemia salina, respectively, as well as potent antalgic effects comparable to paracetamol (88.35%). The findings highlight the value of I. viscosa roots as a natural resource for a variety of industries, including pharmaceuticals, cosmetics, and agriculture. Its antioxidant and antimicrobial properties make it an appealing candidate for use as a natural preservative.
Collapse
Affiliation(s)
- Soumia Merah
- Faculty of Biological Science, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Algiers, Algeria
- Laboratory of Bioactive Products and Biomass Valorization Research, École Normale Supérieure (ENS-Kouba), Algiers, Algeria
| | - Abdelhamid Neggad
- Faculty of Chemistry, Laboratory of Functional Organic Analysis, USTHB, Algiers, Algeria
| | - Hafidha Metidji
- Laboratory of Bioactive Products and Biomass Valorization Research, École Normale Supérieure (ENS-Kouba), Algiers, Algeria
| | - Ahmed Nouasri
- Laboratory of Bioactive Products and Biomass Valorization Research, École Normale Supérieure (ENS-Kouba), Algiers, Algeria
| | - Amina Missoum
- Laboratory of Bioactive Products and Biomass Valorization Research, École Normale Supérieure (ENS-Kouba), Algiers, Algeria
| | - Lynda Ainouz
- Research Laboratory of Food Hygiene and Quality Insurance System - École Nationale Supérieure Vétérinaire Rabie Bouchama (ENSV), and Laboratory of Biology and Animal Physiology (LBPA), ENS Kouba, Algiers, Algeria
| | - Dahmane Dahmane
- Laboratory of Bioactive Products and Biomass Valorization Research, École Normale Supérieure (ENS-Kouba), Algiers, Algeria
| | - Tahar Dob
- Laboratory of Bioactive Products and Biomass Valorization Research, École Normale Supérieure (ENS-Kouba), Algiers, Algeria
| | - Soumeya Krimat
- Laboratory of Bioactive Products and Biomass Valorization Research, École Normale Supérieure (ENS-Kouba), Algiers, Algeria
| |
Collapse
|
2
|
Ouari S, Benzidane N, Merakeb MS, Bencharif C, Arrar L, Bribi N. Inula viscosa (L). Aiton leaves extract ameliorate arthritis by antioxidative and anti-inflammatory effects in formaldehyde-induced arthritis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119154. [PMID: 39581286 DOI: 10.1016/j.jep.2024.119154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inula viscosa (L.) Aiton is a traditional medicinal plant widely distributed and used in Mediterranean countries, its leaves are prepared by maceration to treat, rheumatic pain, inflammatory diseases, diabetes, anemia and cancer. AIM OF THE STUDY The present study purpose to investigate the anti-inflammatory efficacy of I. viscosa leaves methanol extract (IVME) at three different doses on formaldehyde-induced arthritis in NMRI albinos mice. MATERIALS AND METHODS Mice were divided into six groups (n = 6) as follows: normal control, disease control, Diclofenac group (10 mg/kg, p.o. daily) and three groups, daily treated with 50, 100 and 200 mg/kg IVME (p.o.); Formaldehyde models were obtained by a sub-plantar administration of 20 μl of formaldehyde (3.75% v/v) into the right hind paws of NMRI albino mice on 1st and 3rd days of the 10 experimental days. Joint diameter was measured, arthritis severity was evaluated by inhibition of paw edema, histological changes, synovial hyperplasia and immune cells infiltration was evaluated by histological and immunohistochemical analyses of CD3+, CD20+ and CD68+. Post-mitochondrial supernatants (PMS) from liver tissues homogenates were collected for the assessment of enzymatic and non-enzymatic antioxidants: Catalase (CAT) & Myeloperoxidase (MPO) activities, glutathione (GSH) and an oxidative stress biomarker (nitric-oxide (NO)) level. RESULTS Administration of I. visocsa (at low dose: 50 mg/kg) significantly (∗∗∗p < 0.001) ameliorated the induced arthritis severity, reduced hyperplasia of synovial membrane, bone erosion and immune cells infiltration (∗p < 0.05), resulted by restoration of paw diameter. It also decreased levels of NO (∗∗∗p < 0.001) and MPO activity (∗∗∗p < 0.001), and significantly restored GSH levels (∗p < 0.05) and CAT activity (∗∗∗p < 0.001) in liver tissues. CONCLUSION These findings suggest that I. viscosa leaves have an anti-arthritic property. Which is due to the combination of antioxidant activity regulating oxidative stress and anti-inflammatory effect by probably cytokines regulation.
Collapse
Affiliation(s)
- Sara Ouari
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University Ferhat Abbes Setif 1, 19000, Setif, Algeria.
| | - Nadia Benzidane
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University Ferhat Abbes Setif 1, 19000, Setif, Algeria
| | - Mohamed Sofiane Merakeb
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, 06000, Algeria
| | - Chahla Bencharif
- Pathology Laboratory, Khelil Amrane University Hospital of Bejaia, 06000, Bejaia, Algeria
| | - Lekhmici Arrar
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University Ferhat Abbes Setif 1, 19000, Setif, Algeria
| | - Noureddine Bribi
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, 06000, Algeria
| |
Collapse
|
3
|
Ali DE, El-Shiekh RA, El Sawy MA, Khalifa AA, Elblehi SS, Elsokkary NH, Ali MA. In vivo anti-gastric ulcer activity of 7-O-methyl aromadendrin and sakuranetin via mitigating inflammatory and oxidative stress trails. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118617. [PMID: 39053715 DOI: 10.1016/j.jep.2024.118617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucalyptus genus has been used for a very long time in conventional treatment as an anti-ulcer remedy. AIM OF THE STUDY The study aimed to explore the gastroprotective potential of 7-O-methyl aromadendrin (7-OMA), and sakuranetin (SKN) in comparison with omeprazole. The study tackled the contribution of their anti-inflammatory, antioxidant, and antiapoptotic capabilities to their anti-gastric ulcer effects. MATERIALS AND METHODS An ethanol-induced gastric ulcer model in rats was adopted and the consequences were confirmed by a molecular docking study. RESULTS The oral pretreatment of rats 1 h before ethanol using omeprazole (20 mg/kg) or 7-OMA (20 or 40 mg/kg) or SKN (20 or 40 mg/kg) exhibited gastroprotective and anti-inflammatory properties to different extents. These amendments witnessed as restorations in the stomach histological architecture in H and E-stained sections, mucus content in periodic acid-Schiff (PAS) stained sections with increased cellular proliferation, as demonstrated by increased immunohistochemical staining of PCNA, and increments in stomach COX-1 activity and eNOS. The highest dose of SKN showed the best corrections to reach 4.8, 1.8, and 2.1 folds increase in PAS, COX-1 and eNOS, respectively as compared to the untreated ethanol-induced gastric ulcer group; effects that were comparable to that of omeprazole. Moreover, reductions in COX-2 activity, and the protein expression of NF-κB, IL-6, TNF-α and NOx, in addition to the gene expression of inducible iNOS were also noted. Moreover, the antioxidant and antiapoptotic capabilities of omeprazole, 7-OMA, and SKN were perceived. SKN (40 mg/kg) succeeded to show the unsurpassed results to reach 293.6%, 237.1%, 274.7%, 248.2%, and 175.4% in total and reduced GSH, catalase, SOD, and Bcl2, respectively, as well as 50.0%, 46.8%, and 52.1 % in oxidized GSSG, TBARS and caspase-3, respectively. The gastroprotective potential of the tested compounds can be assigned to their anti-inflammatory, antioxidant and antiapoptotic properties.7-OMA and SKN were studied using molecular docking into the binding sites of the most significant inflammatory targets, including COX-2, TNF-α, iNOS, and NF-κB. Pharmacokinetic and physicochemical parameters in silico were appropriate. CONCLUSION The prophylactic use of 7-OMA and SKN could be considered as an add-on to recurrent gastric ulcers and might influence its therapeutic approaches.
Collapse
Affiliation(s)
- Dalia E Ali
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Maged A El Sawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nahed H Elsokkary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
4
|
Jerada R, Er-Rakibi A, Cherkani Hassani A, Benzeid H, El Ouardi A, Harhar H, Goh BH, Yow YY, Ser HL, Bouyahya A, Mojemmi B, Doukkali A. A comprehensive review on ethnomedicinal uses, phytochemistry, toxicology, and pharmacological activities of Dittrichia viscosa (L.) Greuter. J Tradit Complement Med 2024; 14:355-380. [PMID: 39035692 PMCID: PMC11259705 DOI: 10.1016/j.jtcme.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 07/23/2024] Open
Abstract
Dittrichia viscosa is a perennial herb that has been used for generations in traditional medicine to address a variety of diseases, including diabetes, hypertension, cancer, microbial disorders, inflammatory conditions, and wound healing. The objective of this review is to provide an overview of existing knowledge on D. viscosa with regards to its botanical description, ethnomedicinal uses, and pharmacological properties. Databases such as Scopus, Wiley-Online, PubMed, Springer, Google Scholar, and ScienceDirect were used to select relevant articles based on their title and abstract. The reviewed studies found a strong correlation between D. viscosa's traditional uses and its observed biological effects. Pharmacological research has shown that the essential oils and extracts from D. viscosa possess a variety of biological activities, such as anti-inflammatory, anticancer, antibacterial, antifungal, analgesic, and antioxidant properties. The chemical compounds found in D. viscosa include sesquiterpenes, monoterpenes, flavonoids, and phenolic acids; some of these compounds, such as tometosin and inuviscolide, have been isolated and displayed promising cytotoxic and anti-inflammatory activity. The present review suggests that the pharmacological properties of D. viscosa align well with its ethnomedicinal uses. These findings support the traditional use of D. viscosa in treating various illnesses. Additionally, toxicological examinations of D. viscosa extracts and essential oil have demonstrated the plant's safety, which supports the need for comprehensive pharmacological studies, in vivo studies, and clinical trials to evaluate the best doses for optimal medicinal effects. This work underscores the medicinal value of D. viscosa and its potential in developing new pharmacological agents to address major health challenges like antibiotic resistance and cancers.
Collapse
Affiliation(s)
- Rania Jerada
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Abdeljalil Er-Rakibi
- Computer Science, Artificial Intelligence and Cyber Security Laboratory (2IACS), ENSET Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abha Cherkani Hassani
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Hanane Benzeid
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Abdelmoula El Ouardi
- Laboratory of Food Hygiene Microbiology, National Institute of Hygiene, Rabat, Morocco
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology & Environment, Faculty of Sciences, Mohammed V University of Rabat, BP, 1014, Rabat, Morocco
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Yoon-Yen Yow
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Hooi-Leng Ser
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Materials, Nanotechnology & Environment, Faculty of Sciences, Mohammed V University of Rabat, BP, 1014, Rabat, Morocco
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, BP, 1014, Morocco
| | - Brahim Mojemmi
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Anass Doukkali
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| |
Collapse
|
5
|
Ouari S, Benzidane N. Chemical composition, biological activities, and molecular mechanism of Inula viscosa (L.) bioactive compounds: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3857-3865. [PMID: 38180555 DOI: 10.1007/s00210-023-02930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Inula viscosa is an herbaceous plant mainly found in Mediterranean regions, predominantly, used in developing countries as a folk remedy for treating numerous diseases using different traditional methods of preparation that includes infusion, decoction, and external application. Researchers have been interested in studying the antioxidant, anti-inflammatory, antifungal, antibacterial, antidiabetic, and antitumor effects of I. viscosa extracts, due to its high countenance of bioactive molecules. The chemical studies of ethanol, methanol, chloroform, aqueous, petroleum ether, dichloromethane, and ethyl acetate extracts from different parts of I. viscosa, growing around the world, and analyzed by different analytical techniques allowed to isolate and identify a great number of secondary metabolites from terpenes, flavonoids, phenylpropanoids, and polyketides, and complementary in vitro and in vivo studies indicated the pharmacological activities of an isolated compound, a mixture, or the crude extract. I. viscosa extracts had a great in vivo potential reducing mice paw, ear, and the severity of pulmonary edema, and the occurrence of skin carcinoma growing; in vitro recent study results showed, in addition, the high antioxidant, α-glucosidase, and α-amylase inhibitory activity, and neuroprotectivity effects; a correlation with the in vivo studies confirming the anti-inflammatory and antitumor proprieties, elucidating some molecular mechanisms: showing that tomentosin reduced pro-inflammatory cytokine secretion (IFNγ, IL-1, IL-2, TNF-α, and IL-6) via the suppression of transcription factor NF-κB and MAP kinase (p38/JNK) activation, and that the two phenolic compounds banaxanthone E and paxanthone inhibited the antiapoptotic protein BCL-2, activating the apoptotic process leading to the antiproliferative effect.
Collapse
Affiliation(s)
- Sara Ouari
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University Ferhat Abbes Setif 1, 19000, Setif, Algeria.
| | - Nadia Benzidane
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, University Ferhat Abbes Setif 1, 19000, Setif, Algeria
| |
Collapse
|
6
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
7
|
Amtaghri S, Slaoui M, Eddouks M. Moroccan Antihypertensive Plants and their Mechanisms of Action. Endocr Metab Immune Disord Drug Targets 2024; 24:1254-1279. [PMID: 38243970 DOI: 10.2174/0118715303272284231126145853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The use of herbal remedies, medicinal plants, and their derivatives for the treatment and control of hypertension is well-known and widespread throughout Morocco. AIMS The aim of the study was to review the antihypertensive and vasorelaxant medicinal plants of the Moroccan pharmacopeia. OBJECTIVE To date, no review on Moroccan medicinal plants exhibiting antihypertensive effects has been performed, and their mechanism of action has not been specified. The objective of this review was to collect, analyze, and critically assess published publications on experimental and clinical research that explored the blood pressure-reducing abilities of Moroccan medicinal plant extracts. MATERIALS AND METHODS This study collected, processed, and critically analyzed published studies related to experimental and clinical research that investigated Moroccan herbal derivatives' blood pressure-lowering abilities using a number of scientific databases, including ScienceDirect, Scopus, PubMed, Google Scholar, and others. Plantlist.org was used to validate the right plant names. RESULTS The results revealed 22 species of Moroccan medicinal plants belonging to 13 different groups with recognized antihypertensive properties. The species were abundant in a variety of chemical elements. Asteraceae (08 species), Lamiaceae (3 species), Apiaceae (2 species), and 1 species each from the following families: Parmeliaceae, Fabaceae, Cistaceae, Malvaceae, Polygonaceae, Brassicaceae, Myrtaceae, Rutaceae, Amaranthaceae, Rosaceae, and Lauraceae were the most frequently mentioned families for their antihypertensive properties. The most used parts were the leaves and the aerial parts. The two main methods of preparation among Moroccans were decoction and infusion. This study demonstrated the known antihypertensive and vasorelaxant properties of Moroccan medicinal plants in vivo and in vitro, as well as their mechanisms of action. Interestingly, phytochemicals can operate on blood vessels directly via a vasorelaxant impact involving a range of signaling cascades or indirectly by blocking or activating multiple systems, such as an angiotensin-converting enzyme (ACE), renin-angiotensin system (RAS), or diuretic activity. CONCLUSION The review of the available data reveals that more work needs to be done to examine all the Moroccan medicinal plants that have been suggested as antihypertensive in published ethnopharmacological surveys. A review of the literature in this area reveals that methodologies of the experimental study need to be standardized, and purified molecules need to be studied. In addition, mechanistic investigations, when they exist, are generally incomplete. In contrast, only a few advanced clinical investigations have been conducted. However, all studies fail to determine the efficacy/safety ratio.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
- Energy, materials and sustainable development (EMDD) Team- Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, materials and sustainable development (EMDD) Team- Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| |
Collapse
|
8
|
Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023; 11:1269. [PMCID: PMC10220622 DOI: 10.3390/microorganisms11051269] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Periodontal diseases and dental caries are the most common infectious oral diseases impacting oral health globally. Oral cavity health is crucial for enhancing life quality since it serves as the entranceway to general health. The oral microbiome and oral infectious diseases are strongly correlated. Gram-negative anaerobic bacteria have been associated with periodontal diseases. Due to the shortcomings of several antimicrobial medications frequently applied in dentistry, the lack of resources in developing countries, the prevalence of oral inflammatory conditions, and the rise in bacterial antibiotic resistance, there is a need for reliable, efficient, and affordable alternative solutions for the prevention and treatment of periodontal diseases. Several accessible chemical agents can alter the oral microbiota, although these substances also have unfavorable symptoms such as vomiting, diarrhea, and tooth discoloration. Natural phytochemicals generated from plants that have historically been used as medicines are categorized as prospective alternatives due to the ongoing quest for substitute products. This review concentrated on phytochemicals or herbal extracts that impact periodontal diseases by decreasing the formation of dental biofilms and plaques, preventing the proliferation of oral pathogens, and inhibiting bacterial adhesion to surfaces. Investigations examining the effectiveness and safety of plant-based medicines have also been presented, including those conducted over the past decade.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Hamid Tebyaniyan
- Science and Research Branch, Islimic Azade University, Tehran 14878-92855, Iran
| |
Collapse
|
9
|
Leal M, Mercado MI, Moreno MA, Martínez Chamas JJ, Zampini IC, Ponessa GI, Simirgiotis MJ, Isla MI. Gochnatia glutinosa (D.Don) D.Don ex Hook. & Arn.: A plant with medicinal value against inflammatory disorders and infections. Heliyon 2023; 9:e15276. [PMID: 37215790 PMCID: PMC10196343 DOI: 10.1016/j.heliyon.2023.e15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/11/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Gochnatia glutinosa is a shrub that grown in the Argentinean semiarid region (Monte region) used in the ancestral medicine as an antiseptic and anti-inflammatory agent. This study was aimed to examine the morpho-anatomical characteristics of G. glutinosa aerial parts, identify the chemical composition of traditionally used preparations to assess its pharmacobotanical characterization and evaluate its activity as antiseptic and anti-inflammatory to give scientific support to its traditional uses. G. glutinosa morpho-anatomical description was performed following standard histological techniques. Tincture and infusion of its aerial parts were prepared and were subjected to phytochemical analysis. Xanthine oxidase (XOD) and lipoxygenase (LOX) inhibition experiments, as well as ABTS•+, superoxide radical, and hydrogen peroxide scavenging activity, were carried out. The growth inhibition of methicillin-resistant Staphylococcus aureus (MRSA) strains was also determined. The morpho-anatomical traits of G. glutinosa leaves and stems were reported for the first time. The medicinal preparations exhibited a large amount of phenolic chemicals mainly flavonoids such as rhamnetin, arcapillin, rhamnacin, hesperetin, isorhamnetin, centaureidin, europetin 7-O-mehylmyricetin, cirsiliol, sakuranetin, genkwanin and eupatorine and also phenolic acids and diterpenoid derivatives. Both preparations had free radical scavenging activity and were able to reduce both XOD and LOX activity, indicating their anti-inflammatory properties. Besides, tincture was effective against all MRSA strains (MIC values ranging from 60 to 240 g DW/mL). The results obtained in this work scientifically support the medicinal popular use of G. glutinosa as an antiseptic and anti-inflammatory. The identification of bioactive compounds and their morpho-anatomical description contribute to the quality control of this medicinal plant from Argentine Calchaquí Valley.
Collapse
Affiliation(s)
- Mariana Leal
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Alejandra Moreno
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - José Javier Martínez Chamas
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Inés Ponessa
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja,Valdivia 5090000, Chile
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
10
|
Rechek H, Haouat A, Hamaidia K, Pinto DCGA, Boudiar T, Válega MSGA, Pereira DM, Pereira RB, Silva AMS. Inula viscosa (L.) Aiton Ethanolic Extract Inhibits the Growth of Human AGS and A549 Cancer Cell Lines. Chem Biodivers 2023; 20:e202200890. [PMID: 36786298 DOI: 10.1002/cbdv.202200890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
The present study shows the chemical profile and cytotoxic properties of the ethanolic extracts of Inula viscosa from Northeast Algeria. The extract was obtained by maceration using ethanol. Its phenolic profile was determined using ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS), which allowed the identification and quantification of 17 compounds, 1,5-O-caffeoylquinic acid being the most abundant. The cytotoxic activity was assessed against human gastric cancer (AGS) and human non-small-cell lung cancer (A549) cell lines, whereas ethanolic extract elicited nearly 60 % and 40 % viability loss toward AGS and A549 cancer cells, respectively. Results also showed that cell death is caspase-independent and confirmed the involvement of RIPK1 and the necroptosis pathway in the toxicity induced by the I. viscosa extract. In addition, the ethanolic extract would not provoke morphological traits in the cancer cells. These findings suggest that I. viscosa can be a source of new antiproliferative drugs or used in preparation plant-derived pharmaceuticals.
Collapse
Affiliation(s)
- Habiba Rechek
- Faculty of Sciences of Nature and Life, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Souk-Ahras, Algeria
- Department of Biology of Organisms, Faculty of Sciences of Nature and Life, University of Batna 2, Mostefa Ben Boulaid, 05078, Batna, Algeria
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ammar Haouat
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri, 25000, Constantine, Algeria
- Department of Biology, Faculty of Sciences of Nature and Life, University of Oued Souf, 39 000, Oued Souf, Algeria
| | - Kaouther Hamaidia
- Faculty of Sciences of Nature and Life, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Souk-Ahras, Algeria
- Laboratory of Applied Animal Biology, Badji Mokhtar University, 23000, Annaba, Algeria
| | - Diana C G A Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tarek Boudiar
- Center de Recherche en Biotechnologie, Ali Mendjli Nouvelle Ville UV 03, BP E73, Constantine, Algeria
| | - Mónica S G A Válega
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313, Porto, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
11
|
Cellat M, Tekeli İO, Türk E, Aydin T, Uyar A, İşler CT, Gökçek İ, Etyemez M, Güvenç M. Inula viscosa ameliorates acetic acid induced ulcerative colitis in rats. Biotech Histochem 2023; 98:255-266. [PMID: 37165766 DOI: 10.1080/10520295.2023.2176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Increased pro-inflammatory cytokines and oxidative stress contribute to the pathophysiology of ulcerative colitis (UC). Inula viscosa is a plant with antioxidant and anti-inflammatory properties. We investigated the effect of an ethanolic extract of I. viscosa on an experimental UC model created using acetic acid. Rats were divided into four groups of eight: group 1, control; group 2, 3% acetic acid group; group 3, 100 mg/kg sulfasalazine + 3% acetic acid group; group 4, 400 mg/kg I. viscosa + 3% acetic acid. I. viscosa and sulfasalazine were administered by oral gavage and 3% acetic acid was administered per rectum. We found that I. viscosa treatment decreased colon malondialdehyde, tumor necrosis factor-α, interleukin-1 beta and nuclear factor kappa B levels; it increased reduced glutathione, nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and kelch-like ECH-associated protein 1 levels and glutathione peroxidase enzyme activity. Group 1 colon exhibited normal histological structure. Slight inflammatory cell infiltration and edema and insignificant slight erosion in crypts were detected in colon tissues of group 4. We found that I. viscosa reduced oxidative stress and inflammation, which was protective against UC by inducing the Nrf-2/Keap-1/HO-1 pathway in the colon.
Collapse
Affiliation(s)
- Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İbrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Erdinç Türk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İshak Gökçek
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
12
|
Zhang M, Zhang J, Zhu QM, Zhao WY, Lv X, Yi J, Huo XK, Wang MJ, Sun CP. Inula japonica ameliorated the inflammation and oxidative stress in LPS-induced acute lung injury through the MAPK/NF-κB and Keap1/Nrf2 signalling pathways. J Pharm Pharmacol 2023; 75:287-299. [PMID: 36617177 DOI: 10.1093/jpp/rgac084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/15/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To investigate the protective effect and underlying mechanism of Inula japonica (TEIJ) in the treatment of acute lung injury (ALI). METHODS Protective effects of TEIJ in the inflammation and oxidative stress were studied in lipopolysaccharide (LPS)-induced ALI mice. Meanwhile, Western blot and real-time qPCR were carried out to investigate the underlying mechanism of TEIJ for ALI as well as immunohistochemistry. KEY FINDINGS TEIJ significantly alleviated the course of ALI via suppressing the interstitial infiltrated inflammatory cells, the increase of inflammatory factors and the decrease of anti-oxidative factors. TEIJ inactivated the MAPK/NF-κB signalling pathway to suppress the transcription of its downstream target genes, such as TNF-α, IL-6, etc. Meanwhile, TEIJ activated the Keap1/Nrf2 signalling pathway to regulate expression levels of Nrf2 and its target proteins. The results of LC-QTOF-MS/MS indicated potential active constituents of I. japonica, terpenoids and flavonoids. Additionally, terpenoids and flavonoids synergistically alleviated LPS-induced ALI depending on MAPK/NF-κB and Keap1/Nrf2 signalling pathways. CONCLUSION I. japonica could be considered a potential agent to treat ALI via regulating the MAPK/NF-κB and Keap1/Nrf2 signalling pathways.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Juan Zhang
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qi-Meng Zhu
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wen-Yu Zhao
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xia Lv
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jing Yi
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiao-Kui Huo
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mi-Jia Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Junaid M, Basak B, Akter Y, Afrose SS, Nahrin A, Emran R, Shahinozzaman M, Tawata S. Sakuranetin and its therapeutic potentials - a comprehensive review. Z NATURFORSCH C 2023; 78:27-48. [PMID: 35844107 DOI: 10.1515/znc-2022-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/10/2022] [Indexed: 01/11/2023]
Abstract
Sakuranetin (SKN), a naturally derived 7-O-methylated flavonoid, was first identified in the bark of the cherry tree (Prunus spp.) as an aglycone of sakuranin and then purified from the bark of Prunus puddum. It was later reported in many other plants including Artemisia campestris, Boesenbergia pandurata, Baccharis spp., Betula spp., Juglans spp., and Rhus spp. In plants, it functions as a phytoalexin synthesized from its precursor naringenin and is the only known phenolic phytoalexin in rice, which is released in response to different abiotic and biotic stresses such as UV-irradiation, jasmonic acid, cupric chloride, L-methionine, and the phytotoxin coronatine. Till date, SKN has been widely reported for its diverse pharmacological benefits including antioxidant, anti-inflammatory, antimycobacterial, antiviral, antifungal, antileishmanial, antitrypanosomal, glucose uptake stimulation, neuroprotective, antimelanogenic, and antitumor properties. Its pharmacokinetics and toxicological properties have been poorly understood, thus warranting further evaluation together with exploring other pharmacological properties such as antidiabetic, neuroprotective, and antinociceptive effects. Besides, in vivo studies or clinical investigations can be done for proving its effects as antioxidant and anti-inflammatory, antimelanogenic, and antitumor agent. This review summarizes all the reported investigations with SKN for its health-beneficial roles and can be used as a guideline for future studies.
Collapse
Affiliation(s)
- Md Junaid
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, 4226, Bangladesh
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Yeasmin Akter
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, 4226, Bangladesh.,Department of Biotechnology & Genetic Engineering, Noakhali Science & Technology University, Chattogram, Bangladesh
| | - Syeda Samira Afrose
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, 4226, Bangladesh
| | - Afsana Nahrin
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, 4226, Bangladesh.,Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Rashiduzzaman Emran
- Bioscience and Bioinformatics Research Center (BBRC), 5/2, Shehora, Dhaka Road, Mymensingh, 2200, Bangladesh.,Department of Agricultural Extension (DAE), Khamarbari, Farmgate, Dhaka, 1215, Bangladesh
| | - Md Shahinozzaman
- The Red-Green Research Centre, Tejgaon, Dhaka, 1215, Bangladesh.,PAK Research Center, University of the Ryukyus, Okinawa, Japan
| | | |
Collapse
|
14
|
Valletta A, Iozia LM, Fattorini L, Leonelli F. Rice Phytoalexins: Half a Century of Amazing Discoveries; Part I: Distribution, Biosynthesis, Chemical Synthesis, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:260. [PMID: 36678973 PMCID: PMC9862927 DOI: 10.3390/plants12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cultivated rice is a staple food for more than half of the world's population, providing approximately 20% of the world's food energy needs. A broad spectrum of pathogenic microorganisms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins, which are part of their active defense mechanisms. These compounds are biosynthesized transiently by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively studied for over half a century, both for their biological role and their potential application in agronomic and pharmaceutical fields. In recent decades, the growing interest of the research community, combined with advances in chemical, biological, and biomolecular investigation methods, has led to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis, chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent advances in this research field.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Migheli R, Virdis P, Galleri G, Arru C, Lostia G, Coradduzza D, Muroni MR, Pintore G, Podda L, Fozza C, De Miglio MR. Antineoplastic Properties by Proapoptotic Mechanisms Induction of Inula viscosa and Its Sesquiterpene Lactones Tomentosin and Inuviscolide. Biomedicines 2022; 10:2739. [PMID: 36359261 PMCID: PMC9687476 DOI: 10.3390/biomedicines10112739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Cancer is a complex disease including approximately 200 different entities that can potentially affect all body tissues. Among the conventional treatments, radiotherapy and chemotherapy are most often applied to different types of cancers. Despite substantial advances in the development of innovative antineoplastic drugs, cancer remains one of the most significant causes of death, worldwide. The principal pitfall of successful cancer treatment is the intrinsic or acquired resistance to therapeutic agents. The development of more effective or synergistic therapeutic approaches to improve patient outcomes and minimize toxicity has become an urgent issue. Inula viscosa is widely distributed throughout Europe, Africa, and Asia. Used as a medicinal plant in different countries, I. viscosa has been characterized for its complex chemical composition in order to identify the bioactive compounds responsible for its biological activities, including anticancer effects. Sesquiterpene lactones (SLs) are natural, biologically active products that have attracted considerable attention due to their biological activities. SLs are alkylating agents that form covalent adducts with free cysteine residues within enzymes and key proteins favoring cancer cell cytotoxicity. They are effective inducers of apoptosis in several cancer cell types through different molecular mechanisms. This review focuses on recent advances in the cytotoxic effects of I. viscosa and SLs in the treatment of neoplastic diseases, with a special emphasis on their proapoptotic molecular mechanisms.
Collapse
Affiliation(s)
- Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Patrizia Virdis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Grazia Galleri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giada Lostia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | | - Maria Rosaria Muroni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Giorgio Pintore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Luigi Podda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Claudio Fozza
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | |
Collapse
|
16
|
Yang S, Park SH, Oh SW, Kwon K, Yu E, Lee CW, Son YK, Kim C, Lee BH, Cho JY, Kim YJ, Lee J. Antioxidant Activities and Mechanisms of Tomentosin in Human Keratinocytes. Antioxidants (Basel) 2022; 11:antiox11050990. [PMID: 35624854 PMCID: PMC9137523 DOI: 10.3390/antiox11050990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022] Open
Abstract
Tomentosin, one of natural sesquiterpene lactones sourced from Inula viscosa L., exerts therapeutic effects in various cell types. Here, we investigated the antioxidant activities and the underlying action mechanisms of tomentosin in HaCaT cells (a human keratinocyte cell line). Specifically, we examined the involvement of tomentosin in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Treatment with tomentosin for up to 60 min triggered the production of reactive oxygen species (ROS), whereas treatment for 4 h or longer decreased ROS production. Tomentosin treatment also induced the nuclear translocation of Nrf2 and upregulated the expression of Nrf2 and its target genes. These data indicate that tomentosin induces ROS production at an early stage which activates the Nrf2 pathway by disrupting the Nrf2–Keap1 complex. However, at a later stage, ROS levels were reduced by tomentosin-induced upregulation of antioxidant genes. In addition, tomentosin induced the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 MAPK and c-Jun N-terminal kinase (JNK). SB203580 (a p38 MAPK inhibitor) and SP600125 (a JNK inhibitor) attenuated the tomentosin-induced phosphorylation of Nrf2, suggesting that JNK and p38 MAPK signaling pathways can contribute to the tomentosin-induced Nrf2 activation through phosphorylation of Nrf2. Furthermore, N-acetyl-L-cysteine (NAC) treatment blocked both tomentosin-induced production of ROS and the nuclear translocation of Nrf2. These data suggest that tomentosin-induced Nrf2 signaling is mediated both by tomentosin-induced ROS production and the activation of p38 MAPK and JNK. Moreover, tomentosin inhibited the AhR signaling pathway, as evidenced by the suppression of xenobiotic-response element (XRE) reporter activity and the translocation of AhR into nucleus induced by urban pollutants, especially benzo[a]pyrene. These findings suggest that tomentosin can ameliorate skin damage induced by environmental pollutants.
Collapse
Affiliation(s)
- Seyoung Yang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Korea; (S.Y.); (S.W.O.); (K.K.); (E.Y.)
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City 30016, Korea;
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Korea; (S.Y.); (S.W.O.); (K.K.); (E.Y.)
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Korea; (S.Y.); (S.W.O.); (K.K.); (E.Y.)
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Korea; (S.Y.); (S.W.O.); (K.K.); (E.Y.)
| | - Chae Won Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea; (C.W.L.); (Y.K.S.); (C.K.); (B.-H.L.)
| | - Youn Kyoung Son
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea; (C.W.L.); (Y.K.S.); (C.K.); (B.-H.L.)
| | - Changmu Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea; (C.W.L.); (Y.K.S.); (C.K.); (B.-H.L.)
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea; (C.W.L.); (Y.K.S.); (C.K.); (B.-H.L.)
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Korea
- Correspondence: (J.Y.C.); (Y.-J.K.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Youn-Jung Kim
- Department of Marine Sciences, Incheon National University, Incheon 22012, Korea
- Correspondence: (J.Y.C.); (Y.-J.K.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Gyunggi Do, Korea; (S.Y.); (S.W.O.); (K.K.); (E.Y.)
- Correspondence: (J.Y.C.); (Y.-J.K.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| |
Collapse
|
17
|
Jakimiuk K, Gesek J, Atanasov AG, Tomczyk M. Flavonoids as inhibitors of human neutrophil elastase. J Enzyme Inhib Med Chem 2021; 36:1016-1028. [PMID: 33980119 PMCID: PMC8128182 DOI: 10.1080/14756366.2021.1927006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022] Open
Abstract
Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure-activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.
Collapse
Affiliation(s)
- Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Gesek
- Department of Pharmacognosy, Medical University of Białystok, Student’s Scientific Association, Białystok, Poland
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
18
|
Antimicrobial Effects of Inula viscosa Extract on the In Situ Initial Oral Biofilm. Nutrients 2021; 13:nu13114029. [PMID: 34836285 PMCID: PMC8622444 DOI: 10.3390/nu13114029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Given the undesirable side effects of commercially used mouth rinses that include chemically synthesized antimicrobial compounds such as chlorhexidine, it is essential to discover novel antimicrobial substances based on plant extracts. The aim of this study was to examine the antimicrobial effect of Inula viscosa extract on the initial microbial adhesion in the oral cavity. Individual test splints were manufactured for the participants, on which disinfected bovine enamel samples were attached. After the initial microbial adhesion, the biofilm-covered oral samples were removed and treated with different concentrations (10, 20, and 30 mg/mL) of an I. viscosa extract for 10 min. Positive and negative controls were also sampled. Regarding the microbiological parameters, the colony-forming units (CFU) and vitality testing (live/dead staining) were examined in combination with fluorescence microscopy. An I. viscosa extract with a concentration of 30 mg/mL killed the bacteria of the initial adhesion at a rate of 99.99% (log10 CFU value of 1.837 ± 1.54). Compared to the negative control, no killing effects were determined after treatment with I. viscosa extract at concentrations of 10 mg/mL (log10 CFU value 3.776 ± 0.831; median 3.776) and 20 mg/mL (log10 CFU value 3.725 ± 0.300; median 3.711). The live/dead staining revealed a significant reduction (p < 0.0001) of vital adherent bacteria after treatment with 10 mg/mL of I. viscosa extract. After treatment with an I. viscosa extract with a concentration of 30 mg/mL, no vital bacteria could be detected. For the first time, significant antimicrobial effects on the initial microbial adhesion in in situ oral biofilms were reported for an I. viscosa extract.
Collapse
|
19
|
Asraoui F, Kounnoun A, Cacciola F, El Mansouri F, Kabach I, Oulad El Majdoub Y, Alibrando F, Arena K, Trovato E, Mondello L, Louajri A. Phytochemical Profile, Antioxidant Capacity, α-Amylase and α-Glucosidase Inhibitory Potential of Wild Moroccan Inula viscosa (L.) Aiton Leaves. Molecules 2021; 26:3134. [PMID: 34073905 PMCID: PMC8197302 DOI: 10.3390/molecules26113134] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023] Open
Abstract
Medicinal plants offer imperative sources of innovative chemical substances with important potential therapeutic effects. Among them, the members of the genus Inula have been widely used in traditional medicine for the treatment of several diseases. The present study investigated the antioxidant (DPPH, ABTS and FRAP assays) and the in vitro anti-hyperglycemic potential of aerial parts of Inula viscosa (L.) Aiton (I. viscosa) extracts through the inhibition of digestive enzymes (α-amylase and α-glucosidase), responsible of the digestion of poly and oligosaccharides. The polyphenolic profile of the Inula viscosa (L.) Aiton EtOAc extract was also investigated using HPLC-DAD/ESI-MS analysis, whereas the volatile composition was elucidated by GC-MS. The chemical analysis resulted in the detection of twenty-one polyphenolic compounds, whereas the volatile profile highlighted the occurrence of forty-eight different compounds. Inula viscosa (L.) Aiton presented values as high as 87.2 ± 0.50 mg GAE/g and 78.6 ± 0.55mg CE/g, for gallic acid and catechin, respectively. The EtOAc extract exhibited the higher antioxidant activity compared to methanol and chloroform extracts in different tests with (IC50 = 0.6 ± 0.03 µg/mL; IC50 = 8.6 ± 0.08 µg/mL; 634.8 mg ± 1.45 AAE/g extract) in DPPH, ABTS and FRAP tests. Moreover, Inula viscosa (L.) Aiton leaves did show an important inhibitory effect against α-amylase and α-glucosidase. On the basis of the results achieved, such a species represents a promising traditional medicine, thanks to its remarkable content of functional bioactive compounds, thus opening new prospects for research and innovative phytopharmaceuticals developments.
Collapse
Affiliation(s)
- Fadoua Asraoui
- Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaâdi University, Tetouan 93000, Morocco; (A.K.); (A.L.)
| | - Ayoub Kounnoun
- Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaâdi University, Tetouan 93000, Morocco; (A.K.); (A.L.)
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Fouad El Mansouri
- Laboratory of Chemical Engineering and Valorization of Resources, Department of Chemistry, Faculty of Sciences and Technology, Abdelmalek Essaâdi University, Tangier 416, Morocco;
| | - Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Tangier 416, Morocco;
| | - Yassine Oulad El Majdoub
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (K.A.); (L.M.)
| | - Filippo Alibrando
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (E.T.)
| | - Katia Arena
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (K.A.); (L.M.)
| | - Emanuela Trovato
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (E.T.)
| | - Luigi Mondello
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (K.A.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (F.A.); (E.T.)
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Adnane Louajri
- Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaâdi University, Tetouan 93000, Morocco; (A.K.); (A.L.)
| |
Collapse
|
20
|
Borgo J, Laurella LC, Martini F, Catalán CAN, Sülsen VP. Stevia Genus: Phytochemistry and Biological Activities Update. Molecules 2021; 26:2733. [PMID: 34066562 PMCID: PMC8125113 DOI: 10.3390/molecules26092733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The Stevia genus (Asteraceae) comprises around 230 species, distributed from the southern United States to the South American Andean region. Stevia rebaudiana, a Paraguayan herb that produces an intensely sweet diterpene glycoside called stevioside, is the most relevant member of this genus. Apart from S. rebaudiana, many other species belonging to the Stevia genus are considered medicinal and have been popularly used to treat different ailments. The members from this genus produce sesquiterpene lactones, diterpenes, longipinanes, and flavonoids as the main types of phytochemicals. Many pharmacological activities have been described for Stevia extracts and isolated compounds, antioxidant, antiparasitic, antiviral, anti-inflammatory, and antiproliferative activities being the most frequently mentioned. This review aims to present an update of the Stevia genus covering ethnobotanical aspects and traditional uses, phytochemistry, and biological activities of the extracts and isolated compounds.
Collapse
Affiliation(s)
- Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Laura C. Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Florencia Martini
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Cesar A. N. Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471 (T4000INI), San Miguel de Tucumán T4000, Argentina;
| | - Valeria P. Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET—Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (J.B.); (L.C.L.); (F.M.)
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
21
|
He J, Wu H, Zhou Y, Zheng C. Tomentosin inhibit cerebral ischemia/reperfusion induced inflammatory response via TLR4/ NLRP3 signalling pathway - in vivo and in vitro studies. Biomed Pharmacother 2020; 131:110697. [PMID: 32919189 DOI: 10.1016/j.biopha.2020.110697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Stoke is a global threat, leading to 50 % of deaths worldwide and it causes permanent disability to about 5 million individuals globally each year. In this study, we assessed the potency of tomentosin to inhibit the neuroinflammation in in vivo and in vitro models. The Sprague Dawley rats were pretreated with 25 mg/kg bodyweight (b.wt) and 50 mg/kg b.wt of tomentosin for seven days followed by induction of cerebral ischemic reperfusion. The brain edema and cerebral infractions were analyzed. The levels of antioxidants and the interleukins were measured by standard methods. The NLRP3 signaling proteins expression was evaluated using qPCR analysis. In vitro studies were performed in SH-SY5Y-cells pretreated with tomentosin and subjected to OGD-R treatment. Our results depicts tomentosin scavenges the free radicals, enhances antioxidant system, inhibits the NLRP3 signaling. In vitro results substantiates with in vivo results. To conclude, our in vivo and in vitro results confirm tomentosin may be potent alternative for existing antistroke drugs.
Collapse
Affiliation(s)
- Jianguo He
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, 400020, China
| | - Haitao Wu
- Department of Neurosurgery, The First Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - YanYan Zhou
- Kuming Medical University Haiyuan College, Kunming, Yunnan, 651700, China
| | - Chao Zheng
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, 400020, China.
| |
Collapse
|
22
|
Yu SH, Lee CM, Ha SH, Lee J, Jang KY, Park SH. Induction of cell cycle arrest and apoptosis by tomentosin in hepatocellular carcinoma HepG2 and Huh7 cells. Hum Exp Toxicol 2020; 40:231-244. [PMID: 32787465 DOI: 10.1177/0960327120943935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tomentosin, a sesquiterpene lactone, is known to possess various biological activities. However, its anticarcinogenic activity against human hepatocellular carcinoma (HCC) cells has not been investigated in detail. Thus, this study aimed to elucidate the cytotoxic mechanism of tomentosin in human HCC cell lines HepG2 and Huh7. WST-1, cell counting, and colony formation assay results showed that treatment with tomentosin decreased the viability and suppressed the proliferation rate of HepG2 and Huh7 cells in a dose- and time-dependent manner. Cell cycle analysis revealed increased population of cells at the SubG1 and G2/M stage, and decreased population of cells at the G0/1 stage in HepG2 and Huh7 cells treated with tomentosin. Annexin V/propidium iodide double staining and TUNEL assay results showed increased apoptotic cell population and DNA fragmentation in HepG2 and Huh7 cells treated with tomentosin. Western blotting analysis results showed that tomentosin treatment significantly increased the expression level of Bax, Bim (short form), cleaved PARP1, FOXO3, p53, pSer15p53, pSer20p53, pSer46p53, p21, and p27, but decreased the expression of Bcl2, caspase3, caspase7, caspase9, cyclin-dependent kinase 2 (CDK2), CDK4, CDK6, cyclinB1, cyclinD1, cyclinD2, cyclinD3, and cyclinE in a dose-dependent manner. Taken together, this study revealed that tomentosin, which acted through cell cycle arrest and apoptosis, may be a useful therapeutic option against HCC.
Collapse
Affiliation(s)
- S H Yu
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| | - C M Lee
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| | - S H Ha
- Division of Biotechnology, 26714Jeonbuk National University, Iksan, Republic of Korea
| | - J Lee
- Department of Integrative Biotechnology, 65666Sungkyunkwan University, Suwon, Republic of Korea
| | - K Y Jang
- Department of Pathology, 26714Jeonbuk National University Medical School, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Republic of Korea.,Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - S H Park
- Department of Bio and Chemical Engineering, 65686Hongik University, Sejong, Republic of Korea
| |
Collapse
|
23
|
A Review on Sources and Pharmacological Aspects of Sakuranetin. Nutrients 2020; 12:nu12020513. [PMID: 32085443 PMCID: PMC7071307 DOI: 10.3390/nu12020513] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 01/26/2023] Open
Abstract
Sakuranetin belongs to the group of methoxylated flavanones. It is widely distributed in Polyomnia fruticosa and rice, where it acts as a phytoalexin. Other natural sources of this compound are, among others, grass trees, shrubs, flowering plants, cheery, and some herbal drugs, where it has been found in the form of glycosides (mainly sakuranin). Sakuranetin has antiproliferative activity against human cell lines typical for B16BL6 melanoma, esophageal squamous cell carcinoma (ESCC) and colon cancer (Colo 320). Moreover, sakuranetin shows antiviral activity towards human rhinovirus 3 and influenza B virus and was reported to have antioxidant, antimicrobial, antiinflammatory, antiparasitic, antimutagenic, and antiallergic properties. The aim of this review is to present the current status of knowledge of pro-health properties of sakuranetin.
Collapse
|
24
|
Inhibition of MAPK and STAT3-SOCS3 by Sakuranetin Attenuated Chronic Allergic Airway Inflammation in Mice. Mediators Inflamm 2019; 2019:1356356. [PMID: 31565031 PMCID: PMC6745182 DOI: 10.1155/2019/1356356] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma allergic disease is caused by airway chronic inflammation. Some intracellular signaling pathways, such as MAPK and STAT3-SOCS3, are involved in the control of airway inflammation in asthma. The flavonoid sakuranetin demonstrated an anti-inflammatory effect in different asthma models. Our aim was to clarify how sakuranetin treatment affects MAPK and STAT3-SOCS3 pathways in a murine experimental asthma model. Mice were submitted to an asthma ovalbumin-induction protocol and were treated with vehicle, sakuranetin, or dexamethasone. We assayed the inflammatory profile, mucus production, and serum antibody, STAT3-SOCS3, and MAPK levels in the lungs. Morphological alterations were also evaluated in the liver. LPS-stimulated RAW 264.7 cells were used to evaluate the effects of sakuranetin on nitric oxide (NO) and cytokine production. In vivo, sakuranetin treatment reduced serum IgE levels, lung inflammation (eosinophils, neutrophils, and Th2/Th17 cytokines), and respiratory epithelial mucus production in ovalbumin-sensitized animals. Considering possible mechanisms, sakuranetin inhibits the activation of ERK1/2, JNK, p38, and STAT3 in the lungs. No alterations were found in the liver for treated animals. Sakuranetin did not modify in vitro cell viability in RAW 264.7 and reduced NO release and gene expression of IL-1β and IL-6 induced by LPS in these cells. In conclusion, our data showed that the inhibitory effects of sakuranetin on eosinophilic lung inflammation can be due to the inhibition of Th2 and Th17 cytokines and the inhibition of MAPK and STAT3 pathways, reinforcing the idea that sakuranetin can be considered a relevant candidate for the treatment of inflammatory allergic airway disease.
Collapse
|
25
|
Gharred N, Dbeibia A, Falconieri D, Hammami S, Piras A, Dridi-Dhaouadi S. Chemical composition, antibacterial and antioxidant activities of essential oils from flowers, leaves and aerial parts of Tunisian Dittrichia Viscosa. JOURNAL OF ESSENTIAL OIL RESEARCH 2019. [DOI: 10.1080/10412905.2019.1612789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nawres Gharred
- Research Unit Applied Chemistry and Environment 13ES63, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Environemental Polluants and Products, Faculty of Pharamacy, University of Monastir, Monastir, Tunisia
| | - Danilo Falconieri
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Saoussen Hammami
- Research Unit Applied Chemistry and Environment 13ES63, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| | - Alessandra Piras
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Sonia Dridi-Dhaouadi
- Research Unit Applied Chemistry and Environment 13ES63, Faculty of Sciences, University of Monastir, Monastir, Tunisia
| |
Collapse
|
26
|
Lee CM, Lee J, Nam MJ, Choi YS, Park SH. Tomentosin Displays Anti-Carcinogenic Effect in Human Osteosarcoma MG-63 Cells via the Induction of Intracellular Reactive Oxygen Species. Int J Mol Sci 2019; 20:ijms20061508. [PMID: 30917517 PMCID: PMC6471964 DOI: 10.3390/ijms20061508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Tomentosin is a natural sesquiterpene lactone extracted from various plants and is widely used as a medicine because it exhibits essential therapeutic properties. In this study, we investigated the anti-carcinogenic effects of tomentosin in human osteosarcoma MG-63 cells by performing cell migration/viability/proliferation, apoptosis, and reactive oxygen species (ROS) analysis assays. MG-63 cells were treated with various doses of tomentosin. After treatment with tomentosin, MG-63 cells were analyzed using the MTT assay, colony formation assay, cell counting assay, wound healing assay, Boyden chamber assay, zymography assay, cell cycle analysis, FITC Annexin V apoptosis assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, western blot analysis, and ROS detection analysis. Our results indicated that tomentosin decreased cell viability and migration ability in MG-63 cells. Moreover, tomentosin induced apoptosis, cell cycle arrest, DNA damage, and ROS production in MG-63 cells. Furthermore, tomentosin-induced intracellular ROS decreased cell viability and induced apoptosis, cell cycle arrest, and DNA damage in MG-63 cells. Taken together, our results suggested that tomentosin exerted anti-carcinogenic effects in MG-63 cells by induction of intracellular ROS.
Collapse
Affiliation(s)
- Chang Min Lee
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Department of Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea.
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| |
Collapse
|
27
|
Aissa I, Nimbarte VD, Zardi-Bergaoui A, Znati M, Flamini G, Ascrizzi R, Jannet HB. Isocostic Acid, a Promising Bioactive Agent from the Essential Oil of Inula viscosa (L.): Insights from Drug Likeness Properties, Molecular Docking and SAR Analysis. Chem Biodivers 2019; 16:e1800648. [PMID: 30874370 DOI: 10.1002/cbdv.201800648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/04/2019] [Indexed: 02/04/2023]
Abstract
The chemical composition of the essential oil (LEO) and its volatile fractions (V1 -V10 ) collected during the hydrodistillation process every 15 min from the fresh leaves of I. viscosa (L.), growing in Tunisia, were analyzed by GC-FID and GC/MS. Eighty-two compounds, representing 90.9-99.4 % of the total samples, were identified. The crude essential oil (LEO) and its fractions (V1 -V10 ) were characterized by the presence of a high amount of oxygenated sesquiterpenes (82.7-95.8 %). Isocostic acid (1) was found to be the most abundant component (37.4-83.9 %) and was isolated from the same essential oil over silica gel column chromatography and identified by spectroscopic methods (1 H, 13 C, DEPT 135 NMR and EI-MS) and by comparison with literature data. Furthermore, the fresh leaves essential oil (LEO), its volatile fractions (V1 -V10 ) as well as compound 1 were screened for their antibacterial, antityrosinase, anticholinesterase and anti-5-lipoxygenase activities. It was found that the isolated compound 1 exhibited an interesting antibacterial activity against Staphylococcus aureus ATCC 25923 (MIC=32 μg/mL) and Enterococcus faecalis ATCC 29212 (MIC=32 μg/mL) and the highest antityrosinase activity (IC50 =13.82±0.87 μg/mL). Compound 1 was also found to be able to strongly inhibit 5-lipoxygenase with an IC50 value of 59.21±0.85 μg/mL. The bioactivity and drug likeness scores of compound 1 were calculated using Molinspiration software and interpreted, and the structure-activity relationship (SAR) was discussed with the help of molecular docking analysis.
Collapse
Affiliation(s)
- Ibrahim Aissa
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Vijaykumar D Nimbarte
- Laboratory of Chemistry, URCOM, EA 3221, INC3M CNRS-F3038, UFR of Science and Technology, University of Le Havre BP: 1123, 25 rue Philipe Lebon, 76063, Le Havre Cedex, France
| | - Afifa Zardi-Bergaoui
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Mansour Znati
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy.,Centro Interdipartimentale di Ricerca 'Nutraceutica e Alimentazione per la Salute' Nutrafood, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
28
|
Brahmi-Chendouh N, Piccolella S, Crescente G, Pacifico F, Boulekbache L, Hamri-Zeghichi S, Akkal S, Madani K, Pacifico S. A nutraceutical extract from Inula viscosa leaves: UHPLC-HR-MS/MS based polyphenol profile, and antioxidant and cytotoxic activities. J Food Drug Anal 2019; 27:692-702. [PMID: 31324285 PMCID: PMC9307043 DOI: 10.1016/j.jfda.2018.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Nowadays, advanced extraction techniques and highly sensitive metabolic profiling methods are effectively employed to get new information on plant chemical constituents. Among them wild medicinal plants or their parts, with large and ancient use in folk medicine, are investigated for their potential functional use and cultivation. In this context, Inula viscosa leaves engaged our attention. A simple experimental design, based on Soxhlet extraction and chromatographic fractionation, allowed us to obtain the investigated polyphenol fraction (IvE). UHPLC-HRMS analyses revealed shikimoyl depsides of caffeic acid and unusual dihydrobenzofuran lignans as main secondary metabolites. These compounds, together with cinchonain-type phenols, and hydroxycinnamoyl flavonol glycosides, are reported for the first time in inula. Overall, forty-three secondary metabolites were identified. The extract exerted a remarkable antiradical activity towards DPPH• and ABTS+•. Furthermore, it was able to inhibit cell viability and mitochondrial redox activity of neuroblastoma, hepatoblastoma and colon carcinoma cells, whereas it did not affect cell density of HaCaT cells immortalized human keratinocytes. As detected by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate, the inhibitory responses seemed to be related to IvE-induced increase of intracellular reactive oxygen species (ROS). The obtained results highlighted that inula leaves, nowadays even undervalued and unexplored, could be considered a renewable source of nutraceutical compounds.
Collapse
Affiliation(s)
- Nabila Brahmi-Chendouh
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100, Caserta, Italy; Laboratory of 3BS, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100, Caserta, Italy
| | - Giuseppina Crescente
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100, Caserta, Italy
| | - Francesca Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100, Caserta, Italy
| | - Lila Boulekbache
- Laboratory of 3BS, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Sabrina Hamri-Zeghichi
- Laboratory of 3BS, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Salah Akkal
- Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine 1, 25000, Constantine, Algeria
| | - Khodir Madani
- Laboratory of 3BS, Faculty of Life and Nature Sciences, University of Bejaia, 06000, Bejaia, Algeria
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100, Caserta, Italy.
| |
Collapse
|
29
|
Zhao C, Wang F, Lian Y, Xiao H, Zheng J. Biosynthesis of citrus flavonoids and their health effects. Crit Rev Food Sci Nutr 2018; 60:566-583. [DOI: 10.1080/10408398.2018.1544885] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Lian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Sriti Eljazi J, Selmi S, Zarroug Y, Wesleti I, Aouini B, Jallouli S, Limam F. Essential oil composition, phenolic compound, and antioxidant potential of Inulaviscosa as affected by extraction process. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1517782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jazia Sriti Eljazi
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Sawssen Selmi
- Laboratory of Aromatic and Medicinal Plants, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Youkabed Zarroug
- Research Unity “Food Sciences and Technology”, High School of Food Industries (ESIAT), El Khadra, Tunisia
| | - Ibtissem Wesleti
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Bouthaina Aouini
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
31
|
Kwon DH, Ji JH, Yim SH, Kim BS, Choi HJ. Suppression of influenza B virus replication by sakuranetin and mode of its action. Phytother Res 2018; 32:2475-2479. [PMID: 30187587 DOI: 10.1002/ptr.6186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
This study aimed to investigate in vitro the anti-influenza B/Lee/40 virus effect of sakuranetin and mode of its action. The sakuranetin exhibited potent antiviral activity against influenza B/Lee/40 virus, reducing the formation of a visible cytopathic effect, with a 50% inhibitory concentration (IC50 ) of 7.21 μg/ml and no cytotoxicity at a concentration of 100 μg/ml, and the derived therapeutic index (TI) was >13.87. Oseltamivir showed weak anti-influenza B/Lee/40 virus activity with IC50 of 80.74 μg/ml, 50% cytotoxicity concentration of >100 μg/ml, and TI of >1.24. Sakuranetin also showed effective inhibitory effects when added at the viral attachment, entry, and postentry steps. Moreover, sakuranetin effectively inactivated influenza B/Lee/40 virus infection in dose- and temperature-dependent manners. Sakuranetin indicated an inhibitory effect in viral RNA synthesis in the presence of 100 μg/ml of sakuranetin. Overall, this research revealed that sakuranetin could inhibit influenza B/Lee/40 virus replication and that sakuranetin may be involved in the virus attachment, entry, and postentry. Therefore, sakuranetin is a good candidate for a chemopreventive agent for influenza virus-related diseases.
Collapse
Affiliation(s)
- Dur-Han Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, South Korea
| | - Jeong-Hun Ji
- Department of Beauty Science, Gwangju University, Gwangju, South Korea
| | - Soon-Ho Yim
- Department of Pharmaceutical Engineering, College of Oriental Medicine, Dongshin University, Naju, South Korea
| | - Byoung-Soo Kim
- Department of Physiology, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Hwa-Jung Choi
- Department of Beauty Science, Kwangju Women's University, Gwangju, South Korea
| |
Collapse
|
32
|
Bouyahya A, Et-Touys A, Khouchlaa A, El-Baaboua A, Benjouad A, Amzazi S, Dakka N, Bakri Y. Notes ethnobotaniques et phytopharmacologiques sur Inula viscosa. ACTA ACUST UNITED AC 2018. [DOI: 10.3166/s10298-017-1176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Kheyar-Kraouche N, da Silva AB, Serra AT, Bedjou F, Bronze MR. Characterization by liquid chromatography-mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. J Pharm Biomed Anal 2018; 156:297-306. [PMID: 29730339 DOI: 10.1016/j.jpba.2018.04.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023]
Abstract
Inula viscosa (I. viscosa) is a common Mediterranean plant, well known for its content on bioactive molecules. The chemical composition of an ethanolic extract from I. viscosa leaves, growing in Algeria, was analysed by liquid chromatography coupled to photodiode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS/MS) operating in negative and positive mode. The methodology used revealed the presence of 51 compounds from which 47 were putatively identified, including 11 phenolic acids, 23flavonoids, one lignan and 12 terpenoids. Twenty-six of these compounds are described for the first time in I. viscosa. Antioxidant activity was measured using three different and complementary chemical assays: DPPH radical scavenging activity, oxygen radical absorbance capacity (ORAC) and hydroxyl radical scavenging capacity (HOSC). Results demonstrate that ethanolic leaf extract exhibit a high scavenging ability against DPPH (157.72 ± 6.45 μM TE/g DW), peroxyl (4471.42 ± 113.16 μM TE/g DW) and hydroxyl (630.10 ± 17.81 μM TE/g DW) radicals, indicating that I. viscosa can be a promising source of bioactive compounds.
Collapse
Affiliation(s)
- Naoual Kheyar-Kraouche
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Andreia Bento da Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Fatiha Bedjou
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Maria R Bronze
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; iMED, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| |
Collapse
|
34
|
Wang Y, Sherchan P, Huang L, Akyol O, McBride DW, Zhang JH. Multiple mechanisms underlying neuroprotection by secretory phospholipase A2 preconditioning in a surgically induced brain injury rat model. Exp Neurol 2018; 300:30-40. [PMID: 29074417 PMCID: PMC5745263 DOI: 10.1016/j.expneurol.2017.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intra-operative bleeding, post-operative brain edema and neuroinflammation are major complications in patients with surgical brain injury (SBI). Phospholipase A2 (PLA2) is the upstream enzyme which initiates the PLA2, 5-lipoxygenase (5-LOX) and leukotriene B4 (LTB4) inflammatory pathway. We hypothesized PLA2preconditioning (PPC) prior to SBI can activate endogenous anti-inflammatory responses to protect against SBI. This study evaluated if PPC can ameliorate neurosurgical complications and elucidated PPC-mediated possible protective mechanisms in a rat SBI model. METHODS Total 105 adult male Sprague Dawley rats were used for this study. SBI was induced by partial resection of the right frontal lobe. PLA2 or 0.9% NaCl was injected via rats' tail vein for 3 consecutive days prior to SBI. For mechanism study, a selective PLA2 inhibitor, Manoalide and 5-LOX inhibitor, Zileuton were injected intravenously with PPC to elucidate the role of PLA2 and 5-LOX in PPC-mediated anti-inflammatory effects. Brain water content (BWC) and lung water content, neurological tests, ELISA, western blot, immunohistochemistry, white blood cells (WBC) count, and spectrophotometric assay for intra-operative hemorrhage volume were evaluated. RESULTS First, PPC reduced brain water content, intra-operative bleeding, and improved neurological function after SBI. Second, PPC decreased 5-LOX expression and brain leukocyte infiltration, while increasing glial fibrillary acidic protein (GFAP) expression in the peri-resection brain tissue after SBI. Third, PPC induced peripheral inflammation represented by mild pulmonary inflammation and increased peripheral blood WBC count and LTB4 level. Lastly, PPC increased blood glucose concentration and glucocorticoid levels after SBI. In addition, PPC mediated above-mentioned changes were partially reversed by administration of PLA2 inhibitor, Manoalide and 5-LOX inhibitor, Zileuton. CONCLUSIONS PPC conferred neuroprotection against SBI via multi-target involvement induced anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Physiology, Jinan University School of Medicine, Guangzhou, Guangdong Province, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Lei Huang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Onat Akyol
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - Devin W. McBride
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| | - John H. Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, 92354, USA
| |
Collapse
|
35
|
Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides. Appl Biochem Biotechnol 2017; 184:1404-1420. [PMID: 29043664 DOI: 10.1007/s12010-017-2603-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Methylation is a common post-modification reaction that is observed during the biosynthesis of secondary metabolites produced by plants and microorganisms. Based on the sequence information from Streptomyces peucetius ATCC27952, a putative O-methyltransferase (OMT) gene SpOMT7740 was polymerase chain reaction amplified and cloned into E. coli BL21 (DE3) host to test the substrate promiscuity and conduct functional characterization. In vitro and in vivo reaction assays were carried out over various classes of substrates: flavonoids (flavonol, flavones, and isoflavonoid), chalcones, anthraquinones, anthracyclines, and sterol molecules, and the applications in synthesizing diverse classes of O-methoxy natural products were also illustrated. SpOMT7740 catalyzed the O-methylation reaction to form various natural and non-natural O-methoxides, includes 7-hydroxy-8-O-methoxy flavone, 3-O-methoxy flavone, three mono-, di-, and tri-O-methoxy genistein, mono-O-methoxy phloretin, mono-O-methoxy luteolin, 3-O-methoxy β-sitosterol, and O-methoxy anthraquinones (emodin and aloe emodin) and O-methoxy anthracycline (daunorubicin) exhibiting diverse substrate flexibility. Daunorubicin is a native secondary metabolite of S. peucetius. Among the compounds tested, 7,8-dihydroxyflavone was the best substrate for bioconversion to 7-hydroxy-8-O-methoxy flavone, and it was structurally elucidated. This enzyme showed a flexible catalysis over the given ranges of temperature, pH, and divalent cationic conditions for O-methylation.
Collapse
|
36
|
|
37
|
Hakkou Z, Maciuk A, Leblais V, Bouanani NE, Mekhfi H, Bnouham M, Aziz M, Ziyyat A, Rauf A, Hadda TB, Shaheen U, Patel S, Fischmeister R, Legssyer A. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed Pharmacother 2017; 93:62-69. [PMID: 28623784 DOI: 10.1016/j.biopha.2017.06.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Inula viscosa L. (Asteraceae) is a medicinal plant widely used as a folk medicine in oriental Morocco, to treat hypertension. The antihypertensive effect of the methanolic extract obtained from I. viscosa leaves was evaluated in hypertensive L-NAME rats. Systolic blood pressure (SBP) was measured using a non-invasive indirect tail-cuff plethysmographic method. Four groups of rats were used: a control group; a hypertensive group treated with L-NAME (32mg/kg/day); a positive control group treated with L-NAME plus enalapril (15mg/kg/day) as a reference antihypertensive agent; and a group treated with L-NAME plus MeOH-extract (40mg/kg/day). METHODS Treatment with L-NAME alone caused a progressive increase in SBP. After 4 weeks, the value of SBP reached 160±2mmHg which shows the installation of hypertension. Enalapril prevented the increase in SBP, which remained normal at 123±1mmHg after 4 weeks of treatment. The administration of MeOH-extract along with L-NAME prevented the increase in SBP as well, which remained constant at 115±1mmHg after 4 weeks of treatment. In ex-vivo models, MeOH-extract produced a relaxation of pre-contracted ring aorta (54 ± 2% of relaxation at 3g/L). But, when the rings were denuded, MeOH-extract failed to relax pre-contracted rings of aorta. Phytochemical study of I. viscosa MeOH-extract revealed the presence of phenolic compounds, such as cynarin and chlorogenic acid. RESULTS The present results suggest that I. viscosa MeOH-extract has an antihypertensive, predominantly mediated by an endothelium-dependent vasodilatory effect. Cynarin and chlorogenic acid, which have a strong vasorelaxant effect may be involved in the antihypertensive effect of the plant extract. The bioinformatic POM analysis confirms the therapeutic potential of cynarin and chlorogenic acids as inhibitors of various biotargets. Based on the results, the coordination of these phytochemicals with calcium and transition metals should be studied, for better scope at antihypertensive drug development.
Collapse
Affiliation(s)
- Zineb Hakkou
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Alexandre Maciuk
- Laboratoire de Pharmacognosie UPRES-A 8076 CNRS, BIOCIS, Faculté de Pharmacie Université Paris Sud XI Chatenay Malabry, France
| | - Veronique Leblais
- Laboratoire de Signalisation et Physiopathologie Cardiaque INSERM UMR-S 769, Faculté de Pharmacie Université Paris Sud XI Chatenay Malabry, France
| | - Nour Elhouda Bouanani
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Bnouham
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Aziz
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abderrahime Ziyyat
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Taibi Ben Hadda
- Laboratoire de Chimie des Matériaux, Faculté des Sciences , Département de Chimie, Université Mohammed Premier , Oujda 60000, Morocco
| | - Usama Shaheen
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah-21955, Saudi Arabia
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA
| | - Rodolphe Fischmeister
- Laboratoire de Signalisation et Physiopathologie Cardiaque INSERM UMR-S 769, Faculté de Pharmacie Université Paris Sud XI Chatenay Malabry, France
| | - Abdelkhaleq Legssyer
- Laboratoire de Physiologie et Ethnopharmacologie URAC40, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
38
|
Merghoub N, El Btaouri H, Benbacer L, Gmouh S, Trentesaux C, Brassart B, Attaleb M, Madoulet C, Wenner T, Amzazi S, Morjani H, El Mzibri M. Tomentosin Induces Telomere Shortening and Caspase-Dependant Apoptosis in Cervical Cancer Cells. J Cell Biochem 2016; 118:1689-1698. [PMID: 27922187 DOI: 10.1002/jcb.25826] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022]
Abstract
Tomentosin, a natural sesquiterpene lactone purified from of Inula viscosa L., was investigated for its anti-proliferative, telomere shortening, and apoptotic effects on human cervical cancer HeLa and SiHa cell lines. Tomentosin was found to inhibit the growth of SiHa and HeLa cell lines in dose and time-dependent manner (IC50 values of 7.10 ± 0.78 μM and 5.87 ± 0.36 μM, respectively after 96 h of treatment). As evidenced by TTAGGG telomere length assay, tomentosin target specifically the telomeric overhang lengthening. This was confirmed by the evaluation of the cytotoxic effects of tomentosin in the foetal fibroblast Wi38 and JW10 cells which were derived from Wi38 and express hTERT, the telomerase catalytic subunit. We found that JW10 cells are 4.7-fold more sensitive to tomentosin which argues for telomere as its specific target. Furthermore, we found that tomentosin mediate this cytotoxic effect by inducing apoptosis and cell cycle arrest at G2/M phase. Morphological features of treated cells, as evidenced by Hoechst 33324 staining, revealed that the cytotoxic effect was due to induction of apoptosis. This was accompanied by pro-caspase-3 cleavage, an increase in caspase-3 activity and a cleavage of poly (ADP-ribose) polymerase (PARP). Moreover, tomentosin induced a decrease in mitochondrial membrane potential (ΔΨm) and an increase in reactive oxygen species (ROS), accompanied by a decrease in Bcl-2 expression. This indicates that tomentosin-induced apoptosis may involve a mitochondria-mediated signaling pathway. This study provides the first evidence that tomentosin targets telomere machinery and induces apoptosis in cervical cancer cells. The molecular mechanism underlying tomentosin-induced apoptosis may involve a mitochondria-mediated signaling pathway. J. Cell. Biochem. 118: 1689-1698, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nawel Merghoub
- Laboratoire de Biochimie-Immunologie, Faculté des Sciences de Rabat, Agdal, Morocco.,Unité Biologie & Recherche Médicale CNESTEN, Rabat, Morocco.,MEDyC CNRS UMR7369, UFR Sciences, UFR Médecine et UFR Pharmacie, Reims, France.,Green Biotechnology Center, MAScIR (Moroccan foundation for Advanced Science, Innovation and Research), Rabat, Morocco
| | - Hassan El Btaouri
- MEDyC CNRS UMR7369, UFR Sciences, UFR Médecine et UFR Pharmacie, Reims, France
| | - Laila Benbacer
- Unité Biologie & Recherche Médicale CNESTEN, Rabat, Morocco
| | - Saïd Gmouh
- Centre National Pour la Recherche Scientifique et Technique, Rabat, Morocco
| | - Chantal Trentesaux
- University of Reims and MNHN, INSERM U565, CNRS UMR 7196, 75005, Paris, France
| | - Bertrand Brassart
- MEDyC CNRS UMR7369, UFR Sciences, UFR Médecine et UFR Pharmacie, Reims, France
| | | | - Claudie Madoulet
- MEDyC CNRS UMR7369, UFR Sciences, UFR Médecine et UFR Pharmacie, Reims, France
| | - Thomas Wenner
- Laboratoire de Pathologie de la cellule B Indolente, UMR CNRS 5239, Faculté de Médecine Lyon Sud, France
| | - Saaid Amzazi
- Laboratoire de Biochimie-Immunologie, Faculté des Sciences de Rabat, Agdal, Morocco
| | - Hamid Morjani
- MEDyC CNRS UMR7369, UFR Sciences, UFR Médecine et UFR Pharmacie, Reims, France
| | | |
Collapse
|
39
|
Sakuranetin Inhibits Inflammatory Enzyme, Cytokine, and Costimulatory Molecule Expression in Macrophages through Modulation of JNK, p38, and STAT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9824203. [PMID: 27668006 PMCID: PMC5030420 DOI: 10.1155/2016/9824203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 01/14/2023]
Abstract
Sakuranetin is flavonoid phytoalexin that serves as a plant antibiotic and exists in Prunus and several other plant species. Recently, we identified the anti-inflammatory effect of Prunus yedoensis and found that there were few studies on the potential anti-inflammatory activity of sakuranetin, one of the main constituents of Prunus yedoensis. Here, we isolated peritoneal macrophages from thioglycollate-injected mice and examined whether sakuranetin affected the response of the macrophages in response to lipopolysaccharide (LPS) plus interferon- (IFN-) γ or LPS only. Sakuranetin suppressed the synthesis of iNOS and COX2 in LPS/IFN-γ stimulated cells and the secretion of TNF-α, IL-6, and IL-12 in LPS stimulated cells. The surface expression of the costimulatory molecules, CD86 and CD40, was also decreased. Among the LPS-induced signaling molecules, STAT1, JNK, and p38 phosphorylation was attenuated. These findings are evidence that sakuranetin acts as anti-inflammatory flavonoid and further study is required to evaluate its in vivo efficacy.
Collapse
|
40
|
Effect of Inula viscosa on the pellicle's protective properties and initial bioadhesion in-situ. Arch Oral Biol 2016; 71:87-96. [PMID: 27458690 DOI: 10.1016/j.archoralbio.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The present in situ study investigated the effect of Inula viscosa tea on the pellicle's acid protective properties and on initial oral biofilm formation. DESIGN Biofilm formation was performed on bovine enamel slabs on individual maxillary splints. Following 1min of pellicle formation, eight subjects rinsed for 10min with Inula viscosa tea and the splints remained for 8h intraorally. Samples carried after 1-min rinsing with CHX (0.2%) or without rinse served as controls. BacLight™ staining, 4',6-diamidino-2-phenylindole (DAPI)-staining and fluorescence in situ hybridization (FISH) were used for fluorescence microscopic detection of adherent bacteria. For investigation of acid protective properties, three subjects rinsed for 10min with Inula viscosa tea after 1min pellicle formation and kept the splints intraorally for further 19min. Physiological 30-min pellicles and native enamel samples served as controls. After HCl incubation of the samples ex-vivo over 120s (pH 2.0, 2.3, 3.0) calcium- and phosphate release were quantified photometrically. Potential influences on the pellicle's ultrastructure by Inula viscosa tea were evaluated by transmission electron microscopy (TEM). RESULTS Application of Inula viscosa tea yielded a significant reduction of adherent bacteria on all enamel samples as detected by fluorescence microscopy. For calcium- and phosphate release no significant effect was recorded. TEM investigation indicated a modification of the pellicle's ultrastructure, but no enhanced protection against erosive noxae. CONCLUSION Rinsing with Inula viscosa tea influences the bacterial colonization on enamel in situ over 8h but has no impact on acid protective properties of the pellicle.
Collapse
|
41
|
Farzaei MH, Farzaei F, Abdollahi M, Abbasabadi Z, Abdolghaffari AH, Mehraban B. A mechanistic review on medicinal plants used for rheumatoid arthritis in traditional Persian medicine. J Pharm Pharmacol 2016; 68:1233-48. [PMID: 27417522 DOI: 10.1111/jphp.12606] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/10/2016] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease, which affects synovial tissue in multiple joints. Although conventional treatments of RA commonly alleviate the symptoms, high incidence of adverse reactions leads to research tendency towards complementary and alternative medicine. As various medicinal plants are traditionally used for the management of symptomatologies associated with RA in Persian medicine, we reviewed medicinal literature to confirm their efficacy in the management of RA.
Key findings
Scientific evidence revealed that traditional medicaments exert beneficial effects on RA through several cellular mechanisms including downregulation of pro-inflammatory cytokines such as TNF-α, IL-6 and NF-κB, suppression of oxidative stress, inhibition of cartilage degradation with destructive metalloproteinases and enhancement of antioxidant performance. Various active constituents from different chemical categories including flavonols, lignans, coumarins, terpenes, glycosylflavons, dihydroflavonols, phytoestrogens, sesquiterpene lactones, anthraquinones, alkaloids and thymoquinones have been isolated from the medicinal plants.
Summary
The pharmacological mechanisms of the medicinal plants traditionally used for RA in Persian medicine are discussed in the current review. Further investigations are mandatory to focus on bioefficacy of these phytochemicals for finding novel natural drugs.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Phytopharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Farzaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasabadi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | |
Collapse
|
42
|
Seca AML, Pinto DCGA, Silva AMS. Metabolomic Profile of the Genus Inula. Chem Biodivers 2016; 12:859-906. [PMID: 26080736 DOI: 10.1002/cbdv.201400080] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Indexed: 01/05/2023]
Abstract
Plants have a long history as therapeutics in the treatment of human diseases and have been used as source of medicines for ages. Searching for new biologically active natural products, many plants and herbs are screened for natural products with pharmacological activities. In this field, the genus Inula, which comprises more than 100 species, several of them being used in traditional medicine, is very important, especially due to the finding that several of the isolated pure secondary metabolites proved to possess important biological activities. Inula species have been reported as rich sources of sesquiterpene lactones, including eudesmanes, germacranes, guaianes, and dimeric structures, and since 2006 ca. 400 secondary metabolites, including more than 100 new natural products, some of them with relevant pharmacological activities, have been identified. Herein, we critically compile and update the information regarding the types of secondary metabolites found in the genus Inula and the progress in their isolation.
Collapse
Affiliation(s)
- Ana M L Seca
- DCTD, University of Azores, PT-9501-801 Ponta Delgada
| | - Diana C G A Pinto
- Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, PT-3810-193 Aveiro, (phone: +351-234-401407; fax: +351-234-370084).
| | - Artur M S Silva
- Department of Chemistry and QOPNA, University of Aveiro, Campus Universitário de Santiago, PT-3810-193 Aveiro, (phone: +351-234-401407; fax: +351-234-370084).
| |
Collapse
|
43
|
Merghoub N, El Btaouri H, Benbacer L, Gmouh S, Trentesaux C, Brassart B, Terryn C, Attaleb M, Madoulet C, Benjouad A, Amzazi S, El Mzibri M, Morjani H. Inula Viscosa Extracts Induces Telomere Shortening and Apoptosis in Cancer Cells and Overcome Drug Resistance. Nutr Cancer 2016; 68:131-43. [PMID: 26771897 DOI: 10.1080/01635581.2016.1115105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telomerase is activated in human papillomavirus (HPV) positive cervical cancer and targeting telomeres offers a novel anticancer therapeutic strategy. In this study, the telomere targeting properties, the cytotoxic as well as the pro-apoptotic effects of hexane (IV-HE) and dichloromethane (IV-DF) fractions from Inula viscosa L. extracts were investigated on human cervical HeLa and SiHa cancer cells. Our data demonstrate that IV-HE and IV-DF extracts were able to inhibit cell growth in HeLa and SiHa cells in a dose-dependent manner and studied resistant cell lines exhibited a resistance factor less than 2 when treated with the extracts. IV-HE and IV-DF extracts were able to inhibit telomerase activity and to induce telomere shortening as shown by telomeric repeat amplification protocol and TTAGGG telomere length assay, respectively. The sensitivity of fibroblasts to the extracts was increased when telomerase was expressed. Finally, IV-HE and IV-DF were able to induce apoptosis as evidenced by an increase in annexin-V labeling and caspase-3 activity. This study provides the first evidence that the IV-HE and IV-DF extracts from Inula viscosa L. target telomeres induce apoptosis and overcome drug resistance in tumor cells. Future studies will focus on the identification of the molecules involved in the anticancer activity.
Collapse
Affiliation(s)
- Nawal Merghoub
- a Laboratory of Biochemistry and Immunology, Faculty of Sciences, Rabat, Morocco Department of Biology and Medical Research CNESTEN, Rabat, Morocco and MEDyC CNRS UMR 7369, Faculty of Pharmacy , Reims , France
| | | | - Laila Benbacer
- c Department of Biology and Medical Research CNESTEN , Rabat , Morocco
| | - Saïd Gmouh
- d Faculté des Sciences Ben M'sik , Casablanca , Morocco
| | | | | | | | - Mohammed Attaleb
- h Department of Biology and Medical Research CNESTEN , Rabat , Morocco
| | | | - Abdelaziz Benjouad
- j Laboratory of Biochemistry and Immunology, Faculty of Sciences , Rabat , Morocco
| | - Saaïd Amzazi
- j Laboratory of Biochemistry and Immunology, Faculty of Sciences , Rabat , Morocco
| | | | - Hamid Morjani
- l MEDyC CNRS UMR 7369, Faculty of Pharmacy , Reims , France
| |
Collapse
|
44
|
Mahmoudi H, Hosni K, Zaouali W, Amri I, Zargouni H, Hamida NB, Kaddour R, Hamrouni L, Nasri MB, Ouerghi Z. Comprehensive Phytochemical Analysis, Antioxidant and Antifungal Activities of Inula viscosa
Aiton Leaves. J Food Saf 2015. [DOI: 10.1111/jfs.12215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hela Mahmoudi
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Karim Hosni
- Laboratoire des Substances Naturelles; Institut National de Recherche et d'Analyse Physico-Chimique; Sidi Thabet Tunisia
| | - Wafa Zaouali
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Ismail Amri
- Laboratory for Forest Ecology; National Institute for Research in Rural Engineering, Water and Forests; BP 10, 2080 Ariana Tunisia
| | - Hanene Zargouni
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Nesrine Ben Hamida
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Rym Kaddour
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Lamia Hamrouni
- Laboratory for Forest Ecology; National Institute for Research in Rural Engineering, Water and Forests; BP 10, 2080 Ariana Tunisia
| | - Mouhiba Ben Nasri
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| | - Zeineb Ouerghi
- Unité de Physiologie et Biochimie de la Tolérance des Plantes aux Contraintes Abiotiques; Faculté des Sciences de Tunis; Campus Universitaire Tunis Farhat Hachad El Manar 2092 Tunisia
| |
Collapse
|
45
|
Ribeiro D, Freitas M, Lima JLFC, Fernandes E. Proinflammatory Pathways: The Modulation by Flavonoids. Med Res Rev 2015; 35:877-936. [PMID: 25926332 DOI: 10.1002/med.21347] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a natural, carefully orchestrated response of the organism to tissue damage, involving various signaling systems and the recruitment of inflammatory cells. These cells are stimulated to release a myriad of mediators that amplify the inflammatory response and recruit additional cells. These mediators present numerous redundancies of functions, allowing a broad and effective inflammatory response, but simultaneously make the understanding of inflammation pathways much difficult. The extent of the inflammatory response is usually self-limited, although it depends on the balance between the pro- and anti-inflammatory signals. When that equilibrium is dislocated, a more widespread inflammatory response may take place. Flavonoids have been shown to be possible alternatives to the traditionally molecules used as anti-inflammatory agents. In fact, the biological activities of flavonoids include the modulation of the diverse phases of inflammatory processes, from the gene transcription and expression to the inhibition of the enzymatic activities and the scavenging of the reactive species. In the present review, the inflammatory network is widely revised and the flavonoids' broad spectrum of action in many of the analyzed inflammatory pathways is revised. This kind of integrated revision is original in the field, providing the reader the simultaneous comprehension of the inflammatory process and the potential beneficial activities of flavonoids.
Collapse
Affiliation(s)
- Daniela Ribeiro
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Marisa Freitas
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - José L F C Lima
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| |
Collapse
|
46
|
Antioxidant activities and total phenol content of Inula viscosa extracts selected from three regions of Morocco. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Seca AML, Grigore A, Pinto DCGA, Silva AMS. The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:286-310. [PMID: 24754913 DOI: 10.1016/j.jep.2014.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Inula comprises more than one hundred species widespread in temperate regions of Europe and Asia. Uses of this genus as herbal medicines have been first recorded by the Greek and Roman ancient physicians. In the Chinese Pharmacopoeia, from the 20 Inula spp. distributed in China, three are used as Traditional Chinese medicines, named Tumuxiang, Xuanfuhua and Jinfeicao. These medicines are used as expectorants, antitussives, diaphoretics, antiemetics, and bactericides. Moreover, Inula helenium L. which is mentioned in Minoan, Mycenaean, Egyptian/Assyrian pharmacotherapy and Chilandar Medical Codex, is good to treat neoplasm, wound, freckles and dandruff. Many other Inula spp. are used in Ayurvedic and Tibetan traditional medicinal systems for the treatment of diseases such as bronchitis, diabetes, fever, hypertension and several types of inflammation. This review is a critical evaluation of the published data on the more relevant ethnopharmacological and medicinal uses of Inula spp. and on their metabolites biological activities. This study allows the identification of the ethnopharmacological knowledge of this genus and will provide insight into the emerging pharmacological applications of Inula spp. facilitating the prioritirization of future investigations. The corroboration of the ethnopharmacological applications described in the literature with proved biological activities of Inula spp. secondary metabolites will also be explored. MATERIALS AND METHODS The major scientific databases including ScienceDirect, Medline, Scopus and Web of Science were queried for information on the genus Inula using various keyword combinations, more than 180 papers and patents related to the genus Inula were consulted. The International Plant Name Index was also used to confirm the species names. RESULTS Although the benefits of Inula spp. are known for centuries, there are insufficient scientific studies to certify it. Most of the patents are registered by Chinese researchers, proving the traditional use of these plants in their country. Although a total of sixteen Inula species were reported in the literature to have ethnopharmacological applications, the species Inula cappa (Buch.-Ham. ex D.Don) DC., Inula racemosa Hook.f., Inula viscosa (L.) Aiton [actually the accepted name is Dittrichia viscosa (L.) Greuter], Inula helenium, Inula britannica L. and Inula japonica Thunb. are the most frequently cited ones since their ethnopharmacological applications are vast. They are used to treat a large spectrum of disorders, mainly respiratory, digestive, inflammatory, dermatological, cancer and microbial diseases. Fifteen Inula spp. crude extracts were investigated and showed interesting biological activities. From these, only 7 involved extracts of the reported spp. used in traditional medicine and 6 of these were studied to isolate the bioactive compounds. Furthermore, 90 bioactive compounds were isolated from 16 Inula spp. The characteristic compounds of the genus, sesquiterpene lactones, are involved in a network of biological effects, and in consequence, the majority of the experimental studies are focused on these products, especially on their cytotoxic and anti-inflammatory activities. The review shows the chemical composition of the genus Inula and presents the pharmacological effects proved by in vitro and in vivo experiments, namely the cytotoxic, anti-inflammatory (with focus on nitric oxide, arachidonic acid and NF-κB pathways), antimicrobial, antidiabetic and insecticidal activities. CONCLUSIONS Although there are ca. 100 species in the genus Inula, only a few species have been investigated so far. Eight of the sixteen Inula spp. with ethnopharmacological application had been subjected to biological evaluations and/or phytochemical studies. Despite Inula royleana DC. and Inula obtusifolia A. Kerner are being used in traditional medicine, as far as we are aware, these species were not subjected to phytochemical or pharmacological studies. The biological activities exhibited by the compounds isolated from Inula spp., mainly anti-inflammatory and cytotoxic, support some of the described ethnopharmacological applications. Sesquiterpene lactone derivatives were identified as the most studied class, being britannilactone derivatives the most active ones and present high potential as anti-inflammatory drugs, although, their pharmacological effects, dose-response relationship and toxicological investigations to assess potential for acute or chronic adverse effects should be further investigated. The experimental results are promising, but the precise mechanism of action, the compound or extract toxicity, and the dose to be administrated for an optimal effect need to be investigated. Also human trials (some preclinical studies proved to be remarkable) should be further investigated. The genus Inula comprises species useful not only in medicine but also in other domains which makes it a high value-added plant.
Collapse
Affiliation(s)
- Ana M L Seca
- DCTD, University of Azores, 9501-801 Ponta Delgada, Portugal; Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Alice Grigore
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical-Pharmaceutical R&D, 112 Vitan Av., Bucharest, Romania.
| | - Diana C G A Pinto
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Chemistry Department & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
48
|
Structure-activity association of flavonoids in lung diseases. Molecules 2014; 19:3570-95. [PMID: 24662074 PMCID: PMC6271797 DOI: 10.3390/molecules19033570] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 12/22/2022] Open
Abstract
Flavonoids are polyphenolic compounds classified into flavonols, flavones, flavanones, isoflavones, catechins, anthocyanidins, and chalcones according to their chemical structures. They are abundantly found in Nature and over 8,000 flavonoids have from different sources, mainly plant materials, have been described. Recently reports have shown the valuable effects of flavonoids as antiviral, anti-allergic, antiplatelet, antitumor, antioxidant, and anti-inflammatory agents and interest in these compounds has been increasing since they can be helpful to human health. Several mechanisms of action are involved in the biological properties of flavonoids such as free radical scavenging, transition metal ion chelation, activation of survival genes and signaling pathways, regulation of mitochondrial function and modulation of inflammatory responses. The anti-inflammatory effects of flavonoids have been described in a number of studies in the literature, but not frequently associated to respiratory disease. Thus, this review aims to discuss the effects of different flavonoids in the control of lung inflammation in some disorders such as asthma, lung emphysema and acute respiratory distress syndrome and the possible mechanisms of action, as well as establish some structure-activity relationships between this biological potential and chemical profile of these compounds.
Collapse
|
49
|
Ribeiro D, Freitas M, Tomé SM, Silva AMS, Porto G, Cabrita EJ, Marques MMB, Fernandes E. Inhibition of LOX by flavonoids: a structure-activity relationship study. Eur J Med Chem 2014; 72:137-45. [PMID: 24368208 DOI: 10.1016/j.ejmech.2013.11.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/30/2013] [Indexed: 12/14/2022]
Abstract
The lipoxygenase (LOX) products have been identified as mediators of a series of inflammatory diseases, namely rheumatoid arthritis, inflammatory bowel disease, psoriasis, allergic rhinitis, atherosclerosis and certain types of cancer. Hence, LOX inhibitors are of interest for the modulation of these phenomena and resolution of the inflammatory processes. During LOX activity, peroxyl radical complexes are part of the reaction and may function as sources of free radicals. Thus antioxidants, such as flavonoids, capable of inhibiting lipid peroxidation and scavenging free radicals, may act as LOX inhibitors. The aim of this work was to assess the structure-activity relationship among a series of flavonoids concerning 5-LOX inhibition, through a systematic study of the inhibition of the formation of LTB4 in human neutrophils. The type of inhibition of the flavonoids was further studied using soybean LOX, type I, and Saturation Transfer Difference (1)H NMR (STD-(1)H NMR) was used to characterize the binding epitopes of the compounds to LOX-1. The obtained results reinforce flavonoids as effective inhibitors of LTB4 production in human neutrophils. It was also possible to establish a structure/activity relationship for the inhibitory activity and the type of inhibition.
Collapse
Affiliation(s)
- Daniela Ribeiro
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Marisa Freitas
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Sara M Tomé
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Graça Porto
- Hematologia Clínica, Hospital Geral de Santo António, 4050-011 Porto, Portugal
| | - Eurico J Cabrita
- Departamento de Química, REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Lisboa, Portugal
| | - M Manuel B Marques
- Departamento de Química, REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Lisboa, Portugal
| | - Eduarda Fernandes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
50
|
Andolfi A, Zermane N, Cimmino A, Avolio F, Boari A, Vurro M, Evidente A. Inuloxins A-D, phytotoxic bi-and tri-cyclic sesquiterpene lactones produced by Inula viscosa: potential for broomrapes and field dodder management. PHYTOCHEMISTRY 2013; 86:112-20. [PMID: 23137725 DOI: 10.1016/j.phytochem.2012.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 05/07/2023]
Abstract
Four phytotoxic bi- and tri-cyclic sesquiterpene lactones, named inuloxins A-D, were isolated together with the known α-costic acid, from the aerial parts of Inula viscosa (family Asteraceae), a widespread Mediterranean plant well known for its content of pharmacologically active metabolites. The structures of inuloxins A-D were established by spectroscopic and chemical methods and determined to be: (4E,7R*,8R*,10S*)-3-oxo-germacra-4,11(13)-dien-8β-12-olide (A), its 11,13-dihydro analogue (B), (5R*,7R*,8R*,10R*)-1,15-methylene-5β-hydroxy-eudesm-1(15),11(13)-dien-8β-12-olide (C), and (7R*,8R*)-1,4-dimethyl-4-hydroxy-secoeudesm-5(10),11(13)-dien-8β-12-olide (D). The S absolute stereochemistry at C-5 of 5-hydroxyhexan-2-yl side chain of inuloxin D was assigned by applying an advanced Mosher's method. The phytotoxic activity of inuloxins A-D, that of the diazo and monoacetyl derivatives (of inuloxin A and C, resply), as well as that of α-costic acid was evaluated against two parasitic plant species, i.e. crenate broomrape (Orobanche crenata) and field dodder (Cuscuta campestris). Inuloxins A, C and D were the most active on both parasites and caused up to 100% inhibition of the seed germination. Inuloxin B was less active on Cuscuta and completely inactive against Orobanche. The main metabolite α-costic acid had a suppressive effect on the dodder seed germination but had a stimulating action on the broomrape seed germination. These preliminary results allowed to suppose some structure-activity relationships.
Collapse
Affiliation(s)
- Anna Andolfi
- Dipartimento di Scienze del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università di Napoli Federico II, 80055 Portici, Italy
| | | | | | | | | | | | | |
Collapse
|