1
|
Sangavi P, Nagarajan H, Subramaniyan S, Jeyaraman J, Langeswaran K. Unveiling the oncological inhibition of bioactive compounds from Adansonia digitata via in silico analysis by targeting γ-butyrobetaine dioxygenase 1 against triple negative breast cancer. J Biomol Struct Dyn 2024:1-24. [PMID: 39660540 DOI: 10.1080/07391102.2024.2437528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 12/12/2024]
Abstract
Adansonia digitata extracts are well known for their wide range of nutritional and medicinal benefits, including anti-diabetic, anti-inflammatory, antioxidant, and anti-cancerous properties. Yet, its efficacy against breast cancer has not been well-studied so far. Hence this study aims to investigate the anti-cancer properties of phytochemicals from the bark extract of the Adansonia digitata tree against BBOX1, a protein that stimulates the growth of Triple Negative Breast Cancer (TNBC) cells. TNBC is a highly aggressive and fatal form of cancer with limited therapeutic options available. By incorporating computational bioinformatics including Molecular docking, MMGBSA/PBSA, Molecular dynamics, and PCA/FEL analysis, the phytocompounds were scrutinized against BBOX1. Among 274 Phytocompounds only 37 compounds with good pharmacokinetic profiles based on ADME analysis were selected and docked with BBOX1. Of these compounds, the top 6 phytocompounds (CID_22217550, CID_559476, CID_6423866, CID_595387, CID_550931, and CID_559495) demonstrated good binding affinity, with better docking scores ranging from -8.599 to -7.207 kcal/mol respectively. Furthermore, based on MM/GBSA, Interaction profiling, and DFT analysis, only three phytocompounds namely CID_22217550, CID_559476, and CID_550931 were found to interact with the key residues such as Tyr_177, Trp_181, Asp_191, and Tyr_366 with better binding efficacy. In addition, these compounds were also observed to have the least RMS deviations with stable H-bond interactions maintained throughout the MD production run. Henceforth, the overall analysis infers that the phytocompounds CID_22217550, CID_559476, and CID_550931 shall act as potent inhibitors of BBOX1. However, their inhibitory efficacy has be to analyzed with further in vitro and in vivo analysis.
Collapse
Affiliation(s)
- P Sangavi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sneha Subramaniyan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Langeswaran
- Department of Biomedical Science, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
2
|
Bjørndal B, Tungland SL, Bohov P, Sydnes MO, Dankel SN, Madsen L, Berge RK. Meldonium-induced steatosis is associated with increased delta 6 desaturation and reduced elongation of n-6 polyunsaturated fatty acids. LIVER RESEARCH 2024; 8:152-164. [PMID: 39957749 PMCID: PMC11771272 DOI: 10.1016/j.livres.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 02/18/2025]
Abstract
Background and objective Metabolic associated fatty liver disease (MAFLD) is associated with abnormal lipid metabolism. Mitochondrial dysfunction is considered an important factor in the onset of MAFLD, whereas altered fatty acid composition has been linked to the severity of the disease. Tetradecylthioacetic acid (TTA), shown to induce mitochondrial proliferation and alter the fatty acid composition, was used to delay the accumulation of hepatic triacylglycerol. This study aimed to evaluate how impaired mitochondrial fatty acid beta-oxidation affects fatty acid composition by incorporating meldonium into a high-carbohydrate diet. Methods C57BL/6 mice (n = 40) were fed high-carbohydrate diets supplemented with meldonium, TTA, or a combination of meldonium and TTA for 21 days. Lipid levels were determined in liver samples, and fatty acid composition was measured in both liver and plasma samples. Additionally, desaturase and elongase activities were estimated. The hepatic activities and gene expression levels of enzymes involved in fatty acid metabolism were measured in liver samples, whereas carnitines, their precursors, and acylcarnitines were measured in plasma samples. Results The meldonium-induced depletion of L-carnitine and mitochondrial fatty acid oxidation was confirmed by reduced plasma levels of L-carnitine and acylcarnitines. Principal component analyses of the hepatic fatty acid composition revealed clustering dependent on meldonium and TTA. The meldonium-induced increase in hepatic triacylglycerol levels correlated negatively with estimated activities of elongases and was associated with higher estimated activities of delta-6 desaturase (D6D; C18:4n-3/C18:3n-3 and C18:3n-6/C18:2n-6), and increased circulating levels of C18:4n-3 and C18:3n-6 (gamma-linolenic acid). TTA mitigated meldonium-induced triacylglycerol levels by 80% and attenuated the estimated D6D activities, and elongation of n-6 polyunsaturated fatty acids (PUFAs). TTA also attenuated the meldonium-mediated reduction of C24:1n-9 (nervonic acid), possibly by stimulating Elovl 5 and increased elongation of erucic acid (C22:1n-9) to nervonic acid. The hepatic levels of nervonic acid and the estimated activity of n-6 PUFA elongation correlated negatively with the hepatic triacylglycerol levels, while the estimated activities of D6D correlated positively. Conclusion Circulating levels of gamma-linolenic acid, along with reduced estimated elongation of n-6 PUFAs and D6D desaturation activities, were associated with hepatic triacylglycerol levels.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Sports, Physical Activity and Food, Western Norway University of Applied Sciences, Bergen, Norway
| | - Siri Lunde Tungland
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Magne O. Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Simon N. Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lise Madsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Yang W, Lei X, Liu F, Sui X, Yang Y, Xiao Z, Cui Z, Sun Y, Yang J, Yang X, Lin X, Bao Z, Li W, Ma Y, Wang Y, Luo Y. Meldonium, as a potential neuroprotective agent, promotes neuronal survival by protecting mitochondria in cerebral ischemia-reperfusion injury. J Transl Med 2024; 22:771. [PMID: 39148053 PMCID: PMC11325598 DOI: 10.1186/s12967-024-05222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3β signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.
Collapse
Affiliation(s)
- Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiuxing Lei
- Lu'An Hospital of Traditional Chinese Medicine, Anhui, China
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ziqi Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xueyang Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenghao Bao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weidong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingkai Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
4
|
Loos M, Klampe B, Schulze T, Yin X, Theofilatos K, Ulmer BM, Schulz C, Behrens CS, van Bergen TD, Adami E, Maatz H, Schweizer M, Brodesser S, Skryabin BV, Rozhdestvensky TS, Bodbin S, Stathopoulou K, Christ T, Denning C, Hübner N, Mayr M, Cuello F, Eschenhagen T, Hansen A. Human model of primary carnitine deficiency cardiomyopathy reveals ferroptosis as a novel mechanism. Stem Cell Reports 2023; 18:2123-2137. [PMID: 37802072 PMCID: PMC10679537 DOI: 10.1016/j.stemcr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 10/08/2023] Open
Abstract
Primary carnitine deficiency (PCD) is an autosomal recessive monogenic disorder caused by mutations in SLC22A5. This gene encodes for OCTN2, which transports the essential metabolite carnitine into the cell. PCD patients suffer from muscular weakness and dilated cardiomyopathy. Two OCTN2-defective human induced pluripotent stem cell lines were generated, carrying a full OCTN2 knockout and a homozygous OCTN2 (N32S) loss-of-function mutation. OCTN2-defective genotypes showed lower force development and resting length in engineered heart tissue format compared with isogenic control. Force was sensitive to fatty acid-based media and associated with lipid accumulation, mitochondrial alteration, higher glucose uptake, and metabolic remodeling, replicating findings in animal models. The concordant results of OCTN2 (N32S) and -knockout emphasizes the relevance of OCTN2 for these findings. Importantly, genome-wide analysis and pharmacological inhibitor experiments identified ferroptosis, an iron- and lipid-dependent cell death pathway associated with fibroblast activation as a novel PCD cardiomyopathy disease mechanism.
Collapse
Affiliation(s)
- Malte Loos
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany.
| | - Birgit Klampe
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany
| | - Thomas Schulze
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany
| | - Xiaoke Yin
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Konstantinos Theofilatos
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Bärbel Maria Ulmer
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany
| | - Carl Schulz
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany
| | - Charlotta S Behrens
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany
| | - Tessa Diana van Bergen
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michaela Schweizer
- Electron Microscopy Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Boris V Skryabin
- Transgenic animal and genetic engineering Models (TRAM), Faculty of Medicine of the Westfalian Wilhelms-University, 48149 Muenster, Germany
| | - Timofey S Rozhdestvensky
- Transgenic animal and genetic engineering Models (TRAM), Faculty of Medicine of the Westfalian Wilhelms-University, 48149 Muenster, Germany
| | - Sara Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD Nottingham, UK
| | - Konstantina Stathopoulou
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany
| | - Torsten Christ
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD Nottingham, UK
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Friederike Cuello
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany
| | - Arne Hansen
- University Medical Center Hamburg-Eppendorf, Department of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Center for Heart Research (DZHK), Partner site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany.
| |
Collapse
|
5
|
Zhou WH, Luo Y, Li RX, Degrace P, Jourdan T, Qiao F, Chen LQ, Zhang ML, Du ZY. Inhibition of mitochondrial fatty acid β-oxidation activates mTORC1 pathway and protein synthesis via Gcn5-dependent acetylation of Raptor in zebrafish. J Biol Chem 2023; 299:105220. [PMID: 37660921 PMCID: PMC10540046 DOI: 10.1016/j.jbc.2023.105220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.
Collapse
Affiliation(s)
- Wen-Hao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Rui-Xin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Pascal Degrace
- Pathophysiology of Dyslipidemia Research Group, INSERM UMR1231 CTM (Center for Translational and Molecular Medicine) Ex-Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Tony Jourdan
- Pathophysiology of Dyslipidemia Research Group, INSERM UMR1231 CTM (Center for Translational and Molecular Medicine) Ex-Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
6
|
Shaforostova EA, Gureev AP, Volodina DE, Popov VN. Neuroprotective effect of mildronate and L-carnitine on the cognitive parameters of aged mice and mice with LPS-induced inflammation. Metab Brain Dis 2022; 37:2497-2510. [PMID: 35881298 DOI: 10.1007/s11011-022-01047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/03/2022] [Indexed: 11/27/2022]
Abstract
Mildronate (MD) is a cardioprotective drug used for the treatment of cardiovascular diseases by switching metabolism from the fatty acids to glucose oxidation. This effect is achieved via inhibition of synthesis of L-carnitine (L-car), a common supplement, which is used for improving of fatty acid metabolism. Both MD and L-car have similar neuroprotective effect. Our goal was to investigate the effect of two drugs on the cognitive parameters of mice under different conditions (aging and lipopolysaccharide (LPS)-induced inflammation). We showed that L-car partly improved the memory and decreased the extent of mtDNA damage in the hippocampus of mice with the LPS-induced inflammation. L-car induced mitochondrial biogenesis and mitophagy in the Nrf2-dependent manner. Both MD and L-car upregulated expression of genes involved in the mitochondrial quality control. In 15-month-old mice, MD improved long-term and short-term memory, reduced the extent of mtDNA damage, and decreased the concentration of diene conjugates in the hippocampus in the Nrf2-independent manner. L-car as a Nrf2 activator had a better neuroprotective effect by normalizing mitochondrial quality control in the reversible cognitive impairment caused by the LPS-induced inflammation, while MD had a better neuroprotective effect in the irreversible cognitive impairment in aged mice, possibly due to a deeper restructuring of metabolism and reduction of oxidative stress.
Collapse
Affiliation(s)
- Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Daria E Volodina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technology, Voronezh, Russia
| |
Collapse
|
7
|
Wang D, Liu F, Yang W, Sun Y, Wang X, Sui X, Yang J, Wang Q, Song W, Zhang M, Xiao Z, Wang T, Wang Y, Luo Y. Meldonium Ameliorates Hypoxia-Induced Lung Injury and Oxidative Stress by Regulating Platelet-Type Phosphofructokinase-Mediated Glycolysis. Front Pharmacol 2022; 13:863451. [PMID: 35450040 PMCID: PMC9017743 DOI: 10.3389/fphar.2022.863451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
Hypoxic environments at high altitudes influence the long-term non-altitude health of residents, by inducing changes in metabolism and the mitochondria, severe lung injury, and endangering life. This study was aimed to determine whether meldonium can ameliorate hypoxia-induced lung injury and investigate its possible molecular mechanisms. We used Swiss mice and exposed type Ⅱ alveolar epithelial cell to hypobaric hypoxic conditions to induce lung injury and found that meldonium has significant preventive effect, which was associated with the regulation of glycolysis. We found using human proteome microarrays assay, molecular docking, immunofluorescence and pull-down assay that the target protein of meldonium is a platelet-type phosphofructokinase (PFKP), which is a rate-limiting enzyme of glycolysis. Also, meldonium promotes the transfer of nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, which mitigates oxidative stress and mitochondrial damage under hypoxic condition. Mechanistically, meldonium ameliorates lung injury by targeting PFKP to regulate glycolysis, which promotes Nrf2 translocation from the cytoplasm to the nucleus to alleviate oxidative stress and mitochondrial damage under hypoxic condition. Our study provides a novel potential prevention and treatment strategy against hypoxia-induced lung injury.
Collapse
Affiliation(s)
- Daohui Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education (Yantai University), Yantai University, Yantai, China
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoning Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qian Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenhao Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Minmin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education (Yantai University), Yantai University, Yantai, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
8
|
Vilskersts R, Kigitovica D, Korzh S, Videja M, Vilks K, Cirule H, Skride A, Makrecka-Kuka M, Liepinsh E, Dambrova M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci 2021; 23:45. [PMID: 35008470 PMCID: PMC8744985 DOI: 10.3390/ijms23010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.
Collapse
Affiliation(s)
- Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Dana Kigitovica
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Nephrology, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Molecular Biology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Helena Cirule
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Andris Skride
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Rare Diseases, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
9
|
Gureev AP, Sadovnikova IS, Shaforostova EA, Starkov AA, Popov VN. Mildronate protects heart mtDNA from oxidative stress toxicity induced by exhaustive physical exercise. Arch Biochem Biophys 2021; 705:108892. [PMID: 33930377 DOI: 10.1016/j.abb.2021.108892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
Exhaustive physical exercises are potentially dangerous for human's physical health and may lead to chronic heart disease. Therefore, individuals involved in such activity require effective and safe cardioprotectors. The goal of this research was to study Mildronate (a cardioprotective drug) effect on the level of oxidative stress markers in hearts of mice under conditions of exhausting physical exercise, such as forced swimming for 1 h per day for 7 days. Forced swimming lead to mtDNA damage accumulation, increase in diene conjugates level and loss of reduced glutathione despite an increase in antioxidant genes expression and activation of mitochondrial biogenesis. Mildronate treatment reduced oxidative stress, probably due to the inhibition of fatty acids transport to mitochondria and an increase in the intensity of glucose oxidation, which in part confirms by increase in glucose transporter expression. Thus, we can assume that Mildronate is an effective cardioprotector in exhaustive physical exercises.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia.
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
10
|
Romanenko AV, Solovyeva EY. [Pathogenetic and therapeutic aspects of cardioembolic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:165-172. [PMID: 33834736 DOI: 10.17116/jnevro2021121031165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cardioembolic stroke (CS) is the one of the most severe and requiring dynamic monitoring among the all subtypes of ischemic stroke. Patients with CS require joint treatment with cardiologists. CS is characterized by a greater severity of neurological deficits, a high risk of repeated acute cerebral circulatory disorders and fatal outcomes. This review considers the main causes of CS, the etiopathogenesis of thrombus formation in the heart chambers, current verification criteria and therapeutic aspects of CS, recommendations for the prescription of anticoagulant therapy for primary and secondary preventive treatment.
Collapse
Affiliation(s)
- A V Romanenko
- Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - E Yu Solovyeva
- Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
11
|
Todorović Z, Đurašević S, Stojković M, Grigorov I, Pavlović S, Jasnić N, Tosti T, Macut JB, Thiemermann C, Đorđević J. Lipidomics Provides New Insight into Pathogenesis and Therapeutic Targets of the Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:2798. [PMID: 33801983 PMCID: PMC7999969 DOI: 10.3390/ijms22062798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes.
Collapse
Affiliation(s)
- Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
- University Medical Centre “Bežanijska kosa”, 11080 Belgrade, Serbia
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| | - Maja Stojković
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
| | - Ilijana Grigorov
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.); (S.P.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.); (S.P.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelica Bjekić Macut
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
- University Medical Centre “Bežanijska kosa”, 11080 Belgrade, Serbia
| | - Christoph Thiemermann
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| |
Collapse
|
12
|
Shaforostova EA, Gureev AP, Vitkalova IY, Popov VN. [The effect of L-carnitine depletion induced by long-term therapy of mice with meldonium on brain mitochondrial balance]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:74-80. [PMID: 33645524 DOI: 10.18097/pbmc20216701074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Meldonium is a metabolic drug used for treatment of coronary heart disease. The effect of the drug lies in its ability to inhibit synthesis and transport of L-carnitine. At the same time, a long-term deficiency of L-carnitine can theoretically negatively affect the activity of the transcription factor Nrf2, which is extremely important for maintaining mitochondrial balance in cells. We have shown that meldonium therapy for 3 months at a dose of 100 mg/kg in mice causes a decrease in the expression of the Nrf2 gene in the brain. A decrease in the Nrf2 level causes suppression of mitochondrial biogenesis, which is manifested in a decrease in the level of mtDNA and the level of Cox1 expression. However, no negative effect of meldonium on the bioenergetics parameters of mitochondria was found, as evidenced by the maintenance of a stable mitochondrial potential and the level of production of reactive oxygen species. Jne mohth after the end of the meldonium therapy, expression of the genes responsible for mitochondrial biogenesis and mitophagy (p62, Pink1, Tfam) was observed and the expression level of genes responsible for mitochondrial fusion returned to control values. These changes may be associated with the normalization of the level of L-carnitine in brain cells.
Collapse
Affiliation(s)
| | - A P Gureev
- Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - I Yu Vitkalova
- Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - V N Popov
- Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
13
|
Đurašević S, Stojković M, Sopta J, Pavlović S, Borković-Mitić S, Ivanović A, Jasnić N, Tosti T, Đurović S, Đorđević J, Todorović Z. The effects of meldonium on the acute ischemia/reperfusion liver injury in rats. Sci Rep 2021; 11:1305. [PMID: 33446709 PMCID: PMC7809046 DOI: 10.1038/s41598-020-80011-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Acute ischemia/reperfusion (I/R) liver injury is a clinical condition challenging to treat. Meldonium is an anti-ischemic agent that shifts energy production from fatty acid oxidation to less oxygen-consuming glycolysis. Thus, we investigated the effects of a 4-week meldonium pre-treatment (300 mg/kg b.m./day) on the acute I/R liver injury in Wistar strain male rats. Our results showed that meldonium ameliorates I/R-induced liver inflammation and injury, as confirmed by liver histology, and by attenuation of serum alanine- and aspartate aminotransferase activity, serum and liver high mobility group box 1 protein expression, and liver expression of Bax/Bcl2, haptoglobin, and the phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells. Through the increased hepatic activation of the nuclear factor erythroid 2-related factor 2, meldonium improves the antioxidative defence in the liver of animals subjected to I/R, as proved by an increase in serum and liver ascorbic/dehydroascorbic acid ratio, hepatic haem oxygenase 1 expression, glutathione and free thiol groups content, and hepatic copper-zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Based on our results, it can be concluded that meldonium represent a protective agent against I/R-induced liver injury, with a clinical significance in surgical procedures.
Collapse
Affiliation(s)
- Siniša Đurašević
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Republic of Serbia.
| | - Maja Stojković
- Faculty of Medicine, University of Belgrade, Belgrade, Republic of Serbia
| | - Jelena Sopta
- Faculty of Medicine, University of Belgrade, Belgrade, Republic of Serbia
| | - Slađan Pavlović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
| | - Slavica Borković-Mitić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
| | - Anđelija Ivanović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Republic of Serbia
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Republic of Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Belgrade, Republic of Serbia
| | - Saša Đurović
- Institute of General and Physical Chemistry, University of Belgrade, Belgrade, Republic of Serbia
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Republic of Serbia
| | - Zoran Todorović
- Faculty of Medicine, University of Belgrade, Belgrade, Republic of Serbia
- University Medical Centre "Bežanijska Kosa", University of Belgrade, Belgrade, Republic of Serbia
| |
Collapse
|
14
|
Di Cristo F, Calarco A, Digilio FA, Sinicropi MS, Rosano C, Galderisi U, Melone MAB, Saturnino C, Peluso G. The Discovery of Highly Potent THP Derivatives as OCTN2 Inhibitors: From Structure-Based Virtual Screening to In Vivo Biological Activity. Int J Mol Sci 2020; 21:7431. [PMID: 33050117 PMCID: PMC7583931 DOI: 10.3390/ijms21197431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
A mismatch between β-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.
Collapse
Affiliation(s)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy;
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Vico Luigi De Crecchio 1, 80138 Naples, Italy;
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, via Sergio Pansini 5, 80131 Naples, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| |
Collapse
|
15
|
Gureev AP, Shaforostova EA, Vitkalova IY, Sadovnikova IS, Kalinina YI, Cherednichenko VR, Reznikova KA, Valuyskikh VV, Popov VN. Long-term mildronate treatment increased Proteobacteria level in gut microbiome, and caused behavioral deviations and transcriptome change in liver, heart and brain of healthy mice. Toxicol Appl Pharmacol 2020; 398:115031. [PMID: 32389661 DOI: 10.1016/j.taap.2020.115031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Mildronate is a cardiac and neuroprotective drug that is widely used in some countries. By inhibiting carnitine biosynthesis, mildronate impairs the fatty acids transport into mitochondria, thereby decreasing the β-oxidation intensity. Since 2016, it has been prohibited by the World Anti-Doping Agency (WADA). However, the information on its safety and its influence on the athletes' health is scarce. There are no published studies on whether mildronate-induced long-term metabolism "rearrangement" may cause negative effects on high-metabolic-rate organs and on the whole organism. Here, we demonstrate that long-term mildronate treatment of healthy mice induced global metabolism change at the transcriptome level in liver, heart, and brain. Mildronate treatment also induced some behavioral changes such as anxiety-related behavior and diminished explorative behavior. We also found that mildronate induced a dysbiosis, as manifested by an increase in Proteobacteria level in gut microbiome. At the same time, the absence of a statistically significant increase in mouse strength and endurance procedures suggests that mildronate effect on productivity is negligible. The sum of our data suggests that long-term treatment of healthy mice with mildronate induces dysbiosis and behavioral deviations despite the effectiveness of mildronate for cardiac and neurological diseases. Thus, we suggest that long-term mildronate treatment is undesirable or at the very least should be accompanied by prebiotics treatments, but this issue should be studied further.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Inna Yu Vitkalova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Yulia I Kalinina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vadim R Cherednichenko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Karina A Reznikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Valeria V Valuyskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
16
|
Berlato DG, Bairros AVD. Meldonium: Pharmacological, toxicological, and analytical aspects. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320915143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Meldonium is the active molecule from Mildronate® with similar chemical structure to an amino acid, and it is known as (3-(2,2,2-trimethylhydrazine) propionate) (CAS 76144-81-5). This pharmaceutical substance is approved in Eastern Europe for cerebral and myocardial ischemia and has been on the World Doping Association’s banned substances list since January 2016. The goal of this review is to relate the use of meldonium as a doping agent, considering its pharmacological, toxicological, and analytical aspects. This review is based on the scientific literature from digital platforms. The main mechanism of action of meldonium is based on a decrease in l-carnitine levels and increase of peroxisomes activity in the cytosol. Females were more susceptible to the substance in animal experiments for toxicological tests. There is currently no report in the scientific literature about acute or chronic intoxication cases by meldonium in humans. Based on the literature findings, meldonium showed ergogenic effect in animals and human volunteers. For anti-doping analysis, urine is the biological matrix of choice, and dilute-and-shoot is the most common sample treatment in addition to liquid chromatography–mass spectrometry analysis. Other approaches could be used to determine meldonium levels, mainly for screening tests, such as l-carnitine or gamma-butyrobetaine levels.
Collapse
Affiliation(s)
- Dener Gomes Berlato
- Nucleus of Applied Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| | - André Valle de Bairros
- Nucleus of Applied Toxicology (NAT), Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
17
|
Đurašević S, Stojković M, Bogdanović L, Pavlović S, Borković-Mitić S, Grigorov I, Bogojević D, Jasnić N, Tosti T, Đurović S, Đorđević J, Todorović Z. The Effects of Meldonium on the Renal Acute Ischemia/Reperfusion Injury in Rats. Int J Mol Sci 2019; 20:ijms20225747. [PMID: 31731785 PMCID: PMC6888683 DOI: 10.3390/ijms20225747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/01/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Acute renal ischemia/reperfusion (I/R) injury is a clinical condition that is challenging to treat. Meldonium is an anti-ischemic agent that shifts energy production from fatty acid oxidation to less oxygen-consuming glycolysis. Thus, in this study we investigated the effects of a four-week meldonium pre-treatment (300 mg/kg b.m./day) on acute renal I/R in male rats (Wistar strain). Our results showed that meldonium decreased animal body mass gain, food and water intake, and carnitine, glucose, and lactic acid kidney content. In kidneys of animals subjected to I/R, meldonium increased phosphorylation of mitogen-activated protein kinase p38 and protein kinase B, and increased the expression of nuclear factor erythroid 2-related factor 2 and haeme oxygenase 1, causing manganese superoxide dismutase expression and activity to increase, as well as lipid peroxidation, cooper-zinc superoxide dismutase, glutathione peroxidase, and glutathione reductase activities to decrease. By decreasing the kidney Bax/Bcl2 expression ratio and kidney and serum high mobility group box 1 protein content, meldonium reduced apoptotic and necrotic events in I/R, as confirmed by kidney histology. Meldonium increased adrenal noradrenaline content and serum, adrenal, hepatic, and renal ascorbic/dehydroascorbic acid ratio, which caused complex changes in renal lipidomics. Taken together, our results have confirmed that meldonium pre-treatment protects against I/R-induced oxidative stress and apoptosis/necrosis.
Collapse
Affiliation(s)
- Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia; (N.J.); (J.Đ.)
- Correspondence: ; Tel.: +381-63-367108
| | - Maja Stojković
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (L.B.); (Z.T.)
| | - Ljiljana Bogdanović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (L.B.); (Z.T.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”–National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.); (D.B.)
| | - Slavica Borković-Mitić
- Institute for Biological Research “Siniša Stanković”–National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.); (D.B.)
| | - Ilijana Grigorov
- Institute for Biological Research “Siniša Stanković”–National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.); (D.B.)
| | - Desanka Bogojević
- Institute for Biological Research “Siniša Stanković”–National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.); (I.G.); (D.B.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia; (N.J.); (J.Đ.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Saša Đurović
- Institute of General and Physical Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11158 Belgrade, Serbia; (N.J.); (J.Đ.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (L.B.); (Z.T.)
- University Medical Centre “Bežanijska kosa”, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
18
|
Di Cristo F, Finicelli M, Digilio FA, Paladino S, Valentino A, Scialò F, D'Apolito M, Saturnino C, Galderisi U, Giordano A, Melone MAB, Peluso G. Meldonium improves Huntington's disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor γ coactivator 1α expression. J Cell Physiol 2019; 234:9233-9246. [PMID: 30362565 DOI: 10.1002/jcp.27602] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunction seems to play a fundamental role in the pathogenesis of neurodegeneration in Huntington's disease (HD). We assessed possible neuroprotective actions of meldonium, a small molecule affecting mitochondrial fuel metabolism, in in vitro and in vivo HD models. We found that meldonium was able to prevent cytotoxicity induced by serum deprivation, to reduce the accumulation of mutated huntingtin (mHtt) aggregates, and to upregulate the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in mHTT-expressing cells. The PGC-1α increase was accompanied by the increment of mitochondrial mass and by the rebalancing of mitochondrial dynamics with a promotion of the mitochondrial fusion. Meldonium-induced PGC-1α significantly alleviated motor dysfunction and prolonged the survival of a transgenic HD Drosophila model in which mHtt expression in the nervous system led to progressive motor performance deficits. Our study strongly suggests that PGC-1α, as a master coregulator of mitochondrial biogenesis, energy homeostasis, and antioxidant defense, is a potential therapeutic target in HD.
Collapse
Affiliation(s)
- Francesca Di Cristo
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Finicelli
- Institute of Bioscience and BioResources (IBBR), National Research Council (CNR), Naples, Italy
| | - Filomena Anna Digilio
- Institute of Bioscience and BioResources (IBBR), National Research Council (CNR), Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Valentino
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filippo Scialò
- Institute for Cell and Molecular Bioscience, Campus for Ageing and Vitality, University of Newcastle, Newcastle-upon-Tyne, United Kingdom
| | - Maria D'Apolito
- Institute of Bioscience and BioResources (IBBR), National Research Council (CNR), Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli, Naples, Italy
- Department of Biology, Center for Biotechnology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Department of Biology, Center for Biotechnology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Biology, Center for Biotechnology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania
| | - Gianfranco Peluso
- Institute of Agro-environmental and Forest Biology (IBAF), National Research Council (CNR), Naples, Italy
| |
Collapse
|
19
|
Li JM, Li LY, Qin X, Degrace P, Demizieux L, Limbu SM, Wang X, Zhang ML, Li DL, Du ZY. Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish. Front Physiol 2018; 9:509. [PMID: 29867554 PMCID: PMC5954090 DOI: 10.3389/fphys.2018.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 12/30/2022] Open
Abstract
Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (mtor), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be used as a novel fish model for future metabolism studies.
Collapse
Affiliation(s)
- Jia-Min Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling-Yu Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR1231 "Lipides, Nutrition, Cancer," Université Bourgogne Franche-Comté, Dijon, France
| | - Laurent Demizieux
- Team Pathophysiology of Dyslipidemia, Faculty of Sciences Gabriel, INSERM UMR1231 "Lipides, Nutrition, Cancer," Université Bourgogne Franche-Comté, Dijon, France
| | - Samwel M Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China.,Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Zakharenko LP, Petrovsky DV, Putilov AA. Treatments with thousands therapeutic doses of meldonium failed to alter the Drosophila’s circadian clocks but negatively affected the germination of Pisum’s seeds. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1429552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Lyudmila P. Zakharenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, the Russian Academy of Sciences, Novosibirsk, Russia
- Faculty of Natural Science, Novosibirsk State University, Novosibirsk, Russia
| | - Dmitriy V. Petrovsky
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, the Russian Academy of Sciences, Novosibirsk, Russia
| | - Arcady A. Putilov
- Research Group for Biomedical Systems Modeling, Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| |
Collapse
|
21
|
Pan H, Li LY, Li JM, Wang WL, Limbu SM, Degrace P, Li DL, Du ZY. Inhibited fatty acid β-oxidation impairs stress resistance ability in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2017; 68:500-508. [PMID: 28774846 DOI: 10.1016/j.fsi.2017.07.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 05/23/2023]
Abstract
Energy metabolism plays important roles in stress resistance and immunity in mammals, however, such functions have not been established in fish. In the present study, Nile tilapia (Oreochromis niloticus) was fed with mildronate, an inhibitor of mitochondrial fatty acid (FA) β-oxidation, for six weeks subsequently challenged with Aeromonas hydrophila and ammonia nitrogen exposure. Mildronate treatment reduced significantly l-carnitine concentration and mitochondrial FA β-oxidation efficiency, while it increased lipid accumulation in liver. The fish with inhibited hepatic FA catabolism had lower survival rate when exposed to Aeromonas hydrophila and ammonia nitrogen. Moreover, fish fed mildronate supplemented diet had lower immune enzymes activities and anti-inflammatory cytokine genes expressions, but had higher pro-inflammatory cytokine genes expressions. However, the oxidative stress-related biochemical indexes were not significantly affected by mildronate treatment. Taken together, inhibited mitochondrial FA β-oxidation impaired stress resistance ability in Nile tilapia mainly through inhibiting immune functions and triggering inflammation. This is the first study showing the regulatory effects of lipid catabolism on stress resistance and immune functions in fish.
Collapse
Affiliation(s)
- Han Pan
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Ling-Yu Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Jia-Min Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Wei-Li Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China; Department of Aquatic Sciences and Fisheries Technology, University of Dar Es Salaam, Dar Es Salaam, Tanzania
| | - Pascal Degrace
- Team Pathophysiology of Dyslipidemia, INSERM UMR1231, "Lipids, Nutrition, Cancer", Université de Bourgogne Franche-Comté, Dijon, France
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| |
Collapse
|
22
|
Knych HK, Stanley SD, McKemie DS, Arthur RM, Bondesson U, Hedeland M, Thevis M, Kass PH. Pharmacokinetics and pharmacodynamics of meldonium in exercised thoroughbred horses. Drug Test Anal 2017; 9:1392-1399. [DOI: 10.1002/dta.2214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/06/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Heather K. Knych
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine; University of California; Davis California USA
- Department of Veterinary Molecular Biosciences, School of Veterinary Medicine; University of California; Davis California USA
| | - Scott D. Stanley
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine; University of California; Davis California USA
- Department of Veterinary Molecular Biosciences, School of Veterinary Medicine; University of California; Davis California USA
| | - Dan S. McKemie
- K. L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine; University of California; Davis California USA
| | - Rick M. Arthur
- School of Veterinary Medicine; University of California; Davis California USA
| | - Ulf Bondesson
- National Veterinary Institute (SVA); Uppsala Sweden
- Uppsala University; Uppsala Sweden
| | - Mikael Hedeland
- National Veterinary Institute (SVA); Uppsala Sweden
- Uppsala University; Uppsala Sweden
| | - Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University; Cologne Germany
| | - Philip H. Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine; University of California; Davis California USA
| |
Collapse
|
23
|
Porter C, Constantin-Teodosiu D, Constantin D, Leighton B, Poucher SM, Greenhaff PL. Muscle carnitine availability plays a central role in regulating fuel metabolism in the rodent. J Physiol 2017; 595:5765-5780. [PMID: 28605113 DOI: 10.1113/jp274415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/31/2017] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Meldonium inhibits endogenous carnitine synthesis and tissue uptake, and accelerates urinary carnitine excretion, although the impact of meldonium-mediated muscle carnitine depletion on whole-body fuel selection, and muscle fuel metabolism and its molecular regulation is under-investigated. Ten days of oral meldonium administration did not impact on food or fluid intake, physical activity levels or body weight gain in the rat, whereas it depleted muscle carnitine content (all moieties), increased whole-body carbohydrate oxidation and muscle and liver glycogen utilization, and reduced whole-body fat oxidation. Meldonium reduced carnitine transporter protein expression across muscles of different contractile and metabolic phenotypes. A TaqMan PCR low-density array card approach revealed the abundance of 189 mRNAs regulating fuel selection was altered in soleus muscle by meldonium, highlighting the modulation of discrete cellular functions and metabolic pathways. These novel findings strongly support the premise that muscle carnitine availability is a primary regulator of fuel selection in vivo. ABSTRACT The body carnitine pool is primarily confined to skeletal muscle, where it regulates carbohydrate (CHO) and fat usage. Meldonium (3-(2,2,2-trimethylhydrazinium)-propionate) inhibits carnitine synthesis and tissue uptake, although the impact of carnitine depletion on whole-body fuel selection, muscle fuel metabolism and its molecular regulation is under-investigated. Male lean Zucker rats received water (control, n = 8) or meldonium-supplemented water (meldonium, n = 8) for 10 days [1.6 g kg-1 body mass (BM) day-1 days 1-2, 0.8 g kg-1 BM day-1 thereafter]. From days 7-10, animals were housed in indirect calorimetry chambers after which soleus muscle and liver were harvested. Food and fluid intake, weight gain and physical activity levels were similar between groups from days 7 to 10. Compared to control, meldonium depleted muscle total carnitine (P < 0.001) and all carnitine esters. Furthermore, whole-body fat oxidation was less (P < 0.001) and CHO oxidation was greater (P < 0.05) compared to the control, whereas soleus and liver glycogen contents were less (P < 0.01 and P < 0.01, respectively). In a second study, male Wistar rats received water (n = 8) or meldonium-supplemented water (n = 8) as above, and kidney, heart and extensor digitorum longus muscle (EDL) and soleus muscles were collected. Compared to control, meldonium depleted total carnitine content (all P < 0.001), reduced carnitine transporter protein and glycogen content, and increased pyruvate dehydrogenase kinase 4 mRNA abundance in the heart, EDL and soleus. In total, 189 mRNAs regulating fuel selection were differentially expressed in soleus in meldonium vs. control, and a number of cellular functions and pathways strongly associated with carnitine depletion were identified. Collectively, these data firmly support the premise that muscle carnitine availability is a primary regulator of fuel selection in vivo.
Collapse
Affiliation(s)
- Craig Porter
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - Despina Constantin
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | | | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| |
Collapse
|
24
|
Pereira R, Campuzano O, Sarquella-Brugada G, Cesar S, Iglesias A, Brugada J, Cruz Filho FES, Brugada R. Short QT syndrome in pediatrics. Clin Res Cardiol 2017; 106:393-400. [PMID: 28303324 DOI: 10.1007/s00392-017-1094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Short QT syndrome is a malignant cardiac disease characterized by the presence of ventricular tachyarrhythmias leading to syncope and sudden cardiac death. Currently, international guidelines establish diagnostic criteria when QTc is below 340 ms. This entity is one of the main diseases responsible for sudden cardiac death in the pediatric population. In recent years, clinical, genetic and molecular advances in pathophysiological mechanisms related to short QT syndrome have improved diagnosis, risk stratification, and preventive measures. Despite these advances, automatic implantable cardiac defibrillator remains the most effective measure. Currently, six genes have been associated with short QT syndrome, which account for nearly 60% of clinically diagnosed families. Here, we review the main clinical hallmarks of the disease, focusing on the pediatric population.
Collapse
Affiliation(s)
- Roberta Pereira
- Cardiovascular Genetics Center, Gencardio, Institut Investigació Biomèdica de Girona (IDIBGI), C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17290, Salt, Girona, Spain
- Arrhythmia Service, Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
| | - Oscar Campuzano
- Cardiovascular Genetics Center, Gencardio, Institut Investigació Biomèdica de Girona (IDIBGI), C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17290, Salt, Girona, Spain
- Medical Science Department, School of Medicine, Girona, Spain
| | | | - Sergi Cesar
- Unit of Arrhythmias, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Gencardio, Institut Investigació Biomèdica de Girona (IDIBGI), C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17290, Salt, Girona, Spain
| | - Josep Brugada
- Unit of Arrhythmias, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
| | | | - Ramon Brugada
- Cardiovascular Genetics Center, Gencardio, Institut Investigació Biomèdica de Girona (IDIBGI), C/ Dr Castany s/n, Parc Hospitalari Martí i Julià (M-2), 17290, Salt, Girona, Spain.
- Medical Science Department, School of Medicine, Girona, Spain.
- Cardiomyopathies Unit, Hospital Josep Trueta, Girona, Spain.
| |
Collapse
|
25
|
Schobersberger W, Dünnwald T, Gmeiner G, Blank C. Story behind meldonium-from pharmacology to performance enhancement: a narrative review. Br J Sports Med 2016; 51:22-25. [PMID: 27465696 DOI: 10.1136/bjsports-2016-096357] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
Recent reports from the World Anti-Doping Agency (WADA) indicate an alarming prevalence in the use of meldonium among elite athletes. Therefore, in January 2016, meldonium was added to WADA's prohibited list after being monitored since 2015. Meldonium has been shown to have beneficial effects in cardiovascular, neurological and metabolic diseases due to its anti-ischaemic and cardioprotective properties, which are ascribed mainly to its inhibition of ß-oxidation and its activation of glycolysis. Despite its widespread use, there are only a few clinical studies or clinical trials available. Meldonium is registered in most Baltic countries and is easily accessible through the internet with no serious adverse effects reported by the manufacturer so far. Among athletes, meldonium is used with the purpose of increasing recovery rate or exercise performance. The benefit of taking meldonium in view of performance enhancement in athletes is quite speculative and is discussed without sound scientific evidence. This narrative review provides a detailed overview of the drug meldonium, focusing on the main topics pharmacology and biochemical actions, clinical applications, pharmacokinetics, methods of detection and potential for performance enhancement in athletes.
Collapse
Affiliation(s)
- Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT, Hall in Tirol and Tirol Kliniken GmbH Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT, Hall in Tirol and Tirol Kliniken GmbH Innsbruck, Austria
| | - Günther Gmeiner
- Doping Control Laboratory, Seibersdorf Labor GmbH, Seibersdorf, Austria
| | - Cornelia Blank
- Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT, Hall in Tirol and Tirol Kliniken GmbH Innsbruck, Austria
| |
Collapse
|
26
|
Dambrova M, Makrecka-Kuka M, Vilskersts R, Makarova E, Kuka J, Liepinsh E. Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Pharmacol Res 2016; 113:771-780. [PMID: 26850121 DOI: 10.1016/j.phrs.2016.01.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/07/2023]
Abstract
Meldonium (mildronate; 3-(2,2,2-trimethylhydrazinium)propionate; THP; MET-88) is a clinically used cardioprotective drug, which mechanism of action is based on the regulation of energy metabolism pathways through l-carnitine lowering effect. l-Carnitine biosynthesis enzyme γ-butyrobetaine hydroxylase and carnitine/organic cation transporter type 2 (OCTN2) are the main known drug targets of meldonium, and through inhibition of these activities meldonium induces adaptive changes in the cellular energy homeostasis. Since l-carnitine is involved in the metabolism of fatty acids, the decline in its levels stimulates glucose metabolism and decreases concentrations of l-carnitine related metabolites, such as long-chain acylcarnitines and trimethylamine-N-oxide. Here, we briefly reviewed the pharmacological effects and mechanisms of meldonium in treatment of heart failure, myocardial infarction, arrhythmia, atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia; Riga Stradins University, Dzirciema Str. 16, Riga LV-1007, Latvia.
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Reinis Vilskersts
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia; Riga Stradins University, Dzirciema Str. 16, Riga LV-1007, Latvia
| | - Elina Makarova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| |
Collapse
|
27
|
Roussel J, Labarthe F, Thireau J, Ferro F, Farah C, Roy J, Horiuchi M, Tardieu M, Lefort B, François Benoist J, Lacampagne A, Richard S, Fauconnier J, Babuty D, Le Guennec JY. Carnitine deficiency induces a short QT syndrome. Heart Rhythm 2015; 13:165-74. [PMID: 26190315 DOI: 10.1016/j.hrthm.2015.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Short QT syndrome is associated with an increased risk of cardiac arrhythmias and unexpected sudden death. Until now, only mutations in genes encoding the cardiac potassium and calcium channels have been implicated in early T-wave repolarization. OBJECTIVE The purpose of this study was to confirm a relationship between a short QT syndrome and carnitine deficiency. METHODS We report 3 patients affected by primary systemic carnitine deficiency and an associated short QT syndrome. Ventricular fibrillation during early adulthood was the initial symptom in 1 case. To confirm the relationship between carnitine, short QT syndrome, and arrhythmias, we used a mouse model of carnitine deficiency induced by long-term subcutaneous perfusion of MET88. RESULTS MET88-treated mice developed cardiac hypertrophy associated with a remodeling of the mitochondrial network. The continuous monitoring of electrocardiograms confirmed a shortening of the QT interval, which was negatively correlated with the plasma carnitine concentration. As in humans, such alterations coincided with the genesis of ventricular premature beats and ventricular tachycardia and fibrillation. CONCLUSION Altogether, these results suggest that long-chain fatty acid metabolism influence the morphology and the electrical function of the heart.
Collapse
Affiliation(s)
- Julien Roussel
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - François Labarthe
- Médecine Pédiatrique, INSERM U1069, CHRU de Tours, Université François Rabelais, Tours, France
| | - Jerome Thireau
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Fabio Ferro
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France; Médecine Pédiatrique, INSERM U1069, CHRU de Tours, Université François Rabelais, Tours, France
| | - Charlotte Farah
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Jerome Roy
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Masahisa Horiuchi
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Martine Tardieu
- Médecine Pédiatrique, INSERM U1069, CHRU de Tours, Université François Rabelais, Tours, France
| | - Bruno Lefort
- Médecine Pédiatrique, INSERM U1069, CHRU de Tours, Université François Rabelais, Tours, France
| | | | - Alain Lacampagne
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Sylvain Richard
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Jeremy Fauconnier
- INSERM U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Dominique Babuty
- Service de Cardiologie, CHRU de Tours, Université François Rabelais, Tours, France.
| | | |
Collapse
|
28
|
Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H, Gustina D, Loza E, Zharkova-Malkova O, Grinberga S, Pugovics O, Dambrova M. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sci 2014; 117:84-92. [PMID: 25301199 DOI: 10.1016/j.lfs.2014.09.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/28/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
AIMS Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO. MAIN METHODS Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-carnitine, GBB, choline and TMAO using UPLC-MS/MS. Meldonium effects on TMA production by intestinal bacteria from L-carnitine and choline were tested. KEY FINDINGS Treatment with meldonium significantly decreased intestinal microbiota-dependent production of TMA/TMAO from L-carnitine, but not from choline. 24hours after the administration of meldonium, the urinary excretion of TMAO was 3.6 times lower in the combination group than in the L-carnitine-alone group. In addition, the administration of meldonium together with L-carnitine significantly increased GBB concentration in blood plasma and in isolated rat small intestine perfusate. Meldonium did not influence bacterial growth and bacterial uptake of L-carnitine, but TMA production by the intestinal microbiota bacteria K. pneumoniae was significantly decreased. SIGNIFICANCE We have shown for the first time that TMA/TMAO production from quaternary amines could be decreased by targeting bacterial TMA-production. In addition, the production of pro-atherogenic TMAO can be suppressed by shifting the microbial degradation pattern of supplemental/dietary quaternary amines.
Collapse
Affiliation(s)
- Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Marina Makrecka-Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia; Rigas Stradins University, Dzirciema Str. 16, Riga, LV-1007, Latvia
| | - Janis Liepins
- University of Latvia, Institute of Microbiology and Biotechnology, Kronvalda Blvd. 4, Riga LV-1586, Latvia
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Daina Gustina
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Einars Loza
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | | | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Osvalds Pugovics
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia; Rigas Stradins University, Dzirciema Str. 16, Riga, LV-1007, Latvia
| |
Collapse
|
29
|
Liepinsh E, Makrecka M, Kuka J, Cirule H, Makarova E, Sevostjanovs E, Grinberga S, Vilskersts R, Lola D, Loza E, Stonans I, Pugovics O, Dambrova M. Selective inhibition of OCTN2 is more effective than inhibition of gamma-butyrobetaine dioxygenase to decrease the availability of l-carnitine and to reduce myocardial infarct size. Pharmacol Res 2014; 85:33-8. [DOI: 10.1016/j.phrs.2014.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/09/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
|
30
|
Liepinsh E, Makrecka M, Kuka J, Makarova E, Vilskersts R, Cirule H, Sevostjanovs E, Grinberga S, Pugovics O, Dambrova M. The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism 2014; 63:127-36. [PMID: 24140100 DOI: 10.1016/j.metabol.2013.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVE A variety of calorie restriction diets and fasting regimens are popular among overweight people. However, starvation could result in unexpected cardiovascular effects. Therefore, it is necessary to evaluate the short-term effects of diets on cardiovascular function, energy metabolism and potential risk of heart damage in case of myocardial infarction. The objective of the present study was to investigate whether the increased level of glucose oxidation or reduction of fatty acid (FA) load in the fed state provides the basis for protection against myocardial infarction in an experimental rat model of ischemia-reperfusion. MATERIALS/METHODS We tested the effects of the availability of energy substrates and their metabolites on the heart functionality and energy metabolism under normoxic and ischemia-reperfusion conditions. RESULTS In a fasted state, the heart draws energy exclusively from FAs, whereas in a fed state, higher concentration of circulating insulin ensures a partial switch to glucose oxidation, while the load of FA on heart and mitochondria is reduced. Herein, we demonstrate that ischemic damage in hearts isolated from Wistar rats and diabetic Goto-Kakizaki rats is significantly lower in the fed state compared to the fasted state. CONCLUSIONS Present findings indicate that postprandial or fed-state physiology, which is characterised by insulin-activated glucose and lactate utilisation, is protective against myocardial infarction. Energy metabolism pattern in the heart is determined by insulin signalling and the availability of FAs. Overall, our study suggests that even overnight fasting could provoke and aggravate cardiovascular events and high-risk cardiovascular patients should avoid prolonged fasting periods.
Collapse
Affiliation(s)
- Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Makrecka M, Svalbe B, Volska K, Sevostjanovs E, Liepins J, Grinberga S, Pugovics O, Liepinsh E, Dambrova M. Mildronate, the inhibitor of L-carnitine transport, induces brain mitochondrial uncoupling and protects against anoxia-reoxygenation. Eur J Pharmacol 2013; 723:55-61. [PMID: 24333219 DOI: 10.1016/j.ejphar.2013.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/21/2023]
Abstract
The preservation of mitochondrial function is essential for normal brain function after ischaemia-reperfusion injury. l-carnitine is a cofactor involved in the regulation of cellular energy metabolism. Recently, it has been shown that mildronate, an inhibitor of l-carnitine transport, improves neurological outcome after ischaemic damage of brain tissues. The aim of the present study was to elucidate the mitochondria targeted neuroprotective action of mildronate in the model of anoxia-reoxygenation-induced injury. Wistar rats were treated daily with mildronate (per os; 100mg/kg) for 14 days. The acyl-carnitine profile was determined in the brain tissues. Mitochondrial respiration and the activities of carnitine acetyltransferase (CrAT) and tricarboxylic acid (TCA) cycle enzymes were measured. To assess tolerance to ischaemia, isolated mitochondria were subjected to anoxia followed by reoxygenation. The mildronate treatment significantly reduced the concentrations of free l-carnitine (FC) and short-chain acyl-carnitine (AC) in brain tissue by 40-76%, without affecting the AC:FC ratio. The activities of CrAT and TCA cycle enzymes were slightly increased after mildronate treatment. Despite partially induced uncoupling, mildronate treatment did not affect mitochondrial bioenergetics function under normoxic conditions. After exposure to anoxia-reoxygenation, state 3 respiration and the respiration control ratio were higher in the mildronate-treated group. The results obtained demonstrate that mildronate treatment improves tolerance against anoxia-reoxygenation due to an uncoupling preconditioning-like effect. Regulating l-carnitine availability provides a potential novel target for the treatment of cerebral ischaemia and related complications.
Collapse
Affiliation(s)
- Marina Makrecka
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia; Riga Stradins University, Faculty of Pharmacy, Dzirciema Str. 16, Riga LV-1007, Latvia.
| | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia; University of Latvia, Faculty of Medicine, Sarlotes St. 1a, Riga, LV-1001, Latvia
| | - Kristine Volska
- Riga Stradins University, Faculty of Pharmacy, Dzirciema Str. 16, Riga LV-1007, Latvia
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Janis Liepins
- University of Latvia, Institute of Microbiology and Biotechnology, Kronvalda Blvd. 4, Riga LV-1586, Latvia
| | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Osvalds Pugovics
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia; Riga Stradins University, Faculty of Pharmacy, Dzirciema Str. 16, Riga LV-1007, Latvia
| |
Collapse
|
32
|
Zhu Y, Zhang G, Zhao J, Li D, Yan X, Liu J, Liu X, Zhao H, Xia J, Zhang X, Li Z, Zhang B, Guo Z, Feng L, Zhang Z, Qu F, Zhao G. Efficacy and Safety of Mildronate for Acute Ischemic Stroke: A Randomized, Double-Blind, Active-Controlled Phase II Multicenter Trial. Clin Drug Investig 2013; 33:755-60. [DOI: 10.1007/s40261-013-0121-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Vilskersts R, Zharkova-Malkova O, Mezhapuke R, Grinberga S, Cirule H, Dambrova M. Elevated vascular γ-butyrobetaine levels attenuate the development of high glucose-induced endothelial dysfunction. Clin Exp Pharmacol Physiol 2013; 40:518-24. [DOI: 10.1111/1440-1681.12127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/25/2013] [Accepted: 05/22/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Reinis Vilskersts
- Latvian Institute of Organic Synthesis; Riga Latvia
- Riga Stradins University; Riga Latvia
| | | | | | | | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis; Riga Latvia
- Riga Stradins University; Riga Latvia
| |
Collapse
|
34
|
Sokolovska J, Rumaks J, Karajeva N, Grīnvalde D, Shapirova J, Kluša V, Kalvinsh I, Sjakste N. [The influence of mildronate on peripheral neuropathy and some characteristics of glucose and lipid metabolism in rat streptozotocin-induced diabetes mellitus model]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 57:490-500. [PMID: 22629599 DOI: 10.18097/pbmc20115705490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Streptozotocin (STZ) was used to induce the diabetic rat model. STZ rats were treated with mildronate (100 mg/kg daily, per os or intraperitoneally for 6 weeks). Body weight, blood glucose, triglyceride, ketone body concentrations, glycated hemoglobin percent (HbA1c%), glucose tolerance, and the development of neuropathic pain were monitored throughout the experiment. In the STZ + mildronate group, mildronate treatment caused a significant decrease in mean blood glucose (on week 4) and triglyceride concentrations (on weeks 3-6), significantly slowed the increase in HbA1c% (on week 6) and improved glucose tolerance 120 minutes after glucose ingestion during oral glucose tolerance test versus the STZ group. Mildronate completely protected development of STZ-induced neuropathic pain from the first administration week up to end of the experiment. The obtained data indicate clinical usefulness of the drug for the treatment of diabetes mellitus and its complications.
Collapse
|
35
|
A short-term high-dose administration of sodium pivalate impairs pyruvate metabolism without affecting cardiac function. Cardiovasc Toxicol 2012; 12:298-303. [DOI: 10.1007/s12012-012-9169-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 2011; 51:1-18. [PMID: 22134503 DOI: 10.1007/s00394-011-0284-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Although carnitine is best known for its role in the import of long-chain fatty acids (acyl groups) into the mitochondrial matrix for subsequent β-oxidation, carnitine is also necessary for the efflux of acyl groups out of the mitochondria. Since intracellular accumulation of acyl-CoA derivatives has been implicated in the development of insulin resistance, carnitine supplementation has gained attention as a tool for the treatment of insulin resistance. More recent studies even point toward a causative role for carnitine insufficiency in developing insulin resistance during states of chronic metabolic stress, such as obesity, which can be reversed by carnitine supplementation. METHODS The present review provides an overview about data from both animal and human studies reporting effects of either carnitine supplementation or carnitine deficiency on parameters of glucose homeostasis and insulin sensitivity in order to establish the less well-recognized role of carnitine in regulating glucose homeostasis. RESULTS Carnitine supplementation studies in both humans and animals demonstrate an improvement of glucose tolerance, in particular during insulin-resistant states. In contrast, less consistent results are available from animal studies investigating the association between carnitine deficiency and glucose intolerance. The majority of studies dealing with this question could either find no association or even reported that carnitine deficiency lowers blood glucose and improves insulin sensitivity. CONCLUSIONS In view of the abovementioned beneficial effect of carnitine supplementation on glucose tolerance during insulin-resistant states, carnitine supplementation might be an effective tool for improvement of glucose utilization in obese type 2 diabetic patients. However, further studies are necessary to explain the conflicting observations from studies dealing with carnitine deficiency.
Collapse
|
37
|
Grube M, Ameling S, Noutsias M, Köck K, Triebel I, Bonitz K, Meissner K, Jedlitschky G, Herda LR, Reinthaler M, Rohde M, Hoffmann W, Kühl U, Schultheiss HP, Völker U, Felix SB, Klingel K, Kandolf R, Kroemer HK. Selective regulation of cardiac organic cation transporter novel type 2 (OCTN2) in dilated cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2547-59. [PMID: 21641380 DOI: 10.1016/j.ajpath.2011.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 01/11/2023]
Abstract
Organic cation transporters (OCT1-3 and OCTN1/2) facilitate cardiac uptake of endogenous compounds and numerous drugs. Genetic variants of OCTN2, for example, reduce uptake of carnitine, leading to heart failure. Whether expression and function of OCTs and OCTNs are altered by disease has not been explored in detail. We therefore studied cardiac expression, heart failure-dependent regulation, and affinity to cardiovascular drugs of these transporters. Cardiac transporter mRNA levels were OCTN2>OCT3>OCTN1>OCT1 (OCT2 was not detected). Proteins were localized in vascular structures (OCT3/OCTN2/OCTN1) and cardiomyocytes (OCT1/OCTN1). Functional studies revealed a specific drug-interaction profile with pronounced inhibition of OCT1 function, for example, carvedilol [half maximal inhibitory concentration (IC₅₀), 1.4 μmol/L], diltiazem (IC₅₀, 1.7 μmol/L), or propafenone (IC₅₀, 1.0 μmol/L). With use of the cardiomyopathy model of coxsackievirus-infected mice, Octn2mRNA expression was significantly reduced (56% of controls, 8 days after infection). Accordingly, in endomyocardial biopsy specimens OCTN2 expression was significantly reduced in patients with dilated cardiomyopathy, whereas the expression of OCT1-3 and OCTN1 was not affected. For OCTN2 we observed a significant correlation between expression and left ventricular ejection fraction (r = 0.53, P < 0.0001) and the presence of cardiac CD3⁺ T cells (r = -0.45, P < 0.05), respectively. OCT1, OCT3, OCTN1, and OCTN2 are expressed in the human heart and interact with cardiovascular drugs. OCTN2 expression is selectively reduced in dilated cardiomyopathy patients and predicts the impairment of cardiac function.
Collapse
Affiliation(s)
- Markus Grube
- Department of Pharmacology, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kuka J, Vilskersts R, Cirule H, Makrecka M, Pugovics O, Kalvinsh I, Dambrova M, Liepinsh E. The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine. J Cardiovasc Pharmacol Ther 2011; 17:215-22. [PMID: 21903968 DOI: 10.1177/1074248411419502] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mildronate, an inhibitor of L-carnitine biosynthesis and uptake, is a cardioprotective drug whose mechanism of action is thought to rely on the changes in concentration of L-carnitine in heart tissue. In the present study, we compared the cardioprotective effect of mildronate (100 mg/kg) and a combination of mildronate and L-carnitine (100 + 100 mg/kg) administered for 14 days with respect to the observed changes in l-carnitine level and carnitine palmitoyltransferase I (CPT-I)-dependent fatty acid metabolism in the heart tissues. Concentrations of L-carnitine and its precursor γ-butyrobetaine (GBB) were measured by ultraperformance liquid chromatography with tandem mass spectrometry. In addition, mitochondrial respiration, activity of CPT-I, and expression of CPT-IA/B messenger RNA (mRNA) were measured. Isolated rat hearts were subjected to ischemia-reperfusion injury. Administration of mildronate induced a 69% decrease in L-carnitine concentration and a 6-fold increase in GBB concentration in the heart tissue as well as a 27% decrease in CPT-I-dependent mitochondrial respiration on palmitoyl-coenzyme A. In addition, mildronate treatment induced a significant reduction in infarct size and also diminished the ischemia-induced respiration stimulation by exogenous cytochrome c. Treatment with a combination had no significant impact on L-carnitine concentration, CPT-I-dependent mitochondrial respiration, and infarct size. Our results demonstrated that the mildronate-induced decrease in L-carnitine concentration, concomitant decrease in fatty acid transport, and maintenance of the intactness of outer mitochondrial membrane in heart mitochondria are the key mechanisms of action for the anti-infarction activity of mildronate.
Collapse
Affiliation(s)
- Janis Kuka
- Latvian Institute of Organic Synthesis, Riga, Latvia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Liepinsh E, Konrade I, Skapare E, Pugovics O, Grinberga S, Kuka J, Kalvinsh I, Dambrova M. Mildronate treatment alters γ-butyrobetaine and l-carnitine concentrations in healthy volunteers. J Pharm Pharmacol 2011; 63:1195-201. [PMID: 21827492 DOI: 10.1111/j.2042-7158.2011.01325.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES In this study, we aimed to investigate the effects of long-term administration of the cardioprotective drug mildronate on the concentrations of l-carnitine and γ-butyrobetaine in healthy volunteers. METHODS Mildronate was administered perorally, at a dosage of 500mg, twice daily. Plasma and urine samples were collected weekly. Daily meat consumption within an average, non-vegetarian diet was monitored. l-Carnitine, γ-butyrobetaine and mildronate concentrations were measured using the UPLC/MS/MS method. KEY FINDINGS After 4 weeks, the average concentrations of l-carnitine in plasma significantly decreased by 18%. The plasma concentrations of γ-butyrobetaine increased about two-fold, and this effect was statistically significant in both the male and female groups. In urine samples, a significant increase in l-carnitine and γ-butyrobetaine levels was observed, which provides evidence for increased excretion of both substances during the mildronate treatment. At the end of the treatment period, the plasma concentration of mildronate was 20µm on average. There were no significant differences between the effects observed in female and male volunteers. Meat consumption partially reduced the l-carnitine-lowering effects induced by mildronate. CONCLUSIONS Long-term administration of mildronate significantly lowers l-carnitine plasma concentrations in non-vegetarian, healthy volunteers.
Collapse
Affiliation(s)
- Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Riga LV1006, Latvia.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang J, Cai LJ, Yang J, Zhang QZ, Peng WX. Nonlinear pharmacokinetic properties of mildronate capsules: a randomized, open-label, single- and multiple-dose study in healthy volunteers. Fundam Clin Pharmacol 2011; 27:120-8. [DOI: 10.1111/j.1472-8206.2011.00962.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Sokolovska J, Isajevs S, Sugoka O, Sharipova J, Lauberte L, Svirina D, Rostoka E, Sjakste T, Kalvinsh I, Sjakste N. Correction of glycaemia and GLUT1 level by mildronate in rat streptozotocin diabetes mellitus model. Cell Biochem Funct 2011; 29:55-63. [PMID: 21264891 DOI: 10.1002/cbf.1719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anti-ischaemic drug mildronate suppresses fatty acid metabolism and increases glucose utilization in myocardium. It was proposed that it could produce a favourable effect on metabolic parameters and glucose transport in diabetic animals. Rats with streptozotocin diabetes mellitus were treated with mildronate (100 mg/kg daily, per os, 6 weeks). Therapeutic effect of mildronate was monitored by measuring animal weight, concentrations of blood glucose, insulin, blood triglycerides, free fatty acids, blood ketone bodies and cholesterol, glycated haemoglobin per cent (HbA1c%) and glucose tolerance. GLUT1 mRNA and protein expression in kidneys, heart, liver and muscles were studied by means of real time RT-PCR and immunohistochemistry correspondingly. In the streptozotocin + mildronate group, mildronate treatment caused a significant decrease in mean blood glucose, cholesterol, free fatty acid and HbA1c concentrations and improved glucose tolerance. Induction of streptozotocin diabetes mellitus provoked increase of both GLUT1 gene and protein expression in kidneys, heart and muscle, mildronate treatment produced normalization of the GLUT1 expression levels. In the liver a similar effect was observed for GLUT1 protein expression, while GLUT1 gene expression was increased by mildronate. Mildronate produces therapeutic effect in streptozotocin diabetes model. Mildronate normalizes the GLUT1 expression up-regulated by streptozotocin diabetes mellitus in kidneys, heart, muscle and liver. Copyright © 2011 John Wiley & Sons, Ltd.
Collapse
|
42
|
Vilskersts R, Kuka J, Svalbe B, Cirule H, Liepinsh E, Grinberga S, Kalvinsh I, Dambrova M. Administration of L-carnitine and mildronate improves endothelial function and decreases mortality in hypertensive Dahl rats. Pharmacol Rep 2011; 63:752-62. [DOI: 10.1016/s1734-1140(11)70587-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 11/29/2010] [Indexed: 11/28/2022]
|
43
|
Svalbe B, Zvejniece L, Vavers E, Pugovics O, Muceniece R, Liepinsh E, Dambrova M. Mildronate treatment improves functional recovery following middle cerebral artery occlusion in rats. Behav Brain Res 2011; 222:26-32. [PMID: 21420440 DOI: 10.1016/j.bbr.2011.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 11/18/2022]
Abstract
Mildronate (3-(2,2,2-trimethylhydrazinium) propionate) is an inhibitor of l-carnitine biosynthesis and an anti-ischemic drug. In the present study, we investigated the effects of mildronate in rats following focal cerebral ischemia. Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (MCAO) for 90min, followed by the intraperitoneal administration of mildronate at doses of 100 and 200mg/kg 2h after reperfusion and then daily for an additional 14days. The beam-walking, rota-rod and cylinder tests were used to assess sensorimotor function, and vibrissae-evoked forelimb-placing and limb-placing tests examined responses to tactile and proprioceptive stimulation. Following behavioural testing, the infarct volume was measured. The cerebellar concentrations of l-carnitine, γ-butyrobetaine (GBB) and mildronate were also measured. The results showed that saline-treated MCAO rats had minor or no spontaneous recovery in sensorimotor and proprioceptive function up to 14days post-stroke. Treatment with mildronate at a dose of 200mg/kg was found to accelerate recovery of motor and proprioceptive deficits in limb-placing, cylinder and beam-walking tests. Analysis of rat cerebellar tissue extracts revealed that l-carnitine and GBB concentrations changed with mildronate treatment; the concentration of l-carnitine was significantly decreased by mildronate treatment, whereas the concentration of GBB was significantly increased. Cerebellar concentrations of mildronate also increased in a dose-dependent manner following systemic administration. Infarct size did not differ among the experimental groups on post-stroke day 14. The present study suggests that mildronate treatment improves the functional outcome in MCAO rats without influencing infarct size.
Collapse
Affiliation(s)
- Baiba Svalbe
- Latvian Institute of Organic Synthesis, Riga, Latvia; University of Latvia, Riga, Latvia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Liepinsh E, Skapare E, Svalbe B, Makrecka M, Cirule H, Dambrova M. Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. Eur J Pharmacol 2011; 658:277-83. [PMID: 21371472 DOI: 10.1016/j.ejphar.2011.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/28/2011] [Accepted: 02/17/2011] [Indexed: 01/25/2023]
Abstract
Mildronate is a cardioprotective drug, the mechanism of action of which is based on the regulation of l-carnitine concentration. We studied the metabolic effects of treatment with mildronate, metformin and a combination of the two in the Zucker rat model of obesity and impaired glucose tolerance. Zucker rats were p.o. treated daily with mildronate (200mg/kg), metformin (300 mg/kg), and a combination of both drugs for 4 weeks. Weight gain and plasma metabolites reflecting glucose metabolism were measured. The expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ and target genes was measured in rat heart and liver tissues. Each treatment decreased the blood glucose concentration during the fed and fasted states by 1 to 2 mmol/l. Treatment with mildronate and metformin decreased the plasma insulin concentration by 31 and 29%, respectively, while the combination of both drugs significantly reduced fed insulin concentration by about 47%. Mildronate treatment increased the expression of PPAR-α in the heart tissue and PPAR-γ in the heart and liver tissues. In addition, treatment increased the expression of PPAR target genes in the heart, but not in the liver tissue. In contrast to monotherapy, treatment with the combination of mildronate and metformin significantly decreased weight gain by 19% and did not affect food intake. In conclusion, our results demonstrate that mildronate, an inhibitor of l-carnitine biosynthesis, improves adaptation to hyperglycemia- and hyperlipidemia-induced metabolic disturbances and increases PPAR-α activity.
Collapse
|
45
|
|
46
|
Crystal structure of human gamma-butyrobetaine hydroxylase. Biochem Biophys Res Commun 2010; 398:634-9. [DOI: 10.1016/j.bbrc.2010.06.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/27/2010] [Indexed: 11/18/2022]
|
47
|
Pupure J, Isajevs S, Skapare E, Rumaks J, Svirskis S, Svirina D, Kalvinsh I, Klusa V. Neuroprotective properties of mildronate, a mitochondria-targeted small molecule. Neurosci Lett 2009; 470:100-5. [PMID: 20036318 DOI: 10.1016/j.neulet.2009.12.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 12/03/2009] [Accepted: 12/19/2009] [Indexed: 11/28/2022]
Abstract
Mildronate, a representative of the aza-butyrobetaine class of drugs with proven cardioprotective efficacy, was recently found to prevent dysfunction of complex I in rat liver mitochondria. The present study demonstrates that mildronate also acts as a neuroprotective agent. In a mouse model of azidothymidine (anti-HIV drug) neurotoxicity, mildronate reduced the azidothymidine-induced alterations in mouse brain tissue: it normalized the increase in caspase-3, cellular apoptosis susceptibility protein (CAS) and iNOS expression assessed by quantitative and semi-quantitative analysis. Mildronate also normalized the changes in cytochrome c oxidase (COX) expression, reduced the expression of glial fibrillary acidic protein (GFAP) and cellular infiltration. The present results show that the neuroprotective action of mildronate results at least partially from anti-neurodegenerative (anti-apoptotic) and anti-inflammatory mechanisms. It might be suggested that the molecular conformation of mildronate can facilitate its easy binding to mitochondria, and regulate the expression of different signal molecules, hence maintaining cellular signaling and survival.
Collapse
Affiliation(s)
- Jolanta Pupure
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1A Sarlotes, LV-1001, Riga, Latvia.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Liepinsh E, Kuka J, Svalbe B, Vilskersts R, Skapare E, Cirule H, Pugovics O, Kalvinsh I, Dambrova M. Effects of long-term mildronate treatment on cardiac and liver functions in rats. Basic Clin Pharmacol Toxicol 2009; 105:387-94. [PMID: 19663820 DOI: 10.1111/j.1742-7843.2009.00461.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mildronate is a cardioprotective drug that improves cardiac function during ischaemia and functions by lowering l-carnitine concentration in body tissues and modulating myocardial energy metabolism. The aim of the present study was to characterise cardiovascular function and liver condition after long-term mildronate treatment in rats. In addition, changes in the plasma lipid profile, along with changes in the concentration of mildronate, l-carnitine and gamma-butyrobetaine were monitored in the rat tissues. Wistar rats were perorally treated daily with a mildronate dose of either 100, 200 or 400 mg/kg for 4, 8 or 12 weeks. The l-carnitine-lowering effect of mildronate was dose-dependent. However, the carnitine levels reached a plateau after about four weeks of treatment. During the additional weeks of treatment, the carnitine levels were not considerably changed. The obtained results provide evidence that even a high dose of mildronate does not alter cardiovascular parameters and the function of isolated rat hearts. Furthermore, the histological evaluation of liver tissue cryosections and measurement of biochemical markers of hepatic toxicity showed that all the measured values were within the normal reference range. Our results provide evidence that long-term mildronate administration induces significant changes in carnitine homeostasis, but it is not associated with cardiac impairment or disturbances in liver function.
Collapse
|
49
|
Liepinsh E, Vilskersts R, Zvejniece L, Svalbe B, Skapare E, Kuka J, Cirule H, Grinberga S, Kalvinsh I, Dambrova M. Protective effects of mildronate in an experimental model of type 2 diabetes in Goto-Kakizaki rats. Br J Pharmacol 2009; 157:1549-56. [PMID: 19594753 DOI: 10.1111/j.1476-5381.2009.00319.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Mildronate [3-(2,2,2-trimethylhydrazinium) propionate] is an anti-ischaemic drug whose mechanism of action is based on its inhibition of L-carnitine biosynthesis and uptake. As L-carnitine plays a pivotal role in the balanced metabolism of fatty acids and carbohydrates, this study was carried out to investigate whether long-term mildronate treatment could influence glucose levels and prevent diabetic complications in an experimental model of type 2 diabetes in Goto-Kakizaki (GK) rats. EXPERIMENTAL APPROACH GK rats were treated orally with mildronate at doses of 100 and 200 mg.kg(-1) daily for 8 weeks. Plasma metabolites reflecting glucose and lipids, as well as fructosamine and beta-hydroxybutyrate, were assessed. L-carnitine concentrations were measured by ultra performance liquid chromatography with tandem mass spectrometry. An isolated rat heart ischaemia-reperfusion model was used to investigate possible cardioprotective effects. Pain sensitivity was measured with a tail-flick latency test. KEY RESULTS Mildronate treatment significantly decreased L-carnitine concentrations in rat plasma and gradually decreased both the fed- and fasted-state blood glucose. Mildronate strongly inhibited fructosamine accumulation and loss of pain sensitivity and also ameliorated the enhanced contractile responsiveness of GK rat aortic rings to phenylephrine. In addition, in mildronate-treated hearts, the necrosis zone following coronary occlusion was significantly decreased by 30%. CONCLUSIONS AND IMPLICATIONS These results demonstrate for the first time that in GK rats, an experimental model of type 2 diabetes, mildronate decreased L-carnitine contents and exhibited cardioprotective effects, decreased blood glucose concentrations and prevented the loss of pain sensitivity. These findings indicate that mildronate treatment could be beneficial in diabetes patients with cardiovascular problems.
Collapse
|
50
|
Myocardial Infarct Size-Limiting and Anti-Arrhythmic Effects of Mildronate Orotate in the Rat Heart. Cardiovasc Drugs Ther 2009; 23:281-8. [DOI: 10.1007/s10557-009-6179-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|