1
|
Farhadnejad H, Saber N, Neshatbini Tehrani A, Kazemi Jahromi M, Mokhtari E, Norouzzadeh M, Teymoori F, Asghari G, Mirmiran P, Azizi F. Herbal Products as Complementary or Alternative Medicine for the Management of Hyperglycemia and Dyslipidemia in Patients with Type 2 Diabetes: Current Evidence Based on Findings of Interventional Studies. J Nutr Metab 2024; 2024:8300428. [PMID: 39021815 PMCID: PMC11254466 DOI: 10.1155/2024/8300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Type 2 diabetes (T2D) is known as a major public health problem with a noticeable adverse impact on quality of life and health expenditures worldwide. Despite using routine multiple pharmacological and nonpharmacological interventions, including diet therapy and increasing physical activity, controlling this chronic disease remains a challenging issue, and therapeutic goals are often not achieved. Therefore, recently, other therapeutic procedures, such as using herbal products and functional foods as complementary or alternative medicine (CAM), have received great attention as a new approach to managing T2D complications, according to the literature. We reviewed the existing evidence that supports using various fundamental medicinal herbs, including cinnamon, saffron, ginger, jujube, turmeric, and barberry, as CAM adjunctive therapeutic strategies for T2D patients. The current review addressed different aspects of the potential impact of the abovementioned herbal products in improving glycemic indices and lipid profiles, including the effect size reported in the studies, their effective dose, possible side effects, herbs-drug interactions, and their potential action mechanisms.
Collapse
Affiliation(s)
- Hossein Farhadnejad
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Saber
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Neshatbini Tehrani
- Student Research CommitteeAhvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of NutritionSchool of Allied Medical SciencesAhvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research CenterHormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Norouzzadeh
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of NutritionSchool of Public HealthIran University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of NutritionSchool of Public HealthIran University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community NutritionFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Malek MA, B. Gowda SG, M. Gangadhara R, Gowda D, Hui SP. Exploration of New Lipid Nutrients and Their Characterization in Herbal Teas Using Non-Targeted Liquid Chromatography-Mass Spectrometry. Foods 2024; 13:1877. [PMID: 38928818 PMCID: PMC11202684 DOI: 10.3390/foods13121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Herbal teas are blends of leaves, seeds, fruits, and flowers from various plants that provide relaxation, anti-inflammatory benefits, and immune system support for conditions such as diabetes and asthma. Despite their health benefits, comprehensive lipidomic data on herbal teas are limited in the literature. We used non-targeted liquid chromatography-linear ion trap orbitrap mass spectrometry to identify and correlate the lipid species in the following six herbal tea samples: fennel, ginger, juniper, lemon peel, orange peel, and rosehip. A total of 204 lipid molecular species were identified, and multivariate analysis revealed a significant difference between lipid species in herbal teas. Saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) are significantly abundant in juniper, including ω-3 and ω-6 fatty acids, followed by fennel. Cluster correlations showed that ginger contained mainly sphingolipids and lysophospholipids, whereas fennel was rich in phospholipids. No significant variations in the content of triacylglycerols were observed in any of the herbal teas analyzed. The ratio of PUFAs to SFAs in herbal teas showed that orange peel had the highest ratio, followed by lemon peel and fennel, indicating their potential health benefits. In addition, using high-resolution mass spectrometry, various lipids such as fatty acid esters of hydroxy fatty acids and N-acyl-lysophosphatidylethanolamines were identified and characterized in these herbal teas. This study provides a comprehensive lipid analysis and detailed characterization of lipids in six herbal teas, highlighting their plausible applications in the field of nutrition and various food industries for the development of functional foods.
Collapse
Affiliation(s)
- Md Abdul Malek
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (M.A.M.); (R.M.G.)
| | - Siddabasave Gowda B. Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (M.A.M.); (R.M.G.)
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan;
| | - Rachana M. Gangadhara
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (M.A.M.); (R.M.G.)
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
3
|
Sun C, Lan F, Zhou Q, Guo X, Jin J, Wen C, Guo Y, Hou Z, Zheng J, Wu G, Li G, Yan Y, Li J, Ma Q, Yang N. Mechanisms of hepatic steatosis in chickens: integrated analysis of the host genome, molecular phenomics and gut microbiome. Gigascience 2024; 13:giae023. [PMID: 38837944 PMCID: PMC11152177 DOI: 10.1093/gigascience/giae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/14/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid β-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.
Collapse
Affiliation(s)
- Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Xiaoli Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Yanxin Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Zhuocheng Hou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiangxia Zheng
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| |
Collapse
|
4
|
Qin S, He Z, Wu Y, Zeng C, Zheng Z, Zhang H, Lv C, Yuan Y, Wu H, Ye J, Liu Z, Shi M. Instant Dark Tea Alleviates Hyperlipidaemia in High-Fat Diet-Fed Rat: From Molecular Evidence to Redox Balance and Beyond. Front Nutr 2022; 9:819980. [PMID: 35223953 PMCID: PMC8875000 DOI: 10.3389/fnut.2022.819980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Instant dark tea (IDT) is a new product gaining increasing attention because it is convenient and can endow significant health benefit to consumers, which is partially attributed to its high concentration of functional ingredients. However, the molecular mechanism underlying its regulatory effect on hyperlipidaemia is rarely studied. In this study, we performed omics and molecular verification in high-fat diet (HFD)-fed rat, aiming to reveal the mechanism and provide molecular evidence. The results showed that the major bioactive components in IDT were include 237.9 mg/g total polysaccharides, 336.6 mg/g total polyphenols, and 46.9 mg/g EGCG. Rats fed with IDT (0.27–0.54 g/kg for 12 weeks) significantly reduced the body weight and TC, TG, LDL-C, blood glucose, and MDA and induced the level of serum HDL-C and also the levels of liver SOD, CAT, GSH-Px, and Nrf2, compared to HFD group. For molecular mechanism study, HIDT feeding had significant impact on the gene expressions of biomarkers in lipogenesis (FABP, CD36, SCD1, Cyp4a1, and Kcnn2), lipid oxidation (PPARγ), and glucose glycolysis (Gck and ENO2) in liver tissue. Moreover, gut microbiome study found that rats fed with IDT dramatically modified the gut microbial species at the family level, such as suppressing the increase abundance of Proteobacteria and Firmicutes induced by HFD. HIDT significantly boosted the relative composition of beneficial bacterium Akkermansia and Rikenellaceae_RC9_gut_group and decreased the relative abundance of the harmful bacterium Ruminococcaceae_UCG-005 and Ruminiclostridium_9, compared to HFD (p < 0.01). Correlation analysis between microbiome and animal indicators found that seven genera including Akkermansia, Clostridiales, Lachnospiraceae, Lachnospiraceae_UCG-010, Ruminiclostridium_9, Ruminococaceae-UCG-005, and Ruminocuccus_1 were found as potential biomarkers that were strongly correlated with oxidative stress and metabolism genes. For instance, Ruminococcaceae_UCG-005 was significantly correlated with body weight, TG, HDL-C, Nfr2, FABP3, SCD1, Cyp4a1, and Kcnn2. Collectively, the above data obtained in this study had provided the primary molecular evidence for the molecular mechanism and brought in novel insights based on omics for the regulatory effect of IDT on hyperlipidaemia.
Collapse
Affiliation(s)
- Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Si Qin
| | - Zhilan He
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuanjie Wu
- Hunan Tea Group Co. LTD, Changsha, China
| | - Chaoxi Zeng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhibing Zheng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haowei Zhang
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chenghao Lv
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yong Yuan
- Hunan Tea Group Co. LTD, Changsha, China
| | - Haoren Wu
- Hunan Tea Group Co. LTD, Changsha, China
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
- Zhonghua Liu
| | - Meng Shi
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Meng Shi
| |
Collapse
|
5
|
Luciano TF, De Souza CT, Pinho RA, Marques SDO, Luiz GP, Tramontin NDS, Silveira PCLD, de Andrade VM, Muller AP. Effects of Zingiber officinale extract supplementation on metabolic and genotoxic parameters in diet-induced obesity in mice. Br J Nutr 2021; 126:970-981. [PMID: 33323139 DOI: 10.1017/s0007114520005073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Obesity is an epidemic associated with many diseases. The nutraceutical Zingiber officinale (ZO) is a potential treatment for obesity; however, the molecular effects are unknown. Swiss male mice were fed a high-fat diet (59 % energy from fat) for 16 weeks to generate a diet-induced obesity (DIO) model and then divided into the following groups: standard diet + vehicle; standard diet + ZO; DIO + vehicle and DIO + ZO. Those in the ZO groups were supplemented with 400 mg/kg per d of ZO extract (oral administration) for 35 d. The animals were euthanised, and blood, quadriceps, epididymal fat pad and hepatic tissue were collected. DIO induced insulin resistance, proinflammatory cytokines, oxidative stress and DNA damage in different tissues. Treatment with ZO improved insulin sensitivity as well as decreased serum TAG, without changes in body weight or adiposity index. TNF-α and IL-1β levels were lower in the liver and quadriceps in the DIO + ZO group compared with the DIO group. ZO treatment reduced the reactive species and oxidative damage to proteins, lipids and DNA in blood and liver in obese animals. The endogenous antioxidant activity was higher in the quadriceps of DIO + ZO. These results in the rat model of DIO may indicate ZO as an adjuvant on obesity treatment.
Collapse
Affiliation(s)
- Thaís Fernandes Luciano
- Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Claudio Teodoro De Souza
- Department of Internal Medicine, Medicine School, Juiz de Fora Federal University, Juiz de Fora, MG, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | | | - Gabriel Paulino Luiz
- Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | - Vanessa Moraes de Andrade
- Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandre Pastoris Muller
- Laboratory of Biomedicine Translational, University of Extremo Sul Catarinense, Criciúma, SC, Brazil
- Pharmacology Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
6
|
Kim B, Kim HJ, Cha YS. The protective effects of steamed ginger on adipogenesis in 3T3-L1 cells and adiposity in diet-induced obese mice. Nutr Res Pract 2021; 15:279-293. [PMID: 34093970 PMCID: PMC8155221 DOI: 10.4162/nrp.2021.15.3.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/OBJECTIVES The steamed ginger has been shown to have antioxidative effects and a protective effect against obesity. In the present study, we investigated the effects of ethanolic extract of steamed ginger (SGE) on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity (DIO) mouse model. MATERIALS/METHODS The protective effects of SGE on adipogenesis were examined in 3T3-L1 adipocytes by measuring lipid accumulations and genes involved in adipogenesis. Male C57BL/6J mice were fed a normal diet (ND, 10% fat w/w), a high-fat diet (HFD, 60% fat w/w), and HFD supplemented with either 40 mg/kg or 80 mg/kg of SGE for 12 weeks. Serum chemistry was measured, and the expression of genes involved in lipid metabolism was determined in the adipose tissue. Histological analysis and micro-computed tomography were performed to identify lipid accumulations in epididymal fat pads. RESULTS In 3T3-L1 cells, SGE significantly decreased lipid accumulation, with concomitant decreases in the expression of adipogenesis-related genes. SGE significantly attenuated the increase in body, liver, and epididymal adipose tissue weights by HFD. Serum total cholesterol and triglyceride levels were significantly lower in SGE fed groups compared to HFD. In adipose tissue, SGE significantly decreased adipocyte size than that of HFD and altered adipogenesis-related genes. CONCLUSIONS In conclusion, steamed ginger exerted anti-obesity effects by regulating genes involved in adipogenesis and lipogenesis in 3T3-L1 cell and epididymal adipose tissue of DIO mice.
Collapse
Affiliation(s)
- Bohkyung Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46264, Korea
| | - Hee-Jeong Kim
- Department of Food Science and Human Nutrition and Obesity Research Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition and Obesity Research Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
7
|
Chen CY, Li C, Ke CJ, Sun JS, Lin FH. Kartogenin Enhances Chondrogenic Differentiation of MSCs in 3D Tri-Copolymer Scaffolds and the Self-Designed Bioreactor System. Biomolecules 2021; 11:115. [PMID: 33467170 PMCID: PMC7829855 DOI: 10.3390/biom11010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Human cartilage has relatively slow metabolism compared to other normal tissues. Cartilage damage is of great clinical consequence since cartilage has limited intrinsic healing potential. Cartilage tissue engineering is a rapidly emerging field that holds great promise for tissue function repair and artificial/engineered tissue substitutes. However, current clinical therapies for cartilage repair are less than satisfactory and rarely recover full function or return the diseased tissue to its native healthy state. Kartogenin (KGN), a small molecule, can promote chondrocyte differentiation both in vitro and in vivo. The purpose of this research is to optimize the chondrogenic process in mesenchymal stem cell (MSC)-based chondrogenic constructs with KGN for potential use in cartilage tissue engineering. In this study, we demonstrate that KGN treatment can promote MSC condensation and cell cluster formation within a tri-copolymer scaffold. Expression of Acan, Sox9, and Col2a1 was significantly up-regulated in three-dimensional (3D) culture conditions. The lacuna-like structure showed active deposition of type II collagen and aggrecan deposition. We expect these results will open new avenues for the use of small molecules in chondrogenic differentiation protocols in combination with scaffolds, which may yield better strategies for cartilage tissue engineering.
Collapse
Affiliation(s)
- Ching-Yun Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; or
| | - Chunching Li
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10002, Taiwan;
| | - Cherng-Jyh Ke
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40202, Taiwan;
- Center for General Education, China Medical University, Taichung 40202, Taiwan
- Master Program for Digital Health Innovation, China Medical University, Taichung 40202, Taiwan
- Master Program in Technology Management, China Medical University, Taichung 40202, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40202, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10002, Taiwan;
- Institute of Biomedical Engineering and Nanomedicine (I-BEN), National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
8
|
Daoudi NE, Bnouham M. Hepatoprotective Essential Oils: A Review. J Pharmacopuncture 2020; 23:124-141. [PMID: 33072411 PMCID: PMC7540227 DOI: 10.3831/kpi.2020.23.3.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 01/21/2023] Open
Abstract
Objectives Several toxins and molecules are able to damage the liver, causing the hepato-toxicity. This disorder can be protected naturally, by some essential oils obtained from different plants. In this review we are cited some of these compounds that have been tested by their hepatoprotective effect. Methods We reviewed 83 articles published between 1981 and 2018 in English via three databases Sciencedirect, Springer and PubMed. So, we have used the keywords Hepatoprotective effect, liver disease, plants and essential oils. Results and conclusion In this work, we classified the plants; contain the essential oils, in alphabetical order as a table containing the scientific, family names, information plants, the experimental assay and the results obtained from the hepatoprotective studies. We have described 27 species belonging to 12 families Lamiaceae (7 species), Asteraceae (6 species), Umbellifereae (3 species), Apiaceae (3 species) are the main families which enclose the species that was studied. The study also includes the major compounds isolated from some of these essential oils. The most of those compounds belong to terpene class essentially cineol, carvacrol and thymol. Thus, the different essential oils that have been cited in this review were shown that have an antioxidant activity.
Collapse
Affiliation(s)
- Nour Elhouda Daoudi
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed Ist, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioressources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, University Mohamed Ist, Oujda, Morocco
| |
Collapse
|
9
|
Tramontin NDS, Luciano TF, Marques SDO, de Souza CT, Muller AP. Ginger and avocado as nutraceuticals for obesity and its comorbidities. Phytother Res 2020; 34:1282-1290. [PMID: 31989713 DOI: 10.1002/ptr.6619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2023]
Abstract
Obesity is a worldwide epidemic and is one of the factors involved in the etiology of type 2 diabetes mellitus. Obesity induces low-grade inflammation and oxidative stress. The treatment for obesity involves changes in diet, physical activity, and even medication and surgery. Currently, the use of nutraceutical compounds is associated with health benefits. Ginger and avocado are used for many people all around the world; however, its effect as a nutraceutical compound is less known by the general population. For this reason, we searched information of the literature to point its effects on distinct mechanisms of defense against the obesity its comorbidities. The present review aimed showing that these nutraceuticals may be useful in obesity treatment. Reports have shown that ginger and avocado induce antioxidant and anti-inflammatory effects by improving enzymatic activity and modulating obesity-related impairments in the anti-inflammatory system in different tissues, without side effects. Furthermore, ginger and avocado were found to be effective in reversing the harmful effects of obesity on blood lipids. In conclusion, on the basis of the positive effects of ginger and avocado in in vitro, animal, and human studies, these nutraceuticals may be useful in obesity treatment.
Collapse
Affiliation(s)
| | - Thais F Luciano
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Claudio T de Souza
- Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Alexandre P Muller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
10
|
Wang J, Wang P, Li D, Hu X, Chen F. Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur J Nutr 2020; 59:699-718. [PMID: 30859364 DOI: 10.1007/s00394-019-01938-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Recent evidence has demonstrated that the gut microbiota plays a critical role in the treatment of obesity and other metabolic dysfunctions. Ginger (Zingiber officinale Roscoe), one of the most commonly used spices and dietary supplements, has been shown to exert beneficial effects against obesity and related disorders. However, to date, the mechanisms linking these effects to the gut microbiota remain unclear. This study aims to investigate the relationship between the gut microbiota and the metabolic adaptations resulting from ginger supplementation in mice. METHODS Four groups of mice were fed a normal chow diet (NCD) or a high-fat diet (HFD) with or without ginger supplementation for 16 weeks. Lipid profiles, proinflammatory cytokines, glucose tolerance, microbiota composition and short-chain fatty acid (SCFA) concentrations were analyzed at the end of the experiment. In addition, microbiota-depleted mice were transplanted with the fecal microbiota of mice fed a HFD or mice fed a HFD along with ginger supplementation. Glucose tolerance and microbiota composition were assessed after a 8-week fecal microbiota transplantation (FMT). RESULTS We observed marked decreases in body weight, liver steatosis, and low-grade inflammation as well as amelioration of insulin resistance in the HFD-fed mice treated with ginger. Furthermore, ginger supplementation modulated the gut microbiota composition and increased species belonging to the Bifidobacterium genus and SCFA-producing bacteria (Alloprevotella and Allobaculum), along with increases in fecal SCFA concentrations. The FMT experiment showed anti-obesity and microbiota-modulating effects similar to those observed in the oral ginger-feeding experiment. CONCLUSIONS This study suggests that modulation of the gut microbiota as a result of ginger supplementation has a therapeutic effect on obesity in mice.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, No. 17, Qinghua East Road, Haidian District, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, No. 17, Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, No. 17, Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, No. 17, Qinghua East Road, Haidian District, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, No. 17, Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
11
|
Wang J, Li D, Wang P, Hu X, Chen F. Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. J Nutr Biochem 2019; 70:105-115. [PMID: 31200315 DOI: 10.1016/j.jnutbio.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Numerous natural herbs have been proven as safe anti-obesity resources. Ginger, one of the most widely consumed spices, has shown beneficial effects against obesity and related metabolic disorders. The present study aimed to examine whether the antiobesity effect of ginger is associated with energy metabolism. Mice were maintained on either a normal control diet or a high-fat diet (HFD) with or without 500 mg/kg (w/w) ginger supplementation. After 16 weeks, ginger supplementation alleviated the HFD-induced increases in body weight, fat accumulation, and levels of serum glucose, triglyceride and cholesterol. Indirect calorimetry showed that ginger administration significantly increased the respiratory exchange ratio (RER) and heat production in both diet models. Furthermore, ginger administration corrected the HFD-induced changes in concentrations of intermediates in glycolysis and the TCA cycle. Moreover, ginger enhanced brown adipose tissue function and activated white adipose tissue browning by altering the gene expression and protein levels of some brown and beige adipocyte-selective markers. Additionally, stimulation of the browning program by ginger may be partly regulated by the sirtuin-1 (SIRT1)/AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Taken together, these results indicate that dietary ginger prevents body weight gain by remodeling whole-body energy metabolism and inducing browning of white adipose tissue (WAT). Thus, ginger is an edible plant that plays a role in the therapeutic treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Pan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Oliveira CT, Lacerda DR, Zicker MC, Martins LB, Teixeira MM, de Araujo RLB, Ferreira AVM. Ginger (Zingiber officinale Rosc.) Ameliorated Metabolic and Inflammatory Dysfunction Induced by High-Refined Carbohydrate-Containing Diet in Mice. J Med Food 2019; 22:38-45. [PMID: 30362875 DOI: 10.1089/jmf.2018.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study aimed to evaluate the effects and the mechanisms of ginger extract intake in the adiposity gain, metabolic and inflammatory disturbances induced by a high-refined carbohydrate (HC) diet in mice. Ginger extract at doses of 200, 600, and 1800 mg/kg was supplemented in the daily food of obese Balb/c mice during an 8-week experiment. Our findings indicate that consumption of high doses of ginger extracts prevents the increase of adiposity induced by HC diet, improves lipid profile, and promotes decrease of inflammatory markers in mice. We showed that ginger addition to HC diet leads to decrease in the recruitment of cells visualized in vivo in the microvasculature of adipose tissue, decrease of inflammatory cytokines, and increase of adiponectin serum levels. These results indicate that the consumption of ginger decreases the negative metabolic consequences induced by HC diet.
Collapse
Affiliation(s)
- Cíntia Tarabal Oliveira
- 1 Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Débora Romualdo Lacerda
- 1 Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina Campos Zicker
- 1 Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laís Bhering Martins
- 1 Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- 2 Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | |
Collapse
|
13
|
Wang D, Hiebl V, Ladurner A, Latkolik SL, Bucar F, Heiß EH, Dirsch VM, Atanasov AG. 6-Dihydroparadol, a Ginger Constituent, Enhances Cholesterol Efflux from THP-1-Derived Macrophages. Mol Nutr Food Res 2018; 62:e1800011. [PMID: 29802792 PMCID: PMC6099374 DOI: 10.1002/mnfr.201800011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/24/2018] [Indexed: 01/24/2023]
Abstract
SCOPE Ginger is reported to be used for the prevention and treatment of cardiovascular diseases (CVD). Cholesterol efflux from macrophage foam cells is an important process in reverse cholesterol transport, whose increase may help to prevent or treat CVD. In this study, we investigated the effects of 6-dihydroparadol from ginger on macrophage cholesterol efflux. METHODS AND RESULTS We show that 6-dihydroparadol concentration-dependently enhances both apolipoprotein A1- and human plasma-mediated cholesterol efflux from cholesterol-loaded THP-1-derived macrophages using macrophage cholesterol efflux assay. 6-Dihydroparadol increases protein levels of both ATP-binding cassette transporters A1 and G1 (ATP-binding cassette transporter A1 [ABCA1] and ATP-binding cassette transporter G1 [ABCG1]) according to Western blot analysis. The ABCA1 inhibitor probucol completely abolishes 6-dihydroparadol-enhanced cholesterol efflux. Furthermore, increased ABCA1 protein levels in the presence of 6-dihydroparadol were associated with both increased ABCA1 mRNA levels and increased ABCA1 protein stability. Enhanced ABCG1 protein levels were only associated with increased protein stability. Increased ABCA1 protein stability appeared to be the result of a reduced proteasomal degradation of the transporter in the presence of 6-dihydroparadol. CONCLUSION We identified 6-dihydroparadol from ginger as a novel promoter of cholesterol efflux from macrophages that increases both ABCA1 and ABCG1 protein abundance. This newly identified bioactivity might contribute to the antiatherogenic effects of ginger.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciencesul. Postepu 36A05–552JastrzebiecPoland
- Institute of Clinical ChemistryUniversity Hospital ZurichUniversity of ZurichWagistrasse 148952SchlierenSwitzerland
| | - Verena Hiebl
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Angela Ladurner
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Simone L. Latkolik
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical SciencesUniversity of Graz8010GrazAustria
| | - Elke H. Heiß
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Verena M. Dirsch
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Atanas G. Atanasov
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciencesul. Postepu 36A05–552JastrzebiecPoland
| |
Collapse
|
14
|
Effects of Ginger (Zingiber officinale Roscoe) on Type 2 Diabetes Mellitus and Components of the Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018. [PMID: 29541142 PMCID: PMC5818945 DOI: 10.1155/2018/5692962] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective This article aims to assess the effects of ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus (T2DM) and/or components of the metabolic syndrome (MetS). Methods Electronic literature was searched in PubMed, Embase, the Cochrane Library, Chinese Biomedical Database, China National Knowledge Infrastructure, and Wanfang Database from inception of the database to May 19, 2017, and supplemented by browsing reference lists of potentially eligible articles. Randomized controlled trials on research subjects were included. Data were extracted as a mean difference (MD) and 95% confidence interval (CI). Subgroup analysis of fasting blood glucose (FBG) was performed. Results 10 studies met the inclusion criteria with a total of 490 individuals. Ginger showed a significant beneficial effect in glucose control and insulin sensitivity. The pooled weighted MD of glycosylated hemoglobin (HbA1c) was −1.00, (95% CI: −1.56, −0.44; P < 0.001). Subgroup analysis revealed that ginger obviously reduced FBG in T2DM patients (−21.24; 95% CI: −33.21, −9.26; P < 0.001). Meanwhile, the significant effects of improvement of lipid profile were observed. Most analyses were not statistically heterogeneous. Conclusion Based on the negligible side effects and obvious ameliorative effects on glucose control, insulin sensitivity, and lipid profile, ginger may be a promising adjuvant therapy for T2DM and MetS.
Collapse
|
15
|
Suganya S, Natarajan S, Chamundeeswari D, Anbarasu A, Balasubramanian KA, Schneider LC, Nandagopal B. Clinical Evaluation of a Polyherbal Nutritional Supplement in Dyslipidemic Volunteers. J Diet Suppl 2017; 14:679-690. [PMID: 28406728 DOI: 10.1080/19390211.2017.1305478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ten important plant parts routinely used in South Indian ethnic food preparation as spices and condiments were investigated for their potential antidyslipidemic properties. The aim of the study was to characterize the biochemical properties of the polyherbal formulation (nutritional supplement) and evaluate its use to control dyslipidemia in patients. Phytochemical evaluation, in vitro α-amylase inhibitory assay, and high performance thin layer chromatography (HPTLC) fingerprinting were carried out with alcoholic extracts of all 10 individual plants and with the nutritional supplement. Investigation in human volunteers was conducted to evaluate the effect on dyslipidemia as measured by serum lipid biomarkers. Sixty-five volunteers were recruited for this study. Biomarker values at baseline and at 6th visit (end of review, 8/9 months) were compared to assess the usefulness of the nutritional supplement in the normalization of lipid biomarkers. In the qualitative analysis of metabolites, the results revealed the presence of various bioactive primary and secondary metabolites that might be responsible for their medicinal attributes. In human volunteers, after supplement intake along with standard therapy, we observed significant decrease in serum cholesterol, triglyceride, low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) levels. High-density lipoprotein (HDL) level did not change in test patient volunteers. Reductions in hemoglobin A1C (HBA1C) and postprandial blood sugar levels were observed; the difference was not statistically significant. We believe that the polyherbal formulation of 10 medicinal plants has potent antidyslipidemic activity. Our results contribute for the first time toward documentation of augmented dyslipidemia control by use of the formulation.
Collapse
Affiliation(s)
- Subramanian Suganya
- a Sri Sakthi Amma Institute of Biomedical Research Sri Narayani Hospital and Research Centre , Sripuram, Vellore , Tamil Nadu , India
| | - Subapriya Natarajan
- a Sri Sakthi Amma Institute of Biomedical Research Sri Narayani Hospital and Research Centre , Sripuram, Vellore , Tamil Nadu , India
| | - Duraipandian Chamundeeswari
- b Department of Pharmacognosy, Faculty of Pharmacy , Sri Ramachandra University , Porur, Chennai , Tamil Nadu , India
| | - Anand Anbarasu
- c Medical and Biological Computing Laboratory, School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu , India
| | - Kunissery A Balasubramanian
- a Sri Sakthi Amma Institute of Biomedical Research Sri Narayani Hospital and Research Centre , Sripuram, Vellore , Tamil Nadu , India
| | - Lynn C Schneider
- a Sri Sakthi Amma Institute of Biomedical Research Sri Narayani Hospital and Research Centre , Sripuram, Vellore , Tamil Nadu , India
| | - Balaji Nandagopal
- a Sri Sakthi Amma Institute of Biomedical Research Sri Narayani Hospital and Research Centre , Sripuram, Vellore , Tamil Nadu , India
| |
Collapse
|
16
|
Wang C, Batey R, Yamahara J, Li Y. Multiple molecular targets in the liver, adipose tissue and skeletal muscle in ginger-elicited amelioration of nonalcoholic fatty liver disease. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Csonka C, Baranyai T, Tiszlavicz L, Fébel H, Szűcs G, Varga ZV, Sárközy M, Puskás LG, Antal O, Siska A, Földesi I, Ferdinandy P, Czakó L, Csont T. Isolated hypercholesterolemia leads to steatosis in the liver without affecting the pancreas. Lipids Health Dis 2017; 16:144. [PMID: 28750643 PMCID: PMC5532767 DOI: 10.1186/s12944-017-0537-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lipid accumulation in the liver and pancreas is primarily caused by combined hyperlipidemia. However, the effect of isolated hypercholesterolemia without hypertriglyceridemia is not fully described. Therefore, our aim was to investigate whether hypercholesterolemia alone leads to alterations both in hepatic and pancreatic lipid panel and histology in rats. METHODS Male Wistar rats were fed with 2% cholesterol +0.25% cholate-supplemented diet or standard chow for 12 weeks. Blood was collected at weeks 0, 4, 8 and 12 to measure serum cholesterol and triglyceride levels. At week 12, both the pancreas and the liver were isolated for further histological and biochemical analysis. Hepatic and plasma fatty acid composition was assessed by gas chromatography. Expression of mRNA of major enzymes involved in saturated/unsaturated fatty acid synthesis was analyzed by qPCR. In separate experiments serum enzyme activities and insulin levels were measured at week 9. RESULTS At week 12, rats fed with 2% cholesterol +0.25% cholate-supplemented diet were characterized by elevated serum cholesterol (4.09 ± 0.20 vs. 2.89 ± 0.22 mmol/L, *p < 0.05) while triglyceride (2.27 ± 0.05 vs. 2.03 ± 0.03 mmol/L) and glucose levels (5.32 ± 0.14 vs. 5.23 ± 0.10 mmol/L) remained unchanged. Isolated hypercholesterolemia increased hepatic lipid accumulation, hepatic cholesterol (5.86 ± 0.22 vs. 1.60 ± 0.15 ng/g tissue, *p < 0.05) and triglyceride contents (19.28 ± 1.42 vs. 6.78 ± 0.71 ng/g tissue, *p < 0.05), and hepatic nitrotyrosine level (4.07 ± 0.52 vs. 2.59 ± 0.31 ng/mg protein, *p < 0.05). The histology and tissue lipid content of the pancreas was not affected. Serum total protein level, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities remained unchanged in response to isolated hypercholesterolemia while serum alkaline phosphatase activity (ALP) significantly increased. Plasma insulin levels did not change in response to isolated hypercholesterolemia suggesting an intact endocrine function of the pancreas. Isolated hypercholesterolemia caused a significantly increased hepatic and serum fatty acid level associated with a marked alteration of fatty acid composition. Hepatic expression of Δ9-desaturase (SCD1) was increased 4.92×, while expression of Δ5-desaturase and Δ6-desaturase were decreased (0.447× and 0.577×, respectively) due to isolated hypercholesterolemia. CONCLUSIONS Isolated hypercholesterolemia leads to hepatic steatosis and marked alterations in the hepatic lipid profile without affecting the pancreas. Altered fatty acid profile might mediate harmful effects of cholesterol in the liver.
Collapse
Affiliation(s)
- Csaba Csonka
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720 Hungary
| | - Tamás Baranyai
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720 Hungary
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | | - Hedvig Fébel
- Research Institute for Animal Breeding, Nutrition and Meat Science, Herceghalom, Szeged, Hungary
| | - Gergő Szűcs
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720 Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltán V. Varga
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720 Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Márta Sárközy
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720 Hungary
| | - László G. Puskás
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Otilia Antal
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László Czakó
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720 Hungary
| |
Collapse
|
18
|
Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review. Ann N Y Acad Sci 2017; 1398:83-98. [PMID: 28505392 DOI: 10.1111/nyas.13375] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 01/16/2023]
Abstract
In recent years, metabolic syndromes (MetSs), including diabetes mellitus, dyslipidemia, and cardiovascular diseases, have become a common health problem in both developed and developing countries. Accumulating data have suggested that traditional herbs might be able to provide a wide range of remedies in prevention and treatment of MetSs. Ginger (Zingiber officinale Roscoe, Zingiberaceae) has been documented to ameliorate hyperlipidemia, hyperglycemia, oxidative stress, and inflammation. These beneficial effects are mediated by transcription factors, such as peroxisome proliferator-activated receptors, adenosine monophosphate-activated protein kinase, and nuclear factor κB. This review focuses on recent findings regarding the beneficial effects of ginger on obesity and related complications in MetS and discusses its potential mechanisms of action. This review provides guidance for further applications of ginger for personalized nutrition and medicine.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture; and Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Weixin Ke
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture; and Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Rui Bao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture; and Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture; and Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture; and Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Shimada Y, Kuninaga S, Ariyoshi M, Zhang B, Shiina Y, Takahashi Y, Umemoto N, Nishimura Y, Enari H, Tanaka T. E2F8 promotes hepatic steatosis through FABP3 expression in diet-induced obesity in zebrafish. Nutr Metab (Lond) 2015; 12:17. [PMID: 26052340 PMCID: PMC4456805 DOI: 10.1186/s12986-015-0012-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Background Diet-induced hepatic steatosis is highly associated with nonalcoholic fatty liver disease, which is related to the development of metabolic syndrome. While advanced stage nonalcoholic hepatic steatosis and steatohepatitis (NASH) result ultimately in fibrosis and cirrhosis, the molecular basis for lipid droplet formation is poorly understood. Common pathways underlie the pathology of mammalian obesity and the zebrafish diet-induced obesity model (DIO-zebrafish) used in this study. Methods Our analysis involved a combination of transcriptome (DNA microarray) and proteome (two-dimensional electrophoresis) methods using liver tissue from DIO-zebrafish to find candidate genes involved in hepatic steatosis. We conducted intraperitoneal injection (i.p.) of morpholino antisense oligonucleotides (MOs) for each gene into DIO-zebrafish. We also conducted in vitro overexpression in human cells. Additionally, we examined gene expression during feeding experiments involving anti-obesity compounds, creatine and anserine. Results We found that fatty acid binding protein 3 (fabp3) and E2F transcription factors were upregulated in hepatic steatosis. E2f8 MO i.p. suppressed fabp3 expression in liver, and ameliorated hepatic steatosis. In human cells (HepG2), E2F8 overexpression promoted FABP3 expression. Additionally, co-administration of creatine and anserine suppressed obesity associated phenotypes including hepatic steatosis as indicated by e2f8 and fabp3 down regulation. Conclusion We discovered that the e2f8–fabp3 axis is important in the promotion of hepatic steatosis in DIO-zebrafish. The combination of transcriptome and proteome analyses using the disease model zebrafish allow identification of novel pathways involved in human diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0012-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| | - Shisei Kuninaga
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | - Michiko Ariyoshi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan
| | - Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan
| | - Yasuhiko Shiina
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | | | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| | - Hiroyuki Enari
- Central Research Institute, Maruha Nichiro Corporation, Ibaraki, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan ; Mie University Medical Zebrafish Research Center, Mie, Japan ; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| |
Collapse
|
20
|
Joshua AT, Joseph OA, Aliyu M, Abdulkadir UZ. Blood pressure lowering and cardio-protective effects of garlic (Allium sativum) and ginger (Zingiber officinale) extracts in some laboratory animals. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ijmms2014.1069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Seif el-Din SH, El-Lakkany NM, Mohamed MA, Hamed MM, Sterner O, Botros SS. Potential effect of the medicinal plants Calotropis procera, Ficus elastica and Zingiber officinale against Schistosoma mansoni in mice. PHARMACEUTICAL BIOLOGY 2014; 52:144-50. [PMID: 24047470 DOI: 10.3109/13880209.2013.818041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Calotropis procera (Ait.) R. Br. (Asclepiadaceae), Ficus elastica Roxb. (Moraceae) and Zingiber officinale Roscoe (Zingiberaceae) have been traditionally used to treat many diseases. OBJECTIVE The antischistosomal activity of these plant extracts was evaluated against Schistosoma mansoni. MATERIALS AND METHODS Male mice exposed to 80 ± 10 cercariae per mouse were divided into two batches. The first was divided into five groups: (I) infected untreated, while groups from (II-V) were treated orally (500 mg/kg for three consecutive days) by aqueous stem latex and flowers of C. procera, latex of F. elastica and ether extract of Z. officinale, respectively. The second batch was divided into four comparable groups (except Z. officinale-treated group) similarly treated as the first batch in addition to the antacid ranitidine (30 mg/kg) 1 h before extract administration. Safety, worm recovery, tissues egg load and oogram pattern were assessed. RESULTS Calotropis procera latex and flower extracts are toxic (50-70% mortality) even in a small dose (250 mg/kg) before washing off their toxic rubber. Zingiber officinale extract insignificantly decrease (7.26%) S. mansoni worms. When toxic rubber was washed off and ranitidine was used, C. procera (stem latex and flowers) and F. elastica extracts revealed significant S. mansoni worm reductions by 45.31, 53.7 and 16.71%, respectively. Moreover, C. procera extracts produced significant reductions in tissue egg load (∼34-38.5%) and positively affected oogram pattern. CONCLUSION The present study may be useful to supplement information with regard to C. procera and F. elastica antischistosomal activity and provide a basis for further experimental trials.
Collapse
|
22
|
Liu CT, Raghu R, Lin SH, Wang SY, Kuo CH, Tseng YJ, Sheen LY. Metabolomics of ginger essential oil against alcoholic fatty liver in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11231-40. [PMID: 24171385 DOI: 10.1021/jf403523g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fatty liver is significantly associated with hepatic cirrhosis and liver cancer. Excessive alcohol consumption causes alcoholic fatty liver disease (AFLD). Ginger has been reported to exhibit antioxidant potential and hepatoprotective activity. In the present study, a mouse model for AFLD was developed by employing male C57BL/6 mice that were fed an alcohol-containing liquid diet (Lieber-DeCarli diet) ad libitum. In the treatment groups, ginger essential oil (GEO) and citral were orally administered every day for 4 weeks. Serum biochemical analysis, antioxidant enzyme activity analysis, and histopathological evaluation revealed that GEO and citral exhibited hepatoprotective activity against AFLD. Metabolites in serum samples were profiled by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS). Metabolomic data indicated the amounts of metabolites such as d-glucurono-6,3-lactone, glycerol-3-phosphate, pyruvic acid, lithocholic acid, 2-pyrocatechuic acid, and prostaglandin E1 were increased after alcohol administration, but the levels were recovered in treatment groups. The analysis indicated that ginger possesses hepatoprotective properties against AFLD. Furthermore, these metabolites can serve as early noninvasive candidate biomarkers in the clinical application of AFLD for health management.
Collapse
Affiliation(s)
- Chun-Ting Liu
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University , Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Improvement of liquid fructose-induced adipose tissue insulin resistance by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:590376. [PMID: 23533500 PMCID: PMC3594984 DOI: 10.1155/2013/590376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/25/2012] [Accepted: 01/12/2013] [Indexed: 02/06/2023]
Abstract
Adipose tissue insulin resistance (Adipo-IR) results in excessive release of free fatty acids from adipose tissue, which plays a key role in the development of “lipotoxicity.” Therefore, amelioration of Adipo-IR may benefit the treatment of other metabolic abnormalities. Here we found that treatment with the alcoholic extract of ginger (50 mg/kg/day, by oral gavage) for five weeks attenuated liquid fructose-induced hyperinsulinemia and an increase in the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. More importantly, ginger reversed the increases in the Adipo-IR index and plasma nonesterified fatty acid concentrations during the oral glucose tolerance test assessment. Adipose gene/protein expression profiles revealed that ginger treatment suppressed CD68 and F4/80, two important macrophage accumulation markers. Consistently, the macrophage-associated cytokines tissue necrosis factor alpha and interleukin-6 were also downregulated. In contrast, insulin receptor substrate (IRS)-1, but not IRS-2, was upregulated. Moreover, monocyte chemotactic protein (MCP)-1 and its receptor chemokine (C-C motif) receptor-2 were also suppressed. Thus these results suggest that amelioration of fructose-induced Adipo-IR by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines.
Collapse
|
24
|
Preventive and Protective Properties of Zingiber officinale (Ginger) in Diabetes Mellitus, Diabetic Complications, and Associated Lipid and Other Metabolic Disorders: A Brief Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:516870. [PMID: 23243452 PMCID: PMC3519348 DOI: 10.1155/2012/516870] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/21/2012] [Indexed: 12/20/2022]
Abstract
Zingiber officinale (ginger) has been used as herbal medicine to treat various ailments worldwide since antiquity. Recent evidence revealed the potential of ginger for treatment of diabetes mellitus. Data from in vitro, in vivo, and clinical trials has demonstrated the antihyperglycaemic effect of ginger. The mechanisms underlying these actions are associated with insulin release and action, and improved carbohydrate and lipid metabolism. The most active ingredients in ginger are the pungent principles, gingerols, and shogaol. Ginger has shown prominent protective effects on diabetic liver, kidney, eye, and neural system complications. The pharmacokinetics, bioavailability, and the safety issues of ginger are also discussed in this update.
Collapse
|
25
|
Hamed MA, Ali SA, El-Rigal NS. Therapeutic potential of ginger against renal injury induced by carbon tetrachloride in rats. ScientificWorldJournal 2012; 2012:840421. [PMID: 22566780 PMCID: PMC3329925 DOI: 10.1100/2012/840421] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to evaluate the potential of successive ginger extracts (petroleum ether, chloroform, and ethanol) against nephrotoxicity induced by CCl(4) in rats. The evaluation was done through measuring kidney antioxidant parameters: glutathione (GSH), lipid peroxides (LPO), and superoxide dismutase (SOD). Renal function test: urea, creatinine and serum protein values, were also evaluated. The work was extended to examine tissue inflammatory mediators, prostaglandin-E(2) (PGE(2)), collagen content and the kidney histopathology. Severe alterations in all biomarkers were observed after injury with CCl(4). Treatment with ginger extracts resulted in markedly decreased levels of LPO, PGE(2), collagen and kidney function tests, while increased levels of GSH, SOD and serum protein were observed. In conclusion, extracts of ginger, particularly the ethanol, resulted in an attractive candidate for the treatment of nephropathy induced by CCl(4) through scavenging free radicals, improved kidney functions, inhibition of inflammatory mediators, and normalizing the kidney histopathological architecture. Further studies are required in order to identify the molecules responsible of the pharmacological activity.
Collapse
Affiliation(s)
- Manal A Hamed
- Therapeutic Chemistry Department, National Research Center, Dokki 12311, Cairo, Egypt.
| | | | | |
Collapse
|
26
|
Kubra IR, Rao LJM. An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe). Crit Rev Food Sci Nutr 2012; 52:651-88. [PMID: 22591340 DOI: 10.1080/10408398.2010.505689] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ginger rhizome (Zingiber officinale Roscoe) is widely cultivated as a spice for its aromatic and pungent components. The essential oil and oleoresins from ginger are valuable products responsible for the characteristic flavor and pungency. Both are used in several food products such as soft beverages and also in many types of pharmaceutical formulations. More than 100 compounds have been reported from ginger, some of which are isolated and characterized, others are tentatively identified by GC-MS and / or LC-MS. [6]-Gingerol, the major gingerol in ginger rhizomes, has been found to possess many interesting pharmacological and physiological activities, such as anti-inflammatory, analgesic, and cardiotonic effects. Ginger is considered as "generally recognized as safe" (GRAS) by Food and Drug Administration (FDA), USA. Due to all these properties, ginger has gained considerable attention in developed countries in recent years, especially for its use in the treatment of inflammatory conditions. The present review is a persuasive presentation of the current information on processing, chemistry, biological activities, and medicinal uses of ginger. Further studies are required for the validation of the beneficial uses. Formulation for novel products and new usages may emerge in the years to come, based on the revealed results of various studies.
Collapse
Affiliation(s)
- I Rahath Kubra
- Plantation Products, Spices, and Flavor Technology Department, Central Food Technological Research Institute, Mysore-570020, India
| | | |
Collapse
|
27
|
Motawi TK, Hamed MA, Shabana MH, Hashem RM, Aboul Naser AF. Zingiber officinale acts as a nutraceutical agent against liver fibrosis. Nutr Metab (Lond) 2011; 8:40. [PMID: 21689445 PMCID: PMC3199745 DOI: 10.1186/1743-7075-8-40] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/20/2011] [Indexed: 02/08/2023] Open
Abstract
Background/objective Zingiber officinale Roscoe (ginger) (Zingiberaceae) has been cultivated for thousands of years both as a spice and for medicinal purposes. Ginger rhizomes successive extracts (petroleum ether, chloroform and ethanol) were examined against liver fibrosis induced by carbon tetrachloride in rats. Results The evaluation was done through measuring antioxidant parameters; glutathione (GSH), total superoxide dismutase (SOD) and malondialdehyde (MDA). Liver marker enzymes; succinate and lactate dehydrogenases (SDH and LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP), 5'- nucleotidase (5'NT) and liver function enzymes; aspartate and alanine aminotransferases (AST and ALT) as well as cholestatic markers; alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total bilirubin were estimated. Liver histopathological analysis and collagen content were also evaluated. Treatments with the selected extracts significantly increased GSH, SOD, SDH, LDH, G-6-Pase, AP and 5'NT. However, MDA, AST, ALT ALP, GGT and total bilirubin were significantly decreased. Conclusions Extracts of ginger, particularly the ethanol one resulted in an attractive candidate for the treatment of liver fibrosis induced by CCl4. Further studies are required in order to identify the molecules responsible of the pharmacological activity.
Collapse
Affiliation(s)
- Tarek K Motawi
- Therapeutic Chemistry Department, National Research Center, El-Tahrir St,, Dokki, Cairo, 12311, Egypt.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Recent research has rejuvenated centuries-old traditional herbs to cure various ailments by using modern tools like diet-based therapy and other regimens. Ginger is one of the classic examples of an herb used for not only culinary preparations but also for unique therapeutic significance owing to its antioxidant, antimicrobial, and anti-inflammatory potential. The pungent fractions of ginger, namely gingerols, shogaols, paradols, and volatile constituents like sesquiterpenes and monoterpenes, are mainly attributed to the health-enhancing perspectives of ginger. This review elucidates the health claims of ginger and the molecular aspects and targets, with special reference to anticancer perspectives, immunonutrition, antioxidant potential, and cardiovascular cure. The molecular targets involved in chemoprevention like the inhibition of NF-κB activation via impairing nuclear translocation, suppresses cIAP1 expression, increases caspase-3/7 activation, arrests cell cycle in G2 + M phases, up-regulates Cytochrome-c, Apaf-1, activates PI3K/Akt/I kappaB kinases IKK, suppresses cell proliferation, and inducts apoptosis and chromatin condensation. Similarly, facts are presented regarding the anti-inflammatory response of ginger components and molecular targets including inhibition of prostaglandin and leukotriene biosynthesis and suppression of 5-lipoxygenase. Furthermore, inhibition of phosphorylation of three mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK) are also discussed. The role of ginger in reducing the extent of cardiovascular disorders, diabetes mellitus, and digestive problems has also been described in detail. Although, current review articles summarized the literature pertaining to ginger and its components. However, authors are still of the view that further research should be immediately carried out for meticulousness.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
29
|
|
30
|
Wang X, Hasegawa J, Kitamura Y, Wang Z, Matsuda A, Shinoda W, Miura N, Kimura K. Effects of Hesperidin on the Progression of Hypercholesterolemia and Fatty Liver Induced by High-Cholesterol Diet in Rats. J Pharmacol Sci 2011; 117:129-38. [DOI: 10.1254/jphs.11097fp] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
31
|
Wang HM, Chen CY, Chen HA, Huang WC, Lin WR, Chen TC, Lin CY, Chien HJ, Lu PL, Lin CM, Chen YH. Zingiber officinale (ginger) compounds have tetracycline-resistance modifying effects against clinical extensively drug-resistant Acinetobacter baumannii. Phytother Res 2010; 24:1825-30. [PMID: 20564496 DOI: 10.1002/ptr.3201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Extensively drug-resistant Acinetobacter baumannii (XDRAB) is a growing and serious nosocomial infection worldwide, such that developing new agents against it is critical. The antimicrobial activities of the rhizomes from Zingiber officinale, known as ginger, have not been proven in clinical bacterial isolates with extensive drug-resistance. This study aimed to investigate the effects of four known components of ginger, [6]-dehydrogingerdione, [10]-gingerol, [6]-shogaol and [6]-gingerol, against clinical XDRAB. All these compounds showed antibacterial effects against XDRAB. Combined with tetracycline, they showed good resistance modifying effects to modulate tetracycline resistance. Using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, these four ginger compounds demonstrated antioxidant properties, which were inhibited by MnO₂, an oxidant without antibacterial effects. After the antioxidant property was blocked, their antimicrobial effects were abolished significantly. These results indicate that ginger compounds have antioxidant effects that partially contribute to their antimicrobial activity and are candidates for use in the treatment of infections with XDRAB.
Collapse
Affiliation(s)
- Hui-Min Wang
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung City 807, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:177-85. [PMID: 20190584 DOI: 10.1097/med.0b013e3283382286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Hattori T, Fei W, Kizawa T, Nishida S, Yoshikawa H, Kishida Y. The fixed herbal drug composition "Saikokaryukotsuboreito" prevents bone loss with an association of serum IL-6 reductions in ovariectomized mice model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:170-177. [PMID: 20097049 DOI: 10.1016/j.phymed.2009.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 10/14/2009] [Accepted: 12/14/2009] [Indexed: 05/28/2023]
Abstract
PURPOSE Saikokaryukotsuboreito (SRB) is a traditional Japanese herbal medicine that has been used to treat hyperlipidemia. As some studies have shown that lipid-lowering drugs reduce osteoporosis, we investigated the effect of SRB on bone metabolism in the postmenopausal period using an ovariectomized (OVX) murine model. MATERIAL AND METHODS Fifteen aged 9 weeks female mice were divided into three groups (n=5 each). The OVX group and SRB group underwent bilateral ovariectomy, after which the OVX group was fed a normal diet and the SRB group fed a normal diet containing 2% SRB. The sham group underwent sham surgery and was then fed a normal diet. Eight weeks after surgery, all mice were sacrificed, and bone volume, bone histomorphometric parameters, and bone-associated phenotype were compared among the groups. RESULTS Compared with the OVX group, the SRB group showed suppression of bone volume loss at the tibia (SRB group: 12.7+/-0.7%, OVX group: 9.8+/-0.4%; p=0.005, ANOVA) and lumbar spine (SRB group: 15.1+/-0.9%, OVX group: 11.3+/-0.1%; p=0.031, ANOVA). A significant decrease in eroded surface was also observed in SRB-treated ovariectomized mice compared with the OVX group (p=0.022, ANOVA). We also found that serum levels of interleukin (IL)-6, a primary mediator of bone resorption, in the SRB group were significantly lower than in the OVX group (SRB: 52.5+/-6.8pg/ml; OVX: 138.0+/-23.1pg/ml; p=0.011, ANOVA). However, unexpectedly, SRB did not affect estradiol and total cholesterol in ovariectomized mice. CONCLUSION SRB can prevent loss of bone volume and suppress serum IL-6 levels in this postmenopausal model and is a promising candidate for treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- T Hattori
- Department of Orthopaedics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|