1
|
Kabéle M, Lyytinen G, Bosson JA, Hedman L, Antoniewicz L, Lundbäck M, Mobarrez F. Nicotine in E-cigarette aerosol may lead to pulmonary inflammation. Respir Med 2025; 242:108101. [PMID: 40239848 DOI: 10.1016/j.rmed.2025.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Cigarette smoking stands as one of the leading causes of preventable death globally. Alternative tobacco products, such as e-cigarettes, have gained popularity due to the general perception of being less harmful. However, much is still unknown about the health implications of these novel products. In this study, we aimed to investigate if e-cigarettes could induce pulmonary inflammatory responses by measuring lung-related circulating extracellular vesicles (EVs) in the blood of healthy volunteers following brief e-cigarette vaping sessions, with and without nicotine. METHODS 22 healthy volunteers were included. Employing a randomized, double-blind, cross-over design all participants vaped 30 puffs of e-cigarette aerosol, with and without nicotine, over a 30-min period. Blood samples were collected at baseline, 30- and 105-min following exposure. Lung-related EVs were quantified using flow cytometry. Analyzed markers included angiotensin converting enzyme (ACE), aldehyde dehydrogenase 3B1 (ALDH3B1), palate, lung and epithelial clone (PLUNC), complement component 3 (C3), C-C motif chemokine ligand 3 (CCL3), also known as macrophage inflammatory protein 1 alpha (MIP-1α), and uteroglobin, also known as club cell protein 16 (CC16). All these markers are associated with pulmonary inflammation. RESULTS E-cigarette use, with nicotine but not without, resulted in a significant increase in three out of the six lung-related inflammatory markers measured and clear increases though not statistically significant in the remaining three. CONCLUSION The observed increase in levels of circulating lung-related inflammatory EV markers following vaping e-cigarette aerosol containing nicotine suggests that inhaled nicotine plays a central role in triggering pulmonary inflammation. CLINICALTRIALS gov ID: NCT04175457.
Collapse
Affiliation(s)
- Mikael Kabéle
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Gustaf Lyytinen
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.
| | - Jenny A Bosson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Linnea Hedman
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Lukasz Antoniewicz
- Department of Internal Medicine II, Division of Pulmonology, Medical University of Vienna, Vienna, Austria.
| | - Magnus Lundbäck
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.
| | - Fariborz Mobarrez
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Zabrzyński J, Pękala J, Zabrzyńska M, Pękala P, Łapaj Ł, LaPrade RF. The impact of smoking on meniscus surgery: a systematic review. EFORT Open Rev 2025; 10:193-202. [PMID: 40167455 PMCID: PMC12002735 DOI: 10.1530/eor-24-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/17/2024] [Accepted: 01/16/2025] [Indexed: 04/02/2025] Open
Abstract
Purpose To provide a comprehensive, systematic review on the relationship and effects of smoking on clinical outcomes after meniscus surgery. Methods The following combination of keywords was entered into the electronic search engines: meniscus, meniscus repairs, meniscectomy, meniscal tear, meniscus excision AND (smoke OR smoking OR nicotine OR tobacco). The year of the study, country, type of study, number of subjects, medial/lateral/both menisci, body mass index, smoking status, mean age, gender, follow-up, type/pattern of injury, surgical implications and clinical outcomes were recorded. Results A total of 23 studies published in 2013-2024 were included in the analysis. In ten studies, the meniscus injury was associated with an anterior cruciate ligament (ACL) tear. In four studies, the effect of smoking on meniscal allograft transplantation (MAT) was investigated. The neutral effect of smoking on meniscus surgery was revealed in nine studies, and only one of them focused on isolated meniscus pathology and surgery. The negative effect of smoking on meniscus surgery was shown in ten papers, with four papers focused on isolated meniscus tears and six papers presenting data with concurrent ACL reconstructions. Conclusions This systematic review found that the results regarding the impact of smoking on meniscus repair outcomes were conflicting. Nevertheless, MAT and meniscus repair performed in the presence of concurrent ligamentous injury, both being demanding surgical procedures, require reduction of factors that may contribute to failure. Therefore, cessation of smoking in patients undergoing these procedures is highly advised.
Collapse
Affiliation(s)
- Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine,Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Jakub Pękala
- International Evidence-Based Anatomy Working Group, Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Zabrzyńska
- Department of Orthopaedics and Traumatology, Faculty of Medicine,Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Przemysław Pękala
- International Evidence-Based Anatomy Working Group, Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland
| | - Łukasz Łapaj
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
3
|
Korde A, Ramaswamy A, Anderson S, Jin L, Zhang JG, Hu B, Velasco WV, Diao L, Wang J, Pisani MA, Sauler M, Boffa DJ, Puchalski JT, Yan X, Moghaddam SJ, Takyar SS. Cigarette smoke induces angiogenic activation in the cancer field through dysregulation of an endothelial microRNA. Commun Biol 2025; 8:511. [PMID: 40155749 PMCID: PMC11953391 DOI: 10.1038/s42003-025-07710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/10/2025] [Indexed: 04/01/2025] Open
Abstract
Cigarette smoke (CS) creates a "cancer field" in the lung that promotes malignant transformation. The molecular changes within this field are not fully characterized. We examined the significance of microRNA-1 (miR-1) downregulation as one of these changes. We found that tumor miR-1 levels in three non-small cell lung cancer cohorts show inverse correlations with the smoking burden. Lung MiR-1 levels follow a spatial gradient, have prognostic significance, and correlate inversely with the molecular markers of injury. In CS-exposed lungs, miR-1 is specifically downregulated in the endothelium. Exposure to CS induces angiogenesis by selectively degrading mature miR-1 via a vascular endothelial growth factor-driven pathway. Applying a multi-step molecular screen, we identified angiogenic genes regulated by miR-1 in the lungs of smokers. Knockdown of one of these genes, Notch homolog protein 3, simulates the anti-angiogenic effects of miR-1. These findings suggest that miR-1 can be used as an indicator of malignant transformation.
Collapse
Affiliation(s)
- Asawari Korde
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anuradha Ramaswamy
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seth Anderson
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Jin
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jian-Ge Zhang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Buqu Hu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Walter V Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margaret A Pisani
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel J Boffa
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan T Puchalski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shervin S Takyar
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Shen R, Guo Y, Shen C. Quantitative assessment of lung structure changes in low-intensity smokers: a retrospective study in a Chinese male cohort. Quant Imaging Med Surg 2025; 15:287-298. [PMID: 39838995 PMCID: PMC11744156 DOI: 10.21037/qims-24-1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025]
Abstract
Background With an increasing number of smokers who consume fewer cigarettes, it is crucial to understand the lung structure changes of low-intensity smoking. This study aimed to investigate the lung structure changes in low-intensity smokers in a Chinese male cohort. Methods Chest computed tomography (CT) examinations of 465 asymptomatic healthy male participants were divided into non-smoking (n=256), light-smoking (n=84), intermediate-smoking (n=85), and heavy-smoking (n=40) groups. Low-intensity smokers (fewer than 10 cigarettes per day) were included (n=32), and a new group of non-smokers was generated using propensity score matching according to age. Quantitative CT parameters, including the volume of the intrapulmonary vessel (IPVV), the volume of the lung, mean lung density (MLD), the low-attenuation areas below -910 Hounsfield units (LAA-910), and the volume ratio of intrapulmonary vessel to the lung for the total lung and each lobe were measured. Quantitative CT parameters were compared among the four smoking groups and also between the low-intensity smokers and non-smokers. Binary logistic regression was used to determine the independent quantitative CT measurements of smoking intensity. Results Compared with that in non-smokers, the IPVV and the MLD of the total lung and five lobes was significantly higher in light smokers (P<0.05); meanwhile, the LAA-910 of the total lung and five lobes of the light and intermediate smokers were significantly lower (P<0.05). The IPVV of the total lung and five lobes was significantly higher in the low-intensity smoking group (P<0.05). The IPVV of the total lung was the independent factor for discriminating between the non-smokers and light smokers (odds ratio =1.040; 95% confidence interval: 1.027-1.053) and between the non-smokers and low-intensity smokers (odds ratio =1.034; 95% confidence interval: 1.013-1.055). Conclusions CT-quantified measurements of the IPVVs and MLD increased in light and intermediate smokers. The IPVV of the total lung was selected as the independent factor between non-smokers and light smokers and between non-smokers and low-intensity smokers.
Collapse
Affiliation(s)
- Rui Shen
- Department of Positron Emission Tomography/Computed Tomography, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Gastroenterology, Xi’an Chest Hospital, Xi’an, China
| | - Youmin Guo
- Department of Positron Emission Tomography/Computed Tomography, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Cong Shen
- Department of Positron Emission Tomography/Computed Tomography, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Hassan M, Vinagolu-Baur J, Li V, Frasier K, Herrick G, Scotto T, Rankin E. E-cigarettes and arterial health: A review of the link between vaping and atherosclerosis progression. World J Cardiol 2024; 16:707-719. [PMID: 39734821 PMCID: PMC11669975 DOI: 10.4330/wjc.v16.i12.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024] Open
Abstract
Recent studies have suggested an evolving understanding of the association between vaping, specifically electronic cigarette (e-cigarette) use, and the progression of atherosclerosis, a significant contributor to cardiovascular disease. Despite the prevailing perception of vaping as a safer alternative to traditional tobacco smoking, accumulating evidence suggests that the aerosols emitted by e-cigarettes contain harmful constituents that may promote endothelial dysfunction, oxidative stress, inflammation, and dyslipidemia-key mechanisms implicated in atherosclerosis pathogenesis. While past research, including experimental studies and clinical investigations, has shed light on the potential cardiovascular risks associated with vaping, gaps in knowledge persist. Future research endeavors should focus on interpreting the long-term effects of vaping on atherosclerosis development and progression, exploring the impact of different e-cigarette formulations and user demographics, and identifying effective strategies for mitigating the cardiovascular consequences of vaping. By identifying and addressing these research gaps, we can enhance our understanding of the cardiovascular implications of vaping and inform evidence-based interventions and policies to safeguard public health.
Collapse
Affiliation(s)
- Muhammad Hassan
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States
| | - Julia Vinagolu-Baur
- Department of Medical Education, State University of New York, Upstate Medical University, Syracuse, NY 13210, United States
| | - Vivian Li
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States.
| | - Kelly Frasier
- Department of Medicine, Nuvance Health, Vassar Brothers Medical Center, Poughkeepsie, NY 12601, United States
| | - Grace Herrick
- Department of Medical Education, Alabama College of Osteopathic Medicine, Dothan, AL 36303, United States
| | - Tiffany Scotto
- Department of Medicine, University of Florida Health, Jacksonville, FL 32209, United States
| | - Erica Rankin
- Department of Medical Education, Nova Southeastern University Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL 33328, United States
| |
Collapse
|
6
|
Zhu Y, Webster MJ, Mendez Victoriano G, Middleton FA, Massa PT, Weickert CS. Molecular Evidence for Altered Angiogenesis in Neuroinflammation-Associated Schizophrenia and Bipolar Disorder Implicate an Abnormal Midbrain Blood-Brain Barrier. Schizophr Bull 2024:sbae184. [PMID: 39471484 DOI: 10.1093/schbul/sbae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Angiogenesis triggered by inflammation increases BBB permeability and facilitates macrophage transmigration. In the midbrain, we have discovered molecular alterations related to the blood-brain barrier (BBB), including endothelial cell changes associated with macrophage diapedesis, in neuroinflammatory schizophrenia and bipolar disorder, but changes in angiogenesis are yet to be reported. Hypothesis: We expected to discover molecular evidence of altered angiogenesis in the midbrain in individuals with schizophrenia and bipolar disorder compared to controls, with these changes more evident in "high" inflammation schizophrenia as compared to "low" inflammation. STUDY DESIGN In a case-control post-mortem cohort including schizophrenia (n = 35), bipolar disorder (n = 35), and controls (n = 33), we measured mRNA (RT-PCR) and protein (multiplex immunoassays) and performed immunohistochemistry to determine levels and anatomical distribution of angiogenesis-related molecules in the ventral midbrain. STUDY RESULTS We found large changes in angiogenesis factors in bipolar disorder high inflammatory subgroup (increased angiopoietin-2 and SERPINE1 mRNAs, but decreased angiopoietin-1, angiopoietin-2, and TEK receptor proteins). In schizophrenia high inflammatory subgroup, we found a robust increase in SERPINE1 mRNA and protein levels. However, we found no significant changes in angiopoietins in schizophrenia. We found that VEGFA mRNA level was increased in high inflammation schizophrenia, but only reached statistical significance compared to one low inflammatory subgroup. CONCLUSIONS Thus, angiogenesis signaling pathways appeared to be involved in the BBB alterations when inflammation is also present in the midbrain of schizophrenia and bipolar disorder, with increased levels of SERPINE1 in schizophrenia high inflammatory subgroup and with a putative suppression of angiopoietin signaling in bipolar disorder high inflammatory subgroup.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Maree J Webster
- Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, United States
| | - Gerardo Mendez Victoriano
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Frank A Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Paul T Massa
- Department of Neurology, Upstate Medical University, Syracuse, NY 13210, United States
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
7
|
Wang X, Ren B, Wang Q, Li J, Liu J, Yu D, Zhang Q, Bao X, Zhang J, Duan L. Encephaloduroarteriosynangiosis for Symptomatic Intracranial Atherosclerotic Arterial Steno-Occlusive Disease: Clinical and Radiological Outcomes. J Am Heart Assoc 2024; 13:e034707. [PMID: 39023071 PMCID: PMC11964043 DOI: 10.1161/jaha.124.034707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND This study investigated the long-term clinical and angiographic outcomes of encephaloduroarteriosynangiosis treatment for symptomatic intracranial atherosclerotic arterial steno-occlusive disease to further evaluate the potential therapeutic role of encephaloduroarteriosynangiosis in this population. METHODS AND RESULTS A total of 152 adult patients with symptomatic intracranial atherosclerotic arterial steno-occlusive disease who were treated with encephaloduroarteriosynangiosis and intensive medical management across 3 tertiary centers in China between January 2011 and September 2019 were retrospectively included. The primary outcomes were defined as postoperative cerebrovascular events, including ischemic and hemorrhagic stroke. The postoperative neovascularization was analyzed qualitatively and quantitatively by using angiography. Clinical, radiological, and long-term follow-up data were analyzed using Cox regression, logistic regression, and linear regression analyses. Primary outcome rates were 3.2% (5/152) within 30 days, 6.6% (10/152) within 2 years, 9.2% (14/152) within 5 years, and 11.1% (17/152) during a median 9.13 years follow-up. Initial infarction symptoms were positively associated with recurrent ischemic stroke. Additionally, posterior circulation involvement and coexisting cardiac disease indicated poorer neurological status, whereas encephaloduroarteriosynangiosis neovascularization efficacy was negatively associated with older age and vascular risk factors but positively associated with posterior circulation involvement. CONCLUSIONS Encephaloduroarteriosynangiosis plus intensive medical management appears efficacious and safe for symptomatic intracranial atherosclerotic arterial steno-occlusive disease, with low perioperative risk and favorable long-term results. Further prospective trials are needed to verify its efficacy and determine the optimal patient selection criteria.
Collapse
Affiliation(s)
- Xiao‐Peng Wang
- Medical School of Chinese PLABeijingChina
- Senior Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Bin Ren
- Senior Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Qian‐Nan Wang
- Senior Department of NeurosurgeryThe Eighth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jing‐Jie Li
- Medical School of Chinese PLABeijingChina
- Senior Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jia‐Qi Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurologyThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Dan Yu
- Senior Department of NeurosurgeryThe Fifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Qian Zhang
- Senior Department of NeurosurgeryThe Fifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiang‐Yang Bao
- Medical School of Chinese PLABeijingChina
- Senior Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jian‐Ning Zhang
- Medical School of Chinese PLABeijingChina
- Senior Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Lian Duan
- Medical School of Chinese PLABeijingChina
- Senior Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
8
|
Yari‐Boroujeni R, Cheraghi L, Masihay‐Akbar H, Azizi F, Amiri P. Cardiometabolic Profile in Young Adults With Diverse Cigarette Smoking Histories: A Longitudinal Study From Adolescence. J Am Heart Assoc 2024; 13:e032603. [PMID: 38842270 PMCID: PMC11255697 DOI: 10.1161/jaha.123.032603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND For the first time, the present study investigated smoking trajectory and cardiometabolic profile from adolescence to young adulthood in a middle-income developing country facing a high prevalence of smoking and cardiovascular disease-related outcomes. METHODS AND RESULTS Data on 1082 adolescents (12-18 years of age) who participated in the TLGS (Tehran Lipid and Glucose Study) were gathered, and participants were followed for a median of 12.5 years (baseline: 1999-2002, last follow-up: 2014-2017). Participants were categorized as non/rare smokers, experimenters, and escalators using group-based trajectory models. Statistical analysis was used to compare the trajectory groups' cardiometabolic components, clinical characteristics, and cardiometabolic changes due to the individuals' placement in experimenter and escalator groups compared with non/rare smokers. The smoking trajectory groups in young adulthood differ significantly in blood pressure, triglycerides, high-density lipoprotein cholesterol, waist circumference, and body mass index, with the escalator group having the highest risk values for each component. Significant differences were observed in blood pressure (P=0.014), triglycerides (P<0.001), and waist circumference (P<0.001) status after using clinical cut points. The adjusted linear regression revealed that the escalator group had 3.16 mm Hg-lower systolic blood pressure SBP (P=0.016), 2.69 mm Hg-lower diastolic blood pressure (P=0.011), and 4.42 mg/dL-lower high-density lipoprotein cholesterol (P=0.002), compared with the non/rare smoker group. CONCLUSIONS Despite elevated risks in unadjusted analyses for all cardiometabolic components among smokers, our study identified a modest protective link between early smoking and blood pressure in addition to a remarkable harmful association with high-density lipoprotein cholesterol levels exclusively in the escalator group during the developmental stage to young adulthood, using adjusted analyses.
Collapse
Affiliation(s)
- Reza Yari‐Boroujeni
- Research Center for Social Determinants of Health, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Cheraghi
- Research Center for Social Determinants of Health, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
- Department of Epidemiology and Biostatics, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Hasti Masihay‐Akbar
- Research Center for Social Determinants of Health, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Amiri
- Research Center for Social Determinants of Health, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Pan D, Guo J, Wu S, Wang H, Wang J, Wang C, Gu Y. Association of secondhand smoke exposure with all-cause mortality and cardiovascular death in patients with hypertension: Insights from NHANES. Nutr Metab Cardiovasc Dis 2024; 34:1779-1786. [PMID: 38658224 DOI: 10.1016/j.numecd.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND AIM The impact of environmental chemical exposure on blood pressure (BP) is well-established. However, the relationship between secondhand smoke exposure (SHSE) and mortality in hypertensive patients in the general population remains unclear. METHODS AND RESULTS This cohort study included US adults in the National Health and Nutrition Examination Survey from 2007 to 2018. All-cause mortality and cause-specific mortality outcomes were determined by associating them with the National Death Index records. Cox proportional risk models were used to estimate hazard ratios (HRs) for all-cause mortality and cardiovascular disease (CVD) mortality, and 95% confidence intervals (CIs) for SHSE. The cohort included 10,760 adult participants. The mean serum cotinine level was 0.024 ng/mL. During a mean follow-up period of 76.9 months, there were 1729 deaths, including 469 cardiovascular disease deaths recorded. After adjusting for lifestyle factors, BMI, hypertension duration, medication use, and chronic disease presence, the highest SHSE was significantly associated with higher all-cause and CVD mortality. CONCLUSIONS This study demonstrates that higher SHSE is significantly associated with higher all-cause mortality and CVD mortality. Further research is necessary to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Dikang Pan
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Julong Guo
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Sensen Wu
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Hui Wang
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing, China.
| | - Cong Wang
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yongquan Gu
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Kugo H, Moriyama T, Zaima N. Nicotine induces vasa vasorum stenosis in the aortic wall. Biotech Histochem 2024; 99:197-203. [PMID: 38780082 DOI: 10.1080/10520295.2024.2352724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease that involves aortic wall dilation. Cigarette smoking is an established risk factor and rupture, and nicotine may be a major contributor to the onset of AAA. In humans the condition is associated with stenosis of the vasa vasorum (VV), which may be caused by nicotine. In this study, we evaluated the effects of nicotine on VV pathology. After 4 weeks of nicotine administration to rats using an osmotic pump, the VV patency rate in the nicotine administration group was significantly lower than that in the control group. The levels of Ki-67, a cell proliferation marker, were significantly increased in the regions containing VV in the nicotine group, as were hypoxia inducible factor-α levels. Collagen levels around VV were significantly lower in the nicotine group than in the controls. Our data suggest that nicotine can cause VV stenosis by inducing abnormal proliferation of smooth muscle cells in the VV. The increased risk of AAA development due to cigarette smoking may be partially explained by nicotine-induced VV denaturation and collagen fiber degradation.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara City, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Japan
| |
Collapse
|
11
|
Zabrzyńska M, Pasiński M, Gagat M, Kułakowski M, Woźniak Ł, Elster K, Antosik P, Zabrzyński J. The Association between the Extent of the Osteoarthritic Meniscus Degeneration and Cigarette Smoking-A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:323. [PMID: 38399610 PMCID: PMC10890507 DOI: 10.3390/medicina60020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: The negative effects of smoking on the musculoskeletal system were presented by many authors, although the relationship between smoking and osteoarthritis remains unclear. The aim of this paper was to investigate the negative effects of smoking on meniscal tissue in osteoarthritic knees by microscopic examination, by adapting the Bonar scoring system and its modifications. Materials and Methods: The study involved 34 patients with varus knees, from whom 65 samples of knee menisci were obtained. The mean age in the studied group was 65.385 years. The smoking status of the patients concluded that there were 13 smokers and 21 nonsmokers. Results: Among smokers, the mean classical Bonar score was 8.42 and the mean modified Bonar score was 6.65, while nonsmokers were characterized by scores of 8.51 and 7.35, respectively. There was a statistically significant negative correlation between the number of cigarettes and the collagen in the medial meniscus (p = 0.0197). Moreover, in the medial meniscus, the modified Bonar score correlated negatively with the number of cigarettes (p = 0.0180). Similarly, such a correlation was observed between the number of cigarettes and the modified Bonar score in the lateral meniscus (p = 0.04571). Furthermore, no correlation was identified between the number of cigarettes and the classical Bonar score in the lateral meniscus. There was a statistically significant difference in the collagen variable value between the smokers and nonsmokers groups (p = 0.04525). Conclusions: The microscopic investigation showed no differences in the menisci of smokers and nonsmokers, except for the collagen, which was more organized in smokers. Moreover, the modified Bonar score was correlated negatively with the number of cigarettes, which supports the role of neovascularization in meniscus pathology under the influence of tobacco smoking.
Collapse
Affiliation(s)
- Maria Zabrzyńska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Maciej Pasiński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.P.); (J.Z.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland;
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Michał Kułakowski
- Independent Public Healthcare Center in Rypin, 87-500 Rypin, Poland; (M.K.); (K.E.)
| | - Łukasz Woźniak
- Department of Orthopaedics and Traumatology, University of Medical Sciences, 61-701 Poznan, Poland
| | - Karol Elster
- Independent Public Healthcare Center in Rypin, 87-500 Rypin, Poland; (M.K.); (K.E.)
| | - Paulina Antosik
- Department of Clinical Pathology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland;
| | - Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (M.P.); (J.Z.)
| |
Collapse
|
12
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
13
|
Nordenstam F, Norman M, Caidahl K, Wickström R. Arterial Stiffness and Carotid Intima-Media Thickness in Children Exposed to Smokeless Tobacco in Fetal Life. J Am Heart Assoc 2024; 13:e9128. [PMID: 38214274 PMCID: PMC10926805 DOI: 10.1161/jaha.123.032384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Arterial stiffening and increased intima-media thickness can be seen as early as childhood and are associated with increased risk of cardiovascular events in adult life. The authors hypothesized that exposure to prenatal smokeless tobacco (Swedish snus) without additional nicotine exposure after the breastfeeding period would be associated with increased arterial stiffness and intima-media thickening in preschool children. METHODS AND RESULTS This was a longitudinal follow-up cohort study of children aged 5 to 6 years exposed to high doses of nicotine in utero. Women exclusively using snus and unexposed controls were enrolled in early pregnancy (gestational age range, 6-12 weeks). Exposure data were collected during and after pregnancy with questionnaires from both groups. For this study, only children of women using >48 mg nicotine per day during their entire pregnancy were included in the exposure group. Outcomes were determined in 40 healthy children (21 exposed to snus in utero). Ultrasonography of the common carotid artery was used to determine carotid intima-media thickness and calculate arterial stiffness index from the relationship between pulsatile changes in arterial diameter and arterial pressure. Children exposed to snus in fetal life had higher carotid stiffness (median 4.1 [interquartile range (IQR), 2.4-5] versus 2.9 [IQR, 2.1-3.5]; P=0.014) than tobacco-free controls. Carotid strain (relative diameter change) was lower in children exposed to snus (mean 16% [SD, 5.7%] versus 21% [SD, 6.6%]) than in controls (P=0.015). Carotid intima-media thickness did not differ significantly between children exposed to snus and controls. CONCLUSIONS Exposure to snus during fetal life was associated with a stiffer carotid artery in preschool children.
Collapse
Affiliation(s)
- Felicia Nordenstam
- Pediatric Cardiology UnitKarolinska University HospitalStockholmSweden
- Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden
| | - Mikael Norman
- Department of NeonatologyKarolinska University HospitalStockholmSweden
- Division of Pediatrics, Department of Clinical Science, Intervention and TechnologyKarolinska InstitutetStockholmSweden
| | - Kenneth Caidahl
- Clinical PhysiologyKarolinska University HospitalStockholmSweden
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Ronny Wickström
- Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden
- Neuropediatric UnitKarolinska University HospitalStockholmSweden
| |
Collapse
|
14
|
Reid VJM, McLoughlin WKX, Pandya K, Stott H, Iškauskienė M, Šačkus A, Marti JA, Kurian D, Wishart TM, Lucatelli C, Peters D, Gray GA, Baker AH, Newby DE, Hadoke PWF, Tavares AAS, MacAskill MG. Assessment of the alpha 7 nicotinic acetylcholine receptor as an imaging marker of cardiac repair-associated processes using NS14490. EJNMMI Res 2024; 14:7. [PMID: 38206500 PMCID: PMC10784260 DOI: 10.1186/s13550-023-01058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiac repair and remodeling following myocardial infarction (MI) is a multifactorial process involving pro-reparative inflammation, angiogenesis and fibrosis. Noninvasive imaging using a radiotracer targeting these processes could be used to elucidate cardiac wound healing mechanisms. The alpha7 nicotinic acetylcholine receptor (ɑ7nAChR) stimulates pro-reparative macrophage activity and angiogenesis, making it a potential imaging biomarker in this context. We investigated this by assessing in vitro cellular expression of ɑ7nAChR, and by using a tritiated version of the PET radiotracer [18F]NS14490 in tissue autoradiography studies. RESULTS ɑ7nAChR expression in human monocyte-derived macrophages and vascular cells showed the highest relative expression was within macrophages, but only endothelial cells exhibited a proliferation and hypoxia-driven increase in expression. Using a mouse model of inflammatory angiogenesis following sponge implantation, specific binding of [3H]NS14490 increased from 3.6 ± 0.2 µCi/g at day 3 post-implantation to 4.9 ± 0.2 µCi/g at day 7 (n = 4, P < 0.01), followed by a reduction at days 14 and 21. This peak matched the onset of vessel formation, macrophage infiltration and sponge fibrovascular encapsulation. In a rat MI model, specific binding of [3H]NS14490 was low in sham and remote MI myocardium. Specific binding within the infarct increased from day 14 post-MI (33.8 ± 14.1 µCi/g, P ≤ 0.01 versus sham), peaking at day 28 (48.9 ± 5.1 µCi/g, P ≤ 0.0001 versus sham). Histological and proteomic profiling of ɑ7nAChR positive tissue revealed strong associations between ɑ7nAChR and extracellular matrix deposition, and rat cardiac fibroblasts expressed ɑ7nAChR protein under normoxic and hypoxic conditions. CONCLUSION ɑ7nAChR is highly expressed in human macrophages and showed proliferation and hypoxia-driven expression in human endothelial cells. While NS14490 imaging displays a pattern that coincides with vessel formation, macrophage infiltration and fibrovascular encapsulation in the sponge model, this is not the case in the MI model where the ɑ7nAChR imaging signal was strongly associated with extracellular matrix deposition which could be explained by ɑ7nAChR expression in fibroblasts. Overall, these findings support the involvement of ɑ7nAChR across several processes central to cardiac repair, with fibrosis most closely associated with ɑ7nAChR following MI.
Collapse
Affiliation(s)
- Victoria J M Reid
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | | | - Kalyani Pandya
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Holly Stott
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Monika Iškauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Judit A Marti
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Dominic Kurian
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas M Wishart
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Dan Peters
- DanPET AB, Malmo, Sweden
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gillian A Gray
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - David E Newby
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Mark G MacAskill
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
15
|
Whitehead AK, Li Z, LaPenna KB, Abbes N, Sharp TE, Lefer DJ, Lazartigues E, Yue X. Cardiovascular dysfunction induced by combined exposure to nicotine inhalation and high-fat diet. Am J Physiol Heart Circ Physiol 2024; 326:H278-H290. [PMID: 38038717 PMCID: PMC11219050 DOI: 10.1152/ajpheart.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Smoking and high-fat diet (HFD) consumption are two modifiable risk factors for cardiovascular (CV) diseases, and individuals who are overweight or obese due to unhealthy diet are more likely to use tobacco products. In this study, we aim to investigate the combined effects of nicotine (the addictive component of all tobacco products) and HFD on CV health, which are poorly understood. C57BL/6N male mice were placed on either HFD (60 kcal% fat) or regular diet (22 kcal% fat) and exposed to air or nicotine vapor for 10-12 wk. CV function was monitored by echocardiography and radiotelemetry, with left ventricular (LV) catheterization and aortic ring vasoreactivity assays performed at end point. Mice on HFD exhibited increased heart rate and impaired parasympathetic tone, whereas nicotine exposure increased sympathetic vascular tone as evidenced by increased blood pressure (BP) response to ganglionic blockade. Although neither nicotine nor HFD alone or in combination significantly altered BP, nicotine exposure disrupted circadian BP regulation with reduced BP dipping. LV catheterization revealed that combined exposure to nicotine and HFD led to LV diastolic dysfunction with increased LV end-diastolic pressure (LVEDP). Moreover, combined exposure resulted in increased inhibitory phosphorylation of endothelial nitric oxide synthase and greater impairment of endothelium-dependent vasodilation. Finally, a small cohort of C57BL/6N females with combined exposure exhibited similar increases in LVEDP, indicating that both sexes are susceptible to the combined effect of nicotine and HFD. In summary, combined exposure to nicotine and HFD leads to greater CV harm, including both additive and new-onset CV dysfunction.NEW & NOTEWORTHY Nicotine product usage and high-fat diet consumption are two modifiable risk factors for cardiovascular diseases. Here, we demonstrate that in mice, combined exposure to inhaled nicotine and high-fat diet results in unique cardiovascular consequences compared with either treatment alone, including left ventricular diastolic dysfunction, dysregulation of blood pressure, autonomic dysfunction, and greater impairment of endothelium-dependent vasorelaxation. These findings indicate that individuals who consume both nicotine products and high-fat diet have distinctive cardiovascular risks.
Collapse
Affiliation(s)
- Anna K Whitehead
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Kyle B LaPenna
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Nour Abbes
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Thomas E Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Medicine Section of Cardiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Southeast Louisiana Veterans Health Care Systems, New Orleans, Louisiana, United States
| | - Xinping Yue
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| |
Collapse
|
16
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Pataka A, Kotoulas SC, Karkala A, Tzinas A, Kalamaras G, Kasnaki N, Sourla E, Stefanidou E. Obstructive Sleep Apnea and Smoking Increase the Risk of Cardiovascular Disease: Smoking Cessation Pharmacotherapy. J Clin Med 2023; 12:7570. [PMID: 38137639 PMCID: PMC10743586 DOI: 10.3390/jcm12247570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Tobacco smoking has been a recognized risk factor for cardiovascular diseases (CVD). Smoking is a chronic relapsing disease and pharmacotherapy is a main component of smoking cessation. Obstructive sleep apnea (OSA) and smoking both increase the risk of CVD and are associated with significant morbidity and mortality. There are few existing data examining how pharmacological treatment, such as nicotine replacement therapy (NRT), bupropion, and varenicline, affect smokers suffering with OSA and especially their cardiovascular effects. The aim of this review was to evaluate the effects of smoking cessation pharmacotherapy on OSA with a special emphasis on the cardiovascular system. Results: Only small studies have assessed the effect of NRTs on OSA. Nicotine gum administration showed an improvement in respiratory events but with no permanent results. No specific studies were found on the effect of bupropion on OSA, and a limited number evaluated varenicline's effects on sleep and specifically OSA. Varenicline administration in smokers suffering from OSA reduced the obstructive respiratory events, especially during REM. Studies on second-line medication (nortriptyline, clonidine, cytisine) are even more limited. There are still no studies evaluating the cardiovascular effects of smoking cessation medications on OSA patients. Conclusions: Sleep disturbances are common withdrawal effects during smoking cessation but could be also attributed to pharmacotherapy. Smokers should receive personalized treatment during their quitting attempts according to their individual needs and problems, including OSA. Future studies are needed in order to evaluate the efficacy and safety of smoking cessation medications in OSA patients.
Collapse
Affiliation(s)
- Athanasia Pataka
- Respiratory Failure Unit, G. Papanikolaou Hospital Thessaloniki, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (A.K.); (A.T.); (G.K.); (N.K.); (E.S.); (E.S.)
| | | | - Aliki Karkala
- Respiratory Failure Unit, G. Papanikolaou Hospital Thessaloniki, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (A.K.); (A.T.); (G.K.); (N.K.); (E.S.); (E.S.)
| | - Asterios Tzinas
- Respiratory Failure Unit, G. Papanikolaou Hospital Thessaloniki, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (A.K.); (A.T.); (G.K.); (N.K.); (E.S.); (E.S.)
| | - George Kalamaras
- Respiratory Failure Unit, G. Papanikolaou Hospital Thessaloniki, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (A.K.); (A.T.); (G.K.); (N.K.); (E.S.); (E.S.)
| | - Nectaria Kasnaki
- Respiratory Failure Unit, G. Papanikolaou Hospital Thessaloniki, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (A.K.); (A.T.); (G.K.); (N.K.); (E.S.); (E.S.)
| | - Evdokia Sourla
- Respiratory Failure Unit, G. Papanikolaou Hospital Thessaloniki, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (A.K.); (A.T.); (G.K.); (N.K.); (E.S.); (E.S.)
| | - Emiliza Stefanidou
- Respiratory Failure Unit, G. Papanikolaou Hospital Thessaloniki, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (A.K.); (A.T.); (G.K.); (N.K.); (E.S.); (E.S.)
| |
Collapse
|
18
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
19
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
21
|
Lv J, Meng S, Gu Q, Zheng R, Gao X, Kim JD, Chen M, Xia B, Zuo Y, Zhu S, Zhao D, Li Y, Wang G, Wang X, Meng Q, Cao Q, Cooke JP, Fang L, Chen K, Zhang L. Epigenetic landscape reveals MECOM as an endothelial lineage regulator. Nat Commun 2023; 14:2390. [PMID: 37185814 PMCID: PMC10130150 DOI: 10.1038/s41467-023-38002-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
A comprehensive understanding of endothelial cell lineage specification will advance cardiovascular regenerative medicine. Recent studies found that unique epigenetic signatures preferentially regulate cell identity genes. We thus systematically investigate the epigenetic landscape of endothelial cell lineage and identify MECOM to be the leading candidate as an endothelial cell lineage regulator. Single-cell RNA-Seq analysis verifies that MECOM-positive cells are exclusively enriched in the cell cluster of bona fide endothelial cells derived from induced pluripotent stem cells. Our experiments demonstrate that MECOM depletion impairs human endothelial cell differentiation, functions, and Zebrafish angiogenesis. Through integrative analysis of Hi-C, DNase-Seq, ChIP-Seq, and RNA-Seq data, we find MECOM binds enhancers that form chromatin loops to regulate endothelial cell identity genes. Further, we identify and verify the VEGF signaling pathway to be a key target of MECOM. Our work provides important insights into epigenetic regulation of cell identity and uncovered MECOM as an endothelial cell lineage regulator.
Collapse
Affiliation(s)
- Jie Lv
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Qilin Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Rongbin Zheng
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinlei Gao
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun-Dae Kim
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Min Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Xia
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Yihan Zuo
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sen Zhu
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Dongyu Zhao
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanqiang Li
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Xin Wang
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Qingshu Meng
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qi Cao
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Lili Zhang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Chhor M, Tulpar E, Nguyen T, Cranfield CG, Gorrie CA, Chan YL, Chen H, Oliver BG, McClements L, McGrath KC. E-Cigarette Aerosol Condensate Leads to Impaired Coronary Endothelial Cell Health and Restricted Angiogenesis. Int J Mol Sci 2023; 24:ijms24076378. [PMID: 37047355 PMCID: PMC10094580 DOI: 10.3390/ijms24076378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as an alternative smoking cessation device, which has been increasingly used by non-smokers; however, the cardiovascular effects surrounding the use of e-Cigs remains unclear. This study aimed to investigate the effects of e-Cig aerosol condensate (EAC) (0 mg and 18 mg nicotine) in vitro on human coronary artery endothelial cells (HCAEC) and in vivo on the cardiovascular system using a mouse model of ‘e-vaping’. In vitro results show a decrease in cell viability of HCAEC when exposed to EAC either directly or after exposure to conditioned lung cell media (p < 0.05 vs. control). Reactive oxygen species were increased in HCAEC when exposed to EAC directly or after exposure to conditioned lung cell media (p < 0.0001 vs. control). ICAM-1 protein expression levels were increased after exposure to conditioned lung cell media (18 mg vs. control, p < 0.01). Ex vivo results show an increase in the mRNA levels of anti-angiogenic marker, FKBPL (p < 0.05 vs. sham), and endothelial cell adhesion molecule involved in barrier function, ICAM-1 (p < 0.05 vs. sham) in murine hearts following exposure to electronic cigarette aerosol treatment containing a higher amount of nicotine. Immunohistochemistry also revealed an upregulation of FKBPL and ICAM-1 protein expression levels. This study showed that despite e-Cigs being widely used for tobacco smoking cessation, these can negatively impact endothelial cell health with a potential to lead to the development of cardiovascular disease.
Collapse
Affiliation(s)
- Michael Chhor
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Esra Tulpar
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Charles G. Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Catherine A. Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Correspondence: (L.M.); (K.C.M.)
| | - Kristine C. McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
- Correspondence: (L.M.); (K.C.M.)
| |
Collapse
|
23
|
Cardiovascular Disease as a Consequence or a Cause of Cancer: Potential Role of Extracellular Vesicles. Biomolecules 2023; 13:biom13020321. [PMID: 36830690 PMCID: PMC9953640 DOI: 10.3390/biom13020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Both cardiovascular disease and cancer continue to be causes of morbidity and mortality all over the world. Preventing and treating heart disease in patients undergoing cancer treatment remain an important and ongoing challenge for improving the lives of cancer patients, but also for their survival. Despite ongoing efforts to improve patient survival, minimal advances have been made in the early detection of cardiovascular disease in patients suffering from cancer. Understanding the communication between cancer and cardiovascular disease can be based on a deeper knowledge of the molecular mechanisms that define the profile of the bilateral network and establish disease-specific biomarkers and therapeutic targets. The role of exosomes, microvesicles, and apoptotic bodies, together defined as extracellular vesicles (EVs), in cross talk between cardiovascular disease and cancer is in an incipient form of research. Here, we will discuss the preclinical evidence on the bilateral connection between cancer and cardiovascular disease (especially early cardiac changes) through some specific mediators such as EVs. Investigating EV-based biomarkers and therapies may uncover the responsible mechanisms, detect the early stages of cardiovascular damage and elucidate novel therapeutic approaches. The ultimate goal is to reduce the burden of cardiovascular diseases by improving the standard of care in oncological patients treated with anticancer drugs or radiotherapy.
Collapse
|
24
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
25
|
Moraes CAD, Thal BVN, Bannwart JV, Jacomini RA, Breda-Stella M, Carvalho CAF. Impact of passive smoking on renal vascular morphology. EINSTEIN-SAO PAULO 2022; 20:eAO0011. [PMID: 35894376 PMCID: PMC9337844 DOI: 10.31744/einstein_journal/2022ao0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
Objective To determine whether passive smoking causes morphological and structural changes in the arcuate arteries of rats exposed for 7 to 28 days. Methods Wistar rats aged eight weeks and weighing 260g on average were allocated to a Control or a Smoker Group. Groups were further divided into 4 groups containing 5 animals each. Morphological-functional analysis of the right kidneys was carried out after 7 and 28 days of exposure to the smoke of 40 cigarettes per day. Cigarettes were burned at set times using automated cigarette-burning equipment (“Smoking Machine” - SM-MC-01). At the end of each exposure period, the kidneys were dissected and submitted to histological processing for morphological and quantitative analysis. Results Exposure to cigarette smoke for 7 days led to a decrease in inner vascular diameter. Decreased thickness of the vascular tunica media was observed after exposure for 28 days. Increased thickness of the tunica adventitia, increased total vascular wall thickness, increased total vascular diameter and qualitative increase in collagen deposition were observed. Vascular volume increased after 28 days of exposure. Conclusion Passive smoking has a negative impact on renal vasculature.
Collapse
|
26
|
Khodabandeh Z, Valilo M, Velaei K, Pirpour Tazehkand A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer 2022; 29:778-789. [PMID: 35583594 DOI: 10.1007/s12282-022-01369-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
A large body of research studying the relationship between tobacco and cancer has led to the knowledge that smoking cigarettes adversely affects cancer treatment while contributing to the development of various tobacco-related cancers. Nicotine is the main addictive component of tobacco smoke and promotes angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT) while promoting growth and metastasis of tumors. Nicotine generally acts through the induction of the nicotinic acetylcholine receptors (nAChRs), although the contribution of other receptor subunits has also been reported. Nicotine contributes to the pathogenesis of a wide range of cancers including breast cancer through its carcinogens such as (4-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN). Current study aims to review the mechanistic function of nicotine in the initiation, development, angiogenesis, invasion, metastasis, and apoptosis of breast cancer with the main focus on nicotine acetylcholine receptors (nAChRs) and nAChR-mediated signaling pathways as well as on its potential for the development of an effective treatment against breast cancer. Moreover, we will try to demonstrate how nicotine leads to poor treatment response in breast cancer by enhancing the population, proliferation, and self-renewal of cancer stem cells (CSCs) through the activation of α7-nAChR receptors.
Collapse
Affiliation(s)
- Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abbas Pirpour Tazehkand
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Iglesias-Rey R, Custodia A, Alonso-Alonso ML, López-Dequidt I, Rodríguez-Yáñez M, Pumar JM, Castillo J, Sobrino T, Campos F, da Silva-Candal A, Hervella P. The Smoking Paradox in Stroke Patients Under Reperfusion Treatment Is Associated With Endothelial Dysfunction. Front Neurol 2022; 13:841484. [PMID: 35401421 PMCID: PMC8987913 DOI: 10.3389/fneur.2022.841484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to explore the association between smoking habit and the serum levels of soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK), in relation with the functional outcome of patients with acute ischemic stroke undergoing reperfusion treatment. Methods Observational and retrospective study of a series of patients with acute ischemic stroke subjected to reperfusion treatments. Clinical, analytical, and neuroimaging parameters were analyzed. The main endpoint was the functional outcome at 3 months, measured by the modified Ranking Scale (mRS). Logistic regression models were used to analyze the association between smoking and sTWEAK levels with functional outcome and leukoaraiosis. Results The results showed that smoking habit was associated with a good functional outcome at 3 months in patients with stroke (OR: 3.52; 95% CI: 1.03–11.9; p = 0.044). However, this independent association was lost after adjusting by sTWEAK levels (OR 1.73; 95% CI: 0.86–13.28; p = 0.116). sTWEAK levels were significantly lower in smoker patients [4015.5 (973.66–7921.83) pg/ml vs. 5,628 (2,848–10,202) pg/ml, p < 0.0001], while sTWEAK levels were significantly higher in patients with poor functional outcomes at 3 months [10,284 (7,388–13.247) pg/ml vs. 3,405 (2,329–6,629) pg/ml, p < 0.0001]. Conclusion The decrease in sTWEAK levels was associated with a good functional outcome in smoker patients with stroke undergoing reperfusion therapy.
Collapse
Affiliation(s)
- Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Ramón Iglesias-Rey
| | - Antía Custodia
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- NeuroAging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Santiago de Compostela, Spain
| | - José M. Pumar
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Neuroradiology, Hospital Clínico Universitario de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- NeuroAging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Andres da Silva-Candal
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Neurovascular Diseases Laboratory, Neurology Service, University Hospital Complex of A Coruña, Biomedical Research Institute, A Coruña, Spain
- Andres da Silva-Candal
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Pablo Hervella
| |
Collapse
|
28
|
The Natural Compound Dehydrocrenatidine Attenuates Nicotine-Induced Stemness and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma by Regulating a7nAChR-Jak2 Signaling Pathways. DISEASE MARKERS 2022; 2022:8316335. [PMID: 35111269 PMCID: PMC8803439 DOI: 10.1155/2022/8316335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
Background Exposure to nicotine has been observed associated with tumor progression, metastasis, and therapy resistance of many cancers. Hepatocellular carcinoma (HCC) is one major cancer related to the liver and the most difficult to treat malignancies worldwide. The underlying mechanism of nicotine in the stimulation of HCC tumorigenesis is still not studied well. Methods Classically, nicotine binds to nicotinic acetylcholine receptors (nAChRs) and induces many downstream cancer-associated signaling pathways. Big data analysis is used to explore the importance of a7nAChR-Jak2 axis in the progression of hepatocellular carcinoma. Bioinformatic analysis was performed to determine gene associated with a7nAChR-Jak2 axis of HCC patients. Biological importance of a7nAChR-Jak2 axis was investigated in vitro (Hun7 and HepG2 cell lines), and athymic nude mouse models bearing HepG2-HCC cells xenografts were established in vivo. Result We found that nicotine exposure stimulated the HCC tumorigenicity by inducing the expression of one of the key nAChRs subunit that is α7nAChR as well as the expression of Janus kinase (JAK)-2. In both the in vitro and in vivo studies, the reduced overexpression of α7nAChR and increased sensitization of HCC towards treatment is observed with dehydrocrenatidine (DHCT), a novel and potent JAK family kinase inhibitor. Interestingly, DHCT treatment results in the reduction of the epithelial-mesenchymal transition process which leads to a significant reduction of clonogenicity, migratory, and invasive ability of HCC cells. Moreover, DHCT treatment also inhibits the cancer stem cell phenotype by inhibiting the tumor-sphere formation and reducing the number of ALDH1+ cells population in nicotine-stimulated HCC cells. Conclusions Taken together, the presented results indicate the positive effect of inhibition of nicotine induced overexpression of α7nAChR and JAK2, unique to HCC. Thus, these findings suggest the nicotine effect on HCC progression via α7nAChR-mediated JAK2 signaling pathways, and DHCT treatment enhances the therapeutic potential of HCC patients via overcoming/reversing the effect of nicotine in HCC patients.
Collapse
|
29
|
Nicotine-mediated OTUD3 downregulation inhibits VEGF-C mRNA decay to promote lymphatic metastasis of human esophageal cancer. Nat Commun 2021; 12:7006. [PMID: 34853315 PMCID: PMC8636640 DOI: 10.1038/s41467-021-27348-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Nicotine addiction and the occurrence of lymph node spread are two major significant factors associated with esophageal cancer's poor prognosis; however, nicotine's role in inducing lymphatic metastasis of esophageal cancer remains unclear. Here we show that OTU domain-containing protein 3 (OTUD3) is downregulated by nicotine and correlates with poor prognosis in heavy-smoking esophageal cancer patients. OTUD3 directly interacts with ZFP36 ring finger protein (ZFP36) and stabilizes it by inhibiting FBXW7-mediated K48-linked polyubiquitination. ZFP36 binds with the VEGF-C 3-'UTR and recruits the RNA degrading complex to induce its rapid mRNA decay. Downregulation of OTUD3 and ZFP36 is essential for nicotine-induced VEGF-C production and lymphatic metastasis in esophageal cancer. This study establishes that the OTUD3/ZFP36/VEGF-C axis plays a vital role in nicotine addiction-induced lymphatic metastasis, suggesting that OTUD3 may serve as a prognostic marker, and induction of the VEGF-C mRNA decay might be a potential therapeutic strategy against human esophageal cancer.
Collapse
|
30
|
Lemmens S, Luyts M, Gerrits N, Ivanova A, Landtmeeters C, Peeters R, Simons A, Vercauteren J, Sunaric‐Mégevand G, Van Keer K, Molenberghs G, De Boever P, Stalmans I. Age-related changes in the fractal dimension of the retinal microvasculature, effects of cardiovascular risk factors and smoking behaviour. Acta Ophthalmol 2021; 100:e1112-e1119. [PMID: 34747106 PMCID: PMC9546094 DOI: 10.1111/aos.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Purpose This cross‐sectional study investigates the association between retinal vessel complexity and age and studies the effects of cardiovascular health determinants. Methods Retinal vessel complexity was assessed by calculating the box‐counting fractal dimension (Df) from digital fundus photographs of 850 subjects (3–97 years). All photographs were labelled as ‘non‐pathological’ by the treating ophthalmologist. Results Statistical models showed a significantly decreasing relationship between age and Df (linear: R‐squared = 0.1897, p < 0.0001; quadratic: R‐squared = 0.2343, p < 0.0001; cubic: R‐squared = 0.2721, p < 0.0001), with the cubic regression model offering the best compromise between accuracy and model simplicity. Multivariate cubic regression showed that age, spherical equivalent and smoking behaviour have an effect (p < 0.0001) on Df. A significantly increasing effect of the number of pack‐years on Df was observed (effect: 0.0004, p = 0.0017), as well as a significantly decreasing effect of years since tobacco abstinence (effect: −0.0149, p < 0.0001). Conclusion We propose using a cubic trend with age, refractive error and smoking behaviour when interpreting retinal vessel complexity.
Collapse
Affiliation(s)
- Sophie Lemmens
- Department of Ophthalmology University Hospitals UZ Leuven Leuven Belgium
- Biomedical Sciences Group Department of Neurosciences Research Group Ophthalmology KU Leuven Leuven Belgium
- Health Unit VITO (Flemish Institute for Technological Research) Mol Belgium
| | | | - Nele Gerrits
- Health Unit VITO (Flemish Institute for Technological Research) Mol Belgium
| | | | - Charlien Landtmeeters
- Biomedical Sciences Group Department of Neurosciences Research Group Ophthalmology KU Leuven Leuven Belgium
| | - Reinout Peeters
- Biomedical Sciences Group Department of Neurosciences Research Group Ophthalmology KU Leuven Leuven Belgium
| | - Anne‐Sophie Simons
- Biomedical Sciences Group Department of Neurosciences Research Group Ophthalmology KU Leuven Leuven Belgium
| | - Julie Vercauteren
- Biomedical Sciences Group Department of Neurosciences Research Group Ophthalmology KU Leuven Leuven Belgium
| | | | - Karel Van Keer
- Department of Ophthalmology University Hospitals UZ Leuven Leuven Belgium
- Biomedical Sciences Group Department of Neurosciences Research Group Ophthalmology KU Leuven Leuven Belgium
| | | | - Patrick De Boever
- Health Unit VITO (Flemish Institute for Technological Research) Mol Belgium
- Centre for Environmental Sciences Hasselt University Diepenbeek Belgium
- Department of Biology University of Antwerp Wilrijk Belgium
| | - Ingeborg Stalmans
- Department of Ophthalmology University Hospitals UZ Leuven Leuven Belgium
- Biomedical Sciences Group Department of Neurosciences Research Group Ophthalmology KU Leuven Leuven Belgium
| |
Collapse
|
31
|
Sharma M, Shetty SS, Radhakrishnan R. Novel Pathways and Mechanism of Nicotine-Induced Oral Carcinogenesis. Recent Pat Anticancer Drug Discov 2021; 17:66-79. [PMID: 34365933 DOI: 10.2174/1574892816666210806161312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Smokeless Tobacco (SLT) contains 9 times more nicotine than Smoked Tobacco (SMT). The carcinogenic effect of nicotine is intensified by converting nicotine-to-nicotine-derived Nitrosamines (NDNs). METHODS A review of the literature was conducted with a tailored search strategy to unravel the novel pathways and mechanisms of nicotine-induced oral carcinogenesis. RESULTS Nicotine and NDNs act on nicotinic Acetylcholine Receptors (nAChRs) as agonists. Nicotine facilitates cravings through α4β2nAChR and α7nAChR, via enhanced brain dopamine release. Nicotine binding to nAChR promotes proliferation, migration, invasion, chemoresistance, radioresistance, and metastasis of oral cancer cells. Nicotine binding to α7nAChR on keratinocytes triggers Ras/Raf-1/MEK1/ERK cascade promoting anti-apoptosis and pro-proliferative effects. Furthermore, the nicotine-enhanced metastasis is subdued on nAChR blockade through reduced nuclear localization of p-EGFR. CONCLUSION Protracted exposure to nicotine/NDN augments cancer-stimulatory α7nAChR and desensitizes cancer inhibitory α4β2nAChR. Since nAChRs dictate both addictive and carcinogenic effects of nicotine, it seems counterintuitive to designate nicotine just as an addictive agent devoid of any carcinogenicity.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad - 121004. India
| | - Smitha S Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal, (Karnataka). India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal - 576104. India
| |
Collapse
|
32
|
Jaleel Z, Blasberg E, Troiano C, Montanaro P, Mazzilli S, Gertje HP, Crossland NA, Platt M, Spiegel J. Association of vaping with decreased vascular endothelial growth factor expression and decreased microvessel density in cutaneous wound healing tissue in rats. Wound Repair Regen 2021; 29:1024-1034. [PMID: 34129265 DOI: 10.1111/wrr.12945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/13/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022]
Abstract
Vaping is suggested to be a risk factor for poor wound healing akin to smoking. However, the molecular and histologic mechanisms underlying this postulation remain unknown. Our study sought to compare molecular and histologic changes in cutaneous flap and non-flap tissue between vaping, smoking and control cohorts. Animal study of 15 male Sprague-Dawley rats was randomized to three cohorts: negative control (n = 5), e-cigarette (n = 5) and cigarette (n = 5) and exposed to their respective treatments with serum cotinine monitoring. After 30 days, random pattern flaps were raised and healed for 2 weeks after which skin punch biopsies of flap and non-flap tissues were collected for quantitative-reverse transcription-polymerase chain reaction of three selected wound healing genes (transforming growth factor β [TGF-β], vascular endothelial growth factor [VEGF], matrix metalloproteinase-1 [MMP-1]); then, immunohistochemistry for CD68 expression, α-smooth muscle actin looking at microvessel density (MVD) and in situ hybridization to localize VEGF production were undertaken. In flap tissue, vaping (mean[SEM]) (0.61[0.07]) and smoking (0.70[0.04]) were associated with decreased fold change of VEGF expression compared with controls (0.91[0.03]) (p < 0.05, p < 0.05, respectively). In non-flap tissue, only vaping was associated with decreased VEGF expression (mean[SEM]) (0.81[0.07]), compared with controls (1.17[0.10]) (p < 0.05) with expression primarily localized to basal keratinocytes and dermal capillaries. Immunohistochemistry showed decreased MVD in smoking (0.27[0.06]) and vaping (0.26[0.04]) flap tissue compared to matched controls (0.65[0.14]) (p < 0.05, p < 0.05, respectively) and decreased areas of fibrosis compared with controls on gross histology. Vaping and smoking were similarly associated with decreased VEGF expression, MVD and fibrotic changes in flap tissue. The results suggest attenuated angiogenesis via decreased VEGF expression as a mechanism for poor wound healing in vaping-exposed rats.
Collapse
Affiliation(s)
- Zaroug Jaleel
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth Blasberg
- Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Chelsea Troiano
- Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Paige Montanaro
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sarah Mazzilli
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hans Peter Gertje
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael Platt
- Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey Spiegel
- Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Otolaryngology/Head and Neck Surgery, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Youssef ME, El-Mas MM, Abdelrazek HM, El-Azab MF. α7-nAChRs-mediated therapeutic angiogenesis accounts for the advantageous effect of low nicotine doses against myocardial infarction in rats. Eur J Pharmacol 2021; 898:173996. [PMID: 33684450 DOI: 10.1016/j.ejphar.2021.173996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Angiogenesis accelerates tissue regeneration in a variety of ischemic conditions including myocardial infarction (MI). Here we tested the hypothesis that angiogenesis induced by α7-nicotinic acetylcholine receptors (α7-nAChRs) mitigates histopathological, electrocardiographic, and molecular consequences of MI in rats. These profiles were evaluated in the isoprenaline (85 mg/kg/day i. p. For 2 days) MI rat model treated with or without nicotine or PHA-543613 (PHA, selective α7-nAChR agonist). Isoprenaline-insulted rats showed (i) ECG signs of MI such as significant ST-segment elevations and prolonged QT-intervals, (ii) deteriorated left ventricular histopathological scoring and elevated inflammatory cell infiltration, (iii) reduced immunohistochemical expression of cardiac CD34, a surrogate marker of capillary density, (iv) decreased cardiac expression of iNOS and α7-nAChRs, and (v) adaptive increases in cardiac HO-1 expression and plasma angiogenic markers such as vascular endothelial growth factor (VEGF) and nitric oxide (NO). These effects of isoprenaline, except cardiac iNOS and α7-nAChRs downregulation, were ameliorated in rats treated with a low dose (20 μg/kg/day s. c. For 16 days) of nicotine or PHA. We also show that concurrent α7-nAChR blockade by methyllycaconitine (MLA, 40 μg/kg/day, for 16 days) reversed the ECG, histopathological, and capillary density effects of nicotine, thereby reinforcing the advantageous cardioprotective and anti-ischemic roles of α7-nAChRs in this setting. The observed results showed promising effects on isoprenaline induced myocardial damage. In conclusion, the activation of α7-nAChRs by doses of nicotine or PHA in the microgram scale promotes neovascularization and offers a promising therapeutic strategy for MI. CATEGORY: Cardiovascular Pharmacology.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait
| | - Heba M Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
34
|
Whitehead AK, Erwin AP, Yue X. Nicotine and vascular dysfunction. Acta Physiol (Oxf) 2021; 231:e13631. [PMID: 33595878 DOI: 10.1111/apha.13631] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is the single most important risk factor for the development of cardiovascular diseases (CVDs). However, the role of nicotine, the addictive component of all tobacco products, in the development of CVD is incompletely understood. Although increased public awareness of the harms of cigarette smoking has successfully led to a decline in its prevalence, the use of electronic cigarettes (e-cig) or electronic nicotine delivery system has increased dramatically in recent years because of the perception that these products are safe. This review summarizes our current knowledge of the expression and function of the nicotinic acetylcholine receptors in the cardiovascular system and the impact of nicotine exposure on cardiovascular health, with a focus on nicotine-induced vascular dysfunction. Nicotine alters vasoreactivity through endothelium-dependent and/or endothelium-independent mechanisms, leading to clinical manifestations in both cigarette smokers and e-cig users. In addition, nicotine induces vascular remodelling through its effects on proliferation, migration and matrix production of both vascular endothelial and vascular smooth muscle cells. The purpose of this review is to identify critical knowledge gaps regarding the effects of nicotine on the vasculature and to stimulate continued nicotine research.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Abigail P. Erwin
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| | - Xinping Yue
- Department of Physiology Louisiana State University Health Sciences Center New Orleans LA USA
| |
Collapse
|
35
|
Fu X, Zong T, Yang P, Li L, Wang S, Wang Z, Li M, Li X, Zou Y, Zhang Y, Htet Aung LH, Yang Y, Yu T. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food Chem Toxicol 2021; 151:112154. [PMID: 33774093 DOI: 10.1016/j.fct.2021.112154] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis. The smoke produced by tobacco burning contains more than 7000 chemicals, among which nicotine is closely related to the occurrence and development of atherosclerosis. Nicotine, a selective cholinergic agonist, accelerates the formation of atherosclerosis by stimulating nicotinic acetylcholine receptors (nAChRs) located in neuronal and non-neuronal tissues. This review introduces the pathogenesis of atherosclerosis and the mechanisms involving nicotine and its receptors. Herein, we focus on the various roles of nicotine in atherosclerosis, such as upregulation of growth factors, inflammation, and the dysfunction of endothelial cells, vascular smooth muscle cells (VSMC) as well as macrophages. In addition, nicotine can stimulate the generation of reactive oxygen species, cause abnormal lipid metabolism, and activate immune cells leading to the onset and progression of atherosclerosis. Exosomes, are currently a research hotspot, due to their important connections with macrophages and the VSMC, and may represent a novel application into future preventive treatment to promote the prevention of smoking-related atherosclerosis. In this review, we will elaborate on the regulatory mechanism of nicotine on atherosclerosis, as well as the effects of interference with nicotine receptors and the use of exosomes to prevent atherosclerosis development.
Collapse
Affiliation(s)
- Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lin Li
- Department of Vascular Surgery, The Qingdao Hiser Medical Center, Qingdao, Shandong Province, China
| | - Shizhong Wang
- The Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 66000, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
36
|
Zheng YL, Wang WD, Li MM, Lin S, Lin HL. Updated Role of Neuropeptide Y in Nicotine-Induced Endothelial Dysfunction and Atherosclerosis. Front Cardiovasc Med 2021; 8:630968. [PMID: 33708805 PMCID: PMC7940677 DOI: 10.3389/fcvm.2021.630968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Endothelial dysfunction of the arterial vasculature plays a pivotal role in cardiovascular pathogenesis. Nicotine-induced endothelial dysfunction substantially contributes to the development of arteriosclerotic cardiovascular disease. Nicotine promotes oxidative inflammation, thrombosis, pathological angiogenesis, and vasoconstriction, and induces insulin resistance. However, the exact mechanism through which nicotine induces endothelial dysfunction remains unclear. Neuropeptide Y (NPY) is widely distributed in the central nervous system and peripheral tissues, and it participates in the pathogenesis of atherosclerosis by regulating vasoconstriction, energy metabolism, local plaque inflammatory response, activation and aggregation of platelets, and stress and anxiety-related emotion. Nicotine can increase the expression of NPY, suggesting that NPY is involved in nicotine-induced endothelial dysfunction. Herein, we present an updated review of the possible mechanisms of nicotine-induced atherosclerosis, with a focus on endothelial cell dysfunction associated with nicotine and NPY.
Collapse
Affiliation(s)
- Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
37
|
Pugazhendhi A, Hubbell M, Jairam P, Ambati B. Neovascular Macular Degeneration: A Review of Etiology, Risk Factors, and Recent Advances in Research and Therapy. Int J Mol Sci 2021; 22:1170. [PMID: 33504013 PMCID: PMC7866170 DOI: 10.3390/ijms22031170] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Neovascular age-related macular degeneration (exudative or wet AMD) is a prevalent, progressive retinal degenerative macular disease that is characterized by neovascularization of the choroid, mainly affecting the elderly population causing gradual vision impairment. Risk factors such as age, race, genetics, iris color, smoking, drinking, BMI, and diet all play a part in nvAMD's progression, with anti-vascular endothelial growth factor (anti-VEGF) therapy being the mainstay of treatment. Current therapeutic advancements slow the progression of the disease but do not cure or reverse its course. Newer therapies such as gene therapies, Rho-kinase inhibitors, and levodopa offer potential new targets for treatment.
Collapse
Affiliation(s)
- Arunbalaji Pugazhendhi
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| | - Margaret Hubbell
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| | - Pooja Jairam
- Vagelos College of Physicians & Surgeons, Columbia Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - Balamurali Ambati
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| |
Collapse
|
38
|
Rahat MA, Safieh M, Simanovich E, Pasand E, Gazitt T, Haddad A, Elias M, Zisman D. The role of EMMPRIN/CD147 in regulating angiogenesis in patients with psoriatic arthritis. Arthritis Res Ther 2020; 22:240. [PMID: 33054815 PMCID: PMC7557017 DOI: 10.1186/s13075-020-02333-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Angiogenesis plays a central role in the pathophysiology of rheumatic diseases. Patients with psoriatic arthritis (PsA) demonstrate increased vascularity over patients with rheumatoid arthritis (RA), with unknown mechanisms. METHODS We evaluated the serum levels of several pro- and anti-angiogenic factors in 62 PsA patients with active disease, 39 PsA patients in remission, 33 active RA patients, and 33 healthy controls (HC). Additionally, we used an in vitro co-culture system of fibroblast (HT1080) and monocytic-like (MM6) cell lines, to evaluate how their interactions affect the secretion of angiogenic factors and angiogenesis promoting abilities using scratch and tube formation assays. RESULTS PsA patients, regardless of disease activity, exhibited higher levels of EMMPRIN/CD147, IL-17, and TNF-α relative to RA patients or HC. Factors, such as IL-6, and the ratio between CD147 and thrombospondin-1, exhibited elevated levels in active PsA patients relative to PsA patients in remission. Secretion of CD147, VEGF, and MMP-9 was increased in vitro. CD147 neutralization with an antibody reduced these levels and the ability of endothelial cells to form tube-like structures or participate in wound healing. CONCLUSIONS CD147 plays a role in mediating angiogenesis in PsA, and the therapeutic possibilities of neutralizing it merit further investigation.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel.
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.
| | - Mirna Safieh
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
| | - Eliran Pasand
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Tal Gazitt
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Amir Haddad
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Muna Elias
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Devy Zisman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel.
| |
Collapse
|
39
|
Pohjola A, Lindbohm JV, Oulasvirta E, Hafez A, Koroknay-Pál P, Laakso A, Niemelä M. Cigarette Smoking Is More Prevalent in Patients With Brain Arteriovenous Malformations Compared to General Population: A Cross-Sectional Population-Based Study. Neurosurgery 2020; 87:E657-E662. [PMID: 32687572 DOI: 10.1093/neuros/nyaa281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/26/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Research on the prevalence of smokers in patients with brain arteriovenous malformation (AVM) remains nonexistent, even though smoking is a well-known risk factor for intracranial aneurysms. OBJECTIVE To examine the prevalence and smoking habits of AVM patients. METHODS Data on smoking habits were collected with a quality-of-life questionnaire mailed in 2016 to all patients in our large AVM database. These smoking data were supplemented with registry data derived from medical records. The prevalence of smokers was compared to that of the general population, derived from statistics of National Institute for Health and Welfare. Logit transformation of proportions and Students t distribution were used to calculate the 95% CIs for prevalence estimates. RESULTS Of the 384 patients aged over 18 yr on admission, 277 (72.1%) returned the questionnaires in 2016. When compared to age, sex, and admission year matched general population, the proportion of smokers in AVM patients was 48% (CI = 41%-55%) and 19% (CI = 16%-21%) in the general population. The difference increased in older age groups; in those aged 65 to 77 yr, the percentage of smokers reached 73% (CI = 46%-90%), while the corresponding percentage in the general population was 7% (CI = 5%-9%). CONCLUSION We observed considerably higher rates of smoking among AVM patients when compared to age, sex, and admission year matched general population. Our results suggest that in the development of AVMs, the role played by nicotine and other substances in tobacco smoke should be examined. Cigarette smoking could potentially be a common cerebrovascular risk factor.
Collapse
Affiliation(s)
- Anni Pohjola
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joni V Lindbohm
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Elias Oulasvirta
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ahmad Hafez
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Koroknay-Pál
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
40
|
Chen HJ, Zhang WX, Hu L, Fan J, Zhang L, Yan YE. Maternal nicotine exposure enhances adipose tissue angiogenic activity in offspring: Sex and age differences. Toxicology 2020; 441:152506. [PMID: 32512034 DOI: 10.1016/j.tox.2020.152506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 01/02/2023]
Abstract
Maternal nicotine exposure during pregnancy and lactation (NIC) is associated with dysfunction of white adipose tissue (WAT). We focused on the NIC-induced WAT angiogenesis and explored its sex and age differences. Pregnant rats were randomly assigned to NIC (1.0 mg/kg nicotine twice per day) or control groups. Distribution and density of blood vessels were observed. Angiogenesis-related genes were tested at 4, 12 and 26 weeks to estimate angiogenic activity. In vitro, nicotine concentration- and time-response experiments (0-50 μM) were conducted in 3T3-L1. Lipid accumulation and angiogenesis-related genes were tested. NIC increased the blood vessels in inguinal subcutaneous WAT (igSWAT) and gonadal WAT (gWAT) of 26-week-aged male and 4-week-aged female offspring. In males, nicotine showed higher angiogenic activity at 26 weeks than at 4 weeks in igSWAT and gWAT. In females, nicotine's angiogenic activity was higher at 4 weeks than 26 weeks in igSWAT and gWAT. In vitro, nicotine promoted adipocyte differentiation, and increased the expression of angiogenesis-related genes in concentration- and time dependent manners. In conclusion, NIC-induced enhancement of angiogenic activity in WAT presented sex and age differences: nicotine showed higher angiogenic activity in adulthood than in childhood of male offspring, but the converse results were observed in female offspring.
Collapse
Affiliation(s)
- Hui-Jian Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185, DongHu Road, Wuhan, 430071, China
| | - Wan-Xia Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185, DongHu Road, Wuhan, 430071, China
| | - Li Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185, DongHu Road, Wuhan, 430071, China
| | - Jie Fan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185, DongHu Road, Wuhan, 430071, China
| | - Li Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185, DongHu Road, Wuhan, 430071, China
| | - You-E Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185, DongHu Road, Wuhan, 430071, China.
| |
Collapse
|
41
|
Qin W, Zhang L, Li Z, Xiao D, Zhang Y, Zhang H, Mokembo JN, Monayo SM, Jha NK, Kopylov P, Shchekochikhin D, Zhang Y. Endothelial to mesenchymal transition contributes to nicotine-induced atherosclerosis. Theranostics 2020; 10:5276-5289. [PMID: 32373212 PMCID: PMC7196288 DOI: 10.7150/thno.42470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Nicotine exposure via cigarette smoking is strongly associated with atherosclerosis. However, the underlying mechanisms remain poorly understood. The current study aimed to identify whether endothelial to mesenchymal transition (EndMT) contributes to nicotine-induced atherosclerosis. Methods: ApoE-/- mice were administered nicotine in their drinking water for 12 weeks. The effects of nicotine on EndMT were determined by immunostaining on aortic root and RNA analysis in aortic intima. In vitro nicotine-treated cell model was established on human aortic endothelial cells (HAECs). The effects of nicotine on the expression of EndMT-related markers, ERK1/2 and Snail were quantified by real-time PCR, western blot and immunofluorescent staining. Results: Nicotine treatment resulted in larger atherosclerotic plaques in ApoE-/- mice. The vascular endothelial cells from nicotine-treated mice showed mesenchymal phenotype, indicating EndMT. Moreover, nicotine-induced EndMT process was accompanied by cytoskeleton reorganization and impaired barrier function. The α7 nicotine acetylcholine receptor (α7nAChR) was highly expressed in HAECs and its antagonist could effectively relieve nicotine-induced EndMT and atherosclerotic lesions in mice. Further experiments revealed that ERK1/2 signaling was activated by nicotine, which led to the upregulation of Snail. Blocking ERK1/2 with inhibitor or silencing Snail by small interfering RNA efficiently preserved endothelial phenotype upon nicotine stimulation. Conclusion: Our study provides evidence that EndMT contributes to the pro-atherosclerotic property of nicotine. Nicotine induces EndMT through α7nAChR-ERK1/2-Snail signaling in endothelial cells. EndMT may be a therapeutic target for smoking-related endothelial dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Longyin Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Haiying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Justine Nyakango Mokembo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Seth Mikaye Monayo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Nabanit Kumar Jha
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
| | - Philipp Kopylov
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Dmitri Shchekochikhin
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, Heilongjiang, China
| |
Collapse
|
42
|
Giotopoulou GA, Stathopoulos GT. Effects of Inhaled Tobacco Smoke on the Pulmonary Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:53-69. [PMID: 32030647 DOI: 10.1007/978-3-030-35727-6_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tobacco smoke is a multicomponent mixture of chemical, organic, and inorganic compounds, as well as additive substances and radioactive materials. Many studies have proved the carcinogenicity of various of these compounds through the induction of DNA adducts, mutational potential, epigenetic changes, gene fusions, and chromosomal events. The tumor microenvironment plays an important role in malignant tumor formation and progression through the regulation of expression of key molecules which mediate the recruitment of immune cells to the tumor site and subsequently regulate tumor growth and metastasis. In this chapter, we discuss the effects of inhaled tobacco smoke in the tumor microenvironment of the respiratory tract. The mechanisms underlying these effects as well as their link with tumor progression are analyzed.
Collapse
Affiliation(s)
- Georgia A Giotopoulou
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany.
- Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, Rio, Greece.
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
- Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, Rio, Greece
| |
Collapse
|
43
|
Zhang Y, Chen Y, Zhang Y, Li PL, Li X. Contribution of cathepsin B-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction. Eur J Pharmacol 2019; 865:172795. [PMID: 31733211 PMCID: PMC6925381 DOI: 10.1016/j.ejphar.2019.172795] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that endothelial Nlrp3 inflammasome is critically involved in the development of cardiovascular complications. However, it remains unknown whether endothelial inflammasome is involved in endothelial barrier dysfunction associated with smoking. This study aims to investigate the role of endothelial Nlrp3 inflammasome in nicotine-induced disruption of inter-endothelial tight junctions and consequent endothelial barrier dysfunction. The confocal microscopic analysis demonstrated that mice treated with nicotine exhibited disrupted inter-endothelial tight junctions as shown by decreased ZO-1 and ZO-2 expression in the coronary arterial endothelium, whereas the decreases in ZO-1/2 were prevented by Nlrp3 gene deficiency. In cultured endothelial cells, nicotine caused Nlrp3 inflammasome complex formation and enhances the inflammasome activity as shown by increased cleavage of pro-caspase-1, and interleukin-1β (IL-1β) production. Further, nicotine disrupted tight junction and increased permeability in an endothelial cell monolayer, and this nicotine-induced effect was prevented by silencing of Nlrp3 gene, inhibition of caspase-1, or blockade of high mobility group box 1 (HMGB1). Nicotine increased endothelial cell lysosomal membrane permeability and triggered the lysosomal release of cathepsin B, whereas these events were prevented by pretreating cells with a lysosome stabilizing agent, dexamethasone. Collectively, our data suggest that nicotine enhances cathepsin B-dependent Nlrp3 inflammasome activation and the consequent production of a novel permeability factor HMGB1, which causes disruption of inter-endothelial tight junctions leading to endothelial hyperpermeability. Instigation of endothelial inflammasomes may serve as an important pathogenic mechanism contributing to the early onset of vasculopathy associated with smoking.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Yang Chen
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Youzhi Zhang
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Xiang Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
44
|
Hajiasgharzadeh K, Somi MH, Mansoori B, Doustvandi MA, Vahidian F, Alizadeh M, Mokhtarzadeh A, Shanehbandi D, Baradaran B. Alpha7 Nicotinic Acetylcholine Receptor Mediates Nicotine-induced Apoptosis and Cell Cycle Arrest of Hepatocellular Carcinoma HepG2 Cells. Adv Pharm Bull 2019; 10:65-71. [PMID: 32002363 PMCID: PMC6983989 DOI: 10.15171/apb.2020.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: The cytotoxic properties upon treatment with nicotine have been reported in several studies, but the underlying mechanisms remain not fully defined. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is one of the important nicotinic receptors, which nicotine partly by binding to this receptor exerts its effects. The current study aimed to investigates the influences of nicotine on cellular proliferative and apoptotic activities and tried to determine the involvement of α7nAChR in these functions. Methods: Human hepatocellular carcinoma (HepG2) cell line was used to determine the individual or combined effects of treatments with nicotine (10 μM) and specific siRNA (100 nM) targeting α7nAChR expression. The MTT assay, DAPI staining assay, and flow cytometry assay were applied to measure the cell viability, apoptosis and cell cycle progression of the cells, respectively. In addition, the changes in the mRNA level of the genes were assessed by qRT-PCR. Results: Compared to control groups, the cells treated with nicotine exhibited significant dosedependent decreases in cell viability (log IC50 = -5.12±0.15). Furthermore, nicotine induced apoptosis and cell cycle arrest especially at G2/M Phase. The qRT-PCR revealed that nicotine increased the mRNA levels of α7nAChR as well as caspase-3 and suppressed the expression of cyclin B1. Treatment with α7-siRNA abolished these effects of nicotine. Conclusion: These experiments determined that upregulation of α7nAChR by nicotine inhibits HepG2 cells proliferation and induces their apoptosis. These effects blocked by treatment with α7-siRNA, which indicates the involvement of α7nAChR pathways in these processes.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Ates M, Hosgorler F, Yuksel O, Unsal SK, Guvendi G, Karakilic A, Koc B, Kandis S, Kanit L, Uysal N. Nicotine increased VEGF and MMP2 levels in the rat eye and kidney. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33517-33523. [PMID: 31578682 DOI: 10.1007/s11356-019-06460-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Chronic cigarette smoking affects many tissues negatively. Nicotine in tobacco has negative effects on tissues, kidneys, and eyes especially, where microcirculation is vitally important for the survival and functioning. It is known that appropriate vascular endothelial growth factor (VEGF) and (matrix metalloproteinase 2) MMP2 levels are required for suitable vascularity and enough microcirculation. The aim of this study was to investigate the effect of nicotine on VEGF and MMP2 levels in kidney and eyes, where microcirculation is very important for their function. The nicotine was given into drinking water, to male and female rats for 6 weeks. During the first 2 weeks, the nicotine concentration was 10 mg/L, then was given at a fixed dose of 20 mg/L until the end of the experiment. The VEGF and MMP2 levels were increased in kidney tissue of both genders as a result of given nicotine. MMP2 levels were also increased in the eye tissue for both genders similarly. However, VEGF levels increased in the eye tissue with nicotine in males, whereas it did not change in females. The use of nicotine made VEGF and MMP2 levels increase in kidney tissue in both genders of rats. This increase in VEGF was observed only in male eye tissue, not in females. According to our findings, it can be suggested that nicotine has negative effects on microvascular circulation by increasing VEGF and MMP2 levels. In addition, it should be pointed out that estrogen might have protective effects on female eye tissue. Further studies are necessary to understand the complex relationship between the role of nicotine and estrogen on eye and kidney tissues.
Collapse
Affiliation(s)
- Mehmet Ates
- College of Vocational School of Health Services, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ferda Hosgorler
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Oguz Yuksel
- Department of Sports Medicine, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Guven Guvendi
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Asli Karakilic
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Basar Koc
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sevim Kandis
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Nazan Uysal
- College of Vocational School of Health Services, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
- Medical Faculty, Physiology Department, Dokuz Eylul University, Balcova, Izmir, Turkey.
| |
Collapse
|
46
|
Kamio Y, Miyamoto T, Kimura T, Mitsui K, Furukawa H, Zhang D, Yokosuka K, Korai M, Kudo D, Lukas RJ, Lawton MT, Hashimoto T. Roles of Nicotine in the Development of Intracranial Aneurysm Rupture. Stroke 2019; 49:2445-2452. [PMID: 30355112 DOI: 10.1161/strokeaha.118.021706] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background and Purpose- Tobacco cigarette smoking is considered to be a strong risk factor for intracranial aneurysmal rupture. Nicotine is a major biologically active constituent of tobacco products. Nicotine's interactions with vascular cell nicotinic acetylcholine receptors containing α7 subunits (α7*-nAChR) are thought to promote local inflammation and sustained angiogenesis. In this study, using a mouse intracranial aneurysm model, we assessed potential contributions of nicotine exposure and activation of α7*-nAChR to the development of aneurysmal rupture. Methods- Intracranial aneurysms were induced by a combination of deoxycorticosterone-salt induced hypertension and a single-dose elastase injection into cerebrospinal fluid in mice. Results- Exposure to nicotine or an α7*-nAChR-selective agonist significantly increased aneurysm rupture rate. Coexposure to an α7*-nAChR antagonist abolished nicotine's deleterious effect. In addition, nicotine's promotion of aneurysm rupture was absent in smooth muscle cell-specific α7*-nAChR subunit knockout mice but not in mice lacking α7*-nAChR on endothelial cells or macrophages. Nicotine treatment increased the mRNA levels of vascular endothelial growth factor, platelet-derived growth factor-B, and inflammatory cytokines. α7*-nAChR antagonist reversed nicotine-induced upregulation of these growth factors and cytokines. Conclusions- Our findings indicate that nicotine exposure promotes aneurysmal rupture through actions on vascular smooth muscle cell α7*-nAChR.
Collapse
Affiliation(s)
- Yoshinobu Kamio
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Takeshi Miyamoto
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Tetsuro Kimura
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Kazuha Mitsui
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Hajime Furukawa
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Dingding Zhang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Kimihiko Yokosuka
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Masaaki Korai
- Department of Anesthesia and Perioperative Care, University of California, San Francisco (K.M., H.F., D.Z., K.Y., M.K.)
| | - Daisuke Kudo
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Ronald J Lukas
- Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Michael T Lawton
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Tomoki Hashimoto
- From the Departments of Neurosurgery (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Neurobiology (T.M., T.K., D.K., R.J.L., T.H.), Barrow Neurological Institute, Phoenix, AZ.,Barrow Aneurysm and AVM Research Center (Y.K., T.M., T.K., D.K., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| |
Collapse
|
47
|
Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, Mokhtarzadeh A, Shanehbandi D, Doustvandi MA, Asadzadeh Z, Baradaran B. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? J Cell Physiol 2019; 234:14666-14679. [PMID: 30701535 DOI: 10.1002/jcp.28220] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
The lung tissue expresses the cholinergic system including nicotinic acetylcholine receptors (nAChRs) which included in many physiologic and pathologic processes. Mounting evidence revealed that these receptors have important roles in lung carcinogenesis via modulating either stimulatory or inhibitory signaling pathways. Among different members of nicotinic receptors family, alpha7-subtype of nAChR (α7nAChR) is a critical mediator involved in both inflammatory responses and cancers. Several studies have shown that this receptor is the most powerful regulator of responses that stimulate lung cancer processes such as proliferation, angiogenesis, metastasis, and inhibition of apoptosis. Moreover, aside from its roles in the regulation of cancer pathways, there is growing evidence indicating that α7nAChR has profound impacts on lung inflammation through the cholinergic anti-inflammatory pathway. Regarding such diverse effects as well as the critical roles of nicotine as an activator of α7nAChR on lung cancer pathogenesis, its modulation has emerged as a promising target for drug developments. In this review, we aim to highlight the detrimental as well as the possible beneficial influences of α7nAChR downstream signaling cascades in the control of lung inflammation and cancer-associated properties. Consequently, by considering the significant global burden of lung cancer, delineating the complex influences of α7 receptors would be of great interest in designing novel anticancer and anti-inflammatory strategies for the patients suffering from lung cancer.
Collapse
Affiliation(s)
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Haddad MM, Bendel EC, Harmsen WS, Iyer VN, Misra S. Smoking Significantly Impacts Persistence Rates in Embolized Pulmonary Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia. Radiology 2019; 292:762-770. [PMID: 31361208 PMCID: PMC6735354 DOI: 10.1148/radiol.2019180978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Embolization is the standard of care for treatment of pulmonary
arteriovenous malformations (PAVMs). Persistence of PAVMs after
embolization occurs for undefined reasons but may include inflammation
related to smoking in dysregulated angiogenesis. Purpose To determine whether patients with hereditary hemorrhagic telangiectasia
(HHT) who smoke tobacco are more prone to PAVM persistence after
embolization. Materials and Methods Patients with HHT treated for PAVMs between January 2000 and August 2017
were retrospectively identified. Only PAVMs with no previous treatment
and patients with both clinical and imaging follow-up were included.
Age, sex, PAVM characteristics (size, complexity, and location),
embolization material used, microcatheter type, smoking history, active
tobacco use, and other risk factors for arterial disease were analyzed
by using a multivariate Cox proportional hazards model to determine risk
factors for persistence. Results Five-year persistence-free survival rates in nonsmokers, smokers of
1–20 pack-years, and smokers of more than 20 pack-years were
12.2%, 21.9%, and 37.4% respectively. Smokers with more than 20
pack-years relative to nonsmokers had greater risk of persistence after
adjusting for arterial feeder size (hazard ratio, 3.8; 95% confidence
interval [CI]: 1.5, 10.0; P = .007). Patients who
reported active tobacco use at the time of PAVM embolization had a
5-year cumulative incidence of persistence of 26.3% compared with 13.5%
in inactive smokers. After adjusting for arterial feeder size, the risk
of persistence was greater in tobacco users versus inactive smokers at
the time of treatment (hazard ratio, 2.4; 95% CI: 1.2, 4.7;
P = .01). Conclusion Smoking is associated with pulmonary arteriovenous malformation
persistence after embolization in patients with hereditary hemorrhagic
telangiectasia. Online supplemental material is available for this
article. See also the editorial by Trerotola and Pyeritz in this issue.
Collapse
Affiliation(s)
- Mustafa M Haddad
- From the Department of Radiology (M.M.H., E.C.B., S.M.), Department of Biomedical Statistics and Informatics (W.S.H.), and Department of Pulmonary and Critical Care Medicine (V.N.I.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Emily C Bendel
- From the Department of Radiology (M.M.H., E.C.B., S.M.), Department of Biomedical Statistics and Informatics (W.S.H.), and Department of Pulmonary and Critical Care Medicine (V.N.I.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - William S Harmsen
- From the Department of Radiology (M.M.H., E.C.B., S.M.), Department of Biomedical Statistics and Informatics (W.S.H.), and Department of Pulmonary and Critical Care Medicine (V.N.I.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Vivek N Iyer
- From the Department of Radiology (M.M.H., E.C.B., S.M.), Department of Biomedical Statistics and Informatics (W.S.H.), and Department of Pulmonary and Critical Care Medicine (V.N.I.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Sanjay Misra
- From the Department of Radiology (M.M.H., E.C.B., S.M.), Department of Biomedical Statistics and Informatics (W.S.H.), and Department of Pulmonary and Critical Care Medicine (V.N.I.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
49
|
Miura M, Yoshimura S, Yamada K, Kanamaru T, Matsumoto K, Shindo S, Uchida K, Shirakawa M, Kawasaki M, Ando Y. Presence of Plaque Neovascularization on Optical Frequency Domain Imaging Predicts Progression of Carotid Artery Stenosis. World Neurosurg 2019; 127:e330-e336. [DOI: 10.1016/j.wneu.2019.02.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
|
50
|
Abstract
Introduction: Smoking is one of the most important risk factors for cardiovascular disease (CVD). Electronic cigarettes (e-cigarettes) are becoming increasingly popular. However, little is known regarding their patterns of use in patients with established CVD.Aims: We aimed to assess the perceptions and patterns of use of e-cigarettes in patients presenting to a vascular clinic.Methods: We performed a qualitative study to identify perceptions and beliefs about e-cigarettes. Semi-structured interviews of consecutive patients consenting to participate were performed over five-months. Individuals were recruited from a vascular surgery outpatient clinic. Initial interviews were based on a questionnaire. Further structured interviews were conducted with patients currently using e-cigarettes, which were transcribed and analysed to assess perceptions and patterns of use.Results/Findings: Four overarching themes emerged: attraction to e-cigarettes as a harm reduction/smoking cessation strategy; uncertainty regarding the risks of e-cigarettes; use of various types of smoking cessation strategies; dual use and often complete relapse to tobacco products.Conclusions: Patients with established CVD view e-cigarettes as a means of smoking cessation; however, many relapse to tobacco products or use both simultaneously. Further research is necessary regarding the role of e-cigarettes in smoking cessation in this high-risk group.
Collapse
|