1
|
Stefanucci A, Marinaccio L, Pieretti S, Mancuso JA, Stine C, Streicher JM, Mollica A. Elucidation on the In Vivo Activity of the Bivalent Opioid Peptide MACE2 against Several Types of Chronic Pain. ACS OMEGA 2024; 9:45214-45220. [PMID: 39554412 PMCID: PMC11561757 DOI: 10.1021/acsomega.4c06449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/19/2024]
Abstract
Biphalin is a bivalent μ/δ opioid receptor agonist showing a promising therapeutic profile with reduced side effects, but as a peptide is limited by poor metabolic stability and blood-brain barrier penetration. To improve these features, we developed the ligand MACE2 and showed initial in vivo efficacy. To further explore the druggability of this ligand, in this report, we tested MACE2 metabolic stability in human plasma, receptor engagement by 3 different routes of administration using the tail-flick test, and MACE2 efficacy in 2 different pathological and chronic pain models. We found that MACE2 had high stability in plasma and could produce target engagement and a tail flick response. We also showed that MACE2 had high analgesic efficacy in CIPN but no efficacy in paw incision. Together, these findings suggest that MACE2 has improved metabolic stability and brain penetration in vivo, prompting further development in clinical testing.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenza Marinaccio
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Pieretti
- National
Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Joseph A. Mancuso
- Department
of Pharmacology, College of Medicine; and Comprehensive Center for
Pain and Addiction, University of Arizona, Tucson, Arizona 85719-4330, United
States
| | - Carrie Stine
- Department
of Pharmacology, College of Medicine; and Comprehensive Center for
Pain and Addiction, University of Arizona, Tucson, Arizona 85719-4330, United
States
| | - John M. Streicher
- Department
of Pharmacology, College of Medicine; and Comprehensive Center for
Pain and Addiction, University of Arizona, Tucson, Arizona 85719-4330, United
States
| | - Adriano Mollica
- Department
of Pharmacy, “G. D’Annunzio”
University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Zhang M, Xu B, Li N, Zhang Q, Chen D, Wu S, Yu B, Zhang X, Hu X, Zhang S, Jing Y, Yang Z, Jiang J, Fang Q. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects. J Med Chem 2023; 66:17138-17154. [PMID: 38095323 DOI: 10.1021/acs.jmedchem.3c02093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our previous study reported the multifunctional agonist for opioid and neuropeptide FF receptors DN-9, along with its cyclic peptide analogues c[D-Cys2, Cys5]-DN-9 and c[D-Lys2, Asp5]-DN-9. These analogues demonstrated potent antinociceptive effects with reduced opioid-related side effects. To develop more stable and effective analgesics, we designed, synthesized, and evaluated seven hydrocarbon-stapled cyclic peptides based on DN-9. In vitro calcium mobilization assays revealed that most of the stapled peptides, except 3, displayed multifunctional agonistic activities at opioid and neuropeptide FF receptors. Subcutaneous administration of all stapled peptides resulted in effective and long-lasting antinociceptive activities lasting up to 360 min. Among these stapled peptides, 1a and 1b emerged as the optimized compounds, producing potent central antinociception following subcutaneous, intracerebroventricular, and oral administrations. Additionally, subcutaneous administration of 1a and 1b caused nontolerance antinociception, with limited occurrence of constipation and addiction. Furthermore, 1a was selected as the final optimized compound due to its wider safety window compared to 1b.
Collapse
Affiliation(s)
- Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Bowen Yu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xiaodi Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xuanran Hu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shichao Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yuhong Jing
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zhenyun Yang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| |
Collapse
|
3
|
Li Y, Eans SO, Ganno-Sherwood M, Eliasof A, Houghten RA, McLaughlin JP. Identification and Pharmacological Characterization of a Low-Liability Antinociceptive Bifunctional MOR/DOR Cyclic Peptide. Molecules 2023; 28:7548. [PMID: 38005269 PMCID: PMC10674865 DOI: 10.3390/molecules28227548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Peptide-based opioid ligands are important candidates for the development of novel, safer, and more effective analgesics to treat pain. To develop peptide-based safer analgesics, we synthesized a mixture-based cyclic pentapeptide library containing a total of 24,624 pentapeptides and screened the mixture-based library samples using a 55 °C warm water tail-withdrawal assay. Using this phenotypic screening approach, we deconvoluted the mixture-based samples to identify a novel cyclic peptide Tyr-[D-Lys-Dap(Ant)-Thr-Gly] (CycloAnt), which produced dose- and time-dependent antinociception with an ED50 (and 95% confidence interval) of 0.70 (0.52-0.97) mg/kg i.p. mediated by the mu-opioid receptor (MOR). Additionally, higher doses (≥3 mg/kg, i.p.) of CycloAnt antagonized delta-opioid receptors (DOR) for at least 3 h. Pharmacological characterization of CycloAnt showed the cyclic peptide did not reduce breathing rate in mice at doses up to 15 times the analgesic ED50 value, and produced dramatically less hyperlocomotion than the MOR agonist, morphine. While chronic administration of CycloAnt resulted in antinociceptive tolerance, it was without opioid-induced hyperalgesia and with significantly reduced signs of naloxone-precipitated withdrawal, which suggested reduced physical dependence compared to morphine. Collectively, the results suggest this dual MOR/DOR multifunctional ligand is an excellent lead for the development of peptide-based safer analgesics.
Collapse
Affiliation(s)
- Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Michelle Ganno-Sherwood
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA; (M.G.-S.); (R.A.H.)
| | - Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA; (M.G.-S.); (R.A.H.)
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
4
|
Rehrauer KJ, Cunningham CW. IUPHAR Review - Bivalent and bifunctional opioid receptor ligands as novel analgesics. Pharmacol Res 2023; 197:106966. [PMID: 37865129 DOI: 10.1016/j.phrs.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Though efficacious in managing chronic, severe pain, opioid analgesics are accompanied by significant adverse effects including constipation, tolerance, dependence, and respiratory depression. The life-threatening risks associated with µ opioid receptor agonist-based analgesics challenges their use in clinic. A rational approach to combatting these adverse effects is to develop agents that incorporate activity at a second pharmacologic target in addition to µ opioid receptor activation. The promise of such bivalent or bifunctional ligands is the development of an analgesic with an improved side effect profile. In this review, we highlight ongoing efforts in the development of bivalent and bifunctional analgesics that combine µ agonism with efficacy at κ and δ opioid receptors, the nociceptin opioid peptide (NOP) receptor, σ receptors, and cannabinoid receptors. Several examples of bifunctional analgesics in preclinical and clinical development are highlighted, as are strategies being employed toward the rational design of novel agents.
Collapse
Affiliation(s)
- Kyle J Rehrauer
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA; CUW Center for Structure-Based Drug Discovery and Development, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA.
| |
Collapse
|
5
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
6
|
Li L, Chen J, Li YQ. The Downregulation of Opioid Receptors and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24065981. [PMID: 36983055 PMCID: PMC10053236 DOI: 10.3390/ijms24065981] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neuropathic pain (NP) refers to pain caused by primary or secondary damage or dysfunction of the peripheral or central nervous system, which seriously affects the physical and mental health of 7-10% of the general population. The etiology and pathogenesis of NP are complex; as such, NP has been a hot topic in clinical medicine and basic research for a long time, with researchers aiming to find a cure by studying it. Opioids are the most commonly used painkillers in clinical practice but are regarded as third-line drugs for NP in various guidelines due to the low efficacy caused by the imbalance of opioid receptor internalization and their possible side effects. Therefore, this literature review aims to evaluate the role of the downregulation of opioid receptors in the development of NP from the perspective of dorsal root ganglion, spinal cord, and supraspinal regions. We also discuss the reasons for the poor efficacy of opioids, given the commonness of opioid tolerance caused by NP and/or repeated opioid treatments, an angle that has received little attention to date; in-depth understanding might provide a new method for the treatment of NP.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Yun-Qing Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| |
Collapse
|
7
|
Li M, Stevens DL, Arriaga M, Townsend EA, Mendez RE, Blajkevch NA, Selley DE, Banks ML, Negus SS, Dewey WL, Zhang Y. Characterization of a Potential KOR/DOR Dual Agonist with No Apparent Abuse Liability via a Complementary Structure-Activity Relationship Study on Nalfurafine Analogues. ACS Chem Neurosci 2022; 13:3608-3628. [PMID: 36449691 PMCID: PMC10243363 DOI: 10.1021/acschemneuro.2c00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Discovery of analgesics void of abuse liability is critical to battle the opioid crisis in the United States. Among many strategies to achieve this goal, targeting more than one opioid receptor seems promising to minimize this unwanted side effect while achieving a reasonable therapeutic profile. In the process of understanding the structure-activity relationship of nalfurafine, we identified a potential analgesic agent, NMF, as a dual kappa opioid receptor/delta opioid receptor agonist with minimum abuse liability. Further characterizations, including primary in vitro ADMET studies (hERG toxicity, plasma protein binding, permeability, and hepatic metabolism), and in vivo pharmacodynamic and toxicity profiling (time course, abuse liability, tolerance, withdrawal, respiratory depression, body weight, and locomotor activity) further confirmed NMF as a promising drug candidate for future development.
Collapse
Affiliation(s)
- Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - David L. Stevens
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Michelle Arriaga
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - E. Andrew Townsend
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Rolando E. Mendez
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Nadejda A. Blajkevch
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - William L. Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
8
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
9
|
Turnaturi R, Chiechio S, Pasquinucci L, Spoto S, Costanzo G, Dichiara M, Piana S, Grasso M, Amata E, Marrazzo A, Parenti C. Novel N-normetazocine Derivatives with Opioid Agonist/Sigma-1 Receptor Antagonist Profile as Potential Analgesics in Inflammatory Pain. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165135. [PMID: 36014375 PMCID: PMC9413390 DOI: 10.3390/molecules27165135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Although opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common drugs used in persistent pain treatment; they have shown many side effects. The development of new analgesics endowed with mu opioid receptor/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR-selective compounds. Moreover, new mechanisms, such as sigma-1 receptor (σ1R) antagonism, could be an opioid adjuvant strategy. The in vitro σ1R and σ2R profiles of previous synthesized MOR/DOR agonists (−)-2R/S-LP2 (1), (−)-2R-LP2 (2), and (−)-2S-LP2 (3) were assayed. To investigate the pivotal role of N-normetazocine stereochemistry, we also synthesized the (+)-2R/S-LP2 (7), (+)-2R-LP2 (8), and (+)-2S-LP2 (9) compounds. (−)-2R/S-LP2 (1), (−)-2R-LP2 (2), and (−)-2S-LP2 (3) compounds have Ki values for σ1R ranging between 112.72 and 182.81 nM, showing a multitarget opioid/σ1R profile. Instead, (+)-2R/S-LP2 (7), (+)-2R-LP2 (8), and (+)-2S-LP2 (9) isomers displayed a nanomolar affinity for σ1R, with significative selectivity vs. σ2R and opioid receptors. All isomers were evaluated using an in vivo formalin test. (−)-2S-LP2, at 0.7 mg/kg i.p., showed a significative and naloxone-reversed analgesic effect. The σ1R selective compound (+)-2R/S-LP2 (7), at 5.0 mg/kg i.p., decreased the second phase of the formalin test, showing an antagonist σ1R profile. The multitarget or single target profile of assayed N-normetazocine derivatives could represent a promising pharmacological strategy to enhance opioid potency and/or increase the safety margin.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Santina Chiechio
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-738-4273
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97, 95123 Catania, Italy
| | - Maria Dichiara
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | - Emanuele Amata
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
10
|
Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022; 13:815479. [PMID: 35281894 PMCID: PMC8906921 DOI: 10.3389/fphar.2022.815479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun-yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei-peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-feng Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Akins N, Mishra N, Harris H, Dudhipala N, Kim SJ, Keasling A, Majumdar S, Zjawiony J, Paris J, Ashpole N, Le H. 6,5‐Fused Ring, C2‐Salvinorin Ester, Dual Kappa and Mu Opioid Receptor Agonists as Analgesics Devoid of Anxiogenic Effects. ChemMedChem 2022; 17:e202100684. [PMID: 35043597 PMCID: PMC9015904 DOI: 10.1002/cmdc.202100684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Current common analgesics are mediated through the mu or kappa opioid receptor agonism. Unfortunately, selective mu or kappa receptor agonists often cause harmful side effects. However, ligands exhibiting dual agonism to the opioid receptors, such as to mu and kappa, or to mu and delta, have been suggested to temper undesirable adverse effects while retaining analgesic activity. Herein we report an introduction of various 6,5-fused rings to C2 of the salvinorin scaffold via an ester linker. In vitro studies showed that many of these compounds have dual agonism on kappa and mu opioid receptors. In vivo studies on the lead dual kappa and mu opioid receptor agonist demonstrated supraspinal thermal analgesic activity while avoiding anxiogenic effects in male mice, thus providing further strong evidence in support of the therapeutic advantages of dual opioid receptor agonists over selective opioid receptor agonists.
Collapse
Affiliation(s)
- Nicholas Akins
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Nisha Mishra
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Hannah Harris
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Narendar Dudhipala
- University of Mississippi School of Pharmacy Research Institutes of Pharmaceutical Sciences UNITED STATES
| | - Seong Jong Kim
- United States Department of Agriculture Natural Products Utilization Research Unit UNITED STATES
| | - Adam Keasling
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Soumyajit Majumdar
- University of Mississippi School of Pharmacy Pharmaceutics and Drug Delivery UNITED STATES
| | - Jordan Zjawiony
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Jason Paris
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Nicole Ashpole
- University of Mississippi School of Pharmacy BioMolecular Sciences UNITED STATES
| | - Hoang Le
- University of Mississippi Department of BioMolecular Sciences, School of Pharmacy 419 Faser Hall 38677 University UNITED STATES
| |
Collapse
|
12
|
Shaheed G, Manjooran AP, Reddy AJ, Nawathey N, Habib S, Brahmbhatt H. Low-Dose Naltrexone Co-Treatment in the Prevention of Opioid-Induced Hyperalgesia. Cureus 2021; 13:e17667. [PMID: 34646707 DOI: 10.7759/cureus.17667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/05/2022] Open
Abstract
Opioid-induced hyperalgesia (OIH) is characterized by a heightened sensitivity to pain that occurs in patients following opioid use. Prescription of opioids is currently the standard form of pain management for both neuropathic and nociceptive pain, due to the relief that patients typically report following their use. Opioids, which aim to provide analgesic effects, can paradoxically cause increasing degrees of pain among the users. The increased nociception can be either due to the underlying pain for which the opioid was initially prescribed, or other unrelated pain. As a result, those who are initially prescribed opioids for chronic pain relief may instead be left with no overall relief, and experience additional algesia. While OIH can be treated through the reduction of opioid use, antagonistic treatment can also be utilized. In an attempt to reduce OIH in patients, low doses of the opioid antagonist naltrexone can be given concurrently. This review will analyze the current role and effectiveness of the use of naltrexone in managing OIH in opioid users as described in clinical and non-clinical studies. Additionally, it seeks to characterize the underlying mechanisms that enable opioid antagonist naltrexone to reduce OIH while still allowing opioids to act as an analgesic. The authors find that OIH is a prevalent condition, and in order to effectively combat it, clinicians and patients can benefit from an extended study on how naltrexone can be utilized as a treatment alongside opioids prescribed for pain management.
Collapse
Affiliation(s)
- Gurneet Shaheed
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, USA
| | | | - Akshay J Reddy
- Opthalmology, California Northstate University College of Medicine, Elk Grove, USA
| | - Neel Nawathey
- Health Sciences, California Northstate University, Rancho Cordova, USA
| | - Samuel Habib
- Health Sciences, Santa Clara University, Santa Clara, USA
| | | |
Collapse
|
13
|
Palmer CB, Meyrath M, Canals M, Kostenis E, Chevigné A, Szpakowska M. Atypical opioid receptors: unconventional biology and therapeutic opportunities. Pharmacol Ther 2021; 233:108014. [PMID: 34624426 DOI: 10.1016/j.pharmthera.2021.108014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four opioid receptors, namely μ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor (NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be interesting alternative targets, especially for the development of safer analgesics. Five of these opioid peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)-two are members of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-d-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology, with members displaying signaling to scavenging properties. We provide an overview of their established and emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-driven signaling.
Collapse
Affiliation(s)
- Christie B Palmer
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
14
|
Fujita W. Aiming at Ideal Therapeutics-MOPr/DOPr or MOPr-DOPr Heteromertargeting Ligand. Curr Top Med Chem 2021; 20:2843-2851. [PMID: 32324516 DOI: 10.2174/1568026620666200423095231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The recent alarming reports related to "opioid crisis" necessitate the development of safer and effective analgesics without unwanted side effects. Thus, there needs to be an alternative target or strategy for the development of drugs for the treatment of opioid use/abuse. As one of the novel targets, in these two decades, ligands targeting opioid receptor "heteromerization" including mu-opioid receptor (MOPr)-delta opioid receptor (DOPr) heteromer have been proposed and the pharmacological advancement of reduced side effects has been broadly accepted and well recognized. In this review, some of the ligands targeting both MOPr and DOPr or MOPr-DOPr heteromers are introduced especially focusing on their pharmacological effects in vivo. CONCLUSION It has been found that most of those ligands possess potent antinociceptive activity (as much as or higher than that of morphine) with reduced side effects such as tolerance. In addition, some of them are also able to reduce or prevent physiological withdrawal symptoms observed under chronic opioid use. Importantly, there are an increasing number of evidence that show changes in heteromer expression in various pathological animal models and these strongly argue for targeting heteromers for the development of the next generation of pain medication in the near future.
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Frontier Life Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
15
|
Abstract
Opioids such as morphine and oxycodone are analgesics frequently prescribed for the treatment of moderate or severe pain. Unfortunately, these medications are associated with exceptionally high abuse potentials and often cause fatal side effects, mainly through the μ-opioid receptor (MOR). Efforts to discover novel, safer, and more efficacious analgesics targeting MOR have encountered challenges. In this review, we summarize alternative strategies and targets that could be used to develop safer nonopioid analgesics. A molecular understanding of G protein-coupled receptor activation and signaling has illuminated not only the complexities of receptor pharmacology but also the potential for pathway-selective agonists and allosteric modulators as safer medications. The availability of structures of pain-related receptors, in combination with high-throughput computational tools, has accelerated the discovery of multitarget ligands with promising pharmacological profiles. Emerging clinical evidence also supports the notion that drugs targeting peripheral opioid receptors have potential as improved analgesic agents.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
16
|
Multifunctional Opioid-Derived Hybrids in Neuropathic Pain: Preclinical Evidence, Ideas and Challenges. Molecules 2020; 25:molecules25235520. [PMID: 33255641 PMCID: PMC7728063 DOI: 10.3390/molecules25235520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
When the first- and second-line therapeutics used to treat neuropathic pain (NP) fail to induce efficient analgesia—which is estimated to relate to more than half of the patients—opioid drugs are prescribed. Still, the pathological changes following the nerve tissue injury, i.a. pronociceptive neuropeptide systems activation, oppose the analgesic effects of opiates, enforcing the use of relatively high therapeutic doses in order to obtain satisfying pain relief. In parallel, the repeated use of opioid agonists is associated with burdensome adverse effects due to compensatory mechanisms that arise thereafter. Rational design of hybrid drugs, in which opioid ligands are combined with other pharmacophores that block the antiopioid action of pronociceptive systems, delivers the opportunity to ameliorate the NP-oriented opioid treatment via addressing neuropathological mechanisms shared both by NP and repeated exposition to opioids. Therewith, the new dually acting drugs, tailored for the specificity of NP, can gain in efficacy under nerve injury conditions and have an improved safety profile as compared to selective opioid agonists. The current review presents the latest ideas on opioid-comprising hybrid drugs designed to treat painful neuropathy, with focus on their biological action, as well as limitations and challenges related to this therapeutic approach.
Collapse
|
17
|
Pasquinucci L, Parenti C, Ruiz-Cantero MC, Georgoussi Z, Pallaki P, Cobos EJ, Amata E, Marrazzo A, Prezzavento O, Arena E, Dichiara M, Salerno L, Turnaturi R. Novel N-Substituted Benzomorphan-Based Compounds: From MOR-Agonist/DOR-Antagonist to Biased/Unbiased MOR Agonists. ACS Med Chem Lett 2020; 11:678-685. [PMID: 32435370 PMCID: PMC7236032 DOI: 10.1021/acsmedchemlett.9b00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Modifications at the basic nitrogen of the benzomorphan scaffold allowed the development of compounds able to segregate physiological responses downstream of the receptor signaling, opening new possibilities in opioid drug development. Alkylation of the phenyl ring in the N-substituent of the MOR-agonist/DOR-antagonist LP1 resulted in retention of MOR affinity. Moreover, derivatives 7a, 7c, and 7d were biased MOR agonists toward ERK1,2 activity stimulation, whereas derivative 7e was a low potency MOR agonist on adenylate cyclase inhibition. They were further screened in the mouse tail flick test and PGE2-induced hyperalgesia and drug-induced gastrointestinal transit.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department
of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - M. Carmen Ruiz-Cantero
- Department
of Pharmacology, Faculty of Medicine and Institute of Neuroscience,
Biomedical Research Center, University of
Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
- Teófilo Hernando
Institute for Drug Discovery, 28029 Madrid, Spain
| | - Zafiroula Georgoussi
- Laboratory
of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences
and Applications, National Center for Scientific
Research “Demokritos″, Ag. Paraskevi 15310, Athens, Greece
| | - Paschalina Pallaki
- Laboratory
of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences
and Applications, National Center for Scientific
Research “Demokritos″, Ag. Paraskevi 15310, Athens, Greece
| | - Enrique J. Cobos
- Department
of Pharmacology, Faculty of Medicine and Institute of Neuroscience,
Biomedical Research Center, University of
Granada, Parque Tecnológico de Ciencias de la Salud, 18100 Armilla, Granada, Spain
- Teófilo Hernando
Institute for Drug Discovery, 28029 Madrid, Spain
| | - Emanuele Amata
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Emanuela Arena
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department
of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
18
|
Zhang M, Cheng J, Zhang Y, Kong H, Wang S, Luo J, Qu H, Zhao Y. Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice. Nanomedicine (Lond) 2020; 15:851-869. [PMID: 32238028 DOI: 10.2217/nnm-2019-0369] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: To evaluate the analgesic activity of Zingiberis rhizoma-based carbon dots (ZR-CDs). Materials & methods: Novel ZR-CDs were prepared via a facile, green pyrolysis method. Microstructure, optical and functional group properties were characterized. Acetic acid writhing, hot-plate and tail-immersion tests were performed using mice to evaluate the analgesic activity of ZR-CDs, followed by a preliminary study on the analgesic mechanism. Results: ZR-CDs with a quantum yield of 5.2% had a diameter ranging from 2.23 to 3.77 nm. Remarkable analgesic effect of ZR-CDs was observed against both thermal and chemical stimulus tests, possibly mediated by an opioid-like mechanism and the regulation of 5-hydroxytryptamine levels. Conclusion: ZR-CDs have a promising potential for biomedical application in relieving pain-related diseases.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Suna Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| |
Collapse
|
19
|
Dumitrascuta M, Bermudez M, Ben Haddou T, Guerrieri E, Schläfer L, Ritsch A, Hosztafi S, Lantero A, Kreutz C, Massotte D, Schmidhammer H, Wolber G, Spetea M. N-Phenethyl Substitution in 14-Methoxy-N-methylmorphinan-6-ones Turns Selective µ Opioid Receptor Ligands into Dual µ/δ Opioid Receptor Agonists. Sci Rep 2020; 10:5653. [PMID: 32221355 PMCID: PMC7101422 DOI: 10.1038/s41598-020-62530-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/21/2020] [Indexed: 11/12/2022] Open
Abstract
Morphine and structurally-derived compounds are µ opioid receptor (µOR) agonists, and the most effective analgesic drugs. However, their usefulness is limited by serious side effects, including dependence and abuse potential. The N-substituent in morphinans plays an important role in opioid activities in vitro and in vivo. This study presents the synthesis and pharmacological evaluation of new N-phenethyl substituted 14-O-methylmorphinan-6-ones. Whereas substitution of the N-methyl substituent in morphine (1) and oxymorphone (2) by an N-phenethyl group enhances binding affinity, selectivity and agonist potency at the µOR of 1a and 2a, the N-phenethyl substitution in 14-methoxy-N-methylmorphinan-6-ones (3 and 4) converts selective µOR ligands into dual µ/δOR agonists (3a and 4a). Contrary to N-methylmorphinans 1-4, the N-phenethyl substituted morphinans 1a-4a produce effective and potent antinociception without motor impairment in mice. Using docking and molecular dynamics simulations with the µOR, we establish that N-methylmorphinans 1-4 and their N-phenethyl counterparts 1a-4a share several essential receptor-ligand interactions, but also interaction pattern differences related to specific structural features, thus providing a structural basis for their pharmacological profiles. The emerged structure-activity relationships in this class of morphinans provide important information for tuning in vitro and in vivo opioid activities towards discovery of effective and safer analgesics.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tanila Ben Haddou
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lea Schläfer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Ritsch
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Sandor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, H-1092, Budapest, Hungary
| | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000, Strasbourg, France
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
20
|
Turnaturi R, Chiechio S, Salerno L, Rescifina A, Pittalà V, Cantarella G, Tomarchio E, Parenti C, Pasquinucci L. Progress in the development of more effective and safer analgesics for pain management. Eur J Med Chem 2019; 183:111701. [PMID: 31550662 DOI: 10.1016/j.ejmech.2019.111701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Opioid analgesics have been used for thousands of years in the treatment of pain and related disorders, and have become among the most widely prescribed medications. Among opioid analgesics, mu opioid receptor (MOR) agonists are the most commonly used and are indicated for acute and chronic pain management. However, their use results in a plethora of well-described side-effects. From selective delta opioid receptor (DOR) and kappa opioid receptor (KOR) agonists to multitarget MOR/DOR and MOR/KOR ligands, medicinal chemistry provided different approaches aimed at the development of opioid analgesics with an improved pharmacological and tolerability fingerprint. The emergent medicinal chemistry strategy to develop ameliorated opioid analgesics is based upon the concept that functional selectivity for G-protein signalling is necessary for the therapeutic effect, whether β-arrestin recruitment is mainly responsible for the manifestation of side effects, including the development of tolerance after repeated administrations. This review summarises most relevant biased MOR, DOR, KOR and multitarget MOR/DOR ligands synthesised in the last decade and their pharmacological profile in "in vitro" and "in vivo" studies. Such biased ligands could have a significant impact on modern drug discovery and represent a new strategy for the development of better-tolerated drug candidates.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Santina Chiechio
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Loredana Salerno
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, Chemistry Section, University of Catania, Viale A. Doria, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Pharmacology Section, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
21
|
A Novel Mu-Delta Opioid Agonist Demonstrates Enhanced Efficacy With Reduced Tolerance and Dependence in Mouse Neuropathic Pain Models. THE JOURNAL OF PAIN 2019; 21:146-160. [PMID: 31201990 DOI: 10.1016/j.jpain.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023]
Abstract
Numerous studies have demonstrated a physiological interaction between the mu opioid receptor (MOR) and delta opioid receptor (DOR) systems. A few studies have shown that dual MOR-DOR agonists could be beneficial, with reduced tolerance and addiction liability, but are nearly untested in chronic pain models, particularly neuropathic pain. In this study, we tested the MOR-DOR agonist SRI-22141 in mice in the clinically relevant models of HIV Neuropathy and Chemotherapy-Induced Peripheral Neuropathy (CIPN). SRI-22141 was more potent than morphine in the tail flick pain test and had equal or enhanced efficacy versus morphine in both neuropathic pain models, with significantly reduced tolerance. SRI-22141 also produced no jumping behavior during naloxone-precipitated withdrawal in CIPN or naïve mice, suggesting that SRI-22141 produces little to no dependence. SRI-22141 also reduced tumor necrosis factor-α and cyclooxygenase-2 in CIPN in the spinal cord, suggesting an anti-inflammatory mechanism of action. The DOR-selective antagonist naltrindole strongly reduced CIPN efficacy and anti-inflammatory activity in the spinal cord, without affecting tail flick antinociception, suggesting the importance of DOR activity in these models. Overall, these results provide compelling evidence that MOR-DOR agonists could have strong efficacy with reduced side effects and an anti-inflammatory mechanism in the treatment of neuropathic pain. PERSPECTIVE: This study demonstrates that a MOR-DOR dual agonist given chronically in chronic neuropathic pain models has enhanced efficacy with strongly reduced tolerance and dependence, with a further anti-inflammatory effect in the spinal cord. This suggests that MOR-DOR dual agonists could be effective treatments for neuropathic pain with reduced side effects.
Collapse
|
22
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
23
|
Vicario N, Pasquinucci L, Spitale FM, Chiechio S, Turnaturi R, Caraci F, Tibullo D, Avola R, Gulino R, Parenti R, Parenti C. Simultaneous Activation of Mu and Delta Opioid Receptors Reduces Allodynia and Astrocytic Connexin 43 in an Animal Model of Neuropathic Pain. Mol Neurobiol 2019; 56:7338-7354. [PMID: 31030416 DOI: 10.1007/s12035-019-1607-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is a chronic condition triggered by lesions to the somatosensory nervous system in which pain stimuli occur spontaneously or as pathologically amplified responses. In this scenario, the exchange of signaling molecules throughout cell-to-cell and cell-to-extracellular environment communications plays a key role in the transition from acute to chronic pain. As such, connexin 43 (Cx43), the core glial gap junction and hemichannel-forming protein, is considered a triggering factor for disease chronicization in the central nervous system (CNS). Drugs targeting μ opioid receptors (MOR) are currently used for moderate to severe pain conditions, but their use in chronic pain is limited by the tolerability profile. δ opioid receptors (DOR) have become attractive targets for the treatment of persistent pain and have been associated with the inhibition of pain-sustaining factors. Moreover, it has been shown that simultaneous targeting of MOR and DOR leads to an improved pharmacological fingerprint. Herein, we aimed to study the effects of the benzomorphan ligand LP2, a multitarget MOR/DOR agonist, in an experimental model of neuropathic pain induced by the unilateral sciatic nerve chronic constriction injury (CCI) on male Sprague-Dawley rats. Results showed that LP2 significantly ameliorated mechanical allodynia from the early phase of treatment up to 21 days post-ligatures. We additionally showed that LP2 prevented CCI-induced Cx43 alterations and pro-apoptotic signaling in the CNS. These findings increase the knowledge of neuropathic pain development and the role of spinal astrocytic Cx43, suggesting new approaches for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, 95125, Catania, Italy
| | - Federica M Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy.,Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, 95125, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy.,Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy.
| | - Carmela Parenti
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy
| |
Collapse
|
24
|
Mahikhan F, Hashemian M, Dehesh T, Jafari E, Jafari M, Rahimi HR. Impact of Ondansetron on Withdrawal Signs, Fentanyl Requirement and Pain Relief in Opioid-addicted Patients under General Anesthesia. ACTA ACUST UNITED AC 2019; 14:232-241. [PMID: 30706788 DOI: 10.2174/1574884714666190131122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/25/2018] [Accepted: 01/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Serotonin 5-HT3 receptor antagonists such as ondansetron have been investigated to attenuate opioid withdrawal signs in studies. OBJECTIVE Therefore, we designed a randomized double-blinded placebo-controlled trial to evaluate this effect on opioid-addicted patients who were admitted to the orthopedic department for surgery due to bone fractures. METHODS Male adults who were addicted to opioids, aged 18 to 79 years were enrolled (n=96) and randomized into intravenous doses (4 & 8 mg) of ondansetron (n=32) and placebo (n=32). The vital signs, withdrawal symptoms and the frequency requirement of fentanyl were recorded during anesthesia, and opioid (pethidine) analgesic was received during the recovery period. Outcome parameters were analyzed for reduction of withdrawal symptoms in addicted adults. RESULTS We indicated that ondansetron demonstrated significant differences with few vital outcomes including systolic blood pressure (SBP) 20 (SBP3) and 50 min (SBP4) after injection of ondansetron during the period of surgery. Ondansetron could also significantly reduce the frequency requirement of fentanyl at 20 min (dose 3) in general anesthesia. Furthermore, requirement for further administration of opioid analgesic drugs such as pethidine was significantly reduced in the ondansetron groups. Objective opioid withdrawal scale (OOWS) results indicated that few clinical parameters including tremor, hot and cold flushes and anxiety were significantly attenuated in addicted patients who received ondansetron. CONCLUSION This study demonstrated supporting evidence for the beneficial treatment of ondansetron for the control of withdrawal symptoms and pain in addicted patients, and more clinical studies are suggested in this regard.
Collapse
Affiliation(s)
- Farzaneh Mahikhan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Hashemian
- Department of Anesthesiology and Pain Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tania Dehesh
- Department of Epidemiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mandana Jafari
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid-Reza Rahimi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Pasquinucci L, Turnaturi R, Montenegro L, Caraci F, Chiechio S, Parenti C. Simultaneous targeting of MOR/DOR: A useful strategy for inflammatory pain modulation. Eur J Pharmacol 2019; 847:97-102. [PMID: 30690004 DOI: 10.1016/j.ejphar.2019.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 02/03/2023]
Abstract
Development of new analgesics endowed with mu/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR selective compounds because of their better therapeutic and tolerability profile. Lately, we have synthetized the MOR/DOR agonist LP2 that showed a long lasting antinociceptive activity in the tail flick test, an acute pain model. Here, we investigate whether LP2 is also effective in the mouse formalin test, a model of inflammatory pain sustained by mechanisms of central sensitization. Moreover, we evaluated a possible peripheral component of LP2 analgesic activity. Different doses of LP2 were tested after either intraperitoneal (i.p.) or intraplantar (i.pl.) administration. LP2 (0.75-1.00 mg/kg, i.p.), dose-dependently, counteracted both phases of the formalin test after i.p. administration. The analgesic activity of LP2 (0.75-1.00 mg/kg) was completely blocked by a pretreatment with the opioid antagonist naloxone (3 mg/kg, i.p.). Differently, the pretreatment with naloxone methiodide (5 mg/kg, i.p.), a peripherally restricted opioid antagonist, completely blocked the lower analgesic dose of LP2 (0.75 mg/kg) but only partially relieved the antinociceptive effects of LP2 at the dose of 1.00 mg/kg, thus revealing a peripheral analgesic component of LP2. I.pl. injections of LP2 (10-20 μg/10 μl) were also performed to investigate a possible effect of LP2 on peripheral nerve terminals. Nociceptive sensitization, which occur both at peripheral and central level, is a fundamental step for pain chronicization, thus LP2 is a promising drug for pain conditions characterized by nociceptive sensitization.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Santina Chiechio
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
26
|
François-Moutal L, Dustrude ET, Wang Y, Brustovetsky T, Dorame A, Ju W, Moutal A, Perez-Miller S, Brustovetsky N, Gokhale V, Khanna M, Khanna R. Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain 2018; 159:2115-2127. [PMID: 29847471 PMCID: PMC6150792 DOI: 10.1097/j.pain.0000000000001294] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.7 currents. Microscale thermophoresis and amplified luminescent proximity homogeneous alpha assay revealed a low micromolar binding affinity between CRMP2 and Ubc9. A heptamer peptide harboring CRMP2's SUMO motif, also bound with similar affinity to Ubc9, disrupted the CRMP2-Ubc9 interaction in a concentration-dependent manner. Importantly, incubation of a tat-conjugated cell-penetrating peptide (t-CSM) decreased sodium currents, predominantly NaV1.7, in a model neuronal cell line. Dialysis of t-CSM peptide reduced CRMP2 SUMOylation and blocked surface trafficking of NaV1.7 in rat sensory neurons. Fluorescence dye-based imaging in rat sensory neurons demonstrated inhibition of sodium influx in the presence of t-CSM peptide; by contrast, calcium influx was unaffected. Finally, t-CSM effectively reversed persistent mechanical and thermal hypersensitivity induced by a spinal nerve injury, a model of neuropathic pain. Structural modeling has now identified a pocket-harboring CRMP2's SUMOylation motif that, when targeted through computational screening of ligands/molecules, is expected to identify small molecules that will biochemically and functionally target CRMP2's SUMOylation to reduce NaV1.7 currents and reverse neuropathic pain.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Erik T. Dustrude
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Yue Wang
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angie Dorame
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Weina Ju
- Department of Neurology, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
- Department of Pharmacology, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Aubin Moutal
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Samantha Perez-Miller
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vijay Gokhale
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - May Khanna
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724
| | - Rajesh Khanna
- Department of Pharmacology, The University of Arizona Health Sciences, Tucson, Arizona 85724
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona Health Sciences, Tucson, Arizona 85724
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724
| |
Collapse
|
27
|
Kaye AD, Cornett EM, Patil SS, Gennuso SA, Colontonio MM, Latimer DR, Kaye AJ, Urman RD, Vadivelu N. New opioid receptor modulators and agonists. Best Pract Res Clin Anaesthesiol 2018; 32:125-136. [PMID: 30322454 DOI: 10.1016/j.bpa.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
Abstract
There has been significant research to develop an ideal synthetic opioid. Opioids with variable properties possessing efficacy and with reduced side effects have been synthesized when compared to previously used agents. An opioid modulator is a drug that can produce both agonistic and antagonistic effects by binding to different opioid receptors and therefore cannot be classified as one or the other alone. These compounds can differ in their structures while still possessing opioid-mediated actions. This review will discuss TRV130 receptor modulators and other novel opioid receptor modulators, including Mitragyna "Kratom," Ignavine, Salvinorin-A, DPI-289, UFP-505, LP1, SKF-10,047, Cebranopadol, Naltrexone-14-O-sulfate, and Naloxegol. In summary, the structural elucidation of opioid receptors, allosteric modulation of opioid receptors, new opioid modulators and agonists, the employment of optogenetics, optopharmacology, and next-generation sequencing of opioid receptor genes and related functionality should create exciting new avenues for research and therapeutic development to treat conditions including pain, opioid abuse, and addiction.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, LSU Health Sciences Center, Room 656, 1542 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Shilpa S Patil
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Sonja A Gennuso
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Matthew M Colontonio
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Dustin R Latimer
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Aaron J Kaye
- Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Nalini Vadivelu
- Department of Anesthesiology, Yale School of Medicine, 333 Cedar Street, TMP 3, PO Box 208051, New Haven, CT, 06520, USA.
| |
Collapse
|
28
|
Günther T, Dasgupta P, Mann A, Miess E, Kliewer A, Fritzwanker S, Steinborn R, Schulz S. Targeting multiple opioid receptors - improved analgesics with reduced side effects? Br J Pharmacol 2018; 175:2857-2868. [PMID: 28378462 PMCID: PMC6016677 DOI: 10.1111/bph.13809] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 01/12/2023] Open
Abstract
Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the μ-opioid receptor (μ receptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptor (κ receptor), δ-opioid receptor (δ receptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor). Currently, a new generation of opioid analgesics is being developed that can simultaneously bind with high affinity to multiple opioid receptors. With this new action profile, it is hoped that additional analgesic effects and fewer side effects can be achieved. Recent research is mainly focused on the development of bifunctional μ/NOP receptor agonists, which has already led to novel lead structures such as the spiroindole-based cebranopadol and a compound class with a piperidin-4-yl-1,3-dihydroindol-2-one backbone (SR16835/AT-202 and SR14150/AT-200). In addition, the ornivol BU08028 is an analogue of the clinically well-established buprenorphine. Moreover, the morphinan-based nalfurafine exerts its effect with a dominant κ receptor-component and is therefore utilized in the treatment of pruritus. The very potent dihydroetorphine is a true multi-receptor opioid ligand in that it binds to μ, κ and δ receptors. The main focus of this review is to assess the paradigm of opioid ligands targeting multiple receptors with a single chemical entity. We reflect on this rationale by discussing the biological actions of particular multi-opioid receptor ligands, but not on their medicinal chemistry and design. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Pooja Dasgupta
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Anika Mann
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Elke Miess
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Andrea Kliewer
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Sebastian Fritzwanker
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Ralph Steinborn
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Stefan Schulz
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| |
Collapse
|
29
|
Abstract
Nowadays, the delta opioid receptor (DOPr) represents a promising target for the treatment of chronic pain and emotional disorders. Despite the fact that they produce limited antinociceptive effects in healthy animals and in most acute pain models, DOPr agonists have shown efficacy in various chronic pain models. In this chapter, we review the progresses that have been made over the last decades in understanding the role played by DOPr in the control of pain. More specifically, the distribution of DOPr within the central nervous system and along pain pathways is presented. We also summarize the literature supporting a role for DOPr in acute, tonic, and chronic pain models, as well as the mechanisms regulating its activity under specific conditions. Finally, novel compounds that have make their way to clinical trials are discussed.
Collapse
Affiliation(s)
- Khaled Abdallah
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du CHUS, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de pharmacologie-physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre de recherche du CHUS, Sherbrooke, QC, Canada.
- Département d'anesthésiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Quebec Pain Research Network, Sherbrooke, QC, Canada.
| |
Collapse
|
30
|
Yadlapalli JSK, Dogra N, Walbaum AW, Prather PL, Crooks PA, Dobretsov M. Preclinical assessment of utility of M6S for multimodal acute and chronic pain treatment in diabetic neuropathy. Life Sci 2018; 192:151-159. [DOI: 10.1016/j.lfs.2017.11.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/17/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022]
|
31
|
Yadlapalli JSK, Dogra N, Walbaum AW, Wessinger WD, Prather PL, Crooks PA, Dobretsov M. Evaluation of Analgesia, Tolerance, and the Mechanism of Action of Morphine-6-O-Sulfate Across Multiple Pain Modalities in Sprague-Dawley Rats. Anesth Analg 2017; 125:1021-1031. [PMID: 28489639 PMCID: PMC5561516 DOI: 10.1213/ane.0000000000002006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Morphine-6-O-sulfate (M6S) is a mixed μ/δ-opioid receptor (OR) agonist and potential alternative to morphine for treatment of chronic multimodal pain. METHODS To provide more support for this hypothesis, the antinociceptive effects of M6S and morphine were compared in tests that access a range of pain modalities, including hot plate threshold (HPT), pinprick sensitivity threshold (PST) and paw pressure threshold tests. RESULTS Acutely, M6S was 2- to 3-fold more potent than morphine in HPT and PST tests, specifically, derived from best-fit analysis of dose-response relationships of morphine/M6S half-effective dose (ED50) ratios (lower, upper 95% confidence interval [CI]) were 2.8 (2.0-5.8) in HPT and 2.2 (2.1, 2.4) in PST tests. No differences in analgesic drug potencies were detected in the PPT test (morphine/M6S ED50 ratio 1.2 (95% CI, 0.8-1.4). After 7 to 9 days of chronic treatment, tolerance developed to the antinociceptive effects of morphine, but not to M6S, in all 3 pain tests. Morphine-tolerant rats were not crosstolerant to M6S. The antinociceptive effects of M6S were not sensitive to κ-OR antagonists. However, the δ-OR antagonist, naltrindole, blocked M6S-induced antinociception by 55% ± 4% (95% CI, 39-75) in the HPT test, 94% ± 4% (95% CI, 84-105) in the PST test, and 5% ± 17% (95% CI, -47 to 59) or 51% ± 14% (95% CI, 14-84; 6 rats per each group) in the paw pressure threshold test when examined acutely or after 7 days of chronic treatment, respectively. CONCLUSIONS Activity via δ-ORs thus appears to be an important determinant of M6S action. M6S also exhibited favorable antinociceptive and tolerance profiles compared with morphine in 3 different antinociceptive assays, indicating that M6S may serve as a useful alternative for rotation in morphine-tolerant subjects.
Collapse
Affiliation(s)
- Jai Shankar K. Yadlapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, USA 72205
| | - Navdeep Dogra
- Department of Anesthesiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA 72205
| | - Anqi W. Walbaum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, USA 72205
| | - William D. Wessinger
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA 72205
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA 72205
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, USA 72205
| | - Maxim Dobretsov
- Department of Anesthesiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA 72205
| |
Collapse
|
32
|
Development of novel LP1-based analogues with enhanced delta opioid receptor profile. Bioorg Med Chem 2017; 25:4745-4752. [PMID: 28734666 DOI: 10.1016/j.bmc.2017.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022]
Abstract
Pain relief achieved by co-administration of drugs acting at different targets is more effective than that obtained with conventional MOR selective agonists usually associated to relevant side effects. It has been demonstrated that simultaneously targeting different opioid receptors is a more effective therapeutic strategy. Giving the promising role for DOR in pain management, novel LP1-based analogues with different N-substituents were designed and synthesized with the aim to improve DOR profile. For this purpose, we maintained the phenyl ring in the N-substituent of 6,7-benzomorphan scaffold linked to an ethyl spacer bearing a hydroxyl/methyl or methoxyl group at carbon 2 or including it in a 1,4-benzodioxane ring. LP1 analogues were tested by competition binding assays. Compounds 6 (KiMOR=2.47nM, KiDOR=9.6nM), 7 (KiMOR=0.5nM and KiDOR=0.8nM) and 9 (KiMOR=1.08nM, KiDOR=6.6nM) retained MOR affinity but displayed an improved DOR binding capacity as compared to LP1 (KiMOR=0.83nM, KiDOR=29.1nM). Moreover, GPI and MVD functional assays indicated that compounds 6 (IC50=49.2 and IC50=10.8nM), 7 (IC50=9.9 and IC50=11.8nM) and 9 (IC50=21.5 and IC50=4.4nM) showed a MOR/DOR agonist profile, unlike LP1 that was a MOR agonist/DOR antagonist (IC50=1.9 and IC50=1240nM). Measurements of their antinociceptive effect was evaluated by mice radiant tail flick test displaying for compounds 6, 7 and 9 ED50 values of 1.3, 1.0 and 0.9mg/kg, i.p., respectively. Moreover, the antinociceptive effect of compound 9 was longer lasting with respect to LP1. In conclusion the N-substituent nature of compounds 6, 7 and 9 shifts the DOR profile of LP1 from antagonism to agonism.
Collapse
|
33
|
Vardanyan RS, Cain JP, Haghighi SM, Kumirov VK, McIntosh MI, Sandweiss AJ, Porreca F, Hruby VJ. Synthesis and Investigation of Mixed μ-Opioid and δ-Opioid Agonists as Possible Bivalent Ligands for Treatment of Pain. J Heterocycl Chem 2017; 54:1228-1235. [PMID: 28819330 PMCID: PMC5557416 DOI: 10.1002/jhet.2696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several studies have suggested functional association between μ-opioid and δ-opioid receptors and showed that μ-activity could be modulated by δ-ligands. The general conclusion is that agonists for the δ-receptor can enhance the analgesic potency and efficacy of μ-agonists. Our preliminary investigations demonstrate that new bivalent ligands constructed from the μ-agonist fentanyl and the δ-agonist enkephalin-like peptides are promising entities for creation of new analgesics with reduced side effects for treatment of neuropathic pain. A new superposition of the mentioned pharmacophores led to novel μ-bivalent/δ-bivalent compounds that demonstrate both μ-opioid and δ-opioid receptor agonist activity and high efficacy in anti-inflammatory and neuropathic pain models with the potential of reduced unwanted side effects.
Collapse
Affiliation(s)
- Ruben S. Vardanyan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | - James P. Cain
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | | | - Vlad K. Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | - Mary I. McIntosh
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Alexander J. Sandweiss
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| |
Collapse
|
34
|
Mollica A, Pelliccia S, Famiglini V, Stefanucci A, Macedonio G, Chiavaroli A, Orlando G, Brunetti L, Ferrante C, Pieretti S, Novellino E, Benyhe S, Zador F, Erdei A, Szucs E, Samavati R, Dvrorasko S, Tomboly C, Ragno R, Patsilinakos A, Silvestri R. Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors. J Enzyme Inhib Med Chem 2017; 32:444-451. [PMID: 28097916 PMCID: PMC6009935 DOI: 10.1080/14756366.2016.1260565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.
Collapse
Affiliation(s)
- Adriano Mollica
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Sveva Pelliccia
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Valeria Famiglini
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| | - Azzurra Stefanucci
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giorgia Macedonio
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Annalisa Chiavaroli
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Giustino Orlando
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Luigi Brunetti
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Claudio Ferrante
- a Dipartimento di Farmacia , Università di Chieti-Pescara "G. d'Annunzio" , Chieti , Italy
| | - Stefano Pieretti
- c Dipartimento del Farmaco , Istituto Superiore di Sanità , Rome , Italy
| | - Ettore Novellino
- d Dipartimento di Farmacia , Università di Napoli "Federico II" , Naples , Italy
| | - Sandor Benyhe
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Ferenc Zador
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Anna Erdei
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Edina Szucs
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Reza Samavati
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Szalbolch Dvrorasko
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Csaba Tomboly
- e Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Rino Ragno
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Alexandros Patsilinakos
- f Dipartimento di Chimica e Tecnologie del Farmaco , Rome Center for Molecular Design, Sapienza Università di Roma , Roma , Italy.,g Alchemical Dynamics s.r.l , Roma , Italy
| | - Romano Silvestri
- b Dipartimento di Chimica e Tecnologie del Farmaco , Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Roma , Italy
| |
Collapse
|
35
|
Yadlapalli JSK, Ford BM, Ketkar A, Wan A, Penthala NR, Eoff RL, Prather PL, Dobretsov M, Crooks PA. Antinociceptive effects of the 6-O-sulfate ester of morphine in normal and diabetic rats: Comparative role of mu- and delta-opioid receptors. Pharmacol Res 2016; 113:335-347. [PMID: 27637375 DOI: 10.1016/j.phrs.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
Abstract
This study determined the antinociceptive effects of morphine and morphine-6-O-sulfate (M6S) in both normal and diabetic rats, and evaluated the comparative role of mu-opioid receptors (mu-ORs) and delta-opioid receptors (delta-ORs) in the antinociceptive action of these opioids. In vitro characterization of mu-OR and delta-OR-mediated signaling by M6S and morphine in stably transfected Chinese hamster ovary (CHO-K1) cells showed that M6S exhibited a 6-fold higher affinity for delta-ORs and modulated G-protein and adenylyl cyclase activity via delta-ORs more potently than morphine. Interestingly, while morphine acted as a full agonist at delta-ORs in both functional assays examined, M6S exhibited either partial or full agonist activity for modulation of G-protein or adenylyl cyclase activity, respectively. Molecular docking studies indicated that M6S but not morphine binds equally well at the ligand binding site of both mu- and delta-ORs. In vivo analgesic effects of M6S and morphine in both normal and streptozotocin-induced diabetic Sprague-Dawley rats utilizing the hot water tail flick latency test showed that M6S produced more potent antinociception than morphine in both normal rats and diabetic rats. This difference in potency was abrogated following antagonism of delta- but not mu- or kappa (kappa-ORs) opioid receptors. During 9days of chronic treatment, tolerance developed to morphine-treated but not to M6S-treated rats. Rats that developed tolerance to morphine still remained responsive to M6S. Collectively, this study demonstrates that M6S is a potent and efficacious mu/delta opioid analgesic with a delayed tolerance profile when compared to morphine in both normal and diabetic rats. PERSPECTIVE This study demonstrates that M6S acts at both mu- and delta-ORs, and adds to the growing evidence that the use of mixed mu/delta opioid agonists in pain treatment may have clinical benefit.
Collapse
Affiliation(s)
- Jai Shankar K Yadlapalli
- Departments of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Benjamin M Ford
- Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Amit Ketkar
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Anqi Wan
- Departments of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Narasimha R Penthala
- Departments of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert L Eoff
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Paul L Prather
- Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Maxim Dobretsov
- Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Peter A Crooks
- Departments of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This article aims to discuss the multitarget concept for opioid receptor ligands framed on early observations that activating MOP (mu:μ) receptor whilst simultaneously blocking DOP (delta:δ) receptors reduces the onset of morphine tolerance. The review period is ostensibly calendar year 2014 but the new work in 2013 is also covered. RECENT FINDINGS Two molecules of interest with MOP agonist/DOP agonist and MOP agonist/DOP antagonist profiles were described: Rv-Jim-C3 and 3-[(2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-2,6-methano-3-benzazocin-3(2H)-yl]-N-phenylpropanamide (LP1), respectively. Both were effective in neuropathic pain (wherein classical single target opioids have low efficacy) with the latter having a predicted reduced tolerance profile. BU0807 is a buprenorphine derivative with mixed MOP/NOP agonist activity and this was shown to be effective in abdominal pain. SR16435 and GRT6005 (cebranopadol) are mixed MOP/MOP agonists with varying degrees of partial agonism. Both displayed significant antinociceptive activity and reduced tolerance potential in preclinical models. SUMMARY There is growing evidence for and interest in the design and evaluation of mixed opioids that extend beyond the MOP/DOP pairing to now include NOP. Indeed, a mixed MOP/NOP ligand is close to the clinic; this will reinvigorate the search for other mixed molecules with reduced side-effect profiles.
Collapse
|
37
|
Du GH, Yuan TY, Du LD, Zhang YX. The Potential of Traditional Chinese Medicine in the Treatment and Modulation of Pain. PHARMACOLOGICAL MECHANISMS AND THE MODULATION OF PAIN 2016; 75:325-61. [DOI: 10.1016/bs.apha.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Deekonda S, Cole J, Sunna S, Rankin D, Largent-Milnes TM, Davis P, BassiriRad NM, Lai J, Vanderah TW, Porecca F, Hruby VJ. Enkephalin analogues with N-phenyl-N-(piperidin-2-ylmethyl)propionamide derivatives: Synthesis and biological evaluations. Bioorg Med Chem Lett 2016; 26:222-7. [PMID: 26611918 PMCID: PMC4873255 DOI: 10.1016/j.bmcl.2015.10.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
N-Phenyl-N-(piperidin-2-ylmethyl)propionamide based bivalent ligands are unexplored for the design of opioid based ligands. Two series of hybrid molecules bearing N-phenyl-N-(piperidin-2-ylmethyl)propionamide derived small molecules conjugated with an enkephalin analogues with and without a linker (β-alanine) were designed and synthesized. Both bivalent ligand series exhibited remarkable binding affinities from nanomolar to subnanomolar range at both μ and δ opioid receptors and displayed potent agonist activities as well. The replacement of Tyr with Dmt and introduction of a linker between the small molecule and enkephalin analogue resulted in highly potent ligands. Both series of ligands showed excellent binding affinities at both μ (0.6-0.9nM) and δ (0.2-1.2nM) opioid receptors respectively. Similarly, these bivalent ligands exhibited potent agonist activities in both MVD and GPI assays. Ligand 17 was evaluated for in vivo antinociceptive activity in non-injured rats following spinal administration. Ligand 17 was not significantly effective in alleviating acute pain. The most likely explanations for this low intrinsic efficacy in vivo despite high in vitro binding affinity, moderate in vitro activity are (i) low potency suggesting that higher doses are needed; (ii) differences in experimental design (i.e. non-neuronal, high receptor density for in vitro preparations versus CNS site of action in vitro); (iii) pharmacodynamics (i.e. engaging signalling pathways); (iv) pharmacokinetics (i.e. metabolic stability). In summary, our data suggest that further optimisation of this compound 17 is required to enhance intrinsic antinociceptive efficacy.
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Jacob Cole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Sydney Sunna
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | | | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Neemah M BassiriRad
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Frank Porecca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
39
|
Deekonda S, Wugalter L, Kulkarni V, Rankin D, Largent-Milnes TM, Davis P, Bassirirad NM, Lai J, Vanderah TW, Porreca F, Hruby VJ. Discovery of 5-substituted tetrahydronaphthalen-2yl-methyl with N-phenyl-N-(piperidin-4-yl)propionamide derivatives as potent opioid receptor ligands. Bioorg Med Chem 2015; 23:6185-94. [PMID: 26299827 PMCID: PMC4642887 DOI: 10.1016/j.bmc.2015.07.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 07/30/2015] [Indexed: 02/02/2023]
Abstract
A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity.
Collapse
MESH Headings
- Amides/chemical synthesis
- Amides/chemistry
- Amides/pharmacokinetics
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Drug Evaluation, Preclinical
- Half-Life
- Ligands
- Male
- Narcotic Antagonists/chemical synthesis
- Narcotic Antagonists/chemistry
- Narcotic Antagonists/pharmacokinetics
- Protein Binding
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/chemistry
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Lauren Wugalter
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Vinod Kulkarni
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | | | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
40
|
François-Moutal L, Wang Y, Moutal A, Cottier KE, Melemedjian OK, Yang X, Wang Y, Ju W, Largent-Milnes TM, Khanna M, Vanderah TW, Khanna R. A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses inflammatory and postoperative pain behaviors. Pain 2015; 156:1247-1264. [PMID: 25782368 PMCID: PMC5766324 DOI: 10.1097/j.pain.0000000000000147] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeting proteins within the N-type voltage-gated calcium channel (CaV2.2) complex has proven to be an effective strategy for developing novel pain therapeutics. We describe a novel peptide aptamer derived from the collapsin response mediator protein 2 (CRMP2), a CaV2.2-regulatory protein. Addition of a 14-carbon myristate group to the peptide (myr-tat-CBD3) tethered it to the membrane of primary sensory neurons near surface CaV2.2. Pull-down studies demonstrated that myr-tat-CBD3 peptide interfered with the CRMP2-CaV2.2 interaction. Quantitative confocal immunofluorescence revealed a pronounced reduction of CaV2.2 trafficking after myr-tat-CBD3 treatment and increased efficiency in disrupting CRMP2-CaV2.2 colocalization compared with peptide tat-CBD3. Consequently, myr-tat-CBD3 inhibited depolarization-induced calcium influx in sensory neurons. Voltage clamp electrophysiology experiments revealed a reduction of Ca, but not Na, currents in sensory neurons after myr-tat-CBD3 exposure. Current clamp electrophysiology experiments demonstrated a reduction in excitability of small-diameter dorsal root ganglion neurons after exposure to myr-tat-CBD3. Myr-tat-CBD3 was effective in significantly attenuating carrageenan-induced thermal hypersensitivity and reversing thermal hypersensitivity induced by a surgical incision of the plantar surface of the rat hind paw, a model of postoperative pain. These effects are compared with those of tat-CBD3-the nonmyristoylated tat-conjugated CRMP2 peptide as well as scrambled versions of CBD3 and CBD3-lacking control peptides. Our results demonstrate that the myristoyl tag enhances intracellular delivery and local concentration of the CRMP2 peptide aptamer near membrane-delimited calcium channels resulting in pronounced interference with the calcium channel complex, superior suppression of calcium influx, and better antinociceptive potential.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aptamers, Peptide/genetics
- Aptamers, Peptide/metabolism
- Aptamers, Peptide/therapeutic use
- Calcium Channels, N-Type/metabolism
- Cells, Cultured
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/metabolism
- Intercellular Signaling Peptides and Proteins
- Male
- Molecular Sequence Data
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/therapeutic use
- Pain, Postoperative/drug therapy
- Pain, Postoperative/genetics
- Pain, Postoperative/metabolism
- Protein Transport/drug effects
- Protein Transport/physiology
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
| | - Yue Wang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Karissa E. Cottier
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Xiaofang Yang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yuying Wang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Weina Ju
- Department of Pharmacology, Norman Bethune College of Medicine, Changchun, Jilin Province, China
| | | | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
- Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
41
|
Bird MF, Vardanyan RS, Hruby VJ, Calò G, Guerrini R, Salvadori S, Trapella C, McDonald J, Rowbotham DJ, Lambert DG. Development and characterisation of novel fentanyl-delta opioid receptor antagonist based bivalent ligands. Br J Anaesth 2015; 114:646-56. [PMID: 25680364 DOI: 10.1093/bja/aeu454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Opioid tolerance is a limiting factor in chronic pain. Delta opioid peptide (DOP)(δ) receptor antagonism has been shown to reduce tolerance. Here, the common clinical mu opioid peptide (MOP)(µ) receptor agonist fentanyl has been linked to the DOP antagonist Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydrisoquinoline-3-carboxylic acid) to create new bivalent compounds. METHODS Binding affinities of bivalents(#9, #10, #11, #12 and #13) were measured in Chinese hamster ovary (CHO) cells expressing recombinant human MOP, DOP, Kappa opioid peptide (KOP)(κ) and nociceptin/orphanin FQ opioid peptide (NOP) receptors. Functional studies, measuring GTPγ[(35)S] or β-arrestin recruitment, were performed in membranes or whole cells respectively expressing MOP and DOP. RESULTS The new bivalents bound to MOP (pKi : #9:7.31; #10:7.58; #11:7.91; #12:7.94; #13:8.03) and DOP (#9:8.03; #10:8.16; #11:8.17; #12:9.67; #13:9.71). In GTPγ[(35)S] functional assays, compounds #9(pEC50:6.74; intrinsic activity:0.05) #10(7.13;0.34) and #11(7.52;0.27) showed weak partial agonist activity at MOP. Compounds #12 and #13, with longer linkers, showed no functional activity at MOP. In antagonist assays at MOP, compounds #9 (pKb:6.87), #10(7.55) #11(7.81) #12(6.91) and #13(7.05) all reversed the effects of fentanyl. At DOP, all compounds showed antagonist affinity (#9:6.85; #10:8.06; #11:8.11; #12:9.42; #13:9.00), reversing the effects of DPDPE ([D-Pen(2,5)]enkephalin). In β-arrestin assays, compared with fentanyl (with response at maximum concentration (RMC):13.62), all compounds showed reduced ability to activate β-arrestin (#9 RMC:1.58; #10:2.72; #11:2.40; #12:1.29; #13:1.58). Compared with fentanyl, the intrinsic activity was: #9:0.12; #10:0.20; #11:0.18; #12:0.09 and #13:0.12. CONCLUSIONS The addition of a linker between fentanyl and Dmt-Tic did not alter the ability to bind to MOP and DOP, however a substantial loss in MOP functional activity was apparent. This highlights the difficulty in multifunctional opioid development.
Collapse
Affiliation(s)
- M F Bird
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - R S Vardanyan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - V J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - G Calò
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and Italian Institute of Neuroscience, Ferrara, Italy
| | - R Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - S Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - C Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - J McDonald
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - D J Rowbotham
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - D G Lambert
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| |
Collapse
|
42
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|