1
|
Marino F, Petrella L, Cimmino F, Pizzella A, Monda A, Allocca S, Rotondo R, D’Angelo M, Musco N, Iommelli P, Catapano A, Bagnato C, Paolini B, Cavaliere G. From Obesity to Mitochondrial Dysfunction in Peripheral Tissues and in the Central Nervous System. Biomolecules 2025; 15:638. [PMID: 40427531 PMCID: PMC12108580 DOI: 10.3390/biom15050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Obesity is a condition of chronic low-grade inflammation affecting peripheral organs of the body, as well as the central nervous system. The adipose tissue dysfunction occurring under conditions of obesity is a key factor in the onset and progression of a variety of diseases, including neurodegenerative disorders. Mitochondria, key organelles in the production of cellular energy, play an important role in this tissue dysfunction. Numerous studies highlight the close link between obesity and adipocyte mitochondrial dysfunction, resulting in excessive ROS production and adipose tissue inflammation. This inflammation is transmitted systemically, leading to metabolic disorders that also impact the central nervous system, where pro-inflammatory cytokines impair mitochondrial and cellular functions in different areas of the brain, leading to neurodegenerative diseases. To date, several bioactive compounds are able to prevent and/or slow down neurogenerative processes by acting on mitochondrial functions. Among these, some molecules present in the Mediterranean diet, such as polyphenols, carotenoids, and omega-3 PUFAs, exert a protective action due to their antioxidant and anti-inflammatory ability. The aim of this review is to provide an overview of the involvement of adipose tissue dysfunction in the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, emphasizing the central role played by mitochondria, the main actors in the cross-talk between adipose tissue and the central nervous system.
Collapse
Affiliation(s)
- Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.P.); (A.P.); (A.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.P.); (A.P.); (A.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.P.); (A.P.); (A.C.)
| | - Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Telematic University, 00166 Rome, Italy;
| | - Salvatore Allocca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Margherita D’Angelo
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (N.M.); (P.I.)
| | - Piera Iommelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (N.M.); (P.I.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.P.); (A.P.); (A.C.)
| | - Carmela Bagnato
- Clinical Nutrition Unit, Madonna Delle Grazie Hospital, 75100 Matera, Italy;
| | - Barbara Paolini
- Unit of Dietetics and Clinical Nutrition, Department of Innovation, Experimentation and Clinical Research, S. Maria Alle Scotte Hospital, University of Siena, 53100 Siena, Italy;
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
2
|
Song M, Bai Y, Song F. High-fat diet and neuroinflammation: The role of mitochondria. Pharmacol Res 2025; 212:107615. [PMID: 39842474 DOI: 10.1016/j.phrs.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
In recent years, increasing evidence has supported that high-fat diet (HFD) can induce the chronic, low-grade neuroinflammation in the brain, which is closely associated with the impairment of cognitive function. As the key organelles responsible for energy metabolism in the cell, mitochondria are believed to involved in the pathogenesis of a variety of neurological disorders. This review summarizes the current progress in the field of the relationship between HFD exposure and neurodegenerative diseases, and outline the major routines of HFD induced neuroinflammation and its pathological significance in the pathogenesis of neurodegenerative diseases. Furthermore, the article highlights the pivotal role of mitochondrial dysfunction in driving the neuroinflammation in the setting of HFD. Danger-associated molecular patterns (DAMPs) from damaged mitochondria can activate innate immune signaling pathways, while mitochondrial dysfunction itself can lead to metabolic remodeling of inflammatory cells, thus inducing neuroinflammation. More importantly, mitochondrial damage, neuroinflammation, and insulin resistance caused by HFD form a mutually reinforcing vicious cycle, ultimately leading to the death of neurons and promoting the progression of neurodegenerative diseases. Thus, in-depth elucidation of the role and underlying mechanisms of mitochondrial dysfunction in HFD-induced metabolic disorders may not only expand our understanding of the mechanistic linkages between HFD and etiology of neurodegenerative diseases, but also help develop the specific strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Spinedi E, Docena GH. Physiopathological Roles of White Adiposity and Gut Functions in Neuroinflammation. Int J Mol Sci 2024; 25:11741. [PMID: 39519291 PMCID: PMC11546880 DOI: 10.3390/ijms252111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
White adipose tissue (WAT) and the gut are involved in the development of neuroinflammation when an organism detects any kind of injury, thereby triggering metainflammation. In fact, the autonomous nervous system innervates both tissues, although the complex role played by the integrated sympathetic, parasympathetic, and enteric nervous system functions have not been fully elucidated. Our aims were to investigate the participation of inflamed WAT and the gut in neuroinflammation. Firstly, we conducted an analysis into how inflamed peripheral WAT plays a key role in the triggering of metainflammation. Indeed, this included the impact of the development of local insulin resistance and its metabolic consequences, a serious hypothalamic dysfunction that promotes neurodegeneration. Then, we analyzed the gut-brain axis dysfunction involved in neuroinflammation by examining cell interactions, soluble factors, the sensing of microbes, and the role of dysbiosis-related mechanisms (intestinal microbiota and mucosal barriers) affecting brain functions. Finally, we targeted the physiological crosstalk between cells of the brain-WAT-gut axis that restores normal tissue homeostasis after injury. We concluded the following: because any injury can result not only in overall insulin resistance and dysbiosis, which in turn can impact upon the brain, but that a high-risk of the development of neuroinflammation-induced neurodegenerative disorder can also be triggered. Thus, it is imperative to avoid early metainflammation by applying appropriate preventive (e.g., lifestyle and diet) or pharmacological treatments to cope with allostasis and thus promote health homeostasis.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centro de Endocrinología Experimental y Aplicada (CENEXA-UNLP-CONICET-CICPBA), University of La Plata Medical School, La Plata 1900, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-UNLP-CONICET-CICPBA), School of Sciences, University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
4
|
Song M, Qiang Y, Wang S, Shan S, Zhang L, Liu C, Song F, Zhao X. High-fat diet exacerbates 1-Bromopropane-induced loss of dopaminergic neurons in the substantia nigra of mice through mitochondrial damage associated necroptotic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116280. [PMID: 38574648 DOI: 10.1016/j.ecoenv.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shan Shan
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liwen Zhang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Caipei Liu
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fuyong Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiulan Zhao
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Cruz KLO, Salla DH, Oliveira MP, Silva LE, Vedova LMD, Mendes TF, Bressan CBC, Silva MR, Santos SML, Soares HJ, Mendes RL, Vernke CN, Silva MG, Laurentino AOM, Medeiros FD, Vilela TC, Lemos I, Bitencourt RM, Réus GZ, Streck EL, Mello AH, Rezin GT. Energy metabolism and behavioral parameters in female mice subjected to obesity and offspring deprivation stress. Behav Brain Res 2023; 451:114526. [PMID: 37271313 DOI: 10.1016/j.bbr.2023.114526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the behavioral and energy metabolism parameters in female mice subjected to obesity and offspring deprivation (OD) stress. Eighty female Swiss mice, 40 days old, were weighed and divided into two groups: Control group (control diet, n = 40) and Obese group (high-fat diet, n = 40), for induction of the animal model of obesity, the protocol was based on the consumption of a high-fat diet and lasted 8 weeks. Subsequently, the females were subjected to pregnancy, after the birth of the offspring, were divided again into the following groups (n = 20): Control non-deprived (ND), Control + OD, Obese ND, and Obese + OD, for induction of the stress protocol by OD. After the offspring were 21 days old, weaning was performed and the dams were subjected to behavioral tests. The animals were humanely sacrificed, the brain was removed, and brain structures were isolated to assess energy metabolism. Both obesity and OD led to anhedonia in the dams. It was shown that the structures most affected by obesity and OD are the hypothalamus and hippocampus, as evidenced by the mitochondrial dysfunction found in these structures. When analyzing the groups separately, it was observed that OD led to more pronounced mitochondrial damage; however, the association of obesity with OD, as well as obesity alone, also generated damage. Thus, it is concluded that obesity and OD lead to anhedonia in animals and to mitochondrial dysfunction in the hypothalamus and hippocampus, which may lead to losses in feeding control and cognition of the dams.
Collapse
Affiliation(s)
- Kenia L O Cruz
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Daniele H Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Larissa E Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil.
| | - Larissa M D Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Talita F Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Catarina B C Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariella R Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Sheila M L Santos
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Hevylin J Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Rayane L Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Camila N Vernke
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Marina G Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Ana O M Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabiana D Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Rafael M Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, Brazil
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Aline H Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gislaine T Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| |
Collapse
|
6
|
Behl T, Makkar R, Anwer MK, Hassani R, Khuwaja G, Khalid A, Mohan S, Alhazmi HA, Sachdeva M, Rachamalla M. Mitochondrial Dysfunction: A Cellular and Molecular Hub in Pathology of Metabolic Diseases and Infection. J Clin Med 2023; 12:jcm12082882. [PMID: 37109219 PMCID: PMC10141031 DOI: 10.3390/jcm12082882] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are semiautonomous doubly membraned intracellular components of cells. The organelle comprises of an external membrane, followed by coiled structures within the membrane called cristae, which are further surrounded by the matrix spaces followed by the space between the external and internal membrane of the organelle. A typical eukaryotic cell contains thousands of mitochondria within it, which make up 25% of the cytoplasm present in the cell. The organelle acts as a common point for the metabolism of glucose, lipids, and glutamine. Mitochondria chiefly regulate oxidative phosphorylation-mediated aerobic respiration and the TCA cycle and generate energy in the form of ATP to fulfil the cellular energy needs. The organelle possesses a unique supercoiled doubly stranded mitochondrial DNA (mtDNA) which encodes several proteins, including rRNA and tRNA crucial for the transport of electrons, oxidative phosphorylation, and initiating genetic repair processors. Defects in the components of mitochondria act as the principal factor for several chronic cellular diseases. The dysfunction of mitochondria can cause a malfunction in the TCA cycle and cause the leakage of the electron respiratory chain, leading to an increase in reactive oxygen species and the signaling of aberrant oncogenic and tumor suppressor proteins, which further alter the pathways involved in metabolism, disrupt redox balance, and induce endurance towards apoptosis and several treatments which play a major role in developing several chronic metabolic conditions. The current review presents the knowledge on the aspects of mitochondrial dysfunction and its role in cancer, diabetes mellitus, infections, and obesity.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Stattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum 11123, Sudan
| | - Syam Mohan
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain P.O. Box 24162, United Arab Emirates
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
7
|
Li H, Ren J, Li Y, Wu Q, Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne) 2023; 14:1134025. [PMID: 37077347 PMCID: PMC10107409 DOI: 10.3389/fendo.2023.1134025] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity has been associated with oxidative stress. Obese patients are at increased risk for diabetic cognitive dysfunction, indicating a pathological link between obesity, oxidative stress, and diabetic cognitive dysfunction. Obesity can induce the biological process of oxidative stress by disrupting the adipose microenvironment (adipocytes, macrophages), mediating low-grade chronic inflammation, and mitochondrial dysfunction (mitochondrial division, fusion). Furthermore, oxidative stress can be implicated in insulin resistance, inflammation in neural tissues, and lipid metabolism disorders, affecting cognitive dysfunction in diabetics.
Collapse
Affiliation(s)
- Huimin Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yusi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites 2023; 13:metabo13010086. [PMID: 36677011 PMCID: PMC9865135 DOI: 10.3390/metabo13010086] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is defined as abnormal and excessive fat accumulation, and it is a risk factor for developing metabolic and neurodegenerative diseases and cognitive deficits. Obesity is caused by an imbalance in energy homeostasis resulting from increased caloric intake associated with a sedentary lifestyle. However, the entire physiopathology linking obesity with neurodegeneration and cognitive decline has not yet been elucidated. During the progression of obesity, adipose tissue undergoes immune, metabolic, and functional changes that induce chronic low-grade inflammation. It has been proposed that inflammatory processes may participate in both the peripheral disorders and brain disorders associated with obesity, including the development of cognitive deficits. In addition, mitochondrial dysfunction is related to inflammation and oxidative stress, causing cellular oxidative damage. Preclinical and clinical studies of obesity and metabolic disorders have demonstrated mitochondrial brain dysfunction. Since neuronal cells have a high energy demand and mitochondria play an important role in maintaining a constant energy supply, impairments in mitochondrial activity lead to neuronal damage and dysfunction and, consequently, to neurotoxicity. In this review, we highlight the effect of obesity and high-fat diet consumption on brain neuroinflammation and mitochondrial changes as a link between metabolic dysfunction and cognitive decline.
Collapse
|
9
|
López-Taboada I, Sal-Sarria S, Vallejo G, Coto-Montes A, Conejo NM, González-Pardo H. Sexual dimorphism in spatial learning and brain metabolism after exposure to a western diet and early life stress in rats. Physiol Behav 2022; 257:113969. [PMID: 36181786 DOI: 10.1016/j.physbeh.2022.113969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prolonged daily intake of Western-type diet rich in saturated fats and sugars, and exposure to early life stress have been independently linked to impaired neurodevelopment and behaviour in animal models. However, sex-specific effects of both environmental factors combined on spatial learning and memory, behavioural flexibility, and brain oxidative capacity have still not been addressed. The current study aimed to evaluate the impact of maternal and postnatal exposure to a high-fat and high-sugar diet (HFS), and exposure to early life stress by maternal separation in adult male and female Wistar rats. For this purpose, spatial learning and memory and behavioural flexibility were evaluated in the Morris water maze, and regional brain oxidative capacity and oxidative stress levels were measured in the hippocampus and medial prefrontal cortex. Spatial memory, regional brain oxidative metabolism, and levels of oxidative stress differed between females and males, suggesting sexual dimorphism in the effects of a HFS diet and early life stress. Males fed the HFS diet performed better than all other experimental groups independently of early life stress exposure. However, behavioural flexibility evaluated in the spatial reversal leaning task was impaired in males fed the HFS diet. In addition, exposure to maternal separation or the HFS diet increased the metabolic capacity of the prefrontal cortex and dorsal hippocampus in males and females. Levels of oxidative stress measured in the latter brain regions were also increased in groups fed the HFS diet, but maternal separation seemed to dampen regional brain oxidative stress levels. Therefore, these results suggest a compensatory effect resulting from the interaction between prolonged exposure to a HFS diet and early life stress.
Collapse
Affiliation(s)
- Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Guillermo Vallejo
- Methodology area, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain
| | - Ana Coto-Montes
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain; Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
10
|
Nasehi L, Morassaei B, Ghaffari M, Sharafi A, Dehpour AR, Hosseini MJ. The impacts of vorinostat on NADPH oxidase and mitochondrial biogenesis gene expression in the heart of mice model of depression. Can J Physiol Pharmacol 2022; 100:1077-1085. [PMID: 36166834 DOI: 10.1139/cjpp-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The comorbidity of depression and high risk of cardiovascular diseases (CVD) have been reported as major health problems. Our previous study confirmed that fluoxetine (FLX) therapy had a significant influence on brain function but not on the heart in depression. In the present study, suberoyanilide hydroxamic acid (SAHA) was proposed as another therapeutic candidate for treatment of depression comorbid CVD in maternal separation model, following behavioral analyses and gene expression level in the heart. Our data demonstrated that SAHA significantly attenuates the NOX-4 gene expression level in treated mice with SAHA and FLX without significant change in NOX-2 expression level. SAHA decreased the gene expression level of peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and nuclear respiratory factors (Nrf2) in heart tissues of maternally separated mice. It supposed that non-effectiveness of FLX on mitochondrial biogenesis and NOX gene expression level in the heart of depressed patient can be related to recurrence of depression. It revealed that SAHA not only reversed the depressive-like behavior similar to our previous data but also recovered the heart mitochondrial function via effect on NOX-2, NOX-4, and mitochondrial biogenesis genes' (PGC-1α, Nrf-2, and peroxisome proliferator-activated receptor-α (PPAR-α)) expression levels. We suggest performing more studies to confirm SAHA as a therapeutic candidate in depression comorbid CVD.
Collapse
Affiliation(s)
- Leila Nasehi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahareh Morassaei
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Maryam Ghaffari
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical sciences, Zanjan, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| |
Collapse
|
11
|
Masule MV, Rathod S, Agrawal Y, Patil CR, Nakhate KT, Ojha S, Goyal SN, Mahajan UB. Ghrelin mediated regulation of neurosynaptic transmitters in depressive disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100113. [PMID: 35782191 PMCID: PMC9240712 DOI: 10.1016/j.crphar.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Ghrelin is a peptide released by the endocrine cells of the stomach and the neurons in the arcuate nucleus of the hypothalamus. It modulates both peripheral and central functions. Although ghrelin has emerged as a potent stimulator of growth hormone release and as an orexigenic neuropeptide, the wealth of literature suggests its involvement in the pathophysiology of affective disorders including depression. Ghrelin exhibits a dual role through the advancement and reduction of depressive behavior with nervousness in the experimental animals. It modulates depression-related signals by forming neuronal networks with various neuropeptides and classical neurotransmitter systems. The present review emphasizes the integration and signaling of ghrelin with other neuromodulatory systems concerning depressive disorders. The role of ghrelin in the regulation of neurosynaptic transmission and depressive illnesses implies that the ghrelin system modulation can yield promising antidepressive therapies. Ghrelin is the orexigenic type of neuropeptide. It binds with the growth hormone secretagogue receptor (GHSR). GHSR is ubiquitously present in the various brain regions. Ghrelin is involved in the regulation of depression-related behavior. The review focuses on the neurotransmission and signaling of ghrelin in neuropsychiatric and depressive disorders.
Collapse
Affiliation(s)
- Milind V. Masule
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sumit Rathod
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
- Corresponding author.
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
- Corresponding author.
| |
Collapse
|
12
|
Terzo S, Amato A, Mulè F. From obesity to Alzheimer's disease through insulin resistance. J Diabetes Complications 2021; 35:108026. [PMID: 34454830 DOI: 10.1016/j.jdiacomp.2021.108026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease is one of the most frequent forms of dementia. It is a progressive neurodegenerative disease, characterized by presence of amyloid plaques and neurofibrillary tangles in the brain. Obesity is regarded as abnormal fat accumulation with deleterious impact on human health. There is full scientific evidence that obesity and the metabolic comorbidities (e.g., insulin resistance, hyperglycaemia, and type 2 diabetes) are related to Alzheimer's disease and likely in the causative pathway. Numerous studies have identified several overlapping neurodegenerative mechanisms, including oxidative stress, mitochondrial dysfunction, and inflammation. In this review, we present how obesity and the associated lipotoxicity as well as chronic inflammation initiate a state of insulin resistance that in turn, may have a role in causing the characteristic cerebral alterations of AD. In particular, we focus on the molecular mechanisms linking the obesity-induced impairment in insulin signalling to the upregulation of Aβ aggregation, tau hyper-phosphorylation, inflammation, oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Simona Terzo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy.
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy.
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy.
| |
Collapse
|
13
|
Ebrahim HA, El-Gamal R, Sherif RN. Intermittent Fasting Attenuates High Fat Diet-Induced Cerebellar Changes in Rats: Involvement of TNFα, autophagy and oxidative stress. Cells Tissues Organs 2021; 210:351-367. [PMID: 34551416 DOI: 10.1159/000519088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
- Medical Experimental Research Center (MERC), Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Rania N Sherif
- Department of Anatomy, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
- Department of Anatomy and Embryology, Faculty of Dentistry, Horus University, Damietta, Egypt
- Department of Anatomy and Embryology, Faculty of Medicine, Damietta University, Damietta, Egypt
| |
Collapse
|
14
|
Carreres L, Jílková ZM, Vial G, Marche PN, Decaens T, Lerat H. Modeling Diet-Induced NAFLD and NASH in Rats: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9040378. [PMID: 33918467 PMCID: PMC8067264 DOI: 10.3390/biomedicines9040378] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, characterized by hepatic steatosis without any alcohol abuse. As the prevalence of NAFLD is rapidly increasing worldwide, important research activity is being dedicated to deciphering the underlying molecular mechanisms in order to define new therapeutic targets. To investigate these pathways and validate preclinical study, reliable, simple and reproducible tools are needed. For that purpose, animal models, more precisely, diet-induced NAFLD and nonalcoholic steatohepatitis (NASH) models, were developed to mimic the human disease. In this review, we focus on rat models, especially in the current investigation of the establishment of the dietary model of NAFLD and NASH in this species, compiling the different dietary compositions and their impact on histological outcomes and metabolic injuries, as well as external factors influencing the course of liver pathogenesis.
Collapse
Affiliation(s)
- Lydie Carreres
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Zuzana Macek Jílková
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Guillaume Vial
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Inserm U 1300, Hypoxia PathoPhysiology (HP2), 38000 Grenoble, France
| | - Patrice N. Marche
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Service D’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Hervé Lerat
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (L.C.); (Z.M.J.); (P.N.M.); (T.D.)
- Université Grenoble-Alpes, 38000 Grenoble, France;
- Unité Mixte de Service UGA hTAG, Inserm US 046, CNRS UAR 2019, 38700 La Tronche, France
- Correspondence:
| |
Collapse
|
15
|
Santiago Santana JM, Vega-Torres JD, Ontiveros-Angel P, Bin Lee J, Arroyo Torres Y, Cruz Gonzalez AY, Aponte Boria E, Zabala Ortiz D, Alvarez Carmona C, Figueroa JD. Oxidative stress and neuroinflammation in a rat model of co-morbid obesity and psychogenic stress. Behav Brain Res 2021; 400:112995. [PMID: 33301815 PMCID: PMC8713435 DOI: 10.1016/j.bbr.2020.112995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is growing recognition for a reciprocal, bidirectional link between anxiety disorders and obesity. Although the mechanisms linking obesity and anxiety remain speculative, this bidirectionality suggests shared pathophysiological processes. Neuroinflammation and oxidative damage are implicated in both pathological anxiety and obesity. This study investigates the relative contribution of comorbid diet-induced obesity and stress-induced anxiety to neuroinflammation and oxidative stress. METHODS Thirty-six (36) male Lewis rats were divided into four groups based on diet type and stress exposure: 1) control diet unexposed (CDU) and 2) exposed (CDE), 3) Western-like high-saturated fat diet unexposed (WDU) and 4) exposed (WDE). Neurobehavioral tests were performed to assess anxiety-like behaviors. The catalytic concentrations of glutathione peroxidase and reductase were measured from plasma samples, and neuroinflammatory/oxidative stress biomarkers were measured from brain samples using Western blot. Correlations between behavioral phenotypes and biomarkers were assessed with Pearson's correlation procedures. RESULTS We found that WDE rats exhibited markedly increased levels of glial fibrillary acidic protein (185 %), catalase protein (215 %), and glutathione reductase (GSHR) enzymatic activity (418 %) relative to CDU rats. Interestingly, the brain protein levels of glutathione peroxidase (GPx) and catalase were positively associated with body weight and behavioral indices of anxiety. CONCLUSIONS Together, our results support a role for neuroinflammation and oxidative stress in heightened emotional reactivity to obesogenic environments and psychogenic stress. Uncovering adaptive responses to obesogenic environments characterized by high access to high-saturated fat/high-sugar diets and toxic stress has the potential to strongly impact how we treat psychiatric disorders in at-risk populations.
Collapse
Affiliation(s)
- Jose M Santiago Santana
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Julio D Vega-Torres
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Perla Ontiveros-Angel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jeong Bin Lee
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Yaria Arroyo Torres
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico; Universidad Metropolitana de Cupey Sciences and Technology School, Puerto Rico
| | - Alondra Y Cruz Gonzalez
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Esther Aponte Boria
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Deisha Zabala Ortiz
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Carolina Alvarez Carmona
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| |
Collapse
|
16
|
Haigh JL, New LE, Filippi BM. Mitochondrial Dynamics in the Brain Are Associated With Feeding, Glucose Homeostasis, and Whole-Body Metabolism. Front Endocrinol (Lausanne) 2020; 11:580879. [PMID: 33240218 PMCID: PMC7680879 DOI: 10.3389/fendo.2020.580879] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is responsible for maintaining whole-body energy homeostasis by changing energy input and availability. The hypothalamus and dorsal vagal complex (DVC) are the primary sites of metabolic control, able to sense both hormones and nutrients and adapt metabolism accordingly. The mitochondria respond to the level of nutrient availability by fusion or fission to maintain energy homeostasis; however, these processes can be disrupted by metabolic diseases including obesity and type II diabetes (T2D). Mitochondrial dynamics are crucial in the development and maintenance of obesity and T2D, playing a role in the control of glucose homeostasis and whole-body metabolism across neurons and glia in the hypothalamus and DVC.
Collapse
Affiliation(s)
| | | | - Beatrice M. Filippi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
17
|
Cheng Y, Buchan M, Vitanova K, Aitken L, Gunn-Moore FJ, Ramsay RR, Doherty G. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function. J Neurochem 2020; 155:191-206. [PMID: 32157699 DOI: 10.1111/jnc.15003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has a recognised role in the progression of Alzheimer's disease (AD) pathophysiology. Cerebral perfusion becomes increasingly inefficient throughout ageing, leading to unbalanced mitochondrial dynamics. This effect is exaggerated by amyloid β (Aβ) and phosphorylated tau, two hallmark proteins of AD pathology. A neuroprotective role for the adipose-derived hormone, leptin, has been demonstrated in neuronal cells. However, its effects with relation to mitochondrial function in AD remain largely unknown. To address this question, we have used both a glucose-serum-deprived (CGSD) model of ischaemic stroke in SH-SY5Y cells and a Aβ1-42 -treatment model of AD in differentiated hippocampal cells. Using a combination of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and MitoRed staining techniques, we show that leptin prevents depolarisation of the mitochondrial membrane and excessive mitochondrial fragmentation induced by both CGSD and Aβ1-42 . Thereafter, we used ELISAs and a number of activity assays to reveal the biochemical underpinnings of these processes. Specifically, leptin was seen to inhibit up-regulation of the mitochondrial fission protein Fis1 and down-regulation of the mitochondrial fusion protein, Mfn2. Furthermore, leptin was seen to up-regulate the expression and activity of the antioxidant enzyme, monoamine oxidase B. Herein we provide the first demonstration that leptin is sufficient to protect against aberrant mitochondrial dynamics and resulting loss of function induced by both CGSD and Aβ1-42 . We conclude that the established neuroprotective actions of leptin may be facilitated through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Ying Cheng
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Matthew Buchan
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Karina Vitanova
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Laura Aitken
- School of Biology, University of St Andrews, St Andrews, UK
| | | | - Rona R Ramsay
- School of Biology, University of St Andrews, St Andrews, UK
| | - Gayle Doherty
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
18
|
Ibrahim Fouad G. Combination of Omega 3 and Coenzyme Q10 Exerts Neuroprotective Potential Against Hypercholesterolemia-Induced Alzheimer's-Like Disease in Rats. Neurochem Res 2020; 45:1142-1155. [PMID: 32124160 DOI: 10.1007/s11064-020-02996-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that progressively disrupts neurocognitive function, which has neither cure nor effective treatment. Hypercholesterolemia might be involved in brain alterations that could evolve into AD. The present study aims to evaluate the potential of omega-3, Co-enzyme Q10 (Co-Q10), as well as their combination in ameliorating hypercholesterolemia-initiated AD-like disease. We adapted a hypercholesterolemic (HC) rat model, a model of oxidative stress-mediated neurodegeneration, to study AD-like pathology. Hypercholesterolemia resulted in increased lipid peroxidation coupled with declined nitric oxide production, reduced glutathione levels, and decreased antioxidant activities of glutathione-s-transferase (GST) and glutathione peroxidase (GSH-Px) in the brain. Moreover, hypercholesterolemia resulted in decreased acetylcholine (ACh) levels and increased acetylcholine-esterase (AChE) activity, along with an increment of tumor necrosis factor and amyloid-β 42. Behaviorally, HC-rats demonstrated depressive-like behavior and declined memory. Treatment of HC-rats with omega-3 and Co-Q10 (alone or in combination) alleviated the brain oxidative stress and inflammation, regulated cholinergic functioning, and enhanced the functional outcome. These findings were verified by the histopathological investigation of brain tissues. This neuroprotective potential of omega-3 and Co-Q10 was achieved through anti-oxidative, anti-inflammatory, anti-amyloidogenic, pro-cholinergic, and memory-enhancing activities against HC-induced AD-like disease; suggesting that they may be useful as prophylactic and therapeutic agents against the neurotoxic effects of hypercholesterolemia.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
19
|
Veniaminova E, Oplatchikova M, Bettendorff L, Kotenkova E, Lysko A, Vasilevskaya E, Kalueff AV, Fedulova L, Umriukhin A, Lesch KP, Anthony DC, Strekalova T. Prefrontal cortex inflammation and liver pathologies accompany cognitive and motor deficits following Western diet consumption in non-obese female mice. Life Sci 2019; 241:117163. [PMID: 31837337 DOI: 10.1016/j.lfs.2019.117163] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
AIMS The high sugar and lipid content of the Western diet (WD) is associated with metabolic dysfunction, non-alcoholic steatohepatitis, and it is an established risk factor for neuropsychiatric disorders. Our previous studies reported negative effects of the WD on rodent emotionality, impulsivity, and sociability in adulthood. Here, we investigated the effect of the WD on motor coordination, novelty recognition, and affective behavior in mice as well as molecular and cellular endpoints in brain and peripheral tissues. MAIN METHODS Female C57BL/6 J mice were fed the WD for three weeks and were investigated for glucose tolerance, insulin resistance, liver steatosis, and changes in motor coordination, object recognition, and despair behavior in the swim test. Lipids and liver injury markers, including aspartate-transaminase, alanine-transaminase and urea were measured in blood. Serotonin transporter (SERT) expression, the density of Iba1-positive cells and concentration of malondialdehyde were measured in brain. KEY FINDINGS WD-fed mice exhibited impaired glucose tolerance and insulin resistance, a loss of motor coordination, deficits in novel object exploration and recognition, increased helplessness, dyslipidemia, as well as signs of a non-alcoholic steatohepatitis (NASH)-like syndrome: liver steatosis and increased liver injury markers. Importantly, these changes were accompanied by decreased SERT expression, elevated numbers of microglia cells and malondialdehyde levels in, and restricted to, the prefrontal cortex. SIGNIFICANCE The WD induces a spectrum of behaviors that are more reminiscent of ADHD and ASD than previously recognized and suggests that, in addition to the impairment of impulsivity and sociability, the consumption of a WD might be expected to exacerbate motor dysfunction that is also known to be associated with adult ADHD and ASD.
Collapse
Affiliation(s)
- Ekaterina Veniaminova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Margarita Oplatchikova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium
| | - Elena Kotenkova
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Alexander Lysko
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia
| | - Ekaterina Vasilevskaya
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, 400715 Chongqing, China; Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Nab. 7-9, 199034 St. Petersburg, Russia; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia
| | - Liliya Fedulova
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Daniel C Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT Oxford, UK
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany.
| |
Collapse
|
20
|
Gao W, Wang W, Zhang J, Deng P, Hu J, Yang J, Deng Z. Allicin ameliorates obesity comorbid depressive-like behaviors: involvement of the oxidative stress, mitochondrial function, autophagy, insulin resistance and NOX/Nrf2 imbalance in mice. Metab Brain Dis 2019; 34:1267-1280. [PMID: 31201726 DOI: 10.1007/s11011-019-00443-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The increased prevalence of obesity has been a major medical and public health problem in the past decades. In obese status, insulin resistance and sustained oxidative stress damage might give rise to behavioral deficits. The anti-obesity and anti-oxidant effects of allicin have been previously reported in peripheral tissues. In the present study, the functions and mechanisms of allicin involved in the prevention of high-fat diet (HFD)-induced depressive-like behaviors were investigated to better understand the pharmacological activities of allicin. Obese mice (five weeks of age) were treated with allicin (50, 100, and 200 mg/kg) by gavage for 15 weeks and behavioral test (sucrose preference, open field, and tail suspension) were performed. Furthermore, markers of oxidative stress, mitochondrial function, autophagy, and insulin resistance were measured in the hippocampal tissue. Finally, the levels of NADPH oxidase (NOX2, NOX4) and the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway were evaluated in the hippocampus. The body weight, metabolic disorders, and depressive-like behaviors in obese mice were ameliorated by allicin. The depressive-like behaviors presented in the obese mice were accompanied by remarkably excessive reactive oxygen species (ROS) production and oxidative stress, damaged mitochondrial function, imbalanced autophagy, and enhanced insulin resistance in the hippocampus. We found that allicin improved the above undesirable effects in the obese mice. Furthermore, allicin significantly decreased NOX2 and NOX4 levels and activated the Nrf2 pathway. Allicin attenuated depressive-like behaviors triggered by long-term HFD consumption by inhibiting ROS production and oxidative stress, improving mitochondrial function, regulating autophagy, and reducing insulin resistance in the hippocampus via optimization of NOX/Nrf2 imbalance.
Collapse
Affiliation(s)
- Wenqi Gao
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University&Technology, Wuhan, Hubei, China
| | - Wei Wang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jing Zhang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Pengyi Deng
- Department of Nuclear medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jun Hu
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jian Yang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
| | - Zhifang Deng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Wohua Z, Weiming X. Glutaredoxin 2 (GRX2) deficiency exacerbates high fat diet (HFD)-induced insulin resistance, inflammation and mitochondrial dysfunction in brain injury: A mechanism involving GSK-3β. Biomed Pharmacother 2019; 118:108940. [DOI: 10.1016/j.biopha.2019.108940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
|
22
|
de Bona Schraiber R, de Mello AH, Garcez ML, de Bem Silveira G, Zacaron RP, de Souza Goldim MP, Budni J, Silveira PCL, Petronilho F, Ferreira GK, Rezin GT. Diet-induced obesity causes hypothalamic neurochemistry alterations in Swiss mice. Metab Brain Dis 2019; 34:565-573. [PMID: 30635861 DOI: 10.1007/s11011-018-0337-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/01/2018] [Indexed: 12/11/2022]
Abstract
The aim of this study was to assess inflammatory parameters, oxidative stress and energy metabolism in the hypothalamus of diet-induced obese mice. Male Swiss mice were divided into two study groups: control group and obese group. The animals in the control group were fed a diet with adequate amounts of macronutrients (normal-lipid diet), whereas the animals in the obese group were fed a high-fat diet to induce obesity. Obesity induction lasted 10 weeks, at the end of this period the disease model was validated in animals. The animals in the obese group had higher calorie consumption, higher body weight and higher weight of mesenteric fat compared to control group. Obesity showed an increase in levels of interleukin 1β and decreased levels of interleukin 10 in the hypothalamus. Furthermore, increased lipid peroxidation and protein carbonylation, and decreased level of glutathione in the hypothalamus of obese animals. However, there was no statistically significant difference in the activity of antioxidant enzymes, superoxide dismutase and catalase. The obese group had lower activity of complex I, II and IV of the mitochondrial respiratory chain, as well as lower activity of creatine kinase in the hypothalamus as compared to the control group. Thus, the results from this study showed changes in inflammatory markers, and dysregulation of metabolic enzymes in the pathophysiology of obesity.
Collapse
Affiliation(s)
- Rosiane de Bona Schraiber
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Aline Haas de Mello
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Michelle Lima Garcez
- Neuroscience Laboratory, Unit Neurodegeneration, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Physiology and Biochemistry of Exercise, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rubya Pereira Zacaron
- Laboratory of Physiology and Biochemistry of Exercise, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Josiane Budni
- Neuroscience Laboratory, Unit Neurodegeneration, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Physiology and Biochemistry of Exercise, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
23
|
Valdez JM, Johnstone AFM, Richards JE, Schmid JE, Royland JE, Kodavanti PRS. Interaction of Diet and Ozone Exposure on Oxidative Stress Parameters within Specific Brain Regions of Male Brown Norway Rats. Int J Mol Sci 2018; 20:ijms20010011. [PMID: 30577502 PMCID: PMC6337237 DOI: 10.3390/ijms20010011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) contributes to the neurological and cardio/pulmonary effects caused by adverse metabolic states and air pollutants such as ozone (O3). This study explores the interactive effects of O3 and diet (high-fructose (FRUC) or high–fat (FAT)) on OS in different rat brain regions. In acute exposure, there was a decrease in markers of reactive oxygen species (ROS) production in some brain regions by diet and not by O3. Total antioxidant substances (TAS) were increased in the cerebellum (CER) and frontal cortex (FC) and decreased in the striatum (STR) by both diets irrespective of O3 exposure. Protein carbonyls (PC) and total aconitase decreased in some brain regions irrespective of exposure. Following subacute exposure, an increase in markers of ROS was observed in both diet groups. TAS was increased in the FC (FAT only) and there was a clear O3 effect where TAS was increased in the FC and STR. Diet increased PC formation within the CER in the FAT group, while the hippocampus showed a decrease in PC after O3 exposure in controls. In general, these results indicate that diet/O3 did not have a global effect on brain OS parameters, but showed some brain region- and OS parameter-specific effects by diets.
Collapse
Affiliation(s)
- Joseph M Valdez
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Andrew F M Johnstone
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Judy E Richards
- Environmental Public Health Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Judith E Schmid
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Joyce E Royland
- Integrated Systems Toxicology Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
24
|
Cardoso S, Moreira PI. Diabesity and brain disturbances: A metabolic perspective. Mol Aspects Med 2018; 66:71-79. [PMID: 30321556 DOI: 10.1016/j.mam.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
The last decades have been marked by an increased prevalence in non-communicable diseases such as obesity and type 2 diabetes (T2D) as well as by population aging and age-related (brain) diseases. The current notion that the brain and the body are interrelated units is gaining the attention of the scientific and medical community. Growing evidence demonstrates that there is a significant overlap in risk, comorbidity, and pathophysiological mechanisms across obesity, T2D and brain disturbances; settings that seem to be worsened when both obesity and T2D occur simultaneously, the so-called diabesity. Thereupon, there is a great concern to critically appraise and understand the mechanisms by which diabesity can affect brain responses, and may accelerate the decline in brain health. In this framework, metabolic disturbances mediated by altered insulin signaling and mitochondrial function arise among the multifactorial interactions described to occur between obesity, T2D and neurocognitive deficits. In this review we have compiled all the notions and evidence describing how diabesity negatively influences brain function putting the emphasis on insulin signaling pathway disturbances and mitochondrial anomalies. We also debate lifestyle interventions as amenable strategies to lessen metabolic anomalies and, consequently, diabesity-associated brain alterations.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Institute of Physiology - Faculty of Medicine - University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
25
|
Cui S, Wang Y, Gong Y, Lin X, Zhao Y, Zhi D, Zhou Q, Zhang S. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb) 2018; 7:473-479. [PMID: 30090597 PMCID: PMC6062336 DOI: 10.1039/c8tx00005k] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
As effective non-viral vectors of gene therapy, cationic lipids still have the problem of toxicity, which has become one of the main bottlenecks for their applications. The toxicity of cationic lipids is strongly connected to the headgroup structures. In this article, we studied the cytotoxicity of two cationic lipids with a quaternary ammonium headgroup (CDA14) and a tri-peptide headgroup (CDO14), respectively, and with the same linker bond and hydrophobic domain. The IC50 values of CDA14 and CDO14 against NCI-H460 cells were 109.4 μg mL-1 and 340.5 μg mL-1, respectively. To determine the effects of headgroup structures of cationic lipids on cytotoxicity, apoptosis related pathways were investigated. As the lipids with a quaternary ammonium headgroup could induce more apoptotic cells than the ones with a peptide headgroup, the enzymatic activity of caspase-9 and caspase-3 increased obviously, whereas the mitochondrial membrane potential (MMP) decreased. At the same time, the reactive oxygen species (ROS) levels also increased and the cell cycle was arrested at the S phase. The results showed that the toxicity of the cationic lipid had a close relationship with its headgroup structures, and the cytotoxic mechanism was mainly via the caspase activation dependent signaling pathway and mitochondrial dysfunction. Through this study, we hope to provide the scientific basis for exploiting safer and more efficient cationic lipids for gene delivery.
Collapse
Affiliation(s)
- Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yan Gong
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Xiao Lin
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| |
Collapse
|
26
|
Omega-3 Fatty Acids Attenuate Brain Alterations in High-Fat Diet-Induced Obesity Model. Mol Neurobiol 2018; 56:513-524. [PMID: 29728888 DOI: 10.1007/s12035-018-1097-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
Abstract
This study evaluated the effects of omega-3 on inflammation, oxidative stress, and energy metabolism parameters in the brain of mice subjected to high-fat diet-induced obesity model. Body weight and visceral fat weight were evaluated as well. Male Swiss mice were divided into control (purified low-fat diet) and obese (purified high-fat diet). After 6 weeks, the groups were divided into control + saline, control + omega-3, obese + saline, and obese + OMEGA-3. Fish oil (400 mg/kg/day) or saline solution was administrated orally, during 4 weeks. When the experiment completed 10 weeks, the animals were euthanized and the brain and visceral fat were removed. The brain structures (hypothalamus, hippocampus, prefrontal cortex, and striatum) were isolated. Treatment with omega-3 had no effect on body weight, but reduced the visceral fat. Obese animals showed increased inflammation, increased oxidative damage, decreased antioxidant enzymes activity and levels, changes in the Krebs cycle enzyme activities, and inhibition of mitochondrial respiratory chain complexes in the brain structures. Omega-3 treatment partially reversed the changes in the inflammatory and in the oxidative damage parameters and attenuated the alterations in the antioxidant defense and in the energy metabolism (Krebs cycle and mitochondrial respiratory chain). Omega-3 had a beneficial effect on the brain of obese animals, as it partially reversed the changes caused by the consumption of a high-fat diet and consequent obesity. Our results support studies that indicate omega-3 may contribute to obesity treatment.
Collapse
|
27
|
Cunarro J, Casado S, Lugilde J, Tovar S. Hypothalamic Mitochondrial Dysfunction as a Target in Obesity and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:283. [PMID: 29904371 PMCID: PMC5990598 DOI: 10.3389/fendo.2018.00283] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are important organelles for the adaptation to energy demand that play a central role in bioenergetics metabolism. The mitochondrial architecture and mitochondrial machinery exhibits a high degree of adaptation in relation to nutrient availability. On the other hand, its disruption markedly affects energy homeostasis. The brain, more specifically the hypothalamus, is the main hub that controls energy homeostasis. Nevertheless, until now, almost all studies in relation to mitochondrial dysfunction and energy metabolism have focused in peripheral tissues like brown adipose tissue, muscle, and pancreas. In this review, we highlight the relevance of the hypothalamus and the influence on mitochondrial machinery in its function as well as its consequences in terms of alterations in both energy and metabolic homeostasis.
Collapse
Affiliation(s)
- Juan Cunarro
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Sabela Casado
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Javier Lugilde
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Sulay Tovar
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- *Correspondence: Sulay Tovar,
| |
Collapse
|
28
|
Ma WW, Ding BJ, Yuan LH, Zhao L, Yu HL, Xi YD, Xiao R. Neurocalcin-delta: a potential memory-related factor in hippocampus of obese rats induced by high-fat diet. Afr Health Sci 2017; 17:1211-1221. [PMID: 29937895 PMCID: PMC5870285 DOI: 10.4314/ahs.v17i4.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction Aberrant protein expression within the hippocampus has recently been implicated in the pathogenesis of obesity-induced memory impairment. Objectives The objective of the current study was to search for specific memory-related factors in the hippocampus in obese rats. Methods Sprague-Dawley (SD) rats were fed either a high-fat (HF) diet or normal-fat (NF) diet for 10 weeks to obtain the control (CON), diet-induced obese rats (DIO) and diet-resistant (DR) rats. D-galactose was injected subcutaneously for 10 weeks to establish model (MOD) rats with learning and memory impairment. After the hippocampus of the rats sampling, the proteome analysis was conducted using two-dimensional get electrophoresis (2-DE) combined with peptide mass fingerprinting (PMF). Results We found 15 differential proteins that expressed in the hippocampus in rats induced by HF diet from the 2-DE map. In addition, Neurocalcin-delta (NCALD) was nearly down-regulated in the DR rats compared with CON rats and MOD rats, which was further confirmed by Western blot, real-time PCR and ELISA results. Conclusion Our data demonstrates that the differential memory-related proteins were a reflection of the HF diet, but not potential factors in obesity proneness or obesity resistance. Furthermore, NCALD is proved to be a potential hippocampus-memory related factor related to obesity.
Collapse
Affiliation(s)
- Wei-Wei Ma
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| | - Bing-Jie Ding
- Department of Clinical Nutrition Beijing Friendship Hospital, Capital Medical University
| | - Lin-Hong Yuan
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huan-Ling Yu
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yuan-di Xi
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Enviromental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
29
|
de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sci 2017; 192:26-32. [PMID: 29155300 DOI: 10.1016/j.lfs.2017.11.019] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022]
Abstract
Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil.
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Jéssica Della Giustina Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| |
Collapse
|
30
|
Amos DL, Robinson T, Massie MB, Cook C, Hoffsted A, Crain C, Santanam N. Catalase overexpression modulates metabolic parameters in a new 'stress-less' leptin-deficient mouse model. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28645653 DOI: 10.1016/j.bbadis.2017.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress plays a key role in obesity by modifying the function of important biological molecules, thus altering obesogenic pathways such as glucose and lipid signaling. Catalase, is an important endogenous antioxidant enzyme that catabolizes hydrogen peroxide produced by the dismutation of superoxide. Recent studies have shown knockdown of catalase exacerbates insulin resistance and leads to obesity. We hypothesized that overexpressing catalase in an obese mouse will modulate obesogenic pathways and protect against obesity. Therefore, we bred catalase transgenic ([Tg(CAT)+/-] mice with Ob/Ob mice to generate the hybrid "Bob-Cat" mice. This newly generated "stress-less" mouse model had decreased oxidative stress (oxidized carbonylated proteins). ECHO-MRI showed lower fat mass but higher lean mass in "Bob-Cat" mice. Comprehensive Lab Animal Monitoring System (CLAMS) showed light and dark cycle increase in energy expenditure in Bob-Cat mice compared to wild type controls. Circulating levels of leptin and resistin showed no change. Catalase mRNA expression was increased in key metabolic tissues (adipose, liver, intestinal mucosa, and brain) of the Bob-Cat mice. Catalase activity, mRNA and protein expression was increased in adipose tissue. Expression of the major adipokines leptin and adiponectin was increased while pro-inflammatory genes, MCP-1/JE and IL-1β were lowered. Interestingly, sexual dimorphism was seen in body composition, energy expenditure, and metabolic parameters in the Bob-Cat mice. Overall, the characteristics of the newly generated "Bob-Cat" mice make it an ideal model for studying the effect of redox modulators (diet/exercise) in obesity.
Collapse
Affiliation(s)
- Deborah L Amos
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Tanner Robinson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Melissa B Massie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Carla Cook
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Alexis Hoffsted
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Courtney Crain
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25755-0001, United States.
| |
Collapse
|
31
|
Kim JM, Park CH, Park SK, Seung TW, Kang JY, Ha JS, Lee DS, Lee U, Kim DO, Heo HJ. Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2719-2729. [PMID: 28314104 DOI: 10.1021/acs.jafc.7b00297] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The ameliorating effects of ginsenoside Re (G Re) on high fat diet (HFD)-induced insulin resistance in C57BL/6 mice were investigated to assess its physiological function. In the results of behavioral tests, G Re improved cognitive dysfunction in diabetic mice using Y-maze, passive avoidance, and Morris water maze tests. G Re also significantly recovered hyperglycemia and fasting blood glucose level. In the results of serum analysis, G Re decreased triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDLC), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) and increased the ratio of high-density lipoprotein cholesterol (HDLC). G Re regulated acetylcholine (ACh), acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), and oxidized glutathione (GSH)/total GSH by regulating the c-Jun N-terminal protein kinase (JNK) pathway. These findings suggest that G Re could be used to improve HFD-induced insulin resistance condition by ameliorating hyperglycemia via protecting the cholinergic and antioxidant systems in the mouse brains.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University , Jinju 52828, Republic of Korea
| | - Chang Hyeon Park
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University , Jinju 52828, Republic of Korea
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University , Jinju 52828, Republic of Korea
| | - Tae Wan Seung
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University , Jinju 52828, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University , Jinju 52828, Republic of Korea
| | - Jeong Su Ha
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University , Jinju 52828, Republic of Korea
| | - Du Sang Lee
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University , Jinju 52828, Republic of Korea
| | - Uk Lee
- Division of Special Purpose Trees, National Institute of Forest Science , Suwon 16631, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University , Yongin 17104, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University , Jinju 52828, Republic of Korea
| |
Collapse
|
32
|
Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice. Behav Brain Res 2016; 312:39-54. [DOI: 10.1016/j.bbr.2016.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
|
33
|
Prá M, Ferreira GK, de Mello AH, Schraiber RDB, Cardoso LC, Souza LDR, da Rosa N, Fortunato JJ, Rezin GT. Single dose and repeated administrations of liraglutide alter energy metabolism in the brains of young and adult rats. Biochem Cell Biol 2016; 94:451-458. [PMID: 27563837 DOI: 10.1139/bcb-2016-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Liraglutide is a human glucagon-like peptide-1 (GLP-1) analogue that was recently approved to treat obesity in some countries. Considering that liraglutide effects on brain energy metabolism are little known, we evaluated the effects of liraglutide on the energy metabolism. Animals received a single or daily injection of saline or liraglutide during 7 days (25, 50, 100, or 300 μg/kg i.p.). Twenty-four hours after the single or last injection, the rats were euthanized and the hypothalamus, prefrontal cortex, cerebellum, hippocampus, striatum, and posterior cortex were isolated. Our results demonstrated that a single dose of liraglutide in young rats increased the activity of complexes and inhibited creatine kinase activity. Repeated administrations of liraglutide in young rats reduced the activity of complexes and activated creatine kinase activity. In adult rats, a single dose of liraglutide reduced the activity of complex I and creatine kinase and increased the activity of complexes II and IV. Repeated administrations of liraglutide in adult rats increased the activity of complexes I and IV and reduced the activity of complex II and creatine kinase. We concluded that liraglutide may interfere in energy metabolism, because analysis of different times of administrations, concentrations, and level of brain development leads to divergent results.
Collapse
Affiliation(s)
- Morgana Prá
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Gabriela Kozuchovski Ferreira
- b Laboratory Pharmacology and Pathophysiology of Skin, Department of Pharmacology, Federal University of Paraná, Curitiba, 81531-980 PR, Brazil
| | - Aline Haas de Mello
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Rosiane de Bona Schraiber
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Larissa Colonetti Cardoso
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Luana da Rosa Souza
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Naiana da Rosa
- c Laboratory of Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Jucélia Jeremias Fortunato
- c Laboratory of Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Gislaine Tezza Rezin
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| |
Collapse
|
34
|
Therapeutic effect of apple pectin in obese rats. Biomed Pharmacother 2016; 83:1233-1238. [PMID: 27565845 DOI: 10.1016/j.biopha.2016.08.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
Obesity is the most common nutritional disorder and is associated with significant comorbidities such as dyslipidemia, atherosclerosis and type 2 diabetes. This pathology is changing worldwide and is a risk factor for cardiovascular disease. This study, carried out on adult male Wistar rats, evaluates the inhibitory effects of supplementation with apple pectin molecule on obesity. Under our experimental conditions, administration of pectin molecule decreased 1) the total cholesterol (TC), LDL-cholesterol (LDL-ch) and triglycerides (TG) levels as well as ASAT, ALAT, LDH, ALP, UREA and uric acid (UC) levels in blood serum; and 2) increased the creatinine levels (CREA), compared to HFD group. TBARS concentrations decreased in liver, kidney, and serum by 20%, 29% and 19%, respectively, in a group treated with high-fat diet and pectin (HFD+Pec) compared to a HFD-treated group. The same treatment with pectin molecule increased superoxide dismutase, glutathion peroxidase and catalase activities by 39%, 14% and 16% in liver; 5%, 7% and 31% in kidney; and 9%, 32% and 22% in blood serum in the HFD Pec-treated group. The anti-obesity effects of the pectin molecule in several organs are mainly due to the interaction of this molecule with both the polysaccharide and the enzyme system which can be determined by phytochemical analysis.
Collapse
|
35
|
Ma WW, Ding BJ, Wang LJ, Shao Y, Xiao R. Involvement of Nuclear Related Factor 2 Signaling Pathway in the Brain of Obese Rats and Obesity-Resistant Rats Induced by High-Fat Diet. J Med Food 2016; 19:404-9. [DOI: 10.1089/jmf.2015.3500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei-Wei Ma
- Beijing Key Laboratory of Enviromental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Bing-Jie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li-Jing Wang
- Beijing Key Laboratory of Enviromental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yi Shao
- Beijing Key Laboratory of Enviromental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Enviromental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Couturier K, Hininger I, Poulet L, Anderson RA, Roussel AM, Canini F, Batandier C. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria. J Nutr Biochem 2016; 28:183-90. [DOI: 10.1016/j.jnutbio.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 12/26/2022]
|
37
|
Leffa DD, Rezin GT, Daumann F, Longaretti LM, Dajori ALF, Gomes LM, Silva MC, Streck EL, de Andrade VM. Effects of Acerola (Malpighia emarginata DC.) Juice Intake on Brain Energy Metabolism of Mice Fed a Cafeteria Diet. Mol Neurobiol 2016; 54:954-963. [PMID: 26797515 DOI: 10.1007/s12035-016-9691-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/05/2016] [Indexed: 01/02/2023]
|
38
|
Del Rio R, Quintanilla RA, Orellana JA, Retamal MA. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Front Physiol 2015; 6:350. [PMID: 26648871 PMCID: PMC4664731 DOI: 10.3389/fphys.2015.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile ; Dirección de Investigación, Universidad Científica del Sur Lima, Perú
| | | | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina. Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|