1
|
Molina-López J, Florea D, Gamarra-Morales Y, Herrera-Quintana L, Vázquez-Lorente H, Hogstrand C, Planells E. Zinc transporters expression profile in professional handball players supplemented with zinc. J Trace Elem Med Biol 2024; 85:127473. [PMID: 38795413 DOI: 10.1016/j.jtemb.2024.127473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Zinc (Zn) deficiency has been described not only on general human health but also within the sports context -as negatively affecting performance-. Thus, Zn status assessment is of great interest for athletes, especially in order to correct deficiency states of this mineral. OBJECTIVE The overall objective of this work was to assess Zn status in professional handball players during the competitive period (through plasma levels, dietary intake and gene expression of the Zn transporters), as well as to determine the effect of Zn supplementation. METHODS A total of twenty-two participants were recruited, -twelve belonged to the Control Group (CG) and ten male handball players comprised the experimental group (ATH-G)-, being monitored over a 2-month period with 2 evaluation moments: baseline (i.e., initial conditions) and follow-up (i.e., after 8 weeks of training and competition). Zn intake, plasma Zn levels, and gene expression of Zn transporters were obtained. RESULTS Plasma Zn levels were higher in ATH-G than in CG at the end of Zn intervention (p ≤ 0.010). Moreover, differences in the gene expression profile of Zn transporters were observed in ATH-G -with the down-regulation of several Zn transporters-, compared to the CG at baseline (p ≤ 0.05). Likewise, differences in the Zn transporters expression were observed in ATH-G at 8 weeks (all, p ≤ 0.001) -with ZnT2, ZnT5, ZIP3, ZIP5, ZIP11, ZIP13 and ZIP14 transporters being up-regulated-. CONCLUSION Handball players seemed to have different nutritional needs for Zn, with differences in the gene expression of Zn transporters compared to controls. Zn intervention in our athletes may have influenced the expression of Zn transporters, indicating a potential increase in Zn transporters expression to mobilize Zn at the cellular level at 8 weeks of Zn intervention.
Collapse
Affiliation(s)
- Jorge Molina-López
- Faculty of Education, Psychology and Sports Sciences, University of Huelva, Huelva 21007, Spain
| | - Daniela Florea
- Moorfields Eye Hospital, NHS, London EC1 V2PD, United Kingdom
| | - Yenifer Gamarra-Morales
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Granada 18071, Spain
| | - Lourdes Herrera-Quintana
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Granada 18071, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Granada 18071, Spain.
| | - Christer Hogstrand
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH, United Kingdom
| | - Elena Planells
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Granada 18071, Spain
| |
Collapse
|
2
|
Wu K, Fei L, Wang X, Lei Y, Liu Y, Xu W, Chen J, Zhu E, Zhong M, Huang M, Jiang X, Yin F, Yan Z, Zhao X, Tang C, Patzak A, Liu X, Zheng Z. ZIP14 is involved in iron deposition and triggers ferroptosis in diabetic nephropathy. Metallomics 2022; 14:6596292. [PMID: 35641158 DOI: 10.1093/mtomcs/mfac034] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Ferroptosis is caused by lipid peroxidation and iron accumulation and can cause cell death. Abnormally expressed iron transporters are involved in ferroptosis in a variety of diseases. ZRT/IRT-like protein 14 (ZIP14) is a transport protein that can mediate cellular uptake of iron, zinc and manganese. Herein, we have tested the hypothesis that the divalent metal transporter ZIP14 is involved in the initiation of ferroptosis in diabetic nephropathy (DN). DN was induced in eight-week old male rats by streptozotocin (STZ) before analysis of the degree of renal tubular injury. In addition, an in vitro model of DN in HK2 cells was used. We showed that ZIP14 was upregulated and Fe2+ levels increased both in vivo and in vitro. Expression of glutathione peroxidase 4 (GPX4) and the level of glutathione (GSH) were reduced, whereas that of malondialdehyde (MDA) increased. Ferrostatin-1(Fer-1) treatment reduced the expression of ZIP14 and the levels of Fe2+ and MDA, which is consistent with ferroptosis. Fer-1 improved kidney function in DN rats. This was characterized by urine levels of protein-to-creatinine ratio, α 1-microglobulin and N-acetyl-β-D-glucosaminidase. Our study demonstrates a novel role for ZIP14 in diabetic kidney injury mediated by ferroptosis, and suggests a potential new therapeutic approach for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Keping Wu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Institute of Translation Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin.,Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohua Wang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yan Lei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yu Liu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenqian Xu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiasi Chen
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Enyi Zhu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ming Zhong
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mingcheng Huang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xi Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fei Yin
- Department of Thoracic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhijun Yan
- Department of Anesthesia, The First Affiliated Hospital of Nanhua University, Hunan, China
| | - Xinying Zhao
- Department of Hematology, Guangzhou Women and Children's Medical center, Guangzhou Medical University, Guangzhou, China
| | - Chun Tang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Andreas Patzak
- Institute of Translation Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children's Medical center, Guangzhou Medical University, Guangzhou, China
| | - Zhihua Zheng
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Samadian Z, Tolouei Azar J, Rezaei Aghdam H, Tofighi A, Razi M. Moderate-Intensity Exercise Training in Association with Insulin Promotes Heat Shock Proteins 70 and 90 Expressions in Testicular Tissue of Experimental Type 1 Diabetes. CELL JOURNAL 2021; 23:708-716. [PMID: 34939765 PMCID: PMC8665982 DOI: 10.22074/cellj.2021.7502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023]
Abstract
Objective The current research was designed to analyze the effect of moderate-intensity exercise training (MEXT),
solely and simultaneous with insulin, on the network between oxidative stress and Hsp70 and Hsp90 chaperones after
experimental type I diabetes (DM) induction in rats.
Materials and Methods In the experimental study, 36 mature Wistar rats were assigned into control and experimental
type I DM-induced groups, and then the diabetic animals were categorized to sedentary type I DM-induced (SDM),
exercise training-sole without DM (E), exercise training DM-induced (EDM), insulin-treated sedentary DM-induced
(ISDM), and exercise training insulin-treated DM-induced (EIDM) groups. After 6 weeks, Johnson’s score was evaluated
to analyze the spermatogenesis ratio.
Results The Hsp70 and Hsp90 expression levels, testicular total antioxidant capacity (TAC), protein peroxidation ratio,
testicular DNA fragmentation ratio, and mRNA damage were investigated. The animals in EDM and EIDM groups (solely
and simultaneously) represented a significant (P<0.05) improvement in Johnson’s score, spermatogenesis, and TAC
ratios versus SDM animals. Moreover, the DM-induced DNA and mRNA damage and protein peroxidation ratio were
significantly (P<0.05) recovered in EDM and ISDM groups, which was more remarkable in the EIDM group. The EDM
and EIDM groups exhibited significant (P<0.05) increment in Hsp70 and Hsp90 expression levels versus the control
and SEDT1 animals. However, the EIDM group exhibited no significant changes compared to the control animals.
Conclusion The EX could ameliorate the EDT1-induced detrimental impact by up-regulating Hsp70 and Hsp90
expressions. Meanwhile, it exerts potentially more effective impact, when it is considered simultaneously with insulin
therapy.
Collapse
Affiliation(s)
- Zahra Samadian
- College of Skills and Entrepreneurship, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Javad Tolouei Azar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
| | - Hamed Rezaei Aghdam
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.,Department of Molecular and Genetic Division, RASTA Research Center, Urmia, Iran
| | - Asghar Tofighi
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Karganov MY, Alchinova IB, Tinkov AA, Medvedeva YS, Lebedeva MA, Ajsuvakova OP, Polyakova MV, Skalnaya MG, Burtseva TI, Notova SV, Khlebnikova NN, Skalny AV. Streptozotocin (STZ)-Induced Diabetes Affects Tissue Trace Element Content in Rats in a Dose-Dependent Manner. Biol Trace Elem Res 2020; 198:567-574. [PMID: 32144716 DOI: 10.1007/s12011-020-02090-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The objective of the present study was investigation of tissue trace element distribution in a streptozotocin model of DM1 in rats. DM1 was modeled in 2-month-old male Wistar rats (n = 30) using intraperitoneal injection of 45 mg/kg b.w. (STZ1) and 55 mg/kg b.w. streptozotocin (STZ2), whereas control animals were injected with physiological saline. The rats were subjected to oral glucose tolerance test (OGTT) and HbA1c level assessment at day 14. At day 30, blood serum, liver, kidney, and heart samples were collected for tissue trace element assessment using inductively coupled plasma mass spectrometry (ICP-MS). STZ-treated rats were characterized by lack of significant weight gain and elevated HbA1c and blood glucose levels. ICP-MS analysis demonstrated a dose-dependent accumulation of Cu, Mn, Mo, and Se levels in the liver. Correspondingly, the dose-dependent increase in renal Cu, Mn, V, and Zn levels was significant, whereas the observed trend for kidney V and Mo accumulation was nearly significant. The patterns of trace element content in the myocardium of STZ-exposed rats were quite different from those observed for liver and kidney. Only cardiac Zn content was characterized by a significant decrease. Serum Co, Cr, Cu, Se, V, and Mo levels were characterized by a significant decrease in response to STZ-induced diabetes. Generally, the obtained data demonstrate that diabetes is associated with altered copper, manganese, molybdenum, chromium, and vanadium handling. In turn, only altered Zn status may provide a link to diabetic cardiotoxicity. However, the particular mechanisms of both impaired metal handling in STZ diabetes and their potential anti-diabetic activity require further investigation.
Collapse
Affiliation(s)
| | - Irina B Alchinova
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, 150003, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
| | - Yulia S Medvedeva
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Marina A Lebedeva
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - Olga P Ajsuvakova
- Yaroslavl State University, 150003, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
| | | | | | - Tatiana I Burtseva
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
- Orenburg State University, Pobedy Ave. 13, 460352, Orenburg, Russia
| | - Svetlana V Notova
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000, Orenburg, Russia
| | | | - Anatoly V Skalny
- Yaroslavl State University, 150003, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University, 119146, Moscow, Russia
| |
Collapse
|
5
|
Akdas S, Turan B, Durak A, Aribal Ayral P, Yazihan N. The Relationship Between Metabolic Syndrome Development and Tissue Trace Elements Status and Inflammatory Markers. Biol Trace Elem Res 2020; 198:16-24. [PMID: 31993942 DOI: 10.1007/s12011-020-02046-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
Insulin resistance, impaired glucose regulation, dyslipidemia, low-grade inflammation, and elevated blood pressure are main components of the metabolic syndrome (MetS). Trace elements, especially zinc (Zn) and copper (Cu) and cytokines, have physiological importance due to their presence in inflammatory processes and glucose metabolism. Therefore, this study aimed to investigate the potential relationship between cytokine responses and trace elements in different tissues of sucrose-induced MetS rats compared with healthy controls (n:7/groups). Tissue Zn concentrations are found to be decreased in the liver (p = 0.00) and pancreas (p < 0.01) and increased in the kidney (p = 0.00) and heart tissues (p < 0.001) of MetS group. Serum Zn levels were also found to be decreased in MetS compared with control group (p < 0.01), while there was any significant difference in serum Cu concentrations between groups. The Cu concentration (p < 0.01) was found decreased, and Zn/Cu ratio (p < 0.01) was found increased in kidney tissues. TNF-α, IL-6 levels were found increased in MetS tissues. With this study, the Zn and Cu concentrations and their relationships with inflammatory response in different tissues in MetS are reported for the first time in the literature. Serum and tissue Zn levels with diversities in distribution were found to have a higher impact on MetS pathogenesis than Cu levels. It has been concluded that there is a relationship between Zn and Cu concentrations and inflammatory marker levels in MetS pathophysiological mechanisms.
Collapse
Affiliation(s)
- Sevginur Akdas
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey
| | - Belma Turan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Pelin Aribal Ayral
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Pathophysiology, Ankara University, Ankara, Turkey
| | - Nuray Yazihan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey.
- Faculty of Medicine, Department of Pathophysiology, Ankara University, Ankara, Turkey.
| |
Collapse
|
6
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
7
|
Miya N, Naito Y, Chikamoto K, Terao K, Yoshikawa Y, Yasui H. Bright and dark sides of exercise effects on biological responses such as energy metabolism and renal function in rats with renal failure and fructose-induced glucose intolerance. J Clin Biochem Nutr 2020; 66:198-205. [PMID: 32523246 DOI: 10.3164/jcbn.19-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the beneficial and risky effects of exercise intended to prevent or treat lifestyle-related diseases on insulin sensitivity, lactic acid utilization, lipid metabolism, hepatic and renal oxidative stress, hepatic selenoprotein P and renal function in obese and glucose-intolerant rats with renal failure. We fed normal rats a 20% casein diet while the glucose-intolerant, obese rats received a high-fructose diet, and after then rats received single injection of vancomycin at a dose of 400 mg/kg for constructing the duplicative state of renal failure and diabetes mellitus. They were forced to run for 1 h/day, 6 days/week, for 10 weeks. Exercise reduced visceral fat and ameliorated insulin sensitivity in the high-fructose group, improved lactic acid usage efficiency, however, increased hepatic oxidative stress and complicated renal dysfunction in the normal and high-fructose fed groups with renal failure. Additionally, exercise upregulated hepatic selenoprotein P expression and enhanced renal antioxidative system in both groups. It is concluded that strictly controlled exercise conditions must be adapted to patient health states especially in view of kidney protection, and supplemental therapy is also recommended in parallel with exercise, using nutrients and vitamins for kidney protection.
Collapse
Affiliation(s)
- Namika Miya
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Misasagi, Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.,Department of Health Sports and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima Nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Yuki Naito
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Misasagi, Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Keita Chikamoto
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Keiji Terao
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yutaka Yoshikawa
- Department of Health Sports and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima Nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Misasagi, Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
8
|
Traisaeng S, Batsukh A, Chuang TH, Herr DR, Huang YF, Chimeddorj B, Huang CM. Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Sci Rep 2020; 10:7928. [PMID: 32404878 PMCID: PMC7220903 DOI: 10.1038/s41598-020-64916-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/25/2020] [Indexed: 01/09/2023] Open
Abstract
Type 1 diabetic patients have lower counts of butyric acid-producing bacteria in the dysbiotic gut microbiome. In this study, we demonstrate that a butyric acid-producing Leuconostoc mesenteroides (L. mesenteroides) EH-1 strain isolated from Mongolian curd cheese can reduce blood glucose and IL-6 in the type 1 diabetic mouse model. L. mesenteroides EH-1 fermentation yielded high concentrations of butyric acid both in vitro and in vivo. Butyric acid or L. mesenteroides EH-1 increased the amounts of insulin in Min6 cell culture and streptozotocin (STZ)-induced diabetic mice. Inhibition or siRNA knockdown of free fatty acid receptor 2 (Ffar2) considerably reduced the anti-diabetic effect of probiotic L. mesenteroides EH-1 or butyric acid by lowering the level of blood glucose. We here demonstrate that Ffar2 mediated the effects of L. mesenteroides EH-1 and butryic acid on regulation of blood glucose and insulin in type 1 diabetic mice.
Collapse
Affiliation(s)
| | - Anir Batsukh
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Deron Raymond Herr
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Battogtokh Chimeddorj
- Department of Microbiology and Immunology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Miya N, Uratani A, Chikamoto K, Naito Y, Terao K, Yoshikawa Y, Yasui H. Effects of exercise on biological trace element concentrations and selenoprotein P expression in rats with fructose-induced glucose intolerance. J Clin Biochem Nutr 2020; 66:124-131. [PMID: 32231408 DOI: 10.3164/jcbn.19-96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022] Open
Abstract
In the present study, we investigated the effects of exercise intended to prevent or treat lifestyle-related diseases on the glucose tolerance, insulin level, lactic acid utilization, muscle glycogen synthesis, hepatic and renal oxidative stress, hepatic selenoprotein P and biological trace element levels in organs of obese, glucose-intolerant rats. We fed normal, healthy rats a 20% casein diet while the glucose-intolerant, obese rats received a high-fructose diet. They were forced to run for one hour per day, six days per week, for ten weeks. Exercise reduced visceral fat and ameliorated glucose tolerance in the high-fructose group, lowered blood lactic acid levels, improved lactic acid usage efficiency, and increased oxidative stress and hepatic levels of Mn, Fe, Cu, and Zn in the normal and high-fructose groups. Additionally, exercise significantly upregulated hepatic selenoprotein P expression in both groups, however, its effect was remarkable in healthy group. On the other hand, muscle glycogen synthesis was not markedly enhanced in high-fructose-diet rats but in normal-diet rats in response to exercise. It is concluded that exercise conditions rather than exercise load must be customized and optimized for each health and disease states in advance before starting exercise training intended to prevent or treat lifestyle-related diseases.
Collapse
Affiliation(s)
- Namika Miya
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Misasagi, Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.,Department of Health Sports and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima Nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Asuka Uratani
- Department of Health Sports and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima Nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Keita Chikamoto
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuki Naito
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Misasagi, Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Keiji Terao
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yutaka Yoshikawa
- Department of Health Sports and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima Nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Misasagi, Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
10
|
Hernández-Camacho JD, Vicente-García C, Parsons DS, Navas-Enamorado I. Zinc at the crossroads of exercise and proteostasis. Redox Biol 2020; 35:101529. [PMID: 32273258 PMCID: PMC7284914 DOI: 10.1016/j.redox.2020.101529] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential element for all forms of life, and one in every ten human proteins is a zinc protein. Zinc has catalytic, structural and signalling functions and its correct homeostasis affects many cellular processes. Zinc deficiency leads to detrimental consequences, especially in tissues with high demand such as skeletal muscle. Zinc cellular homeostasis is tightly regulated by different transport and buffer protein systems. Specifically, in skeletal muscle, zinc has been found to affect myogenesis and muscle regeneration due to its effects on muscle cell activation, proliferation and differentiation. In relation to skeletal muscle, exercise has been shown to modulate zinc serum and urinary levels and could directly affect cellular zinc transport. The oxidative stress induced by exercise may provide the basis for the mild zinc deficiency observed in athletes and could have severe consequences on health and sport performance. Proteostasis is induced during exercise and zinc plays an essential role in several of the associated pathways. Zinc deficiency could be a crucial issue in sport performance for athletes. Exercise could modulate zinc serum and cellular homeostasis. Zinc is part of proteostatic systems critical during exercise.
Collapse
Affiliation(s)
- Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, 41013, Spain; CIBERER, Instituto de Salud Carlos III, Madrid, 28000, Spain
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, 41013, Spain
| | | | | |
Collapse
|
11
|
Samadian Z, Tofighi A, Razi M, Tolouei Azar J, Ghaderi Pakdel F. Moderate‐intensity exercise training ameliorates the diabetes‐suppressed spermatogenesis and improves sperm parameters: Insole and simultaneous with insulin. Andrologia 2019; 51:e13457. [DOI: 10.1111/and.13457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/06/2019] [Accepted: 02/11/2019] [Indexed: 01/31/2023] Open
Affiliation(s)
- Zahra Samadian
- Department of Exercise Physiology and Corrective Exercises Faculty of Sport Sciences Urmia University Urmia Iran
| | - Asghar Tofighi
- Department of Exercise Physiology and Corrective Exercises Faculty of Sport Sciences Urmia University Urmia Iran
| | - Mazdak Razi
- Department of Basic Sciences Faculty of Vetrinary Medicine Urmia University Urmia Iran
| | - Javad Tolouei Azar
- Department of Exercise Physiology and Corrective Exercises Faculty of Sport Sciences Urmia University Urmia Iran
| | - Firouz Ghaderi Pakdel
- Department of Physiology Faculty of Medicine Urmia University of Medical Sciences Urmia Iran
| |
Collapse
|
12
|
Chu A, Petocz P, Samman S. Zinc status at baseline is not related to acute changes in serum zinc concentration following bouts of running or cycling. J Trace Elem Med Biol 2018; 50:105-110. [PMID: 30262266 DOI: 10.1016/j.jtemb.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/11/2018] [Accepted: 06/03/2018] [Indexed: 10/14/2022]
Abstract
Zinc status is implicated in physiological functions related to exercise performance and physical activity. We have previously demonstrated significant changes in serum zinc concentrations following a bout of aerobic exercise, suggestive of a relationship between zinc metabolism and exercise-related functions. In the present study, we aim to determine the association between pre-exercise serum zinc concentration and immediate changes in serum zinc concentration following an aerobic exercise bout. We have previously conducted a systematic literature search of PubMed, Web of Science, Scopus and SPORTDiscus, for studies that investigated the acute effects of aerobic exercise on zinc biomarkers. In the current study, we undertook a secondary analysis using mixed effects meta-regression modelling to determine the relationship between baseline serum zinc concentration and the change in serum zinc concentration immediately after exercise. Meta-regression models revealed no significant relationship between baseline serum zinc concentration and the change in serum zinc concentration following a bout of exercise when all comparisons were included (slope -0.11 ± 0.07 [standard error]; P > 0.05). When comparisons were stratified by exercise modality, no significant relationships were observed for exercise bouts involving cycling or running. The current analyses were limited by the available literature and low statistical power of the meta-regression models. Based on the current available data, the present analysis revealed limited evidence for a relationship between pre-exercise serum zinc concentration and immediate changes in serum zinc levels following a bout of aerobic exercise. Subgroup meta-regression analyses stratified by the mode of exercise bouts did not differ from the overall results. This suggests that zinc status at baseline is not related to acute changes in serum zinc concentration following bouts of aerobic exercise.
Collapse
Affiliation(s)
- Anna Chu
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
| | - Peter Petocz
- Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia
| | - Samir Samman
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand; School of Life and Environmental Sciences, University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
13
|
Bedhiafi T, Charradi K, Azaiz MB, Mahmoudi M, Msakni I, Jebari K, Bouziani A, Limam F, Aouani E. Supplementation of grape seed and skin extract to orlistat therapy prevents high-fat diet-induced murine spleen lipotoxicity. Appl Physiol Nutr Metab 2018; 43:782-794. [PMID: 29514007 DOI: 10.1139/apnm-2017-0743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Spleen is the largest lymphoid organ and obesity is related to an elevated risk of immunity dysfunction. The mechanism whereby fat adversely affects the spleen is poorly understood. This study was designed to assess the effectiveness of grape seed and skin extract (GSSE) and orlistat (Xenical, Xe) on high-fat diet (HFD)-induced spleen lipotoxicity. Obese rats were treated either with GSSE (4 g/kg body weight) or Xe (2 mg/kg body weight) or GSSE+Xe and monitored for weight loss for 3 months. Animals were then sacrificed and their spleen used for the evaluation of lipotoxicity-induced oxidative stress and inflammation as well as the putative protection afforded by GSSE and Xe treatment. HFD induced body weight gain and glycogen accumulation into the spleen; ectopic deposition of cholesterol and triglycerides and an oxidative stress characterized by increased lipoperoxidation and carbonylation; inhibition of antioxidant enzyme activities, such as catalase, glutathione peroxidase, and superoxide dismutase; depletion of zinc and copper; and a concomitant increase in calcium. HFD also increased plasma pro-inflammatory cytokines, such as interleukin (IL)-6, IL-17A, tumour necrosis factor alpha, and C-reactive protein, and decreased plasma IL-10 and adiponectin. Importantly, GSSE counteracted all the deleterious effects of HFD on spleen (i.e., lipotoxicity, oxidative stress, and inflammation) and the best protection was obtained when combining Xe+GSSE. Combining GSSE with Xe prevented against fat-induced spleen lipotoxicity, oxidative stress, and inflammation; this combination may be beneficial in other diseases related to the spleen.
Collapse
Affiliation(s)
- Takwa Bedhiafi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Kamel Charradi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Mouna Ben Azaiz
- c Immunology Department, Military Hospital of Tunis, Tunis, 1008, Tunisia
| | - Mohamed Mahmoudi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Issam Msakni
- d Anatomy and Cyto-Pathology Department, Military Hospital, Mont-Fleury, Tunis, 1008, Tunisia
| | - Khawla Jebari
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Ammar Bouziani
- d Anatomy and Cyto-Pathology Department, Military Hospital, Mont-Fleury, Tunis, 1008, Tunisia
| | - Ferid Limam
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Ezzedine Aouani
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| |
Collapse
|
14
|
Aloui F, Charradi K, Hichami A, Subramaniam S, Khan NA, Limam F, Aouani E. Grape seed and skin extract reduces pancreas lipotoxicity, oxidative stress and inflammation in high fat diet fed rats. Biomed Pharmacother 2016; 84:2020-2028. [DOI: 10.1016/j.biopha.2016.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 01/26/2023] Open
|
15
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|