1
|
Bing Y, Zou X, Yang X, Yang X, Sheng J, Qu Z. Mechanism elucidation and biochemometric-based screening of substances in Schisandra chinensis leaves for alcoholic liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156757. [PMID: 40250032 DOI: 10.1016/j.phymed.2025.156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Alcoholic liver injury (ALI) represents a major international public health concern with no targeted pharmacological intervention and a dearth of clinical trial-approved medications for its management. The dried leaves of Schisandra chinensis (SCL) are rich in flavonoids, lignans, polysaccharides, and other active ingredients with anti-inflammatory, antioxidant, and antitumour activities and are commonly applied in the treatment of osteoarthritis, diabetes, and neurodegenerative diseases. The crude lignans of SCL have been reported to treat CCl4-induced acute liver injury, and SCL tea has also been reported to have hepatoprotective effects. The components of SCL are currently the focus of investigation; however, conclusive pharmacological studies on SCL in the treatment of ethanol-induced ALI are rare. PURPOSE This study aimed to identify the bioactive components and elucidate the mechanism of action of SCL against ALI. METHODS The optimal month for harvesting SCL was first determined using a cellular ALI model. Immediately afterwards, the efficacy of SCL was evaluated based on cellular ALI model and ALI mice model. The expression levels of NLRP3 inflammasome-associated proteins were examined via Western blotting. To identify the bioactive components of SCL, the common components in 10 batches of SCL were identified by UPLC‒Q-TOF‒MS/MS. Subsequent analysis via correlation identified common elements' pharmacological impacts, filtering for substances with notable contributions to effectiveness. Finally, potential bioactive components were further identified through molecular docking and verified in ALIcell models. RESULTS SCL has the best efficacy in early August, and by improving hepatic aminotransferase activity, regulating lipid metabolism, alleviating oxidative stress, reducing the release of inflammatory mediators, and inhibiting the expression of NLRP3-related pyroptosis proteins, it plays a role in alleviating ALI. A total of 32 common components were identified in 10 batches of SCL. Through correlation analysis, 10 functional components, including Schisandrin B, Angeloylgomisin Q, Chlorogenic acid, Rutin, Schisandrin C, p-Hydroxycinnamic acid, Schisandrin A, Schisandrol A, Gomisin J, and Schisantherin B, were screened. Further screening using molecular docking identified 4 key functional components, Rutin, Chlorogenic acid, Schisandrin C, and Schisantherin B, which were verified to mitigate ethanol-induced liver damage. CONCLUSION The present study demonstrated that SCL prevented ALI, with the main contributing components being rutin, chlorogenic acid, pentosidine C and pentosidine B. Hence, our latest study offers significant experimental proof indicating SCL as a promising prospect for ALI prevention.
Collapse
Affiliation(s)
- Yifan Bing
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| | - Xiang Zou
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| | - Xiaolong Yang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| | - Xuejing Yang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| | - Jiejing Sheng
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| | - Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Miao Z, Zhang X, Xu Y, Liu Y, Yang Q. Unveiling the nexus: pyroptosis and its crucial implications in liver diseases. Mol Cell Biochem 2025; 480:2159-2176. [PMID: 39477911 DOI: 10.1007/s11010-024-05147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Pyroptosis, a distinctive form of programmed cell death orchestrated by gasdermin proteins, manifests as cellular rupture, accompanied by the release of inflammatory factors. While pyroptosis is integral to anti-infection immunity, its aberrant activation has been implicated in tumorigenesis. The liver, as the body's largest metabolic organ, is rich in various enzymes and governs metabolism. It is also the primary site for protein synthesis. Recent years have witnessed the emergence of pyroptosis as a significant player in the pathogenesis of specific liver diseases, exerting a pivotal role in both physiological and pathological processes. A comprehensive exploration of pyroptosis can unveil its contributions to the development and regression of conditions such as hepatitis, cirrhosis, and hepatocellular carcinoma, offering innovative perspectives for clinical prevention and treatment. This review consolidates current knowledge on key molecules involved in cellular pyroptosis and delineates their roles in liver diseases. Furthermore, we discuss the potential of leveraging pyroptosis as a novel or existing anti-cancer strategy.
Collapse
Affiliation(s)
- Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yang Xu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yan Liu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
3
|
Sarawi WS, Attia HA, Alzoubi A, Alanazi N, Mohammad R, Ali RA. Cardamom extract alleviates tamoxifen-induced liver damage by suppressing inflammation and pyroptosis pathway. Sci Rep 2025; 15:4744. [PMID: 39922887 PMCID: PMC11807216 DOI: 10.1038/s41598-025-89091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tamoxifen (TAM) is extensively used to manage estrogen receptor-positive breast cancer. Despite its effectiveness, its administration can negatively impact various organs, including the liver. This research focused on the effects of TAM on the pyroptotic pathway in the liver and evaluated the potential of cardamom extract (CRDE) to lessen hepatic damage of TAM in female rats. Rats received 45 mg/kg of TAM injections for 10 days, while the groups treated with CRDE received 12 ml/kg of CRDE for 20 days, commencing 10 days before TAM administration. TAM exposure resulted in apparent degenerations in hepatic tissue with inflammatory cell infiltration and loss of architectures. Serum levels of liver enzymes including alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were elevated, along with hepatic oxidative stress, as shown by increased lipid peroxidation with lower levels of reduced glutathione. TAM caused inflammation in the liver tissue as indicated by higher levels of tumor necrosis factor-α and interleukin-6 as well as increased expression of CD68; a phagocytic Kupffer's cells marker. Additionally, the protein expression analysis revealed a high expression of pyroptotic markers including NLRP3-inflammasome, caspase-1, and gasdermin D. Conversely, CRDE treatment effectively neutralized the biochemical, histological, and protein expression alterations induced by TAM. In conclusion, CRDE demonstrated the potential to protect the liver from TAM-induced damage by regulating mechanisms involving oxidative damage, inflammation, and pyroptosis.
Collapse
Affiliation(s)
- Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Afraa Alzoubi
- Department of Bioengineering, Imperial College London, London, UK
| | - Nour Alanazi
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Raeesa Mohammad
- Department of Histology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
4
|
Tao J, Rao Y, Wang J, Tan S, Zhao J, Cao Z, He L, Meng J, Wu P, Wang Z. Placental growth factor alleviates hyperglycemia-induced trophoblast pyroptosis by regulating mitophagy. J Obstet Gynaecol Res 2024; 50:1813-1829. [PMID: 39288911 DOI: 10.1111/jog.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/28/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Hyperglycemia is closely related to trophoblast dysfunction during pregnancy and results in suppressed invasion, migration, and pro-inflammatory cell death of trophoblasts. Hyperglycemia is a dependent risk factor for gestational hypertension accompanied by decreased placental growth factor (PLGF), which is important for maternal and fetal development. However, there is currently a lack of evidence to support whether PLGF can alleviate trophoblast cell dysfunction caused by high blood sugar. Here, we aim to clarify the effect of hyperglycemia on trophoblast dysfunction and determine how PLGF affects this process. METHODS The changes in placental tissue histomorphology from gestational diabetes mellitus (GDM) patients were compared with those of normal placentas. HTR8/SVneo cells were cultured in different amounts of glucose to examine cellular pyroptosis, migration, and invasion as well as PLGF levels. Furthermore, the levels of pyroptosis-related proteins (NLRP3, pro-caspase1, caspase1, IL-1β, and Gasdermin D [GSDMD]) as well as autophagy-related proteins (LC3-II, Beclin1, and p62) were examined by Western blotting. The GFP-mRFP-LC3-II system and transmission electron microscopy were used to detect mitophagy levels, and small interfering RNAs targeting BCL2 Interacting Protein 3 (siBNIP3) and PTEN-induced kinase 1 (siPINK1) were used to determine the role of mitophagy in pyroptotic death of HTR-8/SVneo cells. RESULTS Our results show that hyperglycemia upregulates NLRP3, pro-caspase1, caspase1, IL-1β at the protein level in GDM patients. High glucose (HG, 25 mM) inhibits viability, invasion, and migration of trophoblast cells while suppressing superoxide dismutase levels and promoting malondialdehyde production, thus leading to a senescence associated beta-gal-positive cell burst. PLGF levels in nucleus and the cytosol are also inhibited by HG, whereas PLGF treatment inhibited pyroptosis-related protein levels of NLRP3, pro-caspase1, caspase1, IL-1β, and GSDMD, Gasdermin D N-terminal domain (GSDMD-N). HG-induced mitochondrial dysfunction and BNIP3 and PINK1/Parkin expression. Knocking down BINP3 and PINK1 abolished the protective role of PLGF by preventing mitophagy. CONCLUSION PLGF inhibited hyperglycemia, while PLGF reversed hyperglycemic injury by promoting mitophagy via the BNIP3/PINK1/Parkin pathway. Altogether, these results suggest that PLGF may protect against trophoblast dysfunction in diabetes.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuzhu Rao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jingjing Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Shiming Tan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jinli Zhao
- Emergency Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zitong Cao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Peng Wu
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
5
|
Deng J, Qin L, Qin S, Wu R, Huang G, Fang Y, Huang L, Zhou Z. NcRNA Regulated Pyroptosis in Liver Diseases and Traditional Chinese Medicine Intervention: A Narrative Review. J Inflamm Res 2024; 17:2073-2088. [PMID: 38585470 PMCID: PMC10999193 DOI: 10.2147/jir.s448723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Pyroptosis is a novel pro-inflammatory mode of programmed cell death that differs from ferroptosis, necrosis, and apoptosis in terms of its onset and regulatory mechanisms. Pyroptosis is dependent on cysteine aspartate protein hydrolase (caspase)-mediated activation of GSDMD, NLRP3, and the release of pro-inflammatory cytokines, interleukin-1 (IL-1β), and interleukin-18 (IL-18), ultimately leading to cell death. Non-coding RNA (ncRNA) is a type of RNA that does not encode proteins in gene transcription but plays an important regulatory role in other post-transcriptional links. NcRNA mediates pyroptosis by regulating various related pyroptosis factors, which we termed the pyroptosis signaling pathway. Previous researches have manifested that pyroptosis is closely related to the development of liver diseases, and is essential for liver injury, alcoholic fatty liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. In this review, we attempt to address the role of the ncRNA-mediated pyroptosis pathway in the above liver diseases and their pathogenesis in recent years, and briefly outline that TCM (Traditional Chinese Medicine) intervene in liver diseases by modulating ncRNA-mediated pyroptosis, which will provide a strategy to find new therapeutic targets for the prevention and treatment of liver diseases in the future.
Collapse
Affiliation(s)
- Jiasheng Deng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Le Qin
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Sulang Qin
- School of Graduate Studies, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Ruisheng Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Guidong Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Yibin Fang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Lanlan Huang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Zhipin Zhou
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| |
Collapse
|
6
|
Huang W, Wang B, Ou Q, Zhang X, He Y, Mao X, Wei X, Kou X. ASC-expressing pyroptotic extracellular vesicles alleviate sepsis by protecting B cells. Mol Ther 2024; 32:395-410. [PMID: 38093517 PMCID: PMC10861962 DOI: 10.1016/j.ymthe.2023.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Pyroptosis is an inflammatory programmed cell death process characterized by membrane rupture. Interestingly, pyroptotic cells can generate plenty of nanosized vesicles. Non-inflammatory apoptotic cell death-derived apoptotic vesicles (apoVs) were systemically characterized and displayed multiple physiological functions and therapeutic potentials. However, the characteristics of pyroptotic cell-generated extracellular vesicles (EVs) are largely unknown. Here, we identified a group of pyroptotic EVs (pyroEVs) from in vitro cultured pyroptotic mesenchymal stem cells (MSCs), as well as from septic mouse blood. Compared with apoVs, pyroEVs express similar levels of annexin V, calreticulin, and common EV markers, but express a decreased level of apoptotic marker cleave caspase-3. PyroEVs, but not apoVs and exosomes, specifically express pyroptotic maker apoptosis-associated speck-like protein containing CARD (ASC). More importantly, MSC-derived pyroEVs protect B cells in the spleen and bone marrow to relieve inflammatory responses and enhance the survival rate of the septic mice. Mechanistically, pyroEV membrane-expressed ASC binds to B cells to repress cell death by repressing Toll-like receptor 4. This study uncovered the characteristics of pyroEVs and their therapeutic role in sepsis and B cell-mediated immune response.
Collapse
Affiliation(s)
- Weiying Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ben Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiao Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China.
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
7
|
Luo R, Hu Y, Wang L, Wang W, Wang P, Ke Z, Lou D, Tian W. Hesperidin Protects Against High-Fat Diet-Induced Lipotoxicity in Rats by Inhibiting Pyroptosis. J Med Food 2024; 27:154-166. [PMID: 38294790 DOI: 10.1089/jmf.2023.k.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
It is currently thought that excess fatty acid-induced lipotoxicity in hepatocytes is a critical initiator in the development of nonalcoholic fatty liver disease (NAFLD). Lipotoxicity can induce hepatocyte death; thus, reducing lipotoxicity is one of the most effective therapeutic methods to combat NAFLD. Abundant evidence has shown that hesperidin (HSP), a type of flavanone mainly found in citrus fruits, is able to ameliorate NAFLD, but the molecular mechanisms are unclear. We previously reported that pyroptosis contributed to NAFLD development and that inhibiting pyroptosis contributed to blunting the progression of NAFLD in rat models. Therefore, we questioned whether HSP could contribute to ameliorating NAFLD by modulating pyroptosis. In this study, a high-fat diet (HFD) induced dyslipidemia and hepatic lipotoxicity in rats, and HSP supplementation ameliorated dyslipidemia and insulin resistance. In addition, the HFD also caused pyroptosis in the liver and pancreas, while HSP supplementation ameliorated pyroptosis. In vitro, we found that HSP ameliorated palmitic acid-induced lipotoxicity and pyroptosis in HepG2 and INS-1E cells. In conclusion, we showed for the first time that HSP has a protective effect against liver and pancreas damage in terms of pyroptosis and provides a novel mechanism for the protective effects of HSP on NAFLD.
Collapse
Affiliation(s)
- Ruixi Luo
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yudie Hu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - La Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenjia Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ping Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zunli Ke
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Didong Lou
- Department of Forensic Medicine, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weiyi Tian
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
8
|
Cai H, Huang L, Wang M, Liu R, Qiu J, Qin Y, Yao X, Wang S, Yao C, Hu Z, Zhou Y. Pterostilbene alleviates abdominal aortic aneurysm via inhibiting macrophage pyroptosis by activating the miR-146a-5p/TRAF6 axis. Food Funct 2024; 15:139-157. [PMID: 38050424 DOI: 10.1039/d3fo01235b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Pterostilbene (PTE), a natural stilbene found in blueberries and several varieties of grapes, has several pharmacological activities, including anti-inflammatory and antioxidative activities. However, its role in abdominal aortic aneurysm (AAA), which is a severe inflammatory vascular disease, remains incompletely understood. In this study, we investigated the protective effects of natural stilbene PTE on AAA formation and the underlying mechanism. Two AAA mouse models (Ang II-induced model and PPE-induced model) were used to examine the effect of PTE on AAA formation. We showed that PTE administration attenuated AAA formation in mice. Furthermore, we found that PTE significantly inhibited inflammatory responses in mouse aortas, as PTE suppressed macrophage pyroptosis and prevented macrophage infiltration in aortas, resulting in reduced expression of pro-inflammatory cytokines in aortas. We also observed similar results in LPS + ATP-treated Raw 264.7 cells (a macrophage cell line) and primary peritoneal macrophages in vitro. We showed that pretreatment with PTE restrained inflammatory responses in macrophages by inhibiting macrophage pyroptosis. Mechanistically, miR-146a-5p and TRAF6 interventions in vivo and in vitro were used to investigate the role of the miR-146a-5p/TRAF6 axis in the beneficial effect of PTE on macrophage pyroptosis and AAA. We found that PTE inhibited macrophage pyroptosis by miR-146a-5p-mediated suppression of downstream TRAF6 expression. Moreover, miR-146a-5p knockout or TRAF6 overexpression abrogated the protective effect of PTE on macrophage pyroptosis and AAA formation. These findings suggest that miR-146a-5p/TRAF6 axis activation by PTE protects against macrophage pyroptosis and AAA formation. PTE might be a promising agent for preventing inflammatory vascular diseases, including AAA.
Collapse
Affiliation(s)
- Huoying Cai
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Lin Huang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Mingshan Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Ruiming Liu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiacong Qiu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuansen Qin
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Shenming Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Chen Yao
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Zuojun Hu
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| | - Yu Zhou
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Yang X, Dong X, Li J, Zheng A, Shi W, Shen C, Liu J. Nanocurcumin attenuates pyroptosis and inflammation through inhibiting NF-κB/GSDMD signal in high altitude-associated acute liver injury. J Biochem Mol Toxicol 2024; 38:e23606. [PMID: 38050447 DOI: 10.1002/jbt.23606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/12/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Exposure to a hypobaric hypoxic environment at high altitudes can lead to liver injury, and mounting evidence indicates that pyroptosis and inflammation play important roles in liver injury. Curcumin (Cur) can inhibit pyroptosis and inflammation. Therefore, our purpose here was to clarify the mechanism underlying the protective effect of nanocurcumin (Ncur) and Cur in a rat model of high altitude-associated acute liver injury. Eighty healthy rats were selected and exposed to different altitudes (6000 or 7000 m) for 0, 24, 48, or 72 h. Fifty normal healthy rats were divided into normal control, high-altitude control, salidroside (40 mg/kg [Sal-40]), Cur (200 mg/kg [Cur-200]), and Ncur (25 mg/kg [Ncur-25]) groups and exposed to a high-altitude hypobaric hypoxic environment (48 h, 7000 m). Serum-liver enzyme activities (alanine transaminase, aspartate transaminase, and lactate dehydrogenase were detected and histopathology of liver injury was evaluated by hematoxylin and eosin staining, and inflammatory factors were detected in liver tissues by enzyme-linked immunosorbent assays. Pyroptosis-associated proteins (gasdermin D, gasdermin D N-terminal [GSDMD-N], pro-Caspase-1, and cleaved-Caspase-1 [cleaved-Casp1]) and inflammation-associated proteins (nuclear factor-κB [NF-κB], phospho-NF-κB [P-NF-κB], and high-mobility group protein B1 [HMGB1]) levels were analyzed by immunoblotting. Ncur and Cur inhibited increased serum-liver enzyme activities, alleviated liver injury in rats caused by high-altitude hypobaric hypoxic exposure, and downregulated inflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-18, in rat liver tissues. The level of P-NF-κB, GSDMD-N, cleaved-Casp1, and HMGB1 in rat liver tissues increased significantly after high-altitude exposure. Ncur and Cur downregulated P-NF-κB, GSDMD-N, cleaved-Casp-1, and HMGB1. Ncur and Cur may inhibit inflammatory responses and pyroptosis in a rat model of high altitude-associated acute liver injury.
Collapse
Affiliation(s)
- Xinyue Yang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjang Military Command, Urumqi, China
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Xiang Dong
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Jiajia Li
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medicine, Beijing, China
| | - Wenhui Shi
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Caifu Shen
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Jiangwei Liu
- Graduate School, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Hu B, Ma K, Wang W, Han Z, Chi M, Nasser MI, Liu C. Research Progress of Pyroptosis in Renal Diseases. Curr Med Chem 2024; 31:6656-6671. [PMID: 37861024 DOI: 10.2174/0109298673255656231003111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
Kidney diseases, particularly Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD), are identified as global public health issues affecting millions of individuals. In addition, the frequency of renal diseases in the population has increased dramatically and rapidly in recent years. Renal disorders have become a significant public health burden. The pathophysiology of renal diseases is significantly connected with renal cell death, including apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, and autophagy, as is now recognized. Unlike other forms of cell death, pyroptosis is a unique planned cell death (PCD). Scientists have proven that pyroptosis is crucial in developing various disorders, and this phenomenon is gaining increasing attention. It is considered a novel method of inflammatory cell death. Intriguingly, inflammation is among the most significant pathological characteristics of renal disease. This study investigates the effects of pyroptosis on Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN), Immunoglobulin A (IgA) Nephropathy, and Lupus Nephritis (LN) to identify novel therapeutic targets for kidney diseases.
Collapse
Affiliation(s)
- Boyan Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wei Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
11
|
Wang Y, Piao C, Liu T, Lu X, Ma Y, Zhang J, Liu G, Wang H. Effects of the exosomes of adipose-derived mesenchymal stem cells on apoptosis and pyroptosis of injured liver in miniature pigs. Biomed Pharmacother 2023; 169:115873. [PMID: 37979374 DOI: 10.1016/j.biopha.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a complication of hepatectomy that affects the functional recovery of the remnant liver, which has been demonstrated to be associated with pyroptosis and apoptosis. Mesenchymal stem cells (MSCs) can protect against HIRI in rodents. Paracrine mechanisms of MSCs indicated that MSCs-derived exosomes (MSCs-exo) are one of the important components within the paracrine substances of MSCs. Moreover, miniature pigs are ideal experimental animals in comparative medicine compared to rodents. Accordingly, this study aimed to investigate whether hepatectomy combined with HIRI in miniature pigs would induce pyroptosis and whether adipose-derived MSCs (ADSCs) and their exosomes (ADSCs-exo) could positively mitigate apoptosis and pyroptosis. The study also compared the differences in the effects and the role of ADSCs and ADSCs-exo in pyroptosis and apoptosis. Results showed that severe ultrastructure damage occurred in liver tissues and systemic inflammatory response was induced after surgery, with TLR4/MyD88/NFκB/HMGB1 activation, NLRP3-ASC-Caspase1 complex generation, GSDMD revitalization, and IL-1β, IL-18, and LDH elevation in the serum. Furthermore, expression of Fas-Fasl-Caspase8 and CytC-APAF1-Caspase9 was increased in the liver. The ADSCs or ADSCs-exo intervention could inhibit the expression of these indicators and improve the ultrastructural pathological changes and systemic inflammatory response. There was no significant difference between the two intervention groups. In summary, ADSCs-exo could effectively inhibit pyroptosis and apoptosis similar to ADSCs and may be considered a safe and effective cell-free therapy to protect against liver injury.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guodong Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
12
|
Yang J, Li B, Wang J, Fan W. Puerarin alleviates chronic renal failure-induced pyroptosis in renal tubular epithelial cells by targeting miR-342-3p/TGF-β/SMAD axis. Genes Genomics 2023; 45:1563-1573. [PMID: 37747643 DOI: 10.1007/s13258-023-01448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Chronic renal failure (CRF) is the result of kidney damage. Puerarin is a flavonoid with specific nephroprotective effect, but its effect on CRF needs further research. This study explored the effect of puerarin on CRF and the potential molecular mechanism. METHODS Adenine was used to establish an in vivo CRF model in rats, and rats were intragastrically administered with puerarin at a dose of 400 mg/kg body weight once a day from day 1 to day 28. Hematoxylin and eosin (HE) and Masson staining were used to observe the morphology and fibrosis of kidney tissue. Lipopolysaccharide (LPS) (400 ng/mL)/H2O2 (200 µM) was applied to human kidney 2 (HK-2) cells to construct an in vitro CRF model. Enzyme-linked immunosorbent assay (ELISA) was performed to validate interleukin (IL)-1β and IL-18 levels. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed to detect microRNA (miR)-342-3p levels. Transforming growth factor beta (TGF-β)1, SMAD2, SMAD3, and pyroptosis marker proteins were detected by Western blot. The interaction between miR-342-3p and TGF-β/SMAD was determined by a dual-luciferase reporter gene assay. Cell Counting Kit-8 (CCK-8) assay was utilized to determine cell viability. RESULTS In the CRF model, puerarin alleviated renal injury and fibrosis and reduced creatinine (Cr) and blood urea nitrogen (BUN) levels. At the same time, miR-342-3p was downregulated, while the TGF-β/SMAD axis was activated and levels of IL-1β and IL-18 were increased. After treatment of CRF rats with puerarin, the expression level of miR-342-3p was increased, the TGF-β/SMAD axis was inhibited, and the secretion of IL-1β and IL-18 was decreased. MiR-342-3p directly bound to and negatively regulated the expression of TGF-β1, SMAD2, and SMAD3. In the in vitro CRF model, miR-342-3p inhibited HK-2 cell pyroptosis by inhibiting the TGF-β/SMAD axis. CONCLUSION Puerarin reduced renal injury and pyroptosis in CRF rats by targeting the miR-342-3p/TGF-β/SMAD axis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Baochao Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Jiangming Wang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China
| | - Wenxing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, China.
| |
Collapse
|
13
|
He W, Xu C, Mao D, Zheng Y, Wang N, Wang M, Mao N, Wang T, Li Y. Recent advances in pyroptosis, liver disease, and traditional Chinese medicine: A review. Phytother Res 2023; 37:5473-5494. [PMID: 37622684 DOI: 10.1002/ptr.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of liver disease has increased, becoming a major cause of death. Various liver diseases are intricately linked to pyroptosis, which is one of the most common forms of programmed cell death. As a powerful weapon in the fight against liver diseases, traditional Chinese medicine (TCM) can affect pyroptosis via a number of routes, including the classical, nucleotide oligomerization domain-like receptors protein 3/caspase-1/gasdermin D (GSDMD) pathway, the nonclassical lipopolysaccharide/caspase-11/GSDMD pathway, the ROS/caspase-3/gasdermin E pathway, the caspase-9/caspase-3/GSDMD pathway, and the Apaf-1/caspase-11/caspase-3 pathway. In this review, we provide an overview of pyroptosis, the interplay between pyroptosis and liver diseases, and the mechanisms through which TCM regulates pyroptosis in liver diseases. The information used in the text was collected and compiled from the databases of PubMed, Web of Science, Scopus, CNKI, and Wanfang Data up to June 2023. The search was not limited with regard to the language and country of the articles. Research and review articles were included, and papers with duplicate results or unrelated content were excluded. We examined the current understanding of the relationship between pyroptosis and liver diseases as well as the advances in TCM interventions to provide a resource for the identification of potential targets for TCM in the treatment of liver diseases.
Collapse
Affiliation(s)
- Wenxing He
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Canli Xu
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yang Zheng
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Minggang Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Nan Mao
- Department of Acupuncture-Moxibustion and Tuina, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Ting Wang
- The First Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yanjie Li
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
14
|
Gu K, Wang F, Sun W, Liu G, Jia G, Zhao H, Chen X, Wu C, Tian G, Cai J, Zhang R, Wang J. Tryptophan alleviates lipopolysaccharide-induced liver injury and inflammation by modulating necroptosis and pyroptosis signaling pathways in piglets. Anim Biotechnol 2023; 34:4069-4080. [PMID: 37688392 DOI: 10.1080/10495398.2023.2255064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The liver plays crucial roles in material metabolism and immune response. Bacterial endotoxin can cause various liver diseases, thereby causing significant economic losses to pig industry. Tryptophan is an essential amino acid in piglets. However, whether tryptophan can alleviate liver injury and inflammation by regulating necroptosis and pyroptosis has not been clarified. This study aimed to investigate whether dietary tryptophan can alleviate lipopolysaccharide (LPS)-induced liver injury in weaned piglets. 18 weaned piglets were randomly distributed to three treatments, each with 6 replicates: (1) control; (2) LPS-challenged control; (3) LPS + 0.2% tryptophan. After feeding with control or 0.2% tryptophan-supplemented diets for 35 d, pigs were intraperitoneally injected with saline or LPS (100 mg/kg body weight). At 4 h post-injection, blood samples and liver were collected. Results indicated that tryptophan reduced alanine aminotransferase, aspartate aminotransferase, decreased the mRNA expression and protein expression of 70-kDa heat shock proteins. Moreover, tryptophan increased the mRNA expression and protein expression of claudin-1, occludin and zonula occludens and decreased hydrogen peroxide and malondialdehyde contents, and increased catalase, glutathione peroxidase and total superoxide dismutase activities and proinflammatory cytokine levels in the liver. Meanwhile, tryptophan inhibited pyroptosis-related and necroptosis-related protein expression in liver. Collectively, tryptophan could relieve liver damage, increased the antioxidant capacity and reduced inflammation by inhibiting pyroptosis and necroptosis signaling pathways.
Collapse
Affiliation(s)
- Ke Gu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Fang Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Weixiao Sun
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Caimei Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Zeng T, Ye J, Wang H, Tian W. Identification of pyroptosis-related lncRNA subtype and signature predicts the prognosis in bladder cancer. Medicine (Baltimore) 2023; 102:e35195. [PMID: 37861525 PMCID: PMC10589564 DOI: 10.1097/md.0000000000035195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Pyroptosis is a new type of programmed cell death involved in all stages of tumorigenesis. Herein, a comprehensive study was conducted to evaluate the prognostic significance of pyroptosis-related lncRNAs in bladder cancer. Consensus clustering analysis was performed to identify the subclusters of bladder cancer. The prognostic pyroptosis-related lncRNA signature was constructed using LASSO Cox regression analysis. Consensus clustering identified 2 clusters of bladder cancer. Interestingly, significant differences in the ESTIMAE score, immune cell infiltration and immune checkpoint expression were obtained between the 2 clusters. A signature consisting of 11 pyroptosis-related lncRNAs was established and it had a good performance in predicting the overall survival rate of bladder cancer, with an AUC of 0.713. Moreover, pyroptosis-related lncRNA signature acted as a risk factor in bladder cancer. Bladder cancer patients with high-risk score had a higher tumor grade and higher clinical stage. A significant correlation was obtained between the risk score and immune cell infiltration. The expression of most checkpoints was higher in bladder cancer patients with high-risk score. A novel pyroptosis-related lncRNA signature was identified with prognostic value for bladder cancer patients. Pyroptosis-related lncRNAs have a potential role in cancer immunology and may serve as prognostic or therapeutic targets in bladder cancer.
Collapse
Affiliation(s)
- Tao Zeng
- College of Medicine, Jingchu University of Technology, Jingmen, China
| | - Jianzhong Ye
- College of Medicine, Jingchu University of Technology, Jingmen, China
| | - Heng Wang
- College of Electronic Information Engineering, Jingchu University of Technology, Jingmen, China
| | - Wen Tian
- College of Computer Engineering, Jingchu University of Technology, Jingmen, China
| |
Collapse
|
16
|
Khan MS, Kim HS, Kim R, Yoon SH, Kim SG. Dysregulated Liver Metabolism and Polycystic Ovarian Syndrome. Int J Mol Sci 2023; 24:ijms24087454. [PMID: 37108615 PMCID: PMC10138914 DOI: 10.3390/ijms24087454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A significant fraction of couples around the world suffer from polycystic ovarian syndrome (PCOS), a disease defined by the characteristics of enhanced androgen synthesis in ovarian theca cells, hyperandrogenemia, and ovarian dysfunction in women. Most of the clinically observable symptoms and altered blood biomarker levels in the patients indicate metabolic dysregulation and adaptive changes as the key underlying mechanisms. Since the liver is the metabolic hub of the body and is involved in steroid-hormonal detoxification, pathological changes in the liver may contribute to female endocrine disruption, potentially through the liver-to-ovary axis. Of particular interest are hyperglycemic challenges and the consequent changes in liver-secretory protein(s) and insulin sensitivity affecting the maturation of ovarian follicles, potentially leading to female infertility. The purpose of this review is to provide insight into emerging metabolic mechanisms underlying PCOS as the primary culprit, which promote its incidence and aggravation. Additionally, this review aims to summarize medications and new potential therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Muhammad Sohaib Khan
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Hee-Sun Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
| | - Ranhee Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
| | - Sang Ho Yoon
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
- Department of Obstetrics and Gynecology, Dongguk University Medical College, Goyang-si 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
17
|
Tang YL, Tao Y, Zhu L, Shen JL, Cheng H. Role of NLRP3 inflammasome in hepatocellular carcinoma: A double-edged sword. Int Immunopharmacol 2023; 118:110107. [PMID: 37028274 DOI: 10.1016/j.intimp.2023.110107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
In recent years, the study of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome has become a hot topic, especially its role in various tumors. The incidence of hepatocellular carcinoma is ranked in the top five in China. Hepatocellular carcinoma (HCC) is the predominant and typical form of primary liver cancer. Due to the close relationship between NLRP3 inflammasome and cancers, many studies have investigated its role in HCC. The results suggest that NLRP3 inflammasome participates in both tumor growth inhibition and tumor growth promotion in HCC. Therefore, this review elaborates on the relationship between NLRP3 and HCC and explains its role in HCC. In addition, the potential of NLRP3 as a therapeutic target for cancer therapy is explored, summarizing and classifying impacts of and processes underlying different NLRP3 inflammasome-targeting drugs on HCC.
Collapse
Affiliation(s)
- Ying-Le Tang
- Medical College, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Yan Tao
- Medical College, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Lin Zhu
- Medical College, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Jia-Lin Shen
- Medical College, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China
| | - Hong Cheng
- Medical College, Yangzhou University, Yangzhou, China; Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China.
| |
Collapse
|
18
|
Wu P, Liao T, Ma Z, Wei Y, Yin S, Huang Z, Mao J. Macrophage pyroptosis promotes synovial fibrosis through the HMGB1/TGF- β1 axis: an in vivo and in vitro study. In Vitro Cell Dev Biol Anim 2023; 59:289-299. [PMID: 37195554 DOI: 10.1007/s11626-023-00769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/28/2023] [Indexed: 05/18/2023]
Abstract
Macrophages and fibroblasts are the main effector cells in synovial tissue in the knee joint. Our previous studies showed that there was synovial macrophage pyroptosis in knee osteoarthritis (KOA) and that inhibiting this pyroptosis could alleviate synovial fibrosis. In the present study, we aimed to elucidate the mechanism by which macrophage pyroptosis affects synovial fibrosis. We established an LPS/ATP-induced model in macrophages that mimicked the inflammatory environment of KOA and induced macrophage pyroptosis. The TGF-β1, SMAD3, and P-SMAD3, and the synovial fibrosis markers (Collagen I, TIMP1, Vimentin, and TGF-β1) were significantly decreased after fibroblasts were cultured with RAGE inhibitors and SMAD3 inhibitors. Moreover, ELISA and immunofluorescence analysis showed that macrophage pyroptosis induced the release of IL-1β, IL-18, and HMGB1 and caused the translocation of HMGB1 from the fibroblast nucleus to the cell membrane, where it could bind with RAGE. Subsequently, in the synovial tissue of KOA model rats, we observed that inhibiting HMGB1, RAGE, and SMAD3 could alleviate the expression of synovial fibrosis markers (Collagen I, TIMP1, Vimentin, and TGF-β1) at both the mRNA and protein levels. Besides, HE and Sirius Red staining were used to observe the transverse diameter of the right knee. In conclusion, macrophage pyroptosis induced IL-1β, IL-18, and HMGB1, which could be caused HMGB1 to translocate from the fibroblast nucleus and bind with RAGE, activating the TGF-β1/SMAD3 signaling pathway and affecting synovial fibrosis.
Collapse
Affiliation(s)
- Peng Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Taiyang Liao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenyuan Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yibao Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Songjiang Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhengquan Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Jun Mao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
19
|
Wan Y, Zhang W, Huang C, Jian J, Zhang Y, Liu Q, Chen P, Zhu X. Ursolic acid alleviates Kupffer cells pyroptosis in liver fibrosis by the NOX2/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 113:109321. [DOI: 10.1016/j.intimp.2022.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
20
|
Relationships of Ferroptosis and Pyroptosis-Related Genes with Clinical Prognosis and Tumor Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3713929. [PMID: 36246400 PMCID: PMC9557253 DOI: 10.1155/2022/3713929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Ferroptosis and pyroptosis are two new programmed cell death (PCD) modes discovered in recent years. However, the potential value of ferroptosis and pyroptosis-related genes (FPRGs) in prognosis prediction and the tumor immune microenvironment of head and neck squamous cell carcinoma (HNSCC) is still unclear. We obtained 21 significant FPRGs based on the training dataset (TCGA- HNSC) using the univariate Cox and differential expression analysis. The TCGA- HNSC (n = 502) dataset was clustered into two group (clusters A and B) based on the 21 significant FPRGs. 1467 differentially expressed genes (DEGs) between cluster A and B were put into univariate Cox and Least absolute shrinkage and selection operator (LASSO) analysis to build a risk model. The predictive capability of the risk model was successfully confirmed by internal validation, external validation, and clinical sample validation. To improve the clinical applicability, a nomogram model combined risk score and clinical information were constructed. Moreover, the patients with lower risk score were characterized by increased immune response and tumor mutation burden (TMB), while the patients with higher risk score were characterized by increased TP53 mutation rate. In conclusion, our comprehensive analysis of the FPRGs revealed their significant role in prognosis prediction and the tumor immune microenvironment. The risk model containing 9 FPRGs could be a potential prognostic markers and effective immunotherapy targets for HNSCC.
Collapse
|
21
|
Puerarin ameliorates acute lung injury by modulating NLRP3 inflammasome-induced pyroptosis. Cell Death Dis 2022; 8:368. [PMID: 35977927 PMCID: PMC9385627 DOI: 10.1038/s41420-022-01137-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
We commenced to analyze putative anti-pyroptosis effects of puerarin (PU) as mediated by the PP2A-HDAC1-NLRP3 pathway in acute lung injury (ALI). ALI animal and cell models were constructed, followed by treatment of PU. Then, the effect of HDAC1, PP2A, and NLRP3 on cell inflammation and pyroptosis was explored. The interaction between HDAC1 and PP2A as well as between PP2A and NLRP3 was analyzed. Our findings suggested that PU downregulated HDAC1 expression to alleviate symptoms of ALI. HDAC1 overexpression promoted inflammation induced by LPS, which reversed the inhibitory effect of PU on ALI. HDAC1 overexpression also decreased PP2A expression, suggesting that PP2A was involved in the effects of HDAC1 on LPS-induced inflammation. PP2A exerted inhibitory effects on NLRP3. Meanwhile, PU hindered the progression of ALI by silencing HDAC1 or overexpressing PP2A both in vivo and in vitro. Taken together, PU restrained pyroptosis of cells induced by NLRP3 inflammasome to abate ALI.
Collapse
|
22
|
Xing M, Li J. Diagnostic and prognostic values of pyroptosis-related genes for the hepatocellular carcinoma. BMC Bioinformatics 2022; 23:177. [PMID: 35562678 PMCID: PMC9101834 DOI: 10.1186/s12859-022-04726-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Due to the high heterogeneity, the early diagnosis and prognostic prediction of hepatic cellular cancer (HCC) is challenging. In this study, we explored the diagnostic and prognostic value of pyroptosis-related genes (PRGs) in HCC. We downloaded the mRNA expression profiles of HCC and the corresponding clinical data from the TCGA and ICGC databases. Fifty-one PRGs were extracted from Genecards, MsigDB, and relevant literature. The area under the receiver operating characteristic (AUC) was used to explore the diagnostic value of the PRGs.
Results The results revealed that BAK1, BAX, CHMP2A, CHMP4C, CHMP6, GSDMC, and GSDMD had higher diagnostic values for HCC (AUCs > 0.8, P < 0.05). Then, univariate and multivariate analyses of 51 PRGs were performed for HCC samples, and 4 PRGs (TP53, GPX4, GSDMC, BAK1) associated with HCC prognosis were obtained and used to construct a pyroptosis-related risk model. HCC samples were divided into high-risk and low-risk groups based on the risk score’s cut-off. Kaplan–Meier curve and Log-rank test were used to compare the overall survival (OS) of two risk groups. The OS was lower in the high-risk group than in the low-risk group. In addition, the time-dependent receiver operating characteristics revealed that the risk model could be used to predict the prognosis of HCC more accurately. The risk score also resulted as an independent risk factor for HCC prognosis (TCGA: HR = 2.45, 95% CI 1.53–3.92; ICGC: HR = 2.19, 95% CI 1.39–3.46). Moreover, the AUC of the risk score for diagnosing HCC was relatively higher (TCGA: AUC = 0.840, P < 0.05; ICGC: AUC = 0.795, P < 0.05). Conclusions In a word, BAK1, BAX, CHMP2A, CHMP4C, CHMP6, GSDMC, GSDMD, and the pyroptosis-related risk model could be used to diagnose the HCC, and the risk score also resulted as an independent risk factor for the HCC prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04726-7.
Collapse
Affiliation(s)
- Mindan Xing
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jia Li
- Nankai University School of Medicine, Nankai University, Tianjin, China. .,Tianjin Second People's Hospital, Tianjin, China.
| |
Collapse
|
23
|
Chu C, Wang B, Zhang Z, Liu W, Sun S, Liang G, Zhang X, An H, Wei R, Zhu X, Guo Q, Zhao L, Fu X, Xu K, Li X. miR-513c-5p Suppression Aggravates Pyroptosis of Endothelial Cell in Deep Venous Thrombosis by Promoting Caspase-1. Front Cell Dev Biol 2022; 10:838785. [PMID: 35445025 PMCID: PMC9015708 DOI: 10.3389/fcell.2022.838785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common peripheral vascular disease. Secondary pulmonary embolism (PE) caused by DVT leads to substantial patient death. Inflammation has been suggested as a key factor in the pathophysiology of DVT, however, involvement of pyroptosis-related inflammatory factors in DVT formation remains unclear. Here, we proposed that post-transcriptional modification of caspase-1 might be a crucial trigger for enhanced pyroptosis in vascular endothelial cells (VECs), and consequently contributed to severer symptoms in DVT patients. In order to explore the involvement of pyroptosis in DVT, peripheral blood mononuclear cells were collected from 30 DVT patients, and compared with the healthy controls, we found caspase-1 was increased both in mRNA and protein levels. miRNA microarray analysis demonstrated that down-regulated miR-513c-5p was significantly negatively correlated with the expression of caspase-1. In vitro assays suggested that miR-513c-5p overexpression could ameliorate the expression of caspase-1, and thus decreased the production of cleaved gasdermin D (GSDMD) and interleukin (IL)-1β and IL-18 in VECs. The dual-luciferase reporter assay identified direct binding between miR-513c-5p and the 3′ untranslated region of caspase-1 encoding gene. The administration of miR-513c-5p mimics through tail vein injection or caspase-1 inhibitor (vx-765) by intraperitoneal injection remarkably decreased the volume of blood clots in vivo, whereas miR-513c-5p inhibitor aggravated thrombosis formation and this effect was dramatically weakened when treated in combination with vx-765. Collectively, these results revealed that the pyroptosis of VECs induced by decreased miR-513c-5p was involved in DVT progression and indicated a potential therapeutic strategy of targeting the miR-513c-5p/caspase-1/GSDMD signal axis for DVT management.
Collapse
Affiliation(s)
- Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen Liu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shangwen Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Liang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoshan Zhang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongqiang An
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Wei
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxiao Zhu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Guo
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Zhao
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxiao Fu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ke Xu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Yang H, Wang J, Liu ZG. Multi-faceted role of pyroptosis mediated by inflammasome in liver fibrosis. J Cell Mol Med 2022; 26:2757-2765. [PMID: 35415891 PMCID: PMC9097829 DOI: 10.1111/jcmm.17277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a reversible pathological overreaction during the self-repair of liver injuries, and it is the common period of chronic liver diseases induced by different pathogenesis progress into cirrhosis and even hepatocellular carcinoma. Pyroptosis, a novel form of programmed cell death, is reported to take part in the pathogenesis and progression of acute or chronic liver diseases and liver fibrosis. Caspase-1 dependent canonical pathway and caspase-4/-5/-11 mediated noncanonical pathway are the two signalling pathways to induce pyroptosis. The activation of inflammasomes under the stimulation of pathogenic microorganisms and danger signals can initiate the pyroptotic pathway and release large amounts of proinflammatory and profibrotic cytokines. This article comprehensively summarizes recent researches focused on the mechanism of pyroptosis and its role in major hepatic cells, which can provide potential therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Hui Yang
- Department of Infectious Disease, The Third Xiangya hospital, Central South University, Changsha, China
| | - Juan Wang
- Department of Infectious Disease, The Third Xiangya hospital, Central South University, Changsha, China
| | - Zhen-Guo Liu
- Department of Infectious Disease, The Third Xiangya hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiyang Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Proteomic analysis of alcohol-associated hepatitis reveals glycoprotein NMB (GPNMB) as a novel hepatic and serum biomarker. Alcohol 2022; 99:35-48. [PMID: 34923085 PMCID: PMC8919678 DOI: 10.1016/j.alcohol.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Alcohol consumption remains a leading cause of liver disease worldwide, resulting in a complex array of hepatic pathologies, including steatosis, steatohepatitis, and cirrhosis. Individuals who progress to a rarer form of alcohol-associated liver disease (ALD), alcohol-associated hepatitis (AH), require immediate life-saving intervention in the form of liver transplantation. Rapid onset of AH is poorly understood and the metabolic mechanisms contributing to the progression to liver failure remain undetermined. While multiple mechanisms have been identified that contribute to ALD, no cures exist and mortality from AH remains high. To identify novel pathways associated with AH, our group utilized proteomics to investigate AH-specific biomarkers in liver explant tissues. The goal of the present study was to determine changes in the proteome as well as epigenetic changes occurring in AH. Protein abundance and acetylomic analyses were performed utilizing nHPLC-MS/MS, revealing significant changes to proteins associated with metabolic and inflammatory fibrosis pathways. Here, we describe a novel hepatic and serum biomarker of AH, glycoprotein NMB (GPNMB). The anti-inflammatory protein GPNMB was significantly increased in AH explant liver and serum compared to healthy donors by 50-fold and 6.5-fold, respectively. Further, bioinformatics analyses identified an AH-dependent decrease in protein abundance across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. The greatest increases in protein abundance were observed in pathways for focal adhesion, lysosome, phagosome, and actin cytoskeleton. In contrast with the hyperacetylation observed in murine models of ALD, protein acetylation was decreased in AH compared to normal liver across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. Interestingly, immunoblot analysis found epigenetic marks were significantly increased in AH explants, including Histone H3K9 and H2BK5 acetylation. The increased acetylation of histones likely plays a role in the altered proteomic profile observed, including increases in GPNMB. Indeed, our results reveal that the AH proteome is dramatically impacted through unanticipated and unknown mechanisms. Understanding the origin and consequences of these changes will yield new mechanistic insight for ALD as well as identify novel hepatic and serum biomarkers, such as GPNMB.
Collapse
|
26
|
Shao S, Zhang Y, Li G, Yu Z, Cao Y, Zheng L, Zhang K, Han X, Shi Z, Cui H, Song X, Hong W, Han T. The dynamics of cell death patterns and regeneration during acute liver injury in mice. FEBS Open Bio 2022; 12:1061-1074. [PMID: 35184410 PMCID: PMC9063440 DOI: 10.1002/2211-5463.13383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022] Open
Abstract
Acute liver injury is a serious clinical syndrome with multiple causes and unclear pathological process. Here, CCl4‐ and D‐galactosamine/lipopolysaccharide (D‐gal/LPS)‐induced acute liver injury was established to explore the cell death patterns and determine whether or not liver regeneration occurred. In CCl4‐induced hepatic injury, three phases, including the early, progressive, and recovery phase, were considered based on alterations of serum transaminases and liver morphology. Moreover, in this model, cytokines exhibited double‐peak fluctuations; apoptosis and pyroptosis persisted throughout all phases; autophagy occurred in the early and the progressive phases; and sufficient and timely hepatocyte regeneration was observed only during the recovery phase. All of these phenomena contribute to mild liver injury and subsequent regeneration. Strikingly, only the early and progressive phases were observed in the D‐gal/LPS model. Slight pyroptosis occurred in the early phase but diminished in the progressive phase, while apoptosis, reduced autophagy, and slight but subsequently diminished regeneration occurred only during the progressive phase, accompanied by a strong cytokine storm, resulting in severe liver injury with high mortality. Taken together, our work reveals variable modes and dynamics of cell death and regeneration, which lead to different consequences for mild and severe acute liver injury, providing a helpful reference for clinical therapy and prognosis.
Collapse
Affiliation(s)
- Shuai Shao
- The School of Medicine NanKai University Tianjin China
| | - Yu Zhang
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Guantong Li
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Zhenjun Yu
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Yingying Cao
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
| | - Lina Zheng
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Kun Zhang
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xiaohui Han
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Zhemin Shi
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Hongmei Cui
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Xiaomeng Song
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Wei Hong
- Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Tao Han
- The School of Medicine NanKai University Tianjin China
- Department of Hepatology and Gastroenterology The Third Central Clinical College of Tianjin Medical University Department of Histology and Embryology School of Basic Medical Sciences Tianjin Medical University China
- Department of Hepatology and Gastroenterology Tianjin Union Medical Center Nankai University Tianjin China
- Department of Hepatology and Gastroenterology Tianjin Third Central Hospital affiliated to Nankai University Tianjin China
| |
Collapse
|
27
|
Wang J, Shi K, An N, Li S, Bai M, Wu X, Shen Y, Du R, Cheng J, Wu X, Xu Q. Direct Inhibition of GSDMD by PEITC Reduces Hepatocyte Pyroptosis and Alleviates Acute Liver Injury in Mice. Front Immunol 2022; 13:825428. [PMID: 35173734 PMCID: PMC8841757 DOI: 10.3389/fimmu.2022.825428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Acute liver injury (ALI), often caused by viruses, alcohol, drugs, etc., is one of the most common clinical liver diseases. Although pyroptosis plays an important role in ALI, there is still a lack of effective clinical drugs related to this mechanism. Here, we show that phenethyl isothiocyanate (PEITC), a natural compound present in cruciferous vegetables, can significantly alleviate concanavalin A (ConA)-induced inflammatory liver damage and carbon tetrachloride (CCl4)-induced chemical liver damage in a dose-dependent manner. PEITC dose-dependently reversed the ALI-induced increase in plasma levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), tumor necrosis factor (TNF)-α, and interferon (IFN)-γ and reduced the protein levels of hepatocyte pyroptosis markers such as Nod-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, and cleaved gasdermin D (GSDMD). In vitro experiments have also verified the inhibitory effect of PEITC on hepatocyte pyroptosis. Furthermore, PEITC inhibits pyroptosis by interacting with cysteine 191 of GSDMD. In summary, our findings establish a role for PEITC in rescuing hepatocyte pyroptosis via direct inhibition of GSDMD, which may provide a new potential therapeutic strategy for ALI.
Collapse
|
28
|
Jiang X, Gu Y, Huang Y, Zhou Y, Pang N, Luo J, Tang Z, Zhang Z, Yang L. CBD Alleviates Liver Injuries in Alcoholics With High-Fat High-Cholesterol Diet Through Regulating NLRP3 Inflammasome-Pyroptosis Pathway. Front Pharmacol 2021; 12:724747. [PMID: 34630100 PMCID: PMC8493333 DOI: 10.3389/fphar.2021.724747] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol abuse and high-fat diet–induced liver diseases have been the most prevalent chronic liver diseases and the leading reasons for liver transplantation around the world. Cannabidiol (CBD) is a botanical component extracted from marijuana plants without psychoactive impact. In our previous reports, we found that CBD can prevent fatty liver induced by Lieber–DeCarli ethanol diet or non-alcoholic fatty liver disease (NAFLD) induced by high-fat high-cholesterol diet. The current work is a further study on whether CBD can alleviate liver injuries induced by ethanol plus high-fat high-cholesterol diet (EHFD), which is a model simulating heavy alcohol drinkers in a Western diet. A mice liver injury model induced by EHFD for 8 weeks was applied to explore the protective properties of CBD and the underlying mechanisms. We found that CBD prevented liver steatosis and oxidative stress induced by EHFD. CBD treatment inhibited macrophage recruitment and suppressed activation of NFκB–NLRP3–pyroptosis pathway in mice livers. The hepatoprotective property of CBD in the current model might be a result of inhibition of inflammation via alleviating activation of the hepatic NFκB–NLRP3 inflammasome–pyroptosis pathway by CBD.
Collapse
Affiliation(s)
- Xuye Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingying Gu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanling Huang
- Department of Nutrition, Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Yujia Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nengzhi Pang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jing Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Zinkernagel Biotech Co. Ltd, Foshan, China
| | - Zhenfeng Zhang
- Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department of Radiology, Translational Medicine Center and Guangdong Provincial Education Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lili Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Wu P, Shi J, Sun W, Zhang H. Identification and validation of a pyroptosis-related prognostic signature for thyroid cancer. Cancer Cell Int 2021; 21:523. [PMID: 34627252 PMCID: PMC8502398 DOI: 10.1186/s12935-021-02231-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pyroptosis is a form of programmed cell death triggered by inflammasomes. However, the roles of pyroptosis-related genes in thyroid cancer (THCA) remain still unclear. Objective This study aimed to construct a pyroptosis-related signature that could effectively predict THCA prognosis and survival. Methods A LASSO Cox regression analysis was performed to build a prognostic model based on the expression profile of each pyroptosis-related gene. The predictive value of the prognostic model was validated in the internal cohort. Results A pyroptosis-related signature consisting of four genes was constructed to predict THCA prognosis and all patients were classified into high- and low-risk groups. Patients with a high-risk score had a poorer overall survival (OS) than those in the low-risk group. The area under the curve (AUC) of the receiver operator characteristic (ROC) curves assessed and verified the predictive performance of this signature. Multivariate analysis showed the risk score was an independent prognostic factor. Tumor immune cell infiltration and immune status were significantly higher in low-risk groups, which indicated a better response to immune checkpoint inhibitors (ICIs). Of the four pyroptosis-related genes in the prognostic signature, qRT-PCR detected three of them with significantly differential expression in THCA tissues. Conclusion In summary, our pyroptosis-related risk signature may have an effective predictive and prognostic capability in THCA. Our results provide a potential foundation for future studies of the relationship between pyroptosis and the immunotherapy response. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02231-0.
Collapse
Affiliation(s)
- Pu Wu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jinyuan Shi
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Shen J, Fan Z, Sun G, Qi G. Sacubitril/valsartan (LCZ696) reduces myocardial injury following myocardial infarction by inhibiting NLRP3‑induced pyroptosis via the TAK1/JNK signaling pathway. Mol Med Rep 2021; 24:676. [PMID: 34296299 PMCID: PMC8335743 DOI: 10.3892/mmr.2021.12315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the protective effects of sacubitril/valsartan (LCZ696) on ventricular remodeling in myocardial infarction (MI) and the effects of the inflammasome‑mediated inflammatory response. First, a rat model was established. Animals were then treated with LCZ696 so that the histopathological changes associated with ventricular remodeling could be investigated. The serum levels of the inflammatory factors IL‑18 and IL‑1β were also determined by ELISA. Immunofluorescence was used to investigate the ratio of pyroptosis following MI modelling. Western blotting and reverse transcription‑quantitative PCR were used to detect the relative expression levels of proteins and mRNAs in the transforming growth factor β‑activated kinase‑1 (TAK1)/JNK pathway and those associated with the NLR pyrin family domain containing 3 (NLRP3) inflammasome, respectively. The present study also investigated the regulatory mechanisms and associations between the TAK1 and JNK pathways, NOD‑, leucine‑rich repeat‑ and the NLRP3 inflammasome, in H9C2 cells and myocardial cells from the rat model of MI. LCZ696 improved MI‑induced myocardial fibrosis, rescued myocardial injury and suppressed the release of inflammatory factors. With regards to myocardial cell damage, pyroptosis in cardiomyocytes was observed. The in vitro experiments demonstrated that the overexpression of TAK1 promoted lysis of the N‑terminal of GSDMD, thereby activating the NLRP3 inflammasome and promoting the conversion of pro‑IL‑1β and pro‑IL‑18 into mature IL‑1β and IL‑18, respectively. In contrast, the silencing of TAK1 inhibited the expression levels of the NLRP3 inflammasome. In summary, LCZ696 reduced the expression levels of the NLRP3 inflammasome, suppressed inflammatory responses, improved the ventricular remodeling and exhibited protective effects in the MI heart by inhibiting the TAK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Jianfen Shen
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhongbao Fan
- Department of Hepatobiliary Surgery, People's Hospital of China Medical University, Liaoning Provincial People's Hospital, Shenyang, Liaoning 110016, P.R. China
| | - Guang Sun
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guoxian Qi
- Department of Geriatric Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
31
|
Yu L, Yu C, Dong H, Mu Y, Zhang R, Zhang Q, Liang W, Li W, Wang X, Zhang L. Recent Developments About the Pathogenesis of Dry Eye Disease: Based on Immune Inflammatory Mechanisms. Front Pharmacol 2021; 12:732887. [PMID: 34421626 PMCID: PMC8375318 DOI: 10.3389/fphar.2021.732887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Dry eye disease is a common and frequently occurring ophthalmology with complex and diverse causes, and its incidence is on the upward trend. The pathogenesis of DED is still completely clear. However, the immune response based on inflammation has been recognized as the core basis of this disease. In this review, we will systematically review the previous research on the treatment of DED in immune inflammation, analyze the latest views and research hotspots, and provide reference for the prevention and treatment of DED.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunjing Yu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - He Dong
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanan Mu
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiaosi Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Liang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenjia Li
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xun Wang
- Department of Neurosurgery, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People’s Hospital of Dalian, Non-Directly Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Carranza-Trejo AM, Vetvicka V, Vistejnova L, Kralickova M, Montufar EB. Hepatocyte and immune cell crosstalk in non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:783-796. [PMID: 33557653 DOI: 10.1080/17474124.2021.1887730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is the most widespread chronic liver disease in the world. It can evolve into nonalcoholic steatohepatitis (NASH) where inflammation and hepatocyte ballooning are key participants in the determination of this steatotic state.Areas covered: To provide a systematic overview and current understanding of the role of inflammation in NAFLD and its progression to NASH, the function of the cells involved, and the activation pathways of the innate immunity and cell death; resulting in inflammation and chronic liver disease. A PubMed search was made with relevant articles together with relevant references were included for the writing of this review.Expert opinion: Innate and adaptive immunity are the key players in the NAFLD progression; some of the markers presented during NAFLD are also known to be immunity biomarkers. All cells involved in NAFLD and NASH are known to have immunoregulatory properties and their imbalance will completely change the cytokine profile and form a pro-inflammatory microenvironment. It is necessary to fully answer the question of what initiators and metabolic imbalances are particularly important, considering sterile inflammation as the architect of the disease. Due to the shortage of elucidation of NASH progression, we discuss in this review, how inflammation is a key part of this development and we presume the targets should lead to inflammation and oxidative stress treatment.
Collapse
Affiliation(s)
| | - Vaclav Vetvicka
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Lucie Vistejnova
- Biomedical Centre, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Centre, Medical Faculty in Pilsen, Charles University, Pilsen, Czech Republic
| | - Edgar B Montufar
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
33
|
Jiangzhi Ligan Decoction Inhibits GSDMD-Mediated Canonical/Noncanonical Pyroptosis Pathways and Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease. DISEASE MARKERS 2021; 2021:9963534. [PMID: 34239622 PMCID: PMC8235964 DOI: 10.1155/2021/9963534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/05/2021] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests that gasdermin D (GSDMD) mediated pyroptosis signaling pathways play a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Jiangzhi Ligan Decoction (JZLGD) has been verified to prevent NAFLD, but its specific mechanism has not been determined. In this study, an NAFLD model was established in Sprague-Dawley rats by a high-fat diet (HFD). After 12 weeks, JZLGD was orally administered once a day for 6 additional weeks. We investigated the effects of JZLGD on NAFLD rats and determined the GSDMD pathway-associated proteins to explore whether such effects were associated with pyroptosis. Our data show that JZLGD significantly reduced the liver index; improved serum lipid levels, liver function parameters, and lipid droplet content; and relieved NAFLD. We further found that the serum levels of the proinflammatory factors interleukin-1β (IL-1β), IL-18, tumor necrosis factor-α, and IL-6 were obviously decreased in the JZLGD group. HFD rats treated with GSDMD exhibited NLRP3, caspase-1, lipopolysaccharide (LPS), and caspase-11 activation; however, these effects were blunted by JZLGD treatment. Taken together, JZLGD may exert hepatoprotective effects against NAFLD in a rat HFD model by regulating GSDMD-mediated canonical/noncanonical pyroptosis pathways.
Collapse
|
34
|
Sodium Houttuyfonate Ameliorates β-amyloid 1-42-Induced Memory Impairment and Neuroinflammation through Inhibiting the NLRP3/GSDMD Pathway in Alzheimer's Disease. Mediators Inflamm 2021; 2021:8817698. [PMID: 34188608 PMCID: PMC8195664 DOI: 10.1155/2021/8817698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Objective Our research is designed to explore the function of sodium houttuyfonate (SH) on Alzheimer's disease (AD) and its potential molecular mechanisms. Methods In our study, the Morris water maze (MWM) test was used to assess the role of SH on spatial learning and memory deficiency in amyloid-β peptide (Aβ)1-42-induced AD mice. We explored the functions of SH on proinflammatory cytokines, neuron apoptosis, and damage in vivo and in vitro by using an enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry, western blot, and Nissl staining. Moreover, the effect of SH on oxidative stress in vivo and in vitro was also detected. To explore the underlying molecular mechanisms of SH on AD, the expressions of proteins and mRNA involved in the NOD-like receptor pyrin domain containing-3/gasdermin D (NLRP3/GSDMD) pathway were determined using western blot, immunofluorescence staining, and qRT-PCR. Results Our data demonstrated that SH ameliorated spatial learning and memory deficiency in Aβ 1-42-induced AD mice. Moreover, SH significantly improved hippocampal neuron damage and inhibited oxidative stress, neuroinflammation, and neuron apoptosis in Aβ 1-42-induced AD mice and PC12 cells. The results also revealed that SH protected Aβ 1-42-induced AD through inhibiting the NLRP3/GSDMD pathway. Conclusion The present study demonstrated that SH could ameliorate Aβ 1-42-induced memory impairment neuroinflammation and pyroptosis through inhibiting the NLRP3/GSDMD pathway in AD, suggesting that SH may be a potential candidate for AD treatment.
Collapse
|
35
|
Wang Y, Zhao Y, Wang Z, Sun R, Zou B, Li R, Liu D, Lin M, Zhou J, Ning S, Tian X, Yao J. Peroxiredoxin 3 Inhibits Acetaminophen-Induced Liver Pyroptosis Through the Regulation of Mitochondrial ROS. Front Immunol 2021; 12:652782. [PMID: 34054813 PMCID: PMC8155593 DOI: 10.3389/fimmu.2021.652782] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Pyroptosis is a newly discovered form of cell death. Peroxiredoxin 3 (PRX3) plays a crucial role in scavenging reactive oxygen species (ROS), but its hepatoprotective capacity in acetaminophen (APAP)-induced liver disease remains unclear. The aim of this study was to assess the role of PRX3 in the regulation of pyroptosis during APAP-mediated hepatotoxicity. We demonstrated that pyroptosis occurs in APAP-induced liver injury accompanied by intense oxidative stress and inflammation, and liver specific PRX3 silencing aggravated the initiation of pyroptosis and liver injury after APAP intervention. Notably, excessive mitochondrial ROS (mtROS) was observed to trigger pyroptosis by activating the NLRP3 inflammasome, which was ameliorated by Mito-TEMPO treatment, indicating that the anti-pyroptotic role of PRX3 relies on its powerful ability to regulate mtROS. Overall, PRX3 regulates NLRP3-dependent pyroptosis in APAP-induced liver injury by targeting mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Boyang Zou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Ruixi Li
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Deshun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Musen Lin
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Shili Ning
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Circulating Free DNA and Its Emerging Role in Autoimmune Diseases. J Pers Med 2021; 11:jpm11020151. [PMID: 33672659 PMCID: PMC7924199 DOI: 10.3390/jpm11020151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsies can be used to analyse tissue-derived information, including cell-free DNA (cfDNA), circulating rare cells, and circulating extracellular vesicles in the blood or other bodily fluids, representing a new way to guide therapeutic decisions in cancer. Among the new challenges of liquid biopsy, we found clinical application in nontumour pathologies, including autoimmune diseases. Since the discovery of the presence of high levels of cfDNA in patients with systemic lupus erythaematosus (SLE) in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and its association with disease activity. However, with technological advancements and the increasing understanding of the role of DNA sensing receptors in inflammation and autoimmunity, interest in cfDNA and autoimmune diseases has not expanded until recently. In this review, we provide an overview of the basic biology of cfDNA in the context of autoimmune diseases as a biomarker of disease activity, progression, and prediction of the treatment response. We discuss and integrate available information about these important aspects.
Collapse
|
37
|
Chen Y, Li Y, Guo L, Hong J, Zhao W, Hu X, Chang C, Liu W, Xiong K. Bibliometric Analysis of the Inflammasome and Pyroptosis in Brain. Front Pharmacol 2021; 11:626502. [PMID: 33551822 PMCID: PMC7854385 DOI: 10.3389/fphar.2020.626502] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Considering the pivotal role of inflammasome/pyroptosis in biological function, we visually analyzed the research hotspots of inflammasome/pyroptosis related to the brain in this work through the method of bibliometrics from the Web of Science (WOS) Core database over the past two decades. Methods: Documents were retrieved from WOS Core Collection on October 16, 2020. The search terms and strategies used for the WOS database are as follow: # 1, "pyroptosis"; # 2, "pyroptotic"; # 3, "inflammasome"; # 4, "pyroptosome"; # 5 "brain"; # 6, "# 1" OR "# 2" OR "# 3" OR "# 4"; # 7, "# 5" AND "# 6". We selected articles and reviews published in English from 2000 to 2020. Visualization analysis and statistical analysis were performed by VOSviewer 1.6.15 and CiteSpace 5.7. R2. Results: 1,222 documents were selected for analysis. In the approximately 20 years since the pyroptosis was first presented, the publications regarding the inflammasome and pyroptosis in brain were presented since 2005. The number of annual publications increased gradually over a decade, which are involved in this work, and will continue to increase in 2020. The most prolific country was China with 523 documents but the United States was with 16,328 citations. The most influential author was Juan Pablo de Rivero Vaccari with 27 documents who worked at the University of Miami. The bibliometric analysis showed that inflammasome/pyroptosis involved a variety of brain cell types (microglia, astrocyte, neuron, etc.), physiological processes, ER stress, mitochondrial function, oxidative stress, and disease (traumatic brain injuries, stroke, Alzheimer's disease, and Parkinson's disease). Conclusion: The research of inflammasome/pyroptosis in brain will continue to be the hotspot. We recommend investigating the mechanism of mitochondrial molecules involved in the complex crosstalk of pyroptosis and regulated cell deaths (RCDs) in brain glial cells, which will facilitate the development of effective therapeutic strategies targeting inflammasome/pyroptosis and large-scale clinical trials. Thus, this study presents the trend and characteristic of inflammasome/pyroptosis in brain, which provided a helpful bibliometric analysis for researchers to further studies.
Collapse
Affiliation(s)
- Yuhua Chen
- Central Laboratory of Medicine School, Xi’an Peihua University, Xi’an, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yan Li
- Department of Histology and Embryology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Limin Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jun Hong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Wenjuan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ximin Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, China
| | - Cuicui Chang
- Central Laboratory of Medicine School, Xi’an Peihua University, Xi’an, China
| | - Wei Liu
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
38
|
Cheng QC, Fan J, Deng XW, Liu HC, Ding HR, Fang X, Wang JW, Chen CH, Zhang WG. Dihydromyricetin ameliorates chronic liver injury by reducing pyroptosis. World J Gastroenterol 2020; 26:6346-6360. [PMID: 33244197 PMCID: PMC7656208 DOI: 10.3748/wjg.v26.i41.6346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/30/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic liver injury (CLI) is now a worldwide disease. However, there is no effective treatment. Pyroptosis plays an essential role in CLI. Dihydromyricetin (DHM) resists oxidation and protects the liver. We hypothesize that the beneficial effect of DHM on CLI is related to its effect on the expression of pyroptosis-related molecules. Therefore, we studied the influence of DHM on CLI and pyroptosis.
AIM To study the role of pyroptosis in the pathogenesis of CLI and the therapeutic mechanism of DHM.
METHODS Thirty-two mice were randomly divided into four groups: The control group was injected with olive oil, the carbon tetrachloride (CCl4) group was injected with CCl4, the vehicle group was injected with hydroxypropyl-β-cyclodextrin while injecting CCl4 and the DHM group was injected with DHM while injecting CCl4. After four weeks of treatment, liver tissues from the mice were stained with hematoxylin and eosin, and oil red O. Blood was collected from the angular vein for serological analysis. The severity of CLI was estimated. Some liver tissue was sampled for immunohistochemistry, Western blotting and quantitative reverse transcription PCR to observe the changes in pyroptosis-related molecules.
RESULTS Serum total cholesterol, low density lipoprotein, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the CCl4 group were higher than those in the control group, and serum total cholesterol, low density lipoprotein, AST and ALT in the DHM group were lower than those in the vehicle group. Hematoxylin and eosin and oil red O staining showed that there were more lipid droplets in the CCl4 group than in the control group, and there were fewer lipid droplets in the DHM group than in the vehicle group. Western blotting showed that the expression of the pyroptosis-related molecules caspase-1, NOD-, LRR- and pyrin domain-containing 3 (NLRP3) and gasdermin D (GSDMD)-N in the CCl4 group was higher than that in the control group, while expression of these proteins in the DHM group was lower than that in the vehicle group. Quantitative reverse transcription PCR results showed that the expression of the pyroptosis-related genes caspase-1, NLRP3, GSDMD and interleukin-1β (IL-1β) in the CCl4 group was higher than that in the control group, while there was no significant change in NLRP3 and caspase-1 expression in the DHM group compared with that in the vehicle group, and the expression of GSDMD and IL-1β was decreased.
CONCLUSION DHM improves CCl4-induced CLI and regulates the pyroptosis pathway in hepatocytes. DHM may be a potential therapeutic agent for CLI.
Collapse
Affiliation(s)
- Quan-Cheng Cheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Fan
- Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 202155, China
| | - Xin-Wei Deng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huai-Cun Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui-Ru Ding
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuan Fang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jian-Wei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chun-Hua Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
39
|
Ghoneim MES, Abdallah DM, Shebl AM, El-Abhar HS. The interrupted cross-talk of inflammatory and oxidative stress trajectories signifies the effect of artesunate against hepatic ischemia/reperfusion-induced inflammasomopathy. Toxicol Appl Pharmacol 2020; 409:115309. [PMID: 33130049 DOI: 10.1016/j.taap.2020.115309] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
The antimalarial drug artesunate (Art) has proven its beneficial effects against ischemia/reperfusion (I/R) injury in diverse organs, but its potential role against hepatic I/R is still obscure. This study, hence, examined whether treatment with Art alone or in combination with rapamycin (Rapa), an mTOR inhibitor, can ameliorate hepatic I/R injury via targeting the NLRP3 inflammasome signaling pathway. Rats were divided into hepatic sham- and I/R-operated rats. The latter were either left untreated (I/R group) or treated with Art, Rapa, or their combination. On the molecular level, all treatment regimens succeeded to hinder inflammasome assembly and activation, assessed as NLRP3, ASC, cleaved caspase-1, caspase-11, N-terminal cleaved gasdermin-D (GSDMD-N), IL-1β, and IL-18. This effect was associated by the inhibition in the harmful signaling pathways HMGB1/RAGE and TLR4/MyD88/TRAF6 to inactivate the transcription factor NF-κB and the production of its pro-inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α. Additionally, this effect entailed the inhibition of ICAM-1/MPO/ROS cascade, which in turn hampered cell demise induced by apoptosis, manifested as correction of the imbalanced Bcl2/Bax, as well as pyroptosis (LDH, cleaved caspase-1, caspase-11, GSDMD-N, IL-1β, and IL-18), and necrosis. The corrected pathways were reflected on the improved liver function (serum ALT, AST, and LDH) and microscopical hepatic architecture. Noteworthy, the effect of Art on all parameters exceeded significantly that of Rapa and even improved the effect of the latter in the combination group. In conclusion, our results suggest novel roles for Art in abating functional and structural I/R-induced hepatic abnormalities via several traversing cross-talking pathways that succeeded to abate NLRP3 inflammasome and cell death.
Collapse
Affiliation(s)
- Mai El-Sayed Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt.
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562 Cairo, Egypt.
| | | | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), 11835 Cairo, Egypt
| |
Collapse
|
40
|
Li L, Tong A, Zhang Q, Wei Y, Wei X. The molecular mechanisms of MLKL-dependent and MLKL-independent necrosis. J Mol Cell Biol 2020; 13:3-14. [PMID: 33064829 PMCID: PMC8035999 DOI: 10.1093/jmcb/mjaa055] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 02/05/2023] Open
Abstract
Necrosis, a type of unwanted and passive cell demise, usually occurs under the excessive external stress and is considered to be unregulated. However, under some special conditions such as caspase inhibition, necrosis is regulable in a well-orchestrated way. The term 'regulated necrosis' has been proposed to describe such programed necrosis. Recently, several forms of necrosis, including necroptosis, pyroptosis, ferroptosis, parthanatos, oxytosis, NETosis, and Na+/K+-ATPase-mediated necrosis, have been identified, and some crucial regulators governing regulated necrosis have also been discovered. Mixed lineage kinase domain-like pseudokinase (MLKL), a core regulator in necroptosis, acts as an executioner in response to ligands of death receptor family. Its activation requires the receptor-interacting protein kinases, RIP1 and RIP3. However, MLKL is only involved in necroptosis, i.e. MLKL is dispensable for necrosis. Therefore, this review is aimed at summarizing the molecular mechanisms of MLKL-dependent and MLKL-independent necrosis.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - An Tong
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Sanches RCO, Souza C, Oliveira SC. Schistosoma antigens as activators of inflammasome pathway: from an unexpected stimulus to an intriguing role. Microbes Infect 2020; 22:534-539. [PMID: 32841730 DOI: 10.1016/j.micinf.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/14/2023]
Abstract
Parasites of the genus Schistosoma are organisms capable of living for decades within the definitive host. They interfere with the immune response by interacting with host's receptors. In this review, we discuss from the first reports to the most recent discoveries regarding the ability of Schistosoma antigens in triggering intracellular receptors and inducing inflammasome activation.
Collapse
Affiliation(s)
- Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, 31270-901, Salvador, Brazil.
| |
Collapse
|
42
|
Chen J, Deng X, Liu Y, Tan Q, Huang G, Che Q, Guo J, Su Z. Kupffer Cells in Non-alcoholic Fatty Liver Disease: Friend or Foe? Int J Biol Sci 2020; 16:2367-2378. [PMID: 32760204 PMCID: PMC7378652 DOI: 10.7150/ijbs.47143] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing all around the world and it may become the primary cause of terminal liver disease in adults and children in the next few decades. However, the pathogenesis of NAFLD is complex, and the Food and Drug Administration (FDA) has not approved any drugs for its treatment. Kupffer cells are the key cells regulating immunity in the liver, and the effect of their unique polarization on NAFLD has received increasing attention. Kupffer cells mainly reside in the lumen of hepatic sinusoids and account for 80% to 90% of colonized macrophages in the human body. They are phagocytic cells with the capacity for self-renewal that rarely migrate from their niche in the liver, and play a crucial role in regulating and maintaining homeostasis. Upon liver damage, Kupffer cells will be activated, releasing a good deal of inflammatory cytokines and chemokines. This review summarizes the multiple roles of Kupffer cells in the pathogenesis of NAFLD, the role of infiltrating macrophages in the pathogenesis of NAFLD is also briefly discussed, and aims to provide a theoretical basis for designing an NAFLD treatment strategy with Kupffer cells as the therapeutic target.
Collapse
Affiliation(s)
- Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiuhua Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guidong Huang
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University; 15# Lequn Road, Guilin, Guangxi Zhuang Autonomous Region 54101, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech CO., LTD 5F, No.10 Yongsheng Road, Yonghe Econoic region, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
43
|
Sanches RCO, Souza C, Marinho FV, Mambelli FS, Morais SB, Guimarães ES, Oliveira SC. NLRP6 Plays an Important Role in Early Hepatic Immunopathology Caused by Schistosoma mansoni Infection. Front Immunol 2020; 11:795. [PMID: 32431709 PMCID: PMC7214731 DOI: 10.3389/fimmu.2020.00795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Schistosomiasis is a debilitating parasitic disease that affects more than 200 million people worldwide and causes approximately 280,000 deaths per year. Inside the definitive host, eggs released by Schistosoma mansoni lodge in the intestine and especially in the liver where they induce a granulomatous inflammatory process, which can lead to fibrosis. The molecular mechanisms initiating or promoting hepatic granuloma formation remain poorly understood. Inflammasome activation has been described as an important pathway to induce pathology mediated by NLRP3 receptor. Recently, other components of the inflammasome pathway, such as NLRP6, have been related to liver diseases and fibrotic processes. Nevertheless, the contribution of these components in schistosomiasis-associated pathology is still unknown. In the present study, using dendritic cells, we demonstrated that NLRP6 sensor is important for IL-1β production and caspase-1 activation in response to soluble egg antigens (SEA). Furthermore, the lack of NLRP6 has been shown to significantly reduce periovular inflammation, collagen deposition in hepatic granulomas and mRNA levels of α-SMA and IL-13. Livers of Nlrp6–/– mice showed reduced levels of CXCL1/KC, CCL2, CCL3, IL-5, and IL-10 as well as Myeloperoxidase (MPO) and Eosinophilic Peroxidase (EPO) enzymatic activity. Consistently, the frequency of macrophage and neutrophil populations were lower in the liver of NLRP6 knockout mice, after 6 weeks of infection. Finally, it was further demonstrated that the onset of hepatic granuloma and collagen deposition were also compromised in Caspase-1–/–, IL-1R–/– and Gsdmd–/– mice. Our findings suggest that the NLRP6 inflammasome is an important component for schistosomiasis-associated pathology.
Collapse
Affiliation(s)
- Rodrigo C O Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabio Vitarelli Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fábio Silva Mambelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Suellen B Morais
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erika S Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, Brazil
| |
Collapse
|
44
|
Al Mamun A, Wu Y, Jia C, Munir F, Sathy KJ, Sarker T, Monalisa I, Zhou K, Xiao J. Role of pyroptosis in liver diseases. Int Immunopharmacol 2020; 84:106489. [PMID: 32304992 DOI: 10.1016/j.intimp.2020.106489] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Pyroptosis is known as a novel form of pro-inflammatory cell death program, which is exceptional from other types of cell death programs. Particularly, pyroptosis is characterized by Gasdermin family-mediated pore formation and subsequently cellular lysis, also release of several pro-inflammatory intracellular cytokines. In terms of mechanism, there are two signaling pathways involved in pyroptosis, including caspase-1, and caspase-4/5/11 mediated pathways. However, pyroptosis plays important roles in immune defense mechanisms. Recent studies have demonstrated that pyroptosis plays significant roles in the development of liver diseases. In our review, we have focused on the role of pyroptosis based on the molecular and pathophysiological mechanisms in the development of liver diseases. We have also highlighted targeting of pyroptosis for the therapeutic implications in liver diseases in the near future.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Kasfia Jahan Sathy
- Department of Pharmacy, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
45
|
Zhang K, Shi Z, Zhang M, Dong X, Zheng L, Li G, Han X, Yao Z, Han T, Hong W. Silencing lncRNA Lfar1 alleviates the classical activation and pyoptosis of macrophage in hepatic fibrosis. Cell Death Dis 2020; 11:132. [PMID: 32071306 PMCID: PMC7028920 DOI: 10.1038/s41419-020-2323-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Hepatic fibrosis is a common pathological consequence of a sustained wound healing response to continuous liver injury, characterized by increased production and accumulation of extracellular matrix. If unresolved, the fibrotic process results in organ failure, and eventually death after the development of cirrhosis. It has been suggested that macrophages play central role in the progression of hepatic fibrosis, which is related to inflammation and pyroptosis, a novel programmed and proinflammatory cell death. However, it remains far less clear if, or how, lncRNAs regulates the activation and pyroptosis of macrophage in hepatic fibrosis. In the present study, we demonstrated that the liver-enriched lncRNA Lfar1, which has been reported to promote hepatic fibrosis through inducing hepatic stellate cells activation and hepatocytes apoptosis, was dysregulated during proinflammatory M1 activation and pyroptosis of macrophage. Our study revealed that silencing lnc-Lfar1 by a lentivirus-shRNA alleviated CCl4- and BDL-induced proinflammatory M1 macrophage activation and NLRP3 inflammasome-mediated pyroptosis. Furthermore, the in vitro experiments demonstrated that lnc-Lfar1 knockdown significantly suppressed LPS- and IFN-γ-induced proinflammatory activation of macrophages, and inhibited LPS/ATP- and LPS/Nigericin-induced NLRP3 inflammasome-mediated pyroptosis. Mechanistically, lnc-Lfar1 regulated LPS- and IFN-γ-induced proinflammatory activation of macrophages through the NF-ĸB pathway. All these data supported our conclusion that lnc-Lfar1 plays a vital role in controlling the activation and pyroptosis of macrophage, thus providing a possible therapeutic target against inflammation-related disorders including hepatic fibrosis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengxia Zhang
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guantong Li
- The Third Central Clinical College of Tianjin Medical University, Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin Key Laboratory of Artificial Cells, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Xiaohui Han
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tao Han
- The Third Central Clinical College of Tianjin Medical University, Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin Key Laboratory of Artificial Cells, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China.
| | - Wei Hong
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
46
|
Shi H, Zhang Y, Xing J, Liu L, Qiao F, Li J, Chen Y. Baicalin attenuates hepatic injury in non-alcoholic steatohepatitis cell model by suppressing inflammasome-dependent GSDMD-mediated cell pyroptosis. Int Immunopharmacol 2020; 81:106195. [PMID: 32028242 DOI: 10.1016/j.intimp.2020.106195] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Baicalin (BA), a flavone glycoside, is the constituent of Scutellaria baicalensis, a Chinese herbal medicine used to treat non-alcoholic steatohepatitis (NASH). However, the mechanism of BA on NASH is still not clear. Here, the improving effect of BA on hepatocyte through inhibition of pyroprosis was investigated in vitro. With a cell model of NASH exposing HepG2 cells in free fatty acids (FFA), we revealed that BA could improve hepatocyte from FFA-induced morphological damage and death. And then through transcriptomes screening, a significant down-regulation of NLR pyrin domain containing 3 (Nlrp3), gasdermin D (Gsdmd), andinterleukin-1 beta (IL-1β) expression were found after BA treatment. Further analysis confirmed that BA could decrease the levels of NLRP3 and GSDMD, as well as the release of IL-1β and IL-18, resulting in the reduction of pyroptosis. Moreover, the improving effect of BA could be attenuated by Gsdmd knockdown. In conclusion, BA can reduce pyroptosis of hepatocyte by blocking NLRP3-GSDMD signaling in vitro.
Collapse
Affiliation(s)
- Huilian Shi
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Department of Infectious Diseases, Nanjing, Jiangsu, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing, Jiangsu, China
| | - Yanliang Zhang
- Nanjing Hospital of TCM, Department of Infectious Diseases, Nanjing, Jiangsu, China; Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Department of Infectious Diseases, Nanjing, Jiangsu, China
| | - Jing Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Gastroenterology, Nanjing, Jiangsu, China
| | - Lina Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing, Jiangsu, China
| | - Fei Qiao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing, Jiangsu, China
| | - Jun Li
- Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Department of Infectious Diseases, Nanjing, Jiangsu, China.
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
47
|
Yao Y, Zang Y, Qu J, Tang M, Zhang T. The Toxicity Of Metallic Nanoparticles On Liver: The Subcellular Damages, Mechanisms, And Outcomes. Int J Nanomedicine 2019; 14:8787-8804. [PMID: 31806972 PMCID: PMC6844216 DOI: 10.2147/ijn.s212907] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Metallic nanoparticles (MNPs) are new engineering materials with broad prospects for biomedical applications; thus, their biosafety has drawn great concern. The liver is the main detoxification organ of vertebrates. However, many issues concerning the interactions between MNPs and biological systems (cells and tissues) are unclear, particularly the toxic effects of MNPs on hepatocytes and other liver cells. Numerous researchers have shown that some MNPs can induce decreased cell survival rate, production of reactive oxygen species (ROS), mitochondrial damage, DNA strand breaks, and even autophagy, pyroptosis, apoptosis, or other forms of cell death. Our review focuses on the recent researches on the liver toxicity of MNPs and its mechanisms at cellular and subcellular levels to provide a scientific basis for the subsequent hepatotoxicity studies of MNPs.
Collapse
Affiliation(s)
- Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Yiteng Zang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Jing Qu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| |
Collapse
|