1
|
Fan Y, Ling Y, Zhou X, Li K, Zhou C. Licochalcone A Ameliorates Cognitive Dysfunction in an Alzheimer's Disease Model by Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis. J Geriatr Psychiatry Neurol 2025; 38:201-213. [PMID: 39437838 DOI: 10.1177/08919887241295730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BackgroundEndoplasmic reticulum (ER) stress-induced neurodegeneration has been considered an underlying cause of Alzheimer disease (AD). Here, we investigated the beneficial effects of licochalcone A (Lico A), a valuable flavonoid of the root of the Glycyrrhiza species, against cognitive impairment in AD by regulating ER stress.MethodsThe triple transgenic mouse AD models were used and were administrated 5 or 15 mg/kg Lico A. Cognitive deficits, Aβ deposition, ER stress, and neuronal apoptosis were determined using Morris Water Maze test, probe trial, immunofluorescence staining, western blotting, and TUNEL staining. To investigate the mechanisms of how Lico A exerts anti-AD effects, primary hippocampal neurons were isolated from the AD model mice and treated with Lico A, salubrinal, an eIF2α phosphatase inhibitor, ML385, a Nrf2 inhibitor, or LY294002, an inhibitor of PI3K. Pharmacokinetics and toxicity of Lico A (15 mg/kg) in AD mice were evaluated.ResultsWe found that Lico A improved cognitive impairment, decreased Aβ plaques, inhibited ER stress, and reduced neuronal apoptosis in the hippocampus and cortex of AD mice. Treatment with Lico A in primary hippocampal neurons exerted the same effects as it did in vivo. Additionally, cotreatment with ML385 or LY294002 significantly impeded the effects of Lico A against ER stress. Moreover, 15 mg/kg Lico A had a good bioavailability and low toxicity in AD mice.ConclusionOur results demonstrated that Lico A ameliorates ER stress-induced neuronal apoptosis by inhibiting PERK/eIF2α/ATF4/CHOP signaling, suggesting the therapeutic potential of Lico A in AD treatment.
Collapse
Affiliation(s)
- Yun Fan
- School of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yun Ling
- School of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xibin Zhou
- School of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Kai Li
- Zhang Zhongjing Key Laboratory of Prescriptions and Immunomodulation, Zhang Zhongjing Traditional Chinese Medicine College, Nanyang Institute of Technology, Nanyang, China
| | - Chunxiang Zhou
- School of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Zhang L, Bian C, Wang Y, Wei L, Sun S, Liu Q. AMX0035 Mitigates Oligodendrocyte Apoptosis and Ameliorates Demyelination in MCAO Rats by Inhibiting Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. Int J Mol Sci 2025; 26:3865. [PMID: 40332557 PMCID: PMC12027512 DOI: 10.3390/ijms26083865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a common complication of strokes and is associated with the demyelination of nerve fibers. AMX0035, a drug currently used to treat motor neuron diseases, may aid in preventing oligodendrocyte apoptosis and alleviating demyelination by targeting the pathways involved in ERS and mitochondrial dysfunction. All animals were randomly divided into four groups: the sham, sham+AMX0035, middle cerebral artery occlusion (MCAO), and MCAO+AMX0035 group. The Morris water maze was used to test cognitive function, and changes in myelin structure in the brain were investigated using transmission electron microscopy (TEM), Luxol fast blue (LFB) staining, and myelin basic protein (MBP) immunofluorescence staining. Western blot was performed to detect proteins associated with ER stress and mitochondrial dysfunction, and double-labeling immunofluorescence was utilized to localize oligodendrocytes and apoptosis-related proteins. Neurological function scores and TTC staining confirmed the successful establishment of the MCAO rat model. The Morris water maze experiment revealed impaired cognitive function in MCAO rats, which significantly improved following the AMX0035 intervention. TEM and LFB staining showed the disrupted myelin structure in the MCAO group, while AMX0035 effectively ameliorated this myelin damage. Immunofluorescence examination and Western blot revealed the decreased expression of MBP in MCAO rats, increasing with AMX0035 treatment. TUNEL staining demonstrated increased cell apoptosis in MCAO rats, which was reduced following AMX0035 therapy. Western blot detected significant increases in proteins associated with the ER stress pathway and proteins linked to mitochondrial dysfunction in the MCAO group, all of which were downregulated after AMX0035 intervention. Double-labeling immunofluorescence staining revealed a significant increase in the number of cytochrome c+ and caspase 12+ oligodendrocyte cells in MCAO rats, which decreased after AMX0035 administration. The activation of ER stress and mitochondrial dysfunction pathways following MCAO led to oligodendrocyte damage and apoptosis. AMX0035 can inhibit these pathways, reduce oligodendrocyte apoptosis, and alleviate demyelination, thereby improving PSCI.
Collapse
Affiliation(s)
- Li Zhang
- School of Basic Medical Sciences, Chongqing University of Chinese Medicine, Chongqing 402760, China;
| | - Cunhao Bian
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China; (C.B.); (Y.W.)
| | - Yusen Wang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China; (C.B.); (Y.W.)
| | - Ling Wei
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China;
| | - Shanquan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China;
| | - Qian Liu
- School of Basic Medical Sciences, Chongqing University of Chinese Medicine, Chongqing 402760, China;
| |
Collapse
|
3
|
Chen D, Sun Y. Current Status of Plant-Based Bioactive Compounds as Therapeutics in Alzheimer's Diseases. J Integr Neurosci 2025; 24:23090. [PMID: 39862001 DOI: 10.31083/jin23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD. Numerous studies have shown that medicinal plants and their active ingredients can potentially mitigate AD by regulating various molecular mechanisms, including the production and aggregation of pathological proteins, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurogenesis, neurotransmission, and the brain-gut microbiota axis. In this review, we analyzed the pathogenesis of AD and comprehensively summarized recent advancements in research on medicinal plants for the treatment of AD, along with their underlying mechanisms and clinical evidence. Ultimately, we aimed to provide a reference for further investigation into the specific mechanisms through which medicinal plants prevent and treat AD, as well as for the identification of efficacious active ingredients derived from medicinal plants.
Collapse
Affiliation(s)
- Dan Chen
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| | - Yun Sun
- Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| |
Collapse
|
4
|
Chen X, Lin C, He C, Li K, Gao J, Gong Q, Li F. Icariin improves learning and memory function by enhancing HRD1-mediated ubiquitination of amyloid precursor protein in APP/PS1 mice. J Alzheimers Dis 2025; 103:616-626. [PMID: 39814545 DOI: 10.1177/13872877241303949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND One of the hallmark pathological characteristics of Alzheimer's disease (AD) is amyloid-β (Aβ) accumulated in brain, which is mainly derived from the proteolytic processing of amyloid-β protein precursor (AβPP). The ubiquitin-proteasome system is able to reduce Aβ generation by ubiquitination and degradation of AβPP. Icariin (ICA), a flavonoid isolated from Epimedium brevicornum Maxim., has been reported that it could regulate the metabolism of AβPP and reduce the Aβ level in AD in vivo and in vitro models. OBJECTIVE To investigate whether the effect of ICA on AβPP and Aβ is related to AβPP ubiquitination. METHODS We used in vivo and in vitro models to observe the effect of ICA on AβPP ubiquitination as well as to investigate the effect of HMG-CoA reductase degradation protein 1 (HRD1), an E3 ubiquitin-protein ligase, on the processing of AβPP ubiquitination. RESULTS This study showed that ICA improved the cognitive abilities of APP/PS1 AD mice in Morris Water Maze and Y-maze tests, upregulated HRD1 expression, subsequently elevated the total ubiquitination and K48-linked polyubiquitination of AβPP level, as well as increased AβPP degradation. Moreover, silenced HRD1 gene abolished the aforementioned effects of ICA. Furthermore, ICA decreased the location of AβPP in the early endosome, where AβPP is cleaved into Aβ, evidenced by reducing the co-localization of AβPP and early endosome antigen 1 (EEA1). CONCLUSIONS This study demonstrated that ICA increased AβPP degradation by upregulating HRD1 mediated ubiquitination.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Psychiatry, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cong Lin
- Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Chengfen He
- Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Kaikai Li
- Guizhou Aerospace Hospital, Zunyi, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Fei Li
- Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
- Jiangsu Province (Suqian) Hospital, Suqian, China
| |
Collapse
|
5
|
Tao L, Liu Z, Li X, Wang H, Wang Y, Zhou D, Zhang H. Oleanonic acid ameliorates mutant Aβ precursor protein-induced oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167459. [PMID: 39134286 DOI: 10.1016/j.bbadis.2024.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Accumulation in the brain of amyloid-β (Aβ), derived from cleavage of Aβ precursor protein (APP), is a hallmark of Alzheimer's disease (AD). Oleanonic acid (OA), a phytochemical from several plants, has proven anti-inflammatory effects, but its role in AD remains unknown. Here we found that OA reduced APP expression and inhibited oxidative stress via Nrf2/HO-1 signaling in SH-SY5Y neuroblastoma cells stably overexpressing APP. OA suppressed phosphorylated mTOR but increased autophagy markers ATG5 and LC3-II. Moreover, OA rescued ferroptosis-related factors GPX4, NCOA, and COX2 and ER stress markers GRP78, CHOP, and three main induction pathways of ER stress including IRE1/XBP1s, PERK/EIF2α, and ATF6. OA alleviated mitochondrial damage through MFN1, MFN2, OPA1, FIS1, and DRP1. Furthermore, OA upregulated GDF11 expression and downregulated phosphorylation of ErbB4 and TrkB without affecting BDNF levels. Thus, OA might protect neurons from APP-induced neurotoxicity by inhibiting oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in AD, providing a new promising therapeutic strategy in patients with AD.
Collapse
Affiliation(s)
- Liqing Tao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Zewang Liu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
6
|
Wu B, Xiao Q, Zhu L, Tang H, Peng W. Icariin targets p53 to protect against ceramide-induced neuronal senescence: Implication in Alzheimer's disease. Free Radic Biol Med 2024; 224:204-219. [PMID: 39197597 DOI: 10.1016/j.freeradbiomed.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a leading cause of dementia. The aging brain is particularly vulnerable to various stressors, including increased levels of ceramide. However, the role of ceramide in neuronal cell senescence and AD progression and whether icariin, a natural flavonoid glucoside, could reverse neuronal senescence remain inadequately understood. AIM In this study, we explore the role of ceramide in neuronal senescence and AD, and whether icariin can counteract these effects. METHODS We pretreated HT-22 cells with icariin and then induced senescence with ceramide. Various assays were employed to assess cell senescence, such as reactive oxygen species (ROS) production, cell cycle progression, β-galactosidase staining, and expression of senescence-associated proteins. In vivo studies utilized APP/PS1 mice and C57BL/6J mice injected with ceramide to evaluate behavioral changes, histopathological alterations, and senescence-associated protein expression. Transcriptomics, molecular docking, molecular dynamics simulations, and cellular thermal shift assays were employed to verify the interaction between icariin and P53. The specificity of icariin targeting of P53 was further confirmed through rescue experiments utilizing the P53 activator Navtemadlin. RESULTS Our data demonstrated that ceramide could induce neuronal senescence and AD-related pathologies, which were reversed by icariin. Moreover, molecular studies revealed that icariin directly targeted P53, and its neuroprotective effects were attenuated by P53 activation, providing evidence for the role of P53 in icariin-mediated neuroprotection. CONCLUSION Icariin demonstrates a protective effect against ceramide-induced neuronal senescence by inhibiting the P53 pathway. This identifies a novel mechanism of action for icariin, offering a novel therapeutic approach for AD and other age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Qiao Xiao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Lemei Zhu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Hanfen Tang
- Department of Nutrition, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
7
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024; 15:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
8
|
Li T, Li S, Xiong Y, Li X, Ma C, Guan Z, Yang L. Binary Nano-inhalant Formulation of Icariin Enhances Cognitive Function in Vascular Dementia via BDNF/TrkB Signaling and Anti-inflammatory Effects. Neurochem Res 2024; 49:1720-1734. [PMID: 38520637 DOI: 10.1007/s11064-024-04129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Vascular dementia (VaD) has a serious impact on the patients' quality of life. Icariin (Ica) possesses neuroprotective potential for treating VaD, yet its oral bioavailability and blood-brain barrier (BBB) permeability remain challenges. This research introduced a PEG-PLGA-loaded chitosan hydrogel-based binary formulation tailored for intranasal delivery, enhancing the intracerebral delivery efficacy of neuroprotective agents. The formulation underwent optimization to facilitate BBB crossing, with examinations conducted on its particle size, morphology, drug-loading capacity, in vitro release, and biodistribution. Using the bilateral common carotid artery occlusion (BCCAO) rat model, the therapeutic efficacy of this binary formulation was assessed against chitosan hydrogel and PEG-PLGA nanoparticles loaded with Ica. Post-intranasal administration, enhanced cognitive function was evident in chronic cerebral hypoperfusion (CCH) rats. Further mechanistic evaluations, utilizing immunohistochemistry (IHC), RT-PCR, and ELISA, revealed augmented transcription of synaptic plasticity-associated proteins like SYP and PSD-95, and a marked reduction in hippocampal inflammatory markers such as IL-1β and TNF-α, highlighting the formulation's promise in alleviating cognitive impairment. The brain-derived neurotrophic factor (BDNF)/tropomyosin related kinase B (TrkB) pathway was activated significantly in the binary formulation compared with the other two. Our study demonstrates that the intranasal application of chitosan hydrogel loaded with Ica-encapsulated PEG-PLGA could effectively deliver Ica into the brain and enhance its neuroprotective effect.
Collapse
Affiliation(s)
- Tieshu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China
| | - Yin Xiong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, People's Republic of China
| | - Xinxin Li
- Affiliated Hospital of Yangzhou University, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, People's Republic of China
| | - Chun Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China
| | - Zhiying Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China
| | - Lihua Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China.
| |
Collapse
|
9
|
Zhong M, Xu QQ, Hu Z, Yang W, Lin ZX, Xian YF. Tianma-Gouteng pair ameliorates the cognitive deficits on two transgenic mouse models of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118113. [PMID: 38548119 DOI: 10.1016/j.jep.2024.118113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a progressive neurodegenerative disease. Tianma-Gouteng Pair (TGP), commonly prescribed as a pair-herbs, can be found in many Chinese medicine formulae to treat brain diseases. However, the neuroprotective effects and molecular mechanisms of TGP remained unexplored. AIM OF THE STUDY This study investigated the difference between the TgCRND8 and 5 × FAD transgenic mice, the anti-AD effects of TGP, and underlying molecular mechanisms of TGP against AD through the two mouse models. METHODS Briefly, three-month-old TgCRND8 and 5 × FAD mice were orally administered with TGP for 4 and 6 months, respectively. Behavioral tests were carried out to determine the neuropsychological functions. Moreover, immunofluorescence and western blotting assays were undertaken to reveal the molecular mechanisms of TGP. RESULTS Although TgCRND8 and 5 × FAD mice had different beta-amyloid (Aβ) burdens, neuroinflammation status, and cognition impairments, TGP exerted neuroprotective effects against AD in the two models. In detail, behavioral tests revealed that TGP treatment markedly ameliorated the anxiety-like behavior, attenuated the recognition memory deficits, and increased the spatial learning ability as well as the reference memory of TgCRND8 and 5 × FAD mice. Moreover, TGP treatment could regulate the beta-amyloid precursor protein (APP) processing by inhibiting the Aβ production enzymes such as β- and γ-secretases and activating Aβ degrading enzyme to reduce Aβ accumulation. In addition, TGP reduced the Aβ42 level, the ratio of Aβ42/Αβ40, Aβ accumulation, and tau hyperphosphorylation in both the 5 × FAD and TgCRND8 mouse models. Furthermore, TGP ameliorated neuroinflammation by decreasing the densities of activated microglia and astrocytes, and inhibiting the production of inflammatory cytokines. TGP upregulated the SIRT1 and AMPK, and downregulated sterol response element binding protein 2 (SREBP2) in the brain of TgCRND8 mice and deactivation of the EPhA4 and c-Abl in the brain tissues of 5 × FAD mice. CONCLUSION Our experiments for the first time revealed the neuroprotective effects and molecular mechanism of TGP on 5 × FAD and TgCRND8 transgenic mouse models of different AD stages. TGP decreased the level of Aβ aggregates, improved the tauopathy, and reduced the neuroinflammation by regulation of the SIRT1/AMPK/SREBP2 axis and deactivation of EPhA4/c-Abl signaling pathway in the brains of TgCRND8 and 5 × FAD mice, respectively. All these findings unequivocally confirmed that the TGP would be promising in developing into an anti-AD therapeutic pharmaceutical.
Collapse
Affiliation(s)
- Mei Zhong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Qing-Qing Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| |
Collapse
|
10
|
Zhang DX, Jia SY, Xiao K, Zhang MM, Yu ZF, Liu JZ, Zhang W, Zhang LM, Xing BR, Zhou TT, Li XM, Zhao XC, An P. Icariin mitigates anxiety-like behaviors induced by hemorrhagic shock and resuscitation via inhibiting of astrocytic activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155507. [PMID: 38552430 DOI: 10.1016/j.phymed.2024.155507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, China
| | - Ke Xiao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ming-Ming Zhang
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhi-Fang Yu
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Bao-Rui Xing
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Liu J, Wei AH, Liu TT, Ji XH, Zhang Y, Yan F, Chen MX, Hu JB, Zhou SY, Shi JS, Jin H, Jin F. Icariin ameliorates glycolytic dysfunction in Alzheimer's disease models by activating the Wnt/β-catenin signaling pathway. FEBS J 2024; 291:2221-2241. [PMID: 38400523 DOI: 10.1111/febs.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
It was reported that the Wnt/β-catenin pathway is involved in the regulation of aerobic glycolysis and that brain glycolytic dysfunction results in the development of Alzheimer's disease (AD). Icariin (ICA), an active component extracted from Epimedii Folium, has been reported to produce neuroprotective effects in multiple models of AD, but its underlying mechanism remains to be fully described. We aimed to investigate the protective effects of ICA on animal and cell models of AD and confirm whether the Wnt/β-catenin pathway has functions in the neuroprotective function of ICA. The 3 × Tg-AD mice were treated with ICA. HT22 cells, the Aβ25-35 peptide and Dickkopf-1 (DKK1) agent (a specific inhibitor of the Wnt/β-catenin pathway) were used to further explore the underlying mechanism of ICA that produces anti-AD effects. Behavioral examination, western blotting assay, staining analysis, biochemical test, and lactate dehydrogenase (LDH) assays were applied. We first demonstrated that ICA significantly improved cognitive function and autonomous behavior, reduced neuronal damage, and reversed the protein levels and activities of glycolytic key enzymes, and expression of protein molecules of the canonical Wnt signaling pathway, in 3 × Tg-AD mice back to wild-type levels. Next, we further found that ICA increased cell viability and effectively improved the dysfunctional glycolysis in HT22 cells injured by Aβ25-35. However, when canonical Wnt signaling was inhibited by DKK1, the above effects of ICA on glycolysis were abolished. In summary, ICA exerts neuroprotective effects in 3 × Tg-AD animals and AD cellular models by enhancing the function of glycolysis through activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ju Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
- Department of Hospital Infection Management, People's Hospital of WeiNing County, Bijie, China
| | - Ai-Hong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ting-Ting Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Xin-Hao Ji
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ying Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Fei Yan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Mei-Xiang Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jin-Bo Hu
- Department of Clinical Medicine, Zunyi Medical University, China
| | - Shao-Yu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| |
Collapse
|
12
|
Su BL, Wang LL, Zhang LY, Zhang S, Li Q, Chen GY. Potential role of microRNA-503 in Icariin-mediated prevention of high glucose-induced endoplasmic reticulum stress. World J Diabetes 2023; 14:1234-1248. [PMID: 37664468 PMCID: PMC10473951 DOI: 10.4239/wjd.v14.i8.1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Dysregulated microRNA (miRNA) is crucial in the progression of diabetic nephropathy (DN). AIM To investigate the potential molecular mechanism of Icariin (ICA) in regulating endoplasmic reticulum (ER) stress-mediated apoptosis in high glucose (HG)-induced primary rat kidney cells (PRKs), with emphasis on the role of miR-503 and sirtuin 4 (SIRT4) in this process. METHODS Single intraperitoneal injection of streptozotocin (65 mg/kg) in Sprague-Dawley rats induce DN in the in vivo hyperglycemic model. Glucose-treated PRKs were used as an in vitro HG model. An immunofluorescence assay identified isolated PRKs. Cell Counting Kit-8 and flow cytometry analyzed the effect of ICA treatment on cell viability and apoptosis, respectively. Real-time quantitative polymerase chain reaction and western blot analyzed the levels of ER stress-related proteins. Dual luciferase analysis of miR-503 binding to downstream SIRT4 was performed. RESULTS ICA treatment alleviated the upregulated miR-503 expression in vivo (DN) and in vitro (HG). Mechanistically, ICA reduced HG-induced miR-503 overexpression, thereby counteracting its function in downregulating SIRT4 levels. ICA regulated the miR-503/SIRT4 axis and subsequent ER stress to alleviate HG-induced PRKs injury. CONCLUSION ICA reduced HG-mediated inhibition of cell viability, promotion of apoptosis, and ER stress in PRKs. These effects involved regulation of the miR-503/SIRT4 axis. These findings indicate the potential of ICA to treat DN, and implicate miR-503 as a viable target for therapeutic interventions in DN.
Collapse
Affiliation(s)
- Bao-Lin Su
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Liang-Liang Wang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Liang-You Zhang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Shu Zhang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Qiang Li
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Gang-Yi Chen
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| |
Collapse
|
13
|
Dahl R, Moore AC, Knight C, Mauger C, Zhang H, Schiltz GE, Koss WA, Bezprozvanny I. Positive Allosteric Modulator of SERCA Pump NDC-1173 Exerts Beneficial Effects in Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:11057. [PMID: 37446234 PMCID: PMC10341805 DOI: 10.3390/ijms241311057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease that affects millions of people worldwide. AD does not have a cure and most drug development efforts in the AD field have been focused on targeting the amyloid pathway based on the "amyloid cascade hypothesis". However, in addition to the amyloid pathway, substantial evidence also points to dysregulated neuronal calcium (Ca2+) signaling as one of the key pathogenic events in AD, and it has been proposed that pharmacological agents that stabilize neuronal Ca2+ signaling may act as disease-modifying agents in AD. In previous studies, we demonstrated that positive allosteric regulators (PAMs) of the Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pump might act as such Ca2+ stabilizing agents. In the present study, we report the development of a novel SERCA PAM agent, compound NDC-1173. To test the effectiveness of this compound, we performed behavioral studies with the APP/PS1 transgenic AD mouse model. We also evaluated effects of this compound on expression of endoplasmic reticulum (ER) stress genes in the hippocampus of APP/PS1 mice. The results of this study support the hypothesis that the SERCA pump is a potential novel therapeutic drug target and that NDC-1173 is a promising lead molecule for developing disease-modifying agents in AD.
Collapse
Affiliation(s)
- Russell Dahl
- Neurodon, 9800 Connecticut Drive, Crown Point, IN 46307, USA;
| | - Amanda C. Moore
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; (A.C.M.); (W.A.K.)
| | - Caitlynn Knight
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; (C.K.); (H.Z.)
| | - Colleen Mauger
- Neurodon, 9800 Connecticut Drive, Crown Point, IN 46307, USA;
| | - Hua Zhang
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; (C.K.); (H.Z.)
| | - Gary E. Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA;
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| | - Wendy A. Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; (A.C.M.); (W.A.K.)
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; (C.K.); (H.Z.)
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 194021 St. Petersburg, Russia
| |
Collapse
|
14
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 328] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Zheng L, Wu S, Jin H, Wu J, Wang X, Cao Y, Zhou Z, Jiang Y, Li L, Yang X, Shen Q, Guo S, Shen Y, Li C, Ji L. Molecular mechanisms and therapeutic potential of icariin in the treatment of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154890. [PMID: 37229892 DOI: 10.1016/j.phymed.2023.154890] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Icariin (ICA) is the main active component of Epimedium, a traditional Chinese medicine (TCM), known to enhance cognitive function in Alzheimer's disease (AD). This study aims to investigate and summarize the mechanisms through which ICA treats AD. METHODS The PubMed and CNKI databases were utilized to review the advancements in ICA's role in AD prevention and treatment by analyzing literature published between January 2005 and April 2023. To further illustrate ICA's impact on AD development, tables, and images are included to summarize the relationships between various mechanisms. RESULTS The study reveals that ICA ameliorates cognitive deficits in AD model mice by modulating Aβ via multiple pathways, including BACE-1, NO/cGMP, Wnt/Ca2+, and PI3K/Akt signaling. ICA exhibits neuroprotective properties by inhibiting neuronal apoptosis through the suppression of ER stress in AD mice, potentially linked to NF-κB, MAPK, ERK, and PERK/Eif2α signaling pathways. Moreover, ICA may safeguard neurons by attenuating mitochondrial oxidative stress injury. ICA can also enhance learning, memory, and cognition by improving synaptic structure via regulation of the PSD-95 protein. Furthermore, ICA can mitigate neuroinflammation by inactivating microglial activity through the upregulation of PPARγ, TAK1/IKK/NF-κB, and JNK/p38 MAPK signaling pathways. CONCLUSION This study indicates that ICA possesses multiple beneficial effects in AD treatment. Through the integration of pharmacological and molecular biological research, ICA may emerge as a promising candidate to expedite the advancement of TCM in the clinical management of AD.
Collapse
Affiliation(s)
- Lingyan Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Sichen Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Haichao Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jiaqi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaole Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yuxiao Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhihao Zhou
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yaona Jiang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Linhong Li
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xinyue Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shunyuan Guo
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical, Hangzhou 310014, Zhejiang, China.
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Hangzhou 311106, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
16
|
Liu Y, Li H, Wang X, Huang J, Zhao D, Tan Y, Zhang Z, Zhang Z, Zhu L, Wu B, Chen Z, Peng W. Anti-Alzheimers molecular mechanism of icariin: insights from gut microbiota, metabolomics, and network pharmacology. J Transl Med 2023; 21:277. [PMID: 37095548 PMCID: PMC10124026 DOI: 10.1186/s12967-023-04137-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Icariin (ICA), an active ingredient extracted from Epimedium species, has shown promising results in the treatment of Alzheimer's disease (AD), although its potential therapeutic mechanism remains largely unknown. This study aimed to investigate the therapeutic effects and the underlying mechanisms of ICA on AD by an integrated analysis of gut microbiota, metabolomics, and network pharmacology (NP). METHODS The cognitive impairment of mice was measured using the Morris Water Maze test and the pathological changes were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and multi-metabolomics were performed to analyze the alterations in the gut microbiota and fecal/serum metabolism. Meanwhile, NP was used to determine the putative molecular regulation mechanism of ICA in AD treatment. RESULTS Our results revealed that ICA intervention significantly improved cognitive dysfunction in APP/PS1 mice and typical AD pathologies in the hippocampus of the APP/PS1 mice. Moreover, the gut microbiota analysis showed that ICA administration reversed AD-induced gut microbiota dysbiosis in APP/PS1 mice by elevating the abundance of Akkermansia and reducing the abundance of Alistipe. Furthermore, the metabolomic analysis revealed that ICA reversed the AD-induced metabolic disorder via regulating the glycerophospholipid and sphingolipid metabolism, and correlation analysis revealed that glycerophospholipid and sphingolipid were closely related to Alistipe and Akkermansia. Moreover, NP indicated that ICA might regulate the sphingolipid signaling pathway via the PRKCA/TNF/TP53/AKT1/RELA/NFKB1 axis for the treatment of AD. CONCLUSION These findings indicated that ICA may serve as a promising therapeutic approach for AD and that the ICA-mediated protective effects were associated with the amelioration of microbiota disturbance and metabolic disorder.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaowei Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha, 410013, People's Republic of China
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Changsha, 410013, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhibao Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
17
|
Lim D, Tapella L, Dematteis G, Genazzani AA, Corazzari M, Verkhratsky A. The endoplasmic reticulum stress and unfolded protein response in Alzheimer's disease: a calcium dyshomeostasis perspective. Ageing Res Rev 2023; 87:101914. [PMID: 36948230 DOI: 10.1016/j.arr.2023.101914] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Protein misfolding is prominent in early cellular pathology of Alzheimer's disease (AD), implicating pathophysiological significance of endoplasmic reticulum stress/unfolded protein response (ER stress/UPR) and highlighting it as a target for drug development. Experimental data from animal AD models and observations on human specimens are, however, inconsistent. ER stress and associated UPR are readily observed in in vitro AD cellular models and in some AD model animals. In the human brain, components and markers of ER stress as well as UPR transducers are observed at Braak stages III-VI associated with severe neuropathology and neuronal death. The picture, however, is further complicated by the brain region- and cell type-specificity of the AD-related pathology. Terms 'disturbed' or 'non-canonical' ER stress/UPR were used to describe the discrepancies between experimental data and the classic ER stress/UPR cascade. Here we discuss possible 'disturbing' or 'interfering' factors which may modify ER stress/UPR in the early AD pathogenesis. We focus on the dysregulation of the ER Ca2+ homeostasis, store-operated Ca2+ entry, and the interaction between the ER and mitochondria. We suggest that a detailed study of the CNS cell type-specific alterations of Ca2+ homeostasis in early AD may deepen our understanding of AD-related dysproteostasis.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Marco Corazzari
- Department of Health Science (DSS), Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale "Amedeo Avogadro"
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain & Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Yan F, Liu J, Chen MX, Zhang Y, Wei SJ, Jin H, Nie J, Fu XL, Shi JS, Zhou SY, Jin F. Icariin ameliorates memory deficits through regulating brain insulin signaling and glucose transporters in 3ΧTg-AD mice. Neural Regen Res 2023; 18:183-188. [PMID: 35799540 PMCID: PMC9241391 DOI: 10.4103/1673-5374.344840] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
You M, Yuan P, Li L, Xu H. HIF-1 signalling pathway was identified as a potential new pathway for Icariin's treatment against Alzheimer's disease based on preclinical evidence and bioinformatics. Front Pharmacol 2022; 13:1066819. [PMID: 36532735 PMCID: PMC9751333 DOI: 10.3389/fphar.2022.1066819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 10/05/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is a neurodegenerative condition that is characterized by the gradual loss of memory and cognitive function. Icariin, which is a natural chemical isolated from Epimedii herba, has been shown to protect against AD. This research examined the potential mechanisms of Icariin's treatment against AD via a comprehensive review of relevant preclinical studies coupled with network pharmacology. Methods: The PubMed, Web of Science, CNKI, WANFANG, and VIP databases were used to identify the relevant studies. The pharmacological characteristics of Icariin were determined using the SwissADME and TCMSP databases. The overlapping targets of Icariin and AD were then utilized to conduct disease oncology (DO) analysis to identify possible hub targets of Icariin in the treatment of AD. The hub targets were then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the interactions of the targets and Icariin were assessed via molecular docking and molecular dynamics simulation (MDS). Results: According to the literature review, Icariin alleviates cognitive impairment by regulating the expression of Aβ1-42, Aβ1-40, BACE1, tau, hyperphosphorylated tau, and inflammatory mediators. DO analysis revealed 35 AD-related hub targets, and the HIF-1 signalling pathway was ranked first according to the KEGG pathway analysis. Icariin effectively docked with the 35 hub targets and HIF-1α, and the dynamic binding of the HIF-1-Icariin complex within 100 ns indicated that Icariin contributed to the stability of HIF-1α. Conclusion: In conclusion, our research used a literature review and network pharmacology methods to identify the HIF-1 signalling pathway as a potential pathway for Icariin's treatment against AD.
Collapse
Affiliation(s)
| | | | | | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Chiang MC, Nicol CJB. GSH-AuNP anti-oxidative stress, ER stress and mitochondrial dysfunction in amyloid-beta peptide-treated human neural stem cells. Free Radic Biol Med 2022; 187:185-201. [PMID: 35660451 DOI: 10.1016/j.freeradbiomed.2022.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Amyloid-beta (Aβ) peptides have a role in the pathogenesis of Alzheimer's disease (AD) and are thought to promote oxidative stress, endoplasmic reticulum (ER) stress and mitochondrial deficiency, causing neuronal loss in the AD brain. The potential applications of glutathione conjugated gold nanoparticles (GSH-AuNPs) suggest they might have therapeutic value. Several studies have demonstrated that the effects of nanoparticles could provide protective roles in AD. Here, we showed that GSH-AuNPs mediate the viability of human neural stem cells (hNSCs) with Aβ, which was correlated with decreased caspase 3 and caspase 9. Importantly, hNSCs co-treated with GSH-AuNPs were significantly protected from Aβ-induced oxidative stress, as detected using the DCFH-DA, DHE, and MitoSOX staining assays. Furthermore, hNSCs co-treated with GSH-AuNPs were significantly protected from the Aβ-induced reduction in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 downstream antioxidant target genes (SOD-1, SOD-2, Gpx, Catalase, and HO-1). In addition, GSH-AuNPs rescued the expression levels of ER stress-associated genes (Bip, CHOP, and ASK1) in Aβ-treated hNSCs. GSH-AuNPs normalized ER calcium and mitochondrial cytochrome c homeostasis in Aβ-treated hNSCs. Furthermore, treatment with GSH-AuNPs restored the levels of ATP, D-loop, mitochondrial mass, basal respiration, ATP-linked reparation, maximal respiration capacity, COX activity, mitochondrial membrane potential, and mitochondrial genes (PGC1α, NRF-1 and Tfam) in Aβ-treated hNSCs. Taken together, these findings extend our understanding of the protective effects of GSH-AuNPs against oxidative stress, ER stress and mitochondrial dysfunction in hNSCs with Aβ.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada; Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
21
|
Wang C, Zheng C. Using Caenorhabditis elegans to Model Therapeutic Interventions of Neurodegenerative Diseases Targeting Microbe-Host Interactions. Front Pharmacol 2022; 13:875349. [PMID: 35571084 PMCID: PMC9096141 DOI: 10.3389/fphar.2022.875349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.
Collapse
Affiliation(s)
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
22
|
He Z, Li X, Wang Z, Tu S, Feng J, Du X, Ni J, Li N, Liu Q. Esculentoside A alleviates cognitive deficits and amyloid pathology through peroxisome proliferator-activated receptor γ-dependent mechanism in an Alzheimer's disease model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153956. [PMID: 35151213 DOI: 10.1016/j.phymed.2022.153956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized clinically by cognitive deficits and pathologically by amyloid-β (Aβ) deposition and tau aggregation, as well as the brain atrophy. Esculentoside A (EsA), a neuroprotective saponin, is isolated from Phytolacca esculenta and shows potent health-promoting effects in a variety of experimental models. However, there are minimal reports on the effects of EsA on triple transgenic AD mice. PURPOSE The current research aimed at investigating the protective effects and underlying mechanisms of EsA on the mitigation of cognitive deficits and pathology in triple transgenic AD mice. METHODS Triple transgenic AD mice (3 × Tg-AD) of 8 months old received intraperitoneal treatment of 5 or 10 mg/kg EsA for 8 consecutive weeks. Morris water maze test and open field test were made to evaluate the cognitive function and degree of anxiety of the mice. Liquid chromatography with tandem mass spectrometry analysis was performed to characterize and to quantify EsA in the blood and brain of mice. Immunofluorescence assay and Western blot were adopted to measure the levels of peroxisome proliferator-activated receptor gamma (PPARγ) and key proteins in Aβ pathology, ER stress- and apoptosis-associated pathways. The combination of EsA with PPARγ were theoretically calculated by molecular docking programs and experimentally confirmed by the bio-layer interferometry technology. RESULTS Supplemental EsA could improve the cognitive deficits of 3 × Tg-AD mice. EsA penetrated the brain-blood barrier to exert a strong effect on AD mice, evidenced as decreasing Aβ generation, reducing the degrees of oxidative and ER stress, and mitigating neuronal apoptosis through the increase of PPARγ expression. In the culture of primary neurons, addition of PPARγ inhibitor GW9662 eliminated the effects of EsA on AD pathologies. Direct combination of EsA with PPARγ were demonstrated by molecular docking programs and bio-layer interferometry technology. CONCLUSIONS For the first time, these outcomes revealed that EsA could penetrate the brain-blood barrier to exert a strong effect on ameliorating cognitive deficits in 3 × Tg-AD mice and exert neuroprotective effects toward AD pathology via PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Sixin Tu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jiale Feng
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
23
|
Li LR, Sethi G, Zhang X, Liu CL, Huang Y, Liu Q, Ren BX, Tang FR. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY) 2022; 14:1562-1588. [PMID: 35165207 PMCID: PMC8876913 DOI: 10.18632/aging.203893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, “painful impediment caused by wind-dampness,” numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer’s disease, cerebral ischemia, depression, Parkinson’s disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.
Collapse
Affiliation(s)
- Ling Rui Li
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xing Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Cui Liu Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Bo Xu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
24
|
Yang W, Han YH, Wang HC, Lu CT, Yu XC, Zhao YZ. Intradermal injection of icariin-HP-β-cyclodextrin improved traumatic brain injury via the trigeminal epineurium-brain dura pathway. J Drug Target 2022; 30:557-566. [PMID: 35023434 DOI: 10.1080/1061186x.2021.2023159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lower bioavailability after oral administration limited icariin applications in Central Nervous System. Icariin/HP-β-cyclodextrin (HP-β-CD) inclusion complex was prepared for acute severe opening traumatic brain injury (TBI) via facial intradermal(i.d.) in mystacial pad. After fluid percussion-induced TBI, icariin/HP-β-CD at 0.4 mg/kg i.d. preserved more neurons and oligodendrocytes than intranasal injection (i.n.) or intravenous injection via tail vein (i.v.) and decreased microglia and astrocyte activation. Icariin/HP-β-CD i.d. reduced apoptosis in cortical penumbra while i.n. and i.v. showed weak or no effects. Icariin/HP-β-CD i.d. reduced Evans blue leakage and altered CD34, ZO-1, Claudin-5 and beta-catenin expression after TBI. Moreover, icariin/HP-β-CD promoted human umbilical vein endothelial cells proliferation. Thus, Icariin/HP-β-CD i.d. improved TBI, including blood brain barrier opening. Fluorescein 5-isothiocyanate (FITC) and 3,3'-Dioctadecyloxacarbocyanine perchlorate (DiOC18(3)) mimic HP-β-CD and icariin respectively. FITC and DiOC18(3) were similarly delivered to trigeminal epineurium, perineurium and perivascular spaces or tissues, caudal dura mater and scattered in trigeminal fasciculus, indicating that icariin/HP-β-CD was delivered to brain via trigeminal nerve-dura mater-brain pathways. In sum, intradermal injection in mystacial pad might delivered icariin/HP-β-CD to brain and icariin/HP-β-CD improved acute severe opening TBI.
Collapse
Affiliation(s)
- Wei Yang
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Yong-Hui Han
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Heng-Cai Wang
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Cui-Tao Lu
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Xi-Chong Yu
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Ying-Zheng Zhao
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| |
Collapse
|
25
|
He Z, Song J, Li X, Li X, Zhu H, Wu C, Xiao W, Du X, Ni J, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) alleviates neuronal apoptosis through regulating peroxisome proliferator-activated receptor γ in a triple transgenic animal model of Alzheimer's disease. J Biol Inorg Chem 2021; 26:551-568. [PMID: 34240269 DOI: 10.1007/s00775-021-01874-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/16/2021] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum stress (ER stress) plays a critical role in neuronal apoptosis along with the aggravation of Alzheimer's disease (AD). Nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that is involved in regulating ER stress in Alzheimer's disease (AD), therefore, this protein could be a promising therapeutic target for AD. Vanadium compounds, such as vanadyl acetylacetonate, sodium metavanadate and bis(maltolato)oxovanadium, are well-known as puissant PPARγ modulators. Thus, we are curious whether bis(ethylmaltolato)oxidovanadium (IV) (BEOV) can ameliorate ER stress and subsequent neuronal apoptosis by regulating PPARγ in AD models. To this end, we determined the effect of BEOV on behavioral performance, ER stress and neuronal apoptosis in the triple transgenic mouse AD model (3×Tg-AD). Our results showed that BEOV improved cognitive abilities and reduced the ER stress- and apoptosis-associated proteins in the brains of 3×Tg-AD mice. In vitro administration of BEOV in primary hippocampal neurons and N2asw cells achieved similar results in repressing ER stress. In addition, cotreatment with GW9662 (an antagonist of PPARγ) effectively blocked these neuroprotective effects of BEOV, which provided strong evidence that PPARγ-dependent signaling plays a key role in protecting against ER stress and neuronal apoptosis in AD. In conclusion, our data demonstrated that BEOV alleviated neuronal apoptosis triggered by ER stress by regulating PPARγ in a 3×Tg-AD model.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianxi Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huazhang Zhu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Chong Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wen Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518033, China.
| |
Collapse
|
26
|
Yao W, Wang K, Wang X, Li X, Dong J, Zhang Y, Ding X. Icariin ameliorates endothelial dysfunction in type 1 diabetic rats by suppressing ER stress via the PPARα/Sirt1/AMPKα pathway. J Cell Physiol 2021; 236:1889-1902. [PMID: 32770555 DOI: 10.1002/jcp.29972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Icariin (ICA), as a flavonoid glycoside, is associated with the improvement of vascular complications in diabetes. However, its protective mechanisms remain to be well-established. Here, we tested the hypothesis that ICA attenuates vascular endothelial dysfunction by inhibiting endoplasmic reticulum (ER) stress in type 1 diabetes. In streptozotocin-induced diabetic rats, ICA positively affected acetylcholine-induced vasodilation and phenylephrine-induced vasoconstriction in aortas. ICA treatment significantly attenuated ER stress in diabetic rats and high-glucose induced human umbilical vein endothelial cells. Incubation with ICA in vitro attenuated vascular reactivity in diabetic rats, which was blocked by the ER stress inducer, and peroxisome proliferator-activated receptor α (PPARα), sirtuin1 (Sirt1), or AMP-activated protein kinase-α (AMPKα) inhibitors. Western blot showed that ICA activated the PPARα/Sirt1/AMPKα pathway, which contributed to reducing ER stress and activating endothelial nitric oxide synthase in vivo and vitro. Our results implicate that ICA normalizes ER stress to attenuate endothelial dysfunction by the regulation of the PPARα/Sirt1/AMPKα pathway.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinran Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jieyan Dong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yusheng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
27
|
Hole KL, Williams RJ. Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast 2021; 6:167-192. [PMID: 33782649 PMCID: PMC7990465 DOI: 10.3233/bpl-200098] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Attempts to develop a disease modifying intervention for Alzheimer's disease (AD) through targeting amyloid β (Aβ) have so far been unsuccessful. There is, therefore, a need for novel therapeutics against alternative targets coupled with approaches which may be suitable for early and sustained use likely required for AD prevention. Numerous in vitro and in vivo studies have shown that flavonoids can act within processes and pathways relevant to AD, such as Aβ and tau pathology, increases in BDNF, inflammation, oxidative stress and neurogenesis. However, the therapeutic development of flavonoids has been hindered by an ongoing lack of clear mechanistic data that fully takes into consideration metabolism and bioavailability of flavonoids in vivo. With a focus on studies that incorporate these considerations into their experimental design, this review will evaluate the evidence for developing specific flavonoids as therapeutics for AD. Given the current lack of success of anti-Aβ targeting therapeutics, particular attention will be given to flavonoid-mediated regulation of tau phosphorylation and aggregation, where there is a comparable lack of study. Reflecting on this evidence, the obstacles that prevent therapeutic development of flavonoids will be examined. Finally, the significance of recent advances in flavonoid metabolomics, modifications and influence of the microbiome on the therapeutic capacity of flavonoids in AD are explored. By highlighting the potential of flavonoids to target multiple aspects of AD pathology, as well as considering the hurdles, this review aims to promote the efficient and effective identification of flavonoid-based approaches that have potential as therapeutic interventions for AD.
Collapse
Affiliation(s)
- Katriona L. Hole
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| | - Robert J. Williams
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
28
|
|
29
|
Qian X, Zhang S, Duan L, Yang F, Zhang K, Yan F, Ge S. Periodontitis Deteriorates Cognitive Function and Impairs Neurons and Glia in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 79:1785-1800. [PMID: 33459718 DOI: 10.3233/jad-201007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although periodontitis is reportedly associated with increased cognitive decline in Alzheimer's disease, the mechanisms underlying this process remain unknown. Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) is an endotoxin associated with periodontal disease. OBJECTIVE We investigated the effect of periodontitis on learning capacity and memory of amyloid-β protein precursor (AβPP)/presenilin (PS1) transgenic mice along with the mechanisms underlying these effects. METHODS Mice were randomly assigned to three groups, namely AβPP/PS1 (control), P.g-LPS Injection, and P.g-LPS Injection + Ligation. Mice from the P.g-LPS Injection group were injected with P.g-LPS in the periodontal tissue three times per week for 8 weeks, while mice from the P.g-LPS Injection + Ligation group were injected with P.g-LPS and subjected to ligation of the gingival sulcus of the maxillary second molar. RESULTS Expression of gingival proinflammatory cytokines as well as alveolar bone resorption in P.g-LPS-injected and ligatured mice was increased compared to that in control mice. Mice in the P.g-LPS Injection + Ligation group exhibited cognitive impairment and a significant reduction in the number of neurons. Glial cell activation in the experimental groups with significantly increased amyloid-β (Aβ) levels was more pronounced relative to the control group. Induction of periodontitis was concurrent with an increase in cyclooxygenase-2, inducible nitric oxide synthase, AβPP, and beta-secretase 1 expression and a decrease in A disintegrin and metalloproteinase domain-containing protein 10 expression. CONCLUSION These findings indicated that periodontitis exacerbated learning and memory impairment in AβPP/PS1 mice and augmented Aβ and neuroinflammatory responses. Our study provides a theoretical basis for risk prediction and early intervention of Alzheimer's disease and periodontitis.
Collapse
Affiliation(s)
- Xueshen Qian
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China.,Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuang Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lian Duan
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fengchun Yang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kun Zhang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Song Ge
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
30
|
Li X, He Z, Wang C, Liu Y, Shan Z, Zhang L, Shi Q, Yue C, Lin Y, Liu Y, Ni J, Du X. Effect of Herbal Medicinal Compounds on Alzheimer’s Disease Pathology in APP/PS1 Transgenic Mouse Model. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20948986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) is complex as various mechanisms interact with each other and, therefore, intervention from a single target is often ineffective. Many studies have shown that herbal medicines, such as curcumin, fisetin, icariin, and ginsenosides, have significant intervention effects on AD with different treatment mechanisms. Therefore, we have designed this study to know whether the combination of these herbal medicines can have an intervention effect on AD through multiple targets. Amyloid precursor protein/presenilin 1(APP/PS1) double transgenic AD mice were used to study the protective effects of a combination of curcumin, piperine, icariin, and ginsenosides, as well as a combination of fisetin, piperine, icariin, and ginsenosides, which were separately mixed into the feed. These herbal medicinal compounds (HMCs) lowered the serum lipid levels, reduced the Aβ oligomers, decreased the pS404-tau protein, as well as neurofibrillary tangles, and restored the reduction of synaptic protein levels and neuronal death of AD mice without causing toxicity to liver and kidneys. In this study, we found that HMCs have significant intervention against AD through multiple targets, providing a novel therapeutic idea for the prevention of AD.
Collapse
Affiliation(s)
- Xuexia Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhijun He
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, China
| | - Yanjun Liu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Zhifu Shan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| | - Lei Zhang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| | - Qingqing Shi
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| | - Caiping Yue
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| | - Yitong Lin
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| | - Yun Liu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| | - Jiazuan Ni
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, China
| |
Collapse
|
31
|
Lu Q, Zhu H, Liu X, Tang C. Icariin sustains the proliferation and differentiation of Aβ 25-35-treated hippocampal neural stem cells via the BDNF-TrkB-ERK/Akt signaling pathway. Neurol Res 2020; 42:936-945. [PMID: 32727295 DOI: 10.1080/01616412.2020.1792701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Icariin (ICA) can be potentially used to treat Alzheimer's disease (AD), but the mechanism was not clear. The current study explored the effects of ICA on hippocampal neural stem cells, aiming to provide a comprehensive basis for its clinical application. METHODS Hippocampal neural stem cells were isolated from newborn rats and their differentiation ability was evaluated by performing immunofluorescence staining. Next, Aβ cell model was constructed by treating the cells with Aβ25-35, and then the model was further treated by ICA or shBDNF or the two in combination. The viability and differentiation of the cells were, respectively, analyzed by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide (MTT) and flow cytometry. The expression of BDNF-TrkB-ERK/Akt signaling pathway was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot (WB). RESULTS The hippocampal neural stem cells can differentiate into neurons and astrocytes. ICA effectively promoted the viability and differentiation of Aβ cell models. The expression levels of BDNF and TrkB in Aβ cell models were obviously decreased, which were noticeably increased by ICA. Moreover, BDNF knockdown further inhibited the viability and differentiation of Aβ model cells, which could be reversed by ICA. BDNF knockdown not only suppressed the expressions of BDNF and TrkB in Aβ cell models but also effectively prevented the phosphorylation of ERK/Akt; however, these phenomena were significantly alleviated by ICA treatment. DISCUSSION ICA promoted the proliferation and differentiation of Aβ25-35-treated hippocampal neural stem cells through BDNF-TrkB-ERK/Akt signaling pathway. The current findings might contribute to the treatment of AD.
Collapse
Affiliation(s)
- Quan Lu
- Department of Neurology, Jingmen No.1 People's Hospital , Jingmen, Hubei, China
| | - Hailing Zhu
- Department of Emergency, Jingmen No.1 People's Hospital , Jingmen, Hubei, China
| | - Xuejiao Liu
- Department of Urology, Jingmen No.1 People's Hospital , Jingmen, Hubei, China
| | - Congfeng Tang
- Department of Neurology, Jingmen No.1 People's Hospital , Jingmen, Hubei, China
| |
Collapse
|
32
|
Mo ZT, Liao YL, Zheng J, Li WN. Icariin protects neurons from endoplasmic reticulum stress-induced apoptosis after OGD/R injury via suppressing IRE1α-XBP1 signaling pathway. Life Sci 2020; 255:117847. [PMID: 32470450 DOI: 10.1016/j.lfs.2020.117847] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023]
Abstract
Icariin (ICA), a flavonol glycoside isolated from Epimedium, has been considered as a potential alternative therapy for ischemic stroke. However, the protective mechanisms of ICA on cerebral ischemia-reperfusion (I/R) are not fully illuminated yet. The effects of ICA on ER stress and inflammatory response which were involved in the pathological process of cerebral I/R were investigated in vitro. Microglia and neurons were subjected to OGD/R. ICA was administrated to microglia 1 h before OGD and maintained 2 h throughout OGD. At 24 h after reoxygenation, the protein expression of IL-1 β, IL-6, TNF-α in the supernatant of microglia was measured using ELISA assay; neuronal apoptosis was assessed by TUNEL staining; and cell viability was detected using CKK-8 assay; the expression of IRE1α, XBP1u, XBP1s, and cleaved caspase-3 in neurons was examined by western blotting and qRT-PCR; the expression of p-IRE1α in neurons was detected by western blotting. We found that OGD/R induced the expression of IL-1 β, IL-6, TNF-α in the supernatant of microglia; OGD/R and these proinflammatory cytokines promoted the mRNA as well as protein expression of XBP1u, XBP1s and cleaved caspase-3, increased the ratio of p-IRE1α/IRE1α, as well as apoptosis, and decreased cell viability in primary cortical neurons, while ICA reversed the levels of the above factors. IRE1 overexpression enhanced ER stress as well as apoptosis, and impaired the protective effects of ICA. These results suggested that ICA can inhibit apoptosis in neurons after OGD/R through IRE1/XBP1 signaling pathway beside its anti-inflammatory effect.
Collapse
Affiliation(s)
- Zhen-Tao Mo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China.
| | - Yu-Ling Liao
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Jie Zheng
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Wen-Na Li
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| |
Collapse
|
33
|
Zhong H, Yu H, Chen J, Sun J, Guo L, Huang P, Zhong Y. Hydrogen Sulfide and Endoplasmic Reticulum Stress: A Potential Therapeutic Target for Central Nervous System Degeneration Diseases. Front Pharmacol 2020; 11:702. [PMID: 32477150 PMCID: PMC7240010 DOI: 10.3389/fphar.2020.00702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
There are three members of the endogenous gas transmitter family. The first two are nitric oxide and carbon monoxide, and the third newly added member is hydrogen sulfide (H2S). They all have similar functions: relaxing blood vessels, smoothing muscles, and getting involved in the regulation of neuronal excitation, learning, and memory. The cystathionine β-synthase (CBS), 3-mercaptopyruvate sulfur transferase acts together with cysteine aminotransferase (3-MST/CAT), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfur transferase with D-amino acid oxidase (3-MST/DAO) pathways are involved in the enzymatic production of H2S. More and more researches focus on the role of H2S in the central nervous system (CNS), and H2S plays a significant function in neuroprotection processes, regulating the function of the nervous system as a signaling molecule in the CNS. Endoplasmic reticulum stress (ERS) and protein misfolding in its mechanism are related to neurodegenerative diseases. H2S exhibits a wide variety of cytoprotective and physiological functions in the CNS degenerative diseases by regulating ERS. This review summarized on the neuroprotective effect of H2S for ERS played in several CNS diseases including Alzheimer’s disease, Parkinson’s disease, and depression disorder, and discussed the corresponding possible signaling pathways or mechanisms as well.
Collapse
Affiliation(s)
- Huimin Zhong
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
34
|
Liu B, Huang B, Liu J, Shi JS. Dendrobium nobile Lindl alkaloid and metformin ameliorate cognitive dysfunction in senescence-accelerated mice via suppression of endoplasmic reticulum stress. Brain Res 2020; 1741:146871. [PMID: 32380088 DOI: 10.1016/j.brainres.2020.146871] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) mice have many pathological features of Alzheimer's disease (AD) with aging. We previously reported that Dendrobium nobile Lindl alkaloid (DNLA) effectively improved cognitive deficits in multiple Alzheimer's disease (AD) models. This study further used SAMP8 mice to study the anti-aging effects of DNLA, focusing on endoplasmic reticulum (ER) stress. DNLA and metformin were orally administered to SAMP8 mice starting at 4-month of age for 6 months. Behavioral tests were performed in 10-month-old SAMP8 mice and age-matched SAMR1 control mice. At the end of experiment, neuron damage was evaluated by histology and transmission electron microscopy. ER stress-related proteins were analyzed with Western-blot. DNLA improved learning and memory impairments, reduced the loss of neurons and Nissl bodies in the hippocampus and cortex. DNLA ameliorated ER dilation and swelling in the hippocampal neurons. DNLA down-regulated the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway, decreased calpain 1, GSK-3β and Cdk5 activities and the Tau hyper-phosphorylation. The effects of DNLA were comparable to metformin. In summary, DNLA was effective in improving cognitive deficits in aged SAMP8 mice, possibly via suppression of ER stress-related PERK signaling pathway, sequential inhibition of calpain 1, GSK-3β and Cdk5 activities, and eventually reducing the hyper-phosphorylation of Tau.
Collapse
Affiliation(s)
- Bo Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China.
| |
Collapse
|
35
|
Kong L, Li XT, Ni YN, Xiao HH, Yao YJ, Wang YY, Ju RJ, Li HY, Liu JJ, Fu M, Wu YT, Yang JX, Cheng L. Transferrin-Modified Osthole PEGylated Liposomes Travel the Blood-Brain Barrier and Mitigate Alzheimer's Disease-Related Pathology in APP/PS-1 Mice. Int J Nanomedicine 2020; 15:2841-2858. [PMID: 32425521 PMCID: PMC7186891 DOI: 10.2147/ijn.s239608] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Osthole (Ost) is a coumarin compound that strengthens hippocampal neurons and neural stem cells against Aβ oligomer-induced neurotoxicity in mice, and is a potential drug for the treatment of Alzheimer's disease (AD). However, the effectiveness of the drug is limited by its solubility and bioavailability, as well as by the low permeability of the blood-brain barrier (BBB). In this study, a kind of transferrin-modified Ost liposomes (Tf-Ost-Lip) was constructed, which could improve the bioavailability and enhance brain targeting. METHODS Tf-Ost-Lip was prepared by thin-film hydration method. The ability of liposomal formulations to translocate across BBB was investigated using in vitro BBB model. And the protective effect of Tf-Ost-Lip was evaluated in APP-SH-SY5Y cells. In addition, we performed pharmacokinetics study and brain tissue distribution analysis of liposomal formulations in vivo. We also observed the neuroprotective effect of the varying formulations in APP/PS-1 mice. RESULTS In vitro studies reveal that Tf-Ost-Lip could increase the intracellular uptake of hCMEC/D3 cells and APP-SH-SY5Y cells, and increase the drug concentration across the BBB. Additionally, Tf-Ost-Lip was found to exert a protective effect on APP-SH-SY5Y cells. In vivo studies of pharmacokinetics and the Ost distribution in brain tissue indicate that Tf-Ost-Lip prolonged the cycle time in mice and increased the accumulation of Ost in the brain. Furthermore, Tf-Ost-Lip was also found to enhance the effect of Ost on the alleviation of Alzheimer's disease-related pathology. CONCLUSION Transferrin-modified liposomes for delivery of Ost has great potential for AD treatment.
Collapse
Affiliation(s)
- Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Xue-tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Ying-nan Ni
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Hong-he Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Ying-jia Yao
- College of Life and Health Sciences, Northeastern University, Shenyang110819, People’s Republic of China
| | - Yuan-yuan Wang
- Department of Pharmacy, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning116001, People’s Republic of China
| | - Rui-jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing102617, People’s Republic of China
| | - Hong-yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Jing-jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Yu-tong Wu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Jing-xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian116600, People’s Republic of China
| |
Collapse
|
36
|
He Z, Wang M, Zhao Q, Li X, Liu P, Ren B, Wu C, Du X, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) mitigates neuronal apoptosis resulted from amyloid-beta induced endoplasmic reticulum stress through activating peroxisome proliferator-activated receptor γ. J Inorg Biochem 2020; 208:111073. [PMID: 32466853 DOI: 10.1016/j.jinorgbio.2020.111073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
Abstract
Neuronal apoptosis caused by amyloid-beta (Aβ) overproduction is one of the most important pathological features in Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress induced by Aβ overload plays a critical role in this process. Bis(ethylmaltolato)oxidovanadium (IV) (BEOV), a vanadium compound which had been regarded as peroxisome proliferator-activated receptor γ (PPARγ) agonist, was reported to exert an antagonistic effect on ER stress. In this study, we tested whether BEOV could ameliorate the Aβ-induced neuronal apoptosis by inhibiting ER stress. It was observed that BEOV treatment ameliorated both tunicamycin-induced and/or Aβ-induced ER stress and neurotoxicity in a dose-dependent manner through downgrading ER stress-associated and apoptosis-associated proteins in primary hippocampal neurons. Consistent with in vitro results, BEOV also reduced ER stress and inhibited neuronal apoptosis in hippocampi and cortexes of transgenic AD model mice. Moreover, by adopting GW9662 and salubrinal, the inhibitor of PPARγ and hyperphosphorylated eukaryotic translation initiation factor 2α, respectively, we further confirmed that BEOV alleviated Aβ-induced ER stress and neuronal apoptosis in primary hippocampal neurons by activating PPARγ. Taken together, these results provided scientific evidences to support the concept that BEOV ameliorates Aβ-induced ER stress and neuronal apoptosis through activating PPARγ.
Collapse
Affiliation(s)
- Zhijun He
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; College of optoelectronic engineering, Shenzhen university, Shenzhen, Guangdong 518060, China
| | - Menghuan Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qionghui Zhao
- Shenzhen Food Inspection Center of CIQ, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Pengan Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Bingyu Ren
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Chong Wu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Nan Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Qiong Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, China.
| |
Collapse
|
37
|
Wang Y, Zhang X, Song Q, Hou Y, Liu J, Sun Y, Wang P. Characterization of the chromatin accessibility in an Alzheimer's disease (AD) mouse model. ALZHEIMERS RESEARCH & THERAPY 2020; 12:29. [PMID: 32293531 PMCID: PMC7092509 DOI: 10.1186/s13195-020-00598-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Background The pathological hallmarks of Alzheimer’s disease (AD) involve alterations in the expression of numerous genes associated with transcriptional levels, which are determined by chromatin accessibility. Here, the landscape of chromatin accessibility was studied to understand the outline of the transcription and expression of AD-associated metabolism genes in an AD mouse model. Methods The assay for transposase-accessible chromatin by sequencing (ATAC-seq) was used to investigate the AD-associated chromatin reshaping in the APPswe/PS1dE9 (APP/PS1) mouse model. ATAC-seq data in the hippocampus of 8-month-old APP/PS1 mice were generated, and the relationship between chromatin accessibility and gene expression was analyzed in combination with RNA sequencing. Gene ontology (GO) analysis was applied to elucidate biological processes and signaling pathways altered in APP/PS1 mice. Critical transcription factors were identified; alterations in chromatin accessibility were further confirmed using chromatin immunoprecipitation assays. Results We identified 1690 increased AD-associated chromatin-accessible regions in the hippocampal tissues of APP/PS1 mice. These regions were enriched in genes related to diverse signaling pathways, including the PI3K-Akt, Hippo, TGF-β, and Jak-Stat signaling pathways, which play essential roles in regulating cell proliferation, apoptosis, and inflammatory responses. A total of 1003 decreased chromatin-accessible regions were considered to be related with declined AD-associated biological processes including cellular response to hyperoxia and insulin stimulus, synaptic transmission, and positive regulation of autophagy. In the APP/PS1 hippocampus, 1090 genes were found to be upregulated and 1081 downregulated. Interestingly, enhanced ATAC-seq signal was found in approximately 740 genes, with 43 exhibiting upregulated mRNA levels. Several genes involved in AD development were found to have a significantly increased expression in APP/PS1 mice compared to controls, including Sele, Clec7a, Cst7, and Ccr6. The signatures of numerous transcription factors, including Olig2, NeuroD1, TCF4, and NeuroG2, were found enriched in the AD-associated accessible chromatin regions. The transcription-activating marks of H3K4me3 and H3K27ac were also found increased in the promoters of these genes. These results indicate that the mechanism for the upregulation of genes could be attributed to the enrichment of open chromatin regions with transcription factors motifs and the histone marks H3K4me3 and H3K27ac. Conclusion Our study reveals that alterations in chromatin accessibility may be an initial mechanism in AD pathogenesis. Supplementary information Supplementary information accompanies this paper at 10.1186/s13195-020-00598-2.
Collapse
Affiliation(s)
- Yaqi Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Xiaomin Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Qiao Song
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Yuli Hou
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Jing Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.
| | - Peichang Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.
| |
Collapse
|
38
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|