1
|
Wang H, Wang Y, Liu J, Wu J, Hou Q, Ren Z, Liu Y, Yang X. Lipidomics reveals lipid changes in the hepatic during the late chick embryonic development. Poult Sci 2025; 104:105218. [PMID: 40315590 PMCID: PMC12098131 DOI: 10.1016/j.psj.2025.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025] Open
Abstract
The liver undergoes significant metabolic changes during the late stage of chick embryonic development, particularly in lipid metabolism. Lipids are critical energy sources and structural components for the growth and development of chicken embryos. However, the dynamic changes in hepatic lipid composition during this critical developmental window remain unclear. To investigate the lipid composition changes and underlying mechanisms, we conducted a study on chick embryonic livers at two key developmental time points (E14 and D1). The results showed that the liver in the D1 group exhibited greater lipid droplet accumulation compared to the E14 group. Biochemical analysis revealed significantly elevated levels of triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in the liver of the D1 group relative to the E14 group. Furthermore, we performed lipidomics analysis and identified 2274 lipid species in chicken liver, which were predominantly composed of glycerolipids and glycerophospholipids. Score plots of principal component analysis and partial least squares discriminant analysis revealed distinct lipid profiles between the E14 and D1 groups, suggesting potential remodeling of liver lipid composition and metabolism during the late stage of chick embryonic development. Meanwhile, a total of 105 differentially abundant lipid species were identified, with 91 significantly upregulated and 14 significantly downregulated in the D1 group compared to the E14 group. Pathway analysis revealed the enrichment of the glycerophospholipid metabolic pathway, which comprises 37 differentially abundant lipids that may play crucial roles in the growth and development of chick embryos during late stages. In summary, this study characterized the liver lipid profile and explored the changes in lipid composition and species of the developing liver, with the aim of identifying the nutritional requirements of chicken embryos in the late stages of development. These findings could be utilized for improving chick quality and broiler performance.
Collapse
Affiliation(s)
- Huimei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, PR China
| | - Yinlong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, PR China
| | - Jiongyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, PR China.
| | - Jinfang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, PR China.
| | - Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, PR China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, PR China.
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, PR China.
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, PR China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
2
|
Xing L, Wu S, Shi Y, Wei L, Yue F, Lam SM, Shui G, Russell R, Zhang D. Metformin alleviates sphingolipids dysregulation and improves obesity-related kidney disease in high-fat diet rats. J Pharmacol Exp Ther 2025; 392:103388. [PMID: 39921942 DOI: 10.1016/j.jpet.2025.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 02/10/2025] Open
Abstract
Obesity-related kidney disease (ORKD) has recently become a global health issue. Metformin is widely used in patients with type 2 diabetes with concomitant obesity, but its effects on ORKD are insufficiently understood. Accumulation of lipid species including sphingolipids has been reported to disrupt glomerular functions and drive progression of chronic kidney disease. The present study aimed to test the hypothesis that metformin could exert beneficial effects on ORKD, which may be associated with changes in renal lipidomics. Male Sprague-Dawley rats were divided into normal chow diet (ND) group or high-fat diet (HFD)-fed group. After 8 weeks, HFD-fed group was subdivided into metformin treatment (HFD-Met) group and control (HFD-C) group for an additional 8 weeks. Sphingolipids and phospholipids in renal cortex were measured by targeted lipidomics. Compared with ND group, HFD-C group developed histopathological features of ORKD. Metformin alleviated dyslipidemia, renal dysfunction, proteinuria, glomerular hypertrophy, podocyte damage, and renal fibrosis in HFD-fed rats. Renal sphingolipid analysis showed elevations of total ceramide, sphingosine, glucosylceramide, and galactosylceramide levels in HFD-C versus ND group. Specific species, such as ceramide d18:1/22:0, glucosylceramide d18:1/20:0, and galactosylceramide d18:1/16:0, which were positively associated with oxidative stress and insulin resistance, were reduced in HFD-Met versus HFD-C group. Renal phospholipid analysis showed increased levels of total phosphatidylcholine and lysophosphatidylcholine (LPC) in HFD-C rats versus ND rats. The ratio of saturated and monounsaturated LPCs to polyunsaturated LPCs was significantly reduced in HFD-Met rats. These results suggest that metformin alleviates sphingolipids dysregulation and improves ORKD in HFD-fed rats. SIGNIFICANCE STATEMENT: To date, this is the first report to explore effects of metformin on renal lipidomics. These findings reveal specific changes of renal lipid species, which are crucial for deeper understanding the underlying mechanisms of obesity-related kidney disease and effects of metformin on it. The associated signature sphingolipids and phospholipids in the study may have significant implications for developing targeted therapeutic strategies for obesity-related kidney disease.
Collapse
Affiliation(s)
- Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Zhao W, Hu J, Li L, Xue L, Tian J, Zhang T, Yang L, Gu Y, Zhang J. Integrating lipidomics and metabolomics to reveal biomarkers of fat deposition in chicken meat. Food Chem 2025; 464:141732. [PMID: 39461315 DOI: 10.1016/j.foodchem.2024.141732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Local chicken breeds in China are highly regarded for their superior meat flavor. This study utilized lipidomics and non-targeted metabolomics to identify biomarkers influencing intramuscular fat (IMF) deposition in the breast muscle of 42- and 180-day-old Jingyuan chickens. Results revealed that IMF content was higher in the breast muscle of 180-day-old Jingyuan chickens compared to 42-day-old chickens (P < 0.01). We identified 248 differentially expressed lipids (DELs) and 1042 differentially expressed metabolites (DEMs). The breast muscle of 180-day-old chickens contained higher levels of TG, fatty acid (FA) and cholesteryl ester (CE), with C16:1 and C18:1 being particularly abundant. Integration of non-targeted metabolomic analyses emphasized glycerolipid metabolism and vitamin digestion and absorption as the main pathways distinguishing between 42- and 180-day-old chickens. Additionally, the differential metabolites LysoPS 18:1, LysoPC 20:3, LysoPC 18:2, LysoPI 20:3, and Pantothenic acid contributed to enhanced meat flavor in Jingyuan chickens.
Collapse
Affiliation(s)
- Wei Zhao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiahuan Hu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lanlan Li
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lin Xue
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinli Tian
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Tong Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lijuan Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
4
|
Chen L, He X, Han Y, Huang Y, Li J, Li J, Yu X, Yun X, Wu J, Sha R, Dong T, Borjigin G. Lipidomics analysis of adipose depots at differently aged Sunit sheep. Food Chem 2024; 467:142243. [PMID: 39632170 DOI: 10.1016/j.foodchem.2024.142243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/07/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
The objective of this study was to optimize the utilization of deposited fat in Sunit sheep, with a focus on dietary nutrition. This study also elucidated variations in lipid metabolism among subcutaneous fat (SF), perirenal fat (PF), and tail fat (TF) in sheep of different ages using non-targeted lipidomic techniques. In total, 173 different lipids were identified, of which triacylglycerol (TG) and phosphatidylcholine (PC) were prominent. The relative intensity of TG was highest at 6 months of age in three adipose depots. Glycerophospholipids (PLs) were expressed at peak levels in TF and SF at 18 months of age. Pathway analysis revealed that biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycerophospholipid metabolism, and fatty acid biosynthesis were the main pathways involved in the metabolism of adipose depots. These findings provide a comprehensive reference for the metabolic characteristics and pathways of adipose tissue in sheep and the utilization of its by-products.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yunfei Han
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yajuan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueting Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
5
|
Xu X, Guo T, Zhang Q, Liu H, Wang X, Li N, Wang Y, Wei L, Hu L, Xu S. Comparative Evaluation of the Nutrient Composition and Lipidomic Profile of Different Parts of Muscle in the Chaka Sheep. Food Sci Anim Resour 2024; 44:1305-1326. [PMID: 39554830 PMCID: PMC11564135 DOI: 10.5851/kosfa.2024.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 11/19/2024] Open
Abstract
Mutton is one of the most popular meats among the public due to its high nutritional value. In this study, we compared and analyzed the nutritional composition and volatile flavor substances in longissimus dorsi (LD), psoas major (PM), and biceps femoris (BF) of the Chaka sheep, and then analyzed the lipid composition using the technique of UHPLC-Q-Exactive Orbitrap MS/MS. Our results indicated that the LD had the highest crude protein content (22.63%), the highest levels of aspartic acid (5.72%) and histidine (2.76%), the BF had the highest contents of glycine (3.40%) and proline (2.88%), the PM had the highest abundance of ω-6 polyunsaturated fatty acids (7.06%), linoleic acid (C18:2n6c; 5.03%), and volatile flavor compounds (alcohols, ketones, and esters). Moreover, our study detected 2,639 lipid molecules classified into 42 classes, among which phospholipids were the major lipids, accounting for nearly half of the total lipids. Among them, phosphatidylethanolamine (PE; 18:2/18:2) and phosphatidylcholine (PC; 25:0/11:3) were the characteristic lipids in LD. Phosphatidylserine (PS; 20:3e/20:4), lysophosphatidylcholine (LPC; 18:3), PE (8:1e/12:3), triacylglycerol (TG; 18:0e/16:0/18:1), TG (18:0/18:0/18:0), TG (18:0e/18:0/18:1), and TG (18:0e/18:1/18:1) were marker lipids in PM. LPC (16:0), LPC (18:1), lysophosphatidylethanolamine (18:1), PC (15:0/22:6), PE (18:1/18:1), Hex1Cer (d24:1/18:1), and PC (10:0e/6:0) were representative lipids in BF. Intermolecular correlations between PC, PE, Hex1Cer, PS, TG, diacylglycerol, and cardiolipid were revealed by correlation analysis. In conclusion, this study provided the interpretation of the specific nutritional indicators and lipid profile in the tripartite muscle of Chaka sheep, which can be used as a guidance for future research on the nutritional qualities and economic benefits of mutton.
Collapse
Affiliation(s)
- Xianli Xu
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Tongqing Guo
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Qian Zhang
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| | - Xungang Wang
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| | - Na Li
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Yalin Wang
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Lin Wei
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
6
|
Di Rocco G, Trivisonno A, Trivisonno G, Toietta G. Dissecting human adipose tissue heterogeneity using single-cell omics technologies. Stem Cell Res Ther 2024; 15:322. [PMID: 39334440 PMCID: PMC11437900 DOI: 10.1186/s13287-024-03931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Single-cell omics technologies that profile genes (genomic and epigenomic) and determine the abundance of mRNA (transcriptomic), protein (proteomic and secretomic), lipids (lipidomic), and extracellular matrix (matrisomic) support the dissection of adipose tissue heterogeneity at unprecedented resolution in a temporally and spatially defined manner. In particular, cell omics technologies may provide innovative biomarkers for the identification of rare specific progenitor cell subpopulations, assess transcriptional and proteomic changes affecting cell proliferation and immunomodulatory potential, and accurately define the lineage hierarchy and differentiation status of progenitor cells. Unraveling adipose tissue complexity may also provide for the precise assessment of a dysfunctional state, which has been associated with cancer, as cancer-associated adipocytes play an important role in shaping the tumor microenvironment supporting tumor progression and metastasis, obesity, metabolic syndrome, and type 2 diabetes mellitus. The information collected by single-cell omics has relevant implications for regenerative medicine because adipose tissue is an accessible source of multipotent cells; alternative cell-free approaches, including the use of adipose tissue stromal cell-conditioned medium, extracellular vesicles, or decellularized extracellular matrix, are clinically valid options. Subcutaneous white adipose tissue, which is generally harvested via liposuction, is highly heterogeneous because of intrinsic biological variability and extrinsic inconsistencies in the harvesting and processing procedures. The current limited understanding of adipose tissue heterogeneity impinges on the definition of quality standards appropriate for clinical translation, which requires consistency and uniformity of the administered product. We review the methods used for dissecting adipose tissue heterogeneity and provide an overview of advances in omics technology that may contribute to the exploration of heterogeneity and dynamics of adipose tissue at the single-cell level.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Angelo Trivisonno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | | | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
7
|
Zhou Y, Ling D, Wang L, Xu Z, You W, Chen W, Nong Q, Valencak TG, Shan T. Dietary "Beigeing" Fat Contains More Phosphatidylserine and Enhances Mitochondrial Function while Counteracting Obesity. RESEARCH (WASHINGTON, D.C.) 2024; 7:0492. [PMID: 39329159 PMCID: PMC11425158 DOI: 10.34133/research.0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Activation of mitochondrial function and heat production in adipose tissue by the modification of dietary fat is a promising strategy against obesity. However, as an important source of lipids for ketogenic and daily diets, the function of fats extracted from different adipose tissue sites was largely unknown. In this study, we illustrated the function of fats extracted from adipose tissues with different "beigeing" properties in the ketogenic diet and identified lipid profiles of fats that facilitate energy expenditure. We found that the anti-obesity effect of ketogenic diets was potentiated by using "beigeing" fat [porcine subcutaneous adipose tissue (SAT)] as a major energy-providing ingredient. Through lipidomic analyses, phosphatidylserine (PS) was identified as a functional lipid activating thermogenesis in adipose tissue. Moreover, in vivo studies showed that PS induces adipose tissue thermogenesis and alleviates diet-induced obesity in mice. In vitro studies showed that PS promotes UCP1 expression and lipolysis of adipocytes. Mechanistically, PS promoted mitochondrial function in adipocytes via the ADCY3-cAMP-PKA-PGC1α pathway. In addition, PS-PGC1a binding may affect the stability of the PGC1α protein, which further augments PS-induced thermogenesis. These results demonstrated the efficacy of dietary SAT fats in diminishing lipid accumulation and the underlying molecular mechanism of PS in enhancing UCP1 expression and mitochondrial function. Thus, our findings suggest that as dietary fat, "beigeing" fat provides more beneficial lipids that contribute to the improvement of mitochondrial function, including PS, which may become a novel, nonpharmacological therapy to increase energy expenditure and counteract obesity and its related diseases.
Collapse
Affiliation(s)
- Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
Pannkuk EL, Moore MS, Bansal S, Kumar K, Suman S, Howell D, Kath JA, Kurta A, Reeder DM, Field KA. White adipose tissue remodeling in Little Brown Myotis (Myotis lucifugus) with white-nose syndrome. Metabolomics 2024; 20:100. [PMID: 39190217 DOI: 10.1007/s11306-024-02165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
White-nose syndrome (WNS) is a fungal wildlife disease of bats that has caused precipitous declines in certain Nearctic bat species. A key driver of mortality is premature exhaustion of fat reserves, primarily white adipose tissue (WAT), that bats rely on to meet their metabolic needs during winter. However, the pathophysiological and metabolic effects of WNS have remained ill-defined. To elucidate metabolic mechanisms associated with WNS mortality, we infected a WNS susceptible species, the Little Brown Myotis (Myotis lucifugus), with Pseudogymnoascus destructans (Pd) and collected WAT biopsies for histology and targeted lipidomics. These results were compared to the WNS-resistant Big Brown Bat (Eptesicus fuscus). A similar distribution in broad lipid class was observed in both species, with total WAT primarily consisting of triacylglycerides. Baseline differences in WAT chemical composition between species showed that higher glycerophospholipids (GPs) levels in E. fuscus were dominated by unsaturated or monounsaturated moieties and n-6 (18:2, 20:2, 20:3, 20:4) fatty acids. Conversely, higher GP levels in M. lucifugus WAT were primarily compounds containing n-3 (20:5 and 22:5) fatty acids. Following Pd-infection, we found that perturbation to WAT reserves occurs in M. lucifugus, but not in the resistant E. fuscus. A total of 66 GPs (primarily glycerophosphocholines and glycerophosphoethanolamines) were higher in Pd-infected M. lucifugus, indicating perturbation to the WAT structural component. In addition to changes in lipid chemistry, smaller adipocyte sizes and increased extracellular matrix deposition was observed in Pd-infected M. lucifugus. This is the first study to describe WAT GP composition of bats with different susceptibilities to WNS and highlights that recovery from WNS may require repair from adipose remodeling in addition to replenishing depot fat during spring emergence.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3970 Reservoir Road, NW, New Research Building, Room E504, Washington, DC, 20057, USA.
- Center for Metabolomic Studies, Georgetown University, Washington, DC, USA.
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| | - Marianne S Moore
- Department of Biological Sciences, University of the Virgin Islands, St. Thomas, USA
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Daryl Howell
- Iowa Department of Natural Resources, Des Moines, IA, USA
| | - Joseph A Kath
- Illinois Department of Natural Resources, Springfield, IL, USA
| | - Allen Kurta
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| |
Collapse
|
9
|
Liu J, Li L, Xu D, Li Y, Chen T, Liu Y, Bao Y, Wang Y, Yang L, Li P, Xu L. Rab18 maintains homeostasis of subcutaneous adipose tissue to prevent obesity-induced metabolic disorders. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1170-1182. [PMID: 38523235 DOI: 10.1007/s11427-023-2367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/15/2023] [Indexed: 03/26/2024]
Abstract
Metabolically healthy obesity refers to obese individuals who do not develop metabolic disorders. These people store fat in subcutaneous adipose tissue (SAT) rather than in visceral adipose tissue (VAT). However, the molecules participating in this specific scenario remain elusive. Rab18, a lipid droplet (LD)-associated protein, mediates the contact between the endoplasmic reticulum (ER) and LDs to facilitate LD growth and maturation. In the present study, we show that the protein level of Rab18 is specifically upregulated in the SAT of obese people and mice. Rab18 adipocyte-specific knockout (Rab18 AKO) mice had a decreased volume ratio of SAT to VAT compared with wildtype mice. When subjected to high-fat diet (HFD), Rab18 AKO mice had increased ER stress and inflammation, reduced adiponectin, and decreased triacylglycerol (TAG) accumulation in SAT. In contrast, TAG accumulation in VAT, brown adipose tissue (BAT) or liver of Rab18 AKO mice had a moderate increase without ER stress stimulation. Rab18 AKO mice developed insulin resistance and systematic inflammation. Rab18 AKO mice maintained body temperature in response to acute and chronic cold induction with a thermogenic SAT, similar to the counterpart mice. Furthermore, Rab18-deficient 3T3-L1 adipocytes were more prone to palmitate-induced ER stress, indicating the involvement of Rab18 in alleviating lipid toxicity. Rab18 AKO mice provide a good animal model to investigate metabolic disorders such as impaired SAT. In conclusion, our studies reveal that Rab18 is a key and specific regulator that maintains the proper functions of SAT by alleviating lipid-induced ER stress.
Collapse
Affiliation(s)
- Jiaming Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shanghai Qi Zhi Institute, Shanghai, 200232, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Liangkui Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dijin Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuqi Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Yeyang Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200025, China
| | - Yan Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shanghai Qi Zhi Institute, Shanghai, 200232, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shanghai Qi Zhi Institute, Shanghai, 200232, China.
| |
Collapse
|
10
|
Li L, Bai S, Zhao H, Tan J, Wang Y, Zhang A, Jiang L, Zhao Y. Dietary Supplementation with Naringin Improves Systemic Metabolic Status and Alleviates Oxidative Stress in Transition Cows via Modulating Adipose Tissue Function: A Lipid Perspective. Antioxidants (Basel) 2024; 13:638. [PMID: 38929076 PMCID: PMC11200899 DOI: 10.3390/antiox13060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Dairy cows face metabolic challenges around the time of calving, leading to a negative energy balance and various postpartum health issues. Adipose tissue is crucial for cows during this period, as it regulates energy metabolism and supports immune function. Naringin, one of the main flavonoids in citrus fruit and their byproducts, is a potent antioxidant and anti-inflammatory phytoconstituent. The study aimed to evaluate the effects of supplemental naringin on performance, systemic inflammation, oxidative status, and adipose tissue metabolic status. A total of 36 multiparous Holstein cows (from ~21 d prepartum through 35 d postpartum) were provided a basal control (CON) diet or a CON diet containing naringin (NAR) at 30 g/d per cow. Supplemental NAR increased the yield of raw milk and milk protein, without affecting dry matter intake. Cows fed NAR showed significantly lower levels (p < 0.05) of serum non-esterified fatty acid (NEFA), C-reactive protein, IL-1β, IL-6, malonaldehyde, lipopolysaccharide (LPS), aspartate aminotransferase, and alanine aminotransferase, but increased (p < 0.05) glutathione peroxidase activity relative to those fed CON. Supplemental NAR increased (p < 0.05) adipose tissue adiponectin abundance, decreased inflammatory responses, and reduced oxidative stress. Lipidomic analysis showed that cows fed NAR had lower concentrations of ceramide species (p < 0.05) in the serum and adipose tissue than did the CON-fed cows. Adipose tissue proteomics showed that proteins related to lipolysis, ceramide biosynthesis, inflammation, and heat stress were downregulated (p < 0.05), while those related to glycerophospholipid biosynthesis and the extracellular matrix were upregulated (p < 0.05). Feeding NAR to cows may reduce the accumulation of ceramide by lowering serum levels of NEFA and LPS and increasing adiponectin expression, thereby decreasing inflammation and oxidative stress in adipose tissue, ultimately improving their systemic metabolic status. Including NAR in periparturient cows' diets improves lactational performance, reduces excessive lipolysis in adipose tissue, and decreases systemic and adipose tissue inflammation and oxidative stress. Integrating lipidomic and proteomic data revealed that reduced ceramide and increased glycerophospholipids may alleviate metabolic dysregulations in adipose tissue, which in turn benefits systemic metabolic status.
Collapse
Affiliation(s)
- Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Sarula Bai
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100076, China;
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Ao Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (L.L.); (H.Z.); (J.T.); (Y.W.); (A.Z.)
| |
Collapse
|
11
|
Chen W, Xiao Y, Yang F, Liufu S, Gong Y, Li Z, Zhang S, Tang S, Li B, Ma H. Integrated analysis of muscle transcriptome, miRNA, and proteome of Chinese indigenous breed Ningxiang pig in three developmental stages. Front Genet 2024; 15:1393834. [PMID: 38808333 PMCID: PMC11130441 DOI: 10.3389/fgene.2024.1393834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The Ningxiang pig, a distinguished local breed in China, is recognized for its good meat quality traits. This study examines the proteomics of Ningxiang pigs at three developmental stages and delves into the upstream transcriptomics of these proteomics. Such an analysis facilitates a deeper understanding of the molecular interplay between proteins and transcriptomes in the Ningxiang pig muscle, influencing muscle growth and development. In this research, we analyzed the muscles of Ningxiang pigs at three developmental stages: 30 days in weaned piglets, 90 days in nursery pigs, and 210 days in late fattening pigs. There a total of 16 differentially co-expressed miRNAs (ssc-miRNA-1, ssc-miRNA-378, ssc-miRNA-143, ssc-miRNA-30e, etc.), 74 differentially co-expressed mRNA (PLIN3, CPT2, IGF2 and HSP90AB1, etc.) have been identified in the three stages. 572 differentially abundant proteins (DAPs) (APOC3, NDUFA2, HSPD1, ATP5E, PDHA1, etc.) were readily identified by comparing different time periods. According to the KEGG enrich pathway results that DAPs most enriched in growth and development pathways, immune mechanism pathways and maintaining functions of physical. Through short time-series expression miner (STEM) association analysis, a total of 571 negative miRNA-mRNA interaction pairs and 2 negative miRNA-mRNA-protein (Chr05_11955-Pig.17268.1-ATP5F1B, ssc-miR-194a-3p-Pig.15802.1-ACY1) interaction pairs were found. Our study provides a theoretical basis on molecular mechanism for the study of IMF deposition, muscle growth and immunity in Ningxiang pig breed.
Collapse
Affiliation(s)
- Wenwu Chen
- College of Animal Science and Technology, Hunan, Agricultural University, Changsha, Hunan, China
| | - Yu Xiao
- College of Animal Science and Technology, Hunan, Agricultural University, Changsha, Hunan, China
| | - Fang Yang
- College of Animal Science and Technology, Hunan, Agricultural University, Changsha, Hunan, China
| | - Sui Liufu
- College of Animal Science and Technology, Hunan, Agricultural University, Changsha, Hunan, China
| | - Yan Gong
- College of Animal Science and Technology, Hunan, Agricultural University, Changsha, Hunan, China
| | - Zhi Li
- College of Animal Science and Technology, Hunan, Agricultural University, Changsha, Hunan, China
| | - Shuo Zhang
- Yunnan Southwest Agriculture and Animal Husbandry Group Co., Ltd., Kunming, Yunnan, China
| | - Shengguo Tang
- College of Animal Science and Technology, Hunan, Agricultural University, Changsha, Hunan, China
- Institute of Yunnan Circular Agricultural Industry, Puer, Yunnan, China
| | - Biao Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan, Agricultural University, Changsha, Hunan, China
| |
Collapse
|
12
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
13
|
Cao Y, Xing Y, Guan H, Ma C, Jia Q, Tian W, Li G, Tian Y, Kang X, Liu X, Li H. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken. Genes (Basel) 2023; 14:2197. [PMID: 38137019 PMCID: PMC10742768 DOI: 10.3390/genes14122197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Intramuscular fat (IMF) plays an important role in the tenderness, water-holding capacity, and flavor of chicken meat, which directly affect meat quality. In recent years, regulatory mechanisms underlying IMF deposition and the development of effective molecular markers have been hot topics in poultry genetic breeding. Therefore, this review focuses on the current understanding of regulatory mechanisms underlying IMF deposition in chickens, which were identified by multiple genomic approaches, including genome-wide association studies, whole transcriptome sequencing, proteome sequencing, single-cell RNA sequencing (scRNA-seq), high-throughput chromosome conformation capture (HiC), DNA methylation sequencing, and m6A methylation sequencing. This review comprehensively and systematically describes genetic and epigenetic factors associated with IMF deposition, which provides a fundamental resource for biomarkers of IMF deposition and provides promising applications for genetic improvement of meat quality in chicken.
Collapse
Affiliation(s)
- Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
14
|
Zhang L, Ma P, Wang Z, Xu T, Lam SM, Shui G, Wang Y, Xie J, Qiang G. Multiomics Approaches Identify Biomarkers for BAT Thermogenesis. J Proteome Res 2023; 22:3332-3347. [PMID: 37616386 DOI: 10.1021/acs.jproteome.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Brown adipose tissue (BAT) thermogenesis confers beneficial effects on metabolic diseases such as obesity and type-2 diabetes. Nevertheless, the mechanism and lipid driving the process that evokes this response have not been investigated yet. Here, a multiomics approach of integrative transcriptomics and lipidomics is used to explore the mechanism of regulating thermogenesis in BAT and providing promising lipid biomarkers and biomarker genes for thermogenic activators as antiobesity drugs. Lipidomics analysis demonstrated that a high abundance of glycerophospholipids and sphingolipids was more significant in BAT than in WAT. Enrichment analysis of upregulated DEGs between WAT and BAT screened suggested that the differences were mainly involved in lipid metabolism. Besides, β3-adrenergic agonist stimulation reduced the levels of TAG and DAG and increased the content of PC, PE, CL, and LPC and expression of genes involved in thermogenesis, fatty acid elongation, and glycerophospholipid metabolism in BAT. In this study, based on interpreting the inherent characterization of BAT as thermogenic tissue through comparison with WAT as fat storage tissue, adrenergic stimulation-induced BAT thermogenesis further identified specific lipid biomarkers (7 TAG species, 10 PC species, 1 LPC species, and 1 CL species) and Elovl3 and Crat gene biomarkers, which may provide targets for combating obesity by boosting BAT thermogenesis.
Collapse
Affiliation(s)
- Li Zhang
- Inner Mongolia Clinical College, Inner Mongolia Medical University, Hohhot 010110, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Zijing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Tianshu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuzhen Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiming Xie
- Inner Mongolia Clinical College, Inner Mongolia Medical University, Hohhot 010110, China
- Clinical Laboratory, Inner Mongolia People's Hospital, Hohhot 010020, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| |
Collapse
|
15
|
Wang D, Qin P, Zhang K, Wang Y, Guo Y, Cheng Z, Li Z, Tian Y, Kang X, Li H, Liu X. Integrated LC/MS-based lipidomics and transcriptomics analyses revealed lipid composition heterogeneity between pectoralis intramuscular fat and abdominal fat and its regulatory mechanism in chicken. Food Res Int 2023; 172:113083. [PMID: 37689861 DOI: 10.1016/j.foodres.2023.113083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 09/11/2023]
Abstract
Intramuscular fat (IMF) content is conducive to multiple meat quality properties, while abdominal fat (AF) is treated as waste product in chicken industry. However, the heterogeneity and distinct regulatory mechanisms of lipid composition between the IMF and AF are still unclear. In this study, we carried out non-targeted lipidomics analyses of pectoralis IMF and AF, and detected a total of 423 differential lipid molecules (DLMs) between chicken IMF and AF, including 307 up-regulated and 116 down-regulated DLMs in pectoral IMF. These DLMs exhibited the definite alteration of lipid composition. The up-reglated DLMs in IMF were mainly glycerophospholipids (GPs), including the bulk of phosphatidylcholines (PC, PC (P) and PC (O)), phosphatidylethanolamines (PE, PE (P) and PE (O)), phosphatidylglycerols (PG) and phosphatidylinositol (PI), while the up-reglated DLMs in AF were mainly glycerolipids (GLs), including most of triacylglycerols (TG) and diacylglycerols (DG). We further identified 28 main DLMs contributing to the heterogeneous deposition of IMF and AF, including 11 TGs common to IMF and AF, 12 PCs/PC (P)s specific to IMF and 5 DGs specific to AF. Further integration of transcriptome with the main DLMs by weighted gene co-expression network analysis (WGCNA), we found five key gene sets that included 386 unique genes promoting IMF deposition in pectoralis, 213 unique genes promoting AF deposition, 6 unique genes detrimental to AF deposition, 7 common genes that promote IMF deposition in pectoralis while adversely affect AF deposition, and 28 genes that only promoted IMF deposition in pectoralis but had no effect on AF deposition. In addition, we also observed the expression characteristics of key genes in vivo and in vitro, and found that transmembrane protein family gene TMEM164 might be mainly involved in the positive regulation of intramuscular fat deposition in pectoralis and zinc finger protein family gene ZNF488 had a potential unique positive regulatory function on abdominal fat deposition. These findings provide new perspectives for understanding IMF and AF heterodeposition and will serve as a valuable information resource for improving meat quality via breeding selection in chicken.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhimin Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
16
|
Li N, Xu L, Li H, Liu Z, Mo H, Wu Y. UPLC-Q-Exactive Orbitrap-MS-Based Untargeted Lipidomic Analysis of Lipid Molecular Species in Spinal Cords from Different Domesticated Animals. Foods 2023; 12:3634. [PMID: 37835287 PMCID: PMC10572684 DOI: 10.3390/foods12193634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Lipids are crucial components for the maintenance oof normal structure and function in the nervous system. Elucidating the diversity of lipids in spinal cords may contribute to our understanding of neurodevelopment. This study comprehensively analyzed the fatty acid (FA) compositions and lipidomes of the spinal cords of eight domesticated animal species: pig, cattle, yak, goat, horse, donkey, camel, and sika deer. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) were the primary FAs in the spinal cords of these domesticated animals, accounting for 72.54-94.23% of total FAs. Notably, oleic acid, stearic acid and palmitic acid emerged as the most abundant FA species. Moreover, untargeted lipidomics by UPLC-Q-Exactive Orbitrap-MS demonstrated that five lipid classes, including glycerophospholipids (GPs), sphingolipids (SPs), glycerolipids (GLs), FAs and saccharolipids (SLs), were identified in the investigated spinal cords, with phosphatidylcholine (PC) being the most abundant among all identified lipid classes. Furthermore, canonical correlation analysis showed that PC, PE, TAG, HexCer-NS and SM were significantly associated with genome sequence data. These informative data provide insight into the structure and function of mammalian nervous tissues and represent a novel contribution to lipidomics.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (H.M.)
| | - Long Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China;
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (H.M.)
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (H.M.)
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (H.M.)
| | - Yue Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| |
Collapse
|
17
|
Zhou M, Huang J, Zhou J, Zhi C, Bai Y, Che Q, Cao H, Guo J, Su Z. Anti-Obesity Effect and Mechanism of Chitooligosaccharides Were Revealed Based on Lipidomics in Diet-Induced Obese Mice. Molecules 2023; 28:5595. [PMID: 37513467 PMCID: PMC10384603 DOI: 10.3390/molecules28145595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chitooligosaccharide (COS) is a natural product from the ocean, and while many studies have reported its important role in metabolic diseases, no study has systematically elaborated the anti-obesity effect and mechanism of COS. Herein, COSM (MW ≤ 3000 Da) was administered to diet-induced obese mice by oral gavage once daily for eight weeks. The results show that COSM administration reduced body weight; slowed weight gain; reduced serum Glu, insulin, NEFA, TC, TG, and LDL-C levels; increased serum HSL and HDL-C levels; improved inflammation; and reduced lipid droplet size in adipose tissue. Further lipidomic analysis of adipose tissue revealed that 31 lipid species are considered to be underlying lipid biomarkers in COS therapy. These lipids are mainly enriched in pathways involving insulin resistance, thermogenesis, cholesterol metabolism, glyceride metabolism and cyclic adenosine monophosphate (cAMP), which sheds light on the weight loss mechanism of COS. The Western blot assay demonstrated that COSM intervention can improve insulin resistance, inhibit de novo synthesis, and promote thermogenesis and β-oxidation in mitochondria by the AMPK pathway, thereby alleviating high-fat diet-induced obesity. In short, our study can provide a more comprehensive direction for the application of COS in obesity based on molecular markers.
Collapse
Affiliation(s)
- Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingqing Huang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiting Zhi
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
18
|
Liu P, Li D, Zhang J, He M, Li Y, Liu R, Li M. Transcriptomic and lipidomic profiling of subcutaneous and visceral adipose tissues in 15 vertebrates. Sci Data 2023; 10:453. [PMID: 37438471 DOI: 10.1038/s41597-023-02360-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
The storage of lipids as energy in adipose tissue (AT) has been conserved over the course of evolution. However, substantial differences in ATs physiological activities were reported among species. Hence, establishing the mechanisms shaping evolutionarily divergence in ATs transcriptomes could provide a deeper understanding of AT regulation and its roles in obesity-related diseases. While previous studies performed anatomical, physiological and morphological comparisons between ATs across different species, little is currently understood at the molecular phenotypic levels. Here, we characterized transcriptional and lipidomic profiles of available subcutaneous and visceral ATs samples across 15 vertebrate species, spanning more than 300 million years of evolution, including placental mammals, birds and reptiles. We provide detailed descriptions of the datasets produced in this study and report gene expression and lipid profiles across samples. We demonstrate these data are robust and reveal the AT transcriptome and lipidome vary greater among species than within the same species. These datasets may serve as a resource for future studies on the functional differences among ATs in vertebrate species.
Collapse
Affiliation(s)
- Pengliang Liu
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 611081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 611081, China
| | - Rui Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
19
|
Wang L, Gu H, Liao T, Lei Y, Qiu Y, Chen Q, Chen L, Zhang S, Wang J, Hao X, Jiang D, Zhao Y, Niu L, Li X, Shen L, Gan M, Zhu L. tsRNA Landscape and Potential Function Network in Subcutaneous and Visceral Pig Adipose Tissue. Genes (Basel) 2023; 14:genes14040782. [PMID: 37107540 PMCID: PMC10137714 DOI: 10.3390/genes14040782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Noncoding RNAs (ncRNAs) called tsRNAs (tRNA-derived short RNAs) have the ability to regulate gene expression. The information on tsRNAs in fat tissue is, however, limited. By sequencing, identifying, and analyzing tsRNAs using pigs as animal models, this research reports for the first time the characteristics of tsRNAs in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). A total of 474 tsRNAs, 20 and 21 of which were particularly expressed in VAT and SAT, respectively, were found in WAT. According to the analysis of the tsRNA/miRNA/mRNA co-expression network, the tsRNAs with differential expression were primarily engaged in the endocrine and immune systems, which fall under the classification of organic systems, as well as the global and overview maps and lipid metropolis, which fall under the category of metabolism. This research also discovered a connection between the activity of the host tRNA engaged in translation and the production of tsRNAs. This research also discovered that tRF-Gly-GCC-037/tRF-Gly-GCC-042/tRF-Gly-CCC-016 and miR-218a/miR281b may be involved in the regulation of fatty acid metabolism in adipose tissue through SCD based on the tsRNA/miRNA/mRNA/fatty acid network. In conclusion, our findings enrich the understanding of ncRNAs in WAT metabolism and health regulation, as well as reveal the differences between SAT and VAT at the level of tsRNAs.
Collapse
Affiliation(s)
- Linghui Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Gu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianci Liao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanhao Qiu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyang Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Xiaoxia Hao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Jiang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
20
|
Calderón-DuPont D, Romero-Córdoba S, Tello JK, Espinosa A, Guerrero B, Contreras AV, Morán-Ramos S, Díaz-Villaseñor A. Impaired white adipose tissue fatty acid metabolism in mice fed a high-fat diet worsened by arsenic exposure, primarily affecting retroperitoneal adipose tissue. Toxicol Appl Pharmacol 2023; 468:116428. [PMID: 36801214 DOI: 10.1016/j.taap.2023.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Fatty acid (FA) metabolism dysfunction of white adipose tissue (WAT) underlies obesity and insulin resistance in response to high calorie intake and/or endocrine-disrupting chemicals (EDCs), among other factors. Arsenic is an EDC that has been associated with metabolic syndrome and diabetes. However, the combined effect of a high-fat diet (HFD) and arsenic exposure on WAT FA metabolism has been little studied. FA metabolism was evaluated in visceral (epididymal and retroperitoneal) and subcutaneous WAT of C57BL/6 male mice fed control or HFD (12 and 40% kcal fat, respectively) for 16 weeks together with an environmentally relevant chronic arsenic exposure through drinking water (100 μg/l) during the second half of the study. In mice fed HFD, arsenic potentiated the increase of serum markers of selective insulin resistance in WAT and fatty acid re-esterification and the decrease in the lipolysis index. Retroperitoneal was the WAT most affected, where the combination of arsenic and HFD in contrast to HFD, generated higher weight, larger adipocytes, increased triglyceride content, and decreased fasting stimulated lipolysis evidenced by lower phosphorylation of HSL and perilipin. At the transcriptional level, arsenic in mice fed either diet downregulated genes involved in fatty acid uptake (LPL, CD36), oxidation (PPARα, CPT1), lipolysis (ADRß3) and glycerol transport (AQP7 and AQP9). Additionally, arsenic potentiated hyperinsulinemia induced by HFD, despite a slight increase in weight gain and food efficiency. Thus, the second hit of arsenic in sensitized mice by HFD worsens fatty acid metabolism impairment in WAT, mainly retroperitoneal, along with an exacerbated insulin resistance phenotype.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14000, Mexico
| | - Jessica K Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Maestría en Nutrición Clínica, Universidad Anáhuac Campus Norte, Estado de México 52786, Mexico
| | - Aranza Espinosa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Brenda Guerrero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico; Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Alejandra V Contreras
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Translational Molecular Biomarkers, Merck & Co., Inc, Rahway, NJ, USA
| | - Sofia Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico; Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 045010, Mexico.
| |
Collapse
|
21
|
Qian Y, Zhang Y, Fan X, Yan H, Li X, Fan Y, Song Y, Ma S, Hu Z, Gao X, Yang J. Nonalcoholic Fatty Liver Disease and Adverse Pregnancy Outcomes in Women With Normal Prepregnant Weight. J Clin Endocrinol Metab 2023; 108:463-471. [PMID: 36181486 DOI: 10.1210/clinem/dgac567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/24/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Existing studies focusing on the effects of nonalcoholic fatty liver disease (NAFLD) combined with normal prepregnant weight on pregnancy outcomes are limited. OBJECTIVE This study aimed to explore the relationship between maternal NAFLD and adverse pregnancy outcomes in different body mass index (BMI) groups. METHODS Using an antenatal care and delivery database, we retrospectively analyzed women who delivered in Minhang Hospital affiliated to Fudan University, Shanghai, China from January 1, 2013, to June 30, 2020. NAFLD was confirmed by ultrasound in early pregnancy. A logistic regression model with adjustment for confounders was used to examine potential associations between NAFLD and pregnancy outcomes. RESULTS A total of 14 708 pregnant women (mean prepregnant BMI 21.0 [SD, 2.8] kg/m2) were included in our final study, of whom 554 (3.8%) had NAFLD. After fully adjusting for potential confounders, NAFLD significantly increased the risk of gestational diabetes mellitus (adjusted odds ratio 2.477; 95% CI, 1.885-3.254), gestational hypertension (3.054; 2.191-4.257), preeclampsia/eclampsia (3.994; 2.591-6.005), cesarean section (1.569; 1.315-1.872), preterm births (1.831; 1.229-2.727), and macrosomia (1.691; 1.300-2.198). It is notable that 83.9% (12 338) of women were of normal weight at the start of pregnancy (prepregnant 18.5 ≤ BMI < 24 kg/m2), and they still had higher odds of adverse pregnancy outcomes. CONCLUSION Women with NAFLD and a normal weight have a higher risk for adverse pregnancy outcomes. Pregnant women with NAFLD, regardless of obesity status, should be offered a more qualified surveillance to optimize pregnancy outcomes.
Collapse
Affiliation(s)
- Yiling Qian
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yu Zhang
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xiaofang Fan
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xuesong Li
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yujuan Fan
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yuping Song
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Hu
- Department of Obstetrics, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jialin Yang
- Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
22
|
Calderón-DuPont D, Torre-Villalvazo I, Díaz-Villaseñor A. Is insulin resistance tissue-dependent and substrate-specific? The role of white adipose tissue and skeletal muscle. Biochimie 2023; 204:48-68. [PMID: 36099940 DOI: 10.1016/j.biochi.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Insulin resistance (IR) refers to a reduction in the ability of insulin to exert its metabolic effects in organs such as adipose tissue (AT) and skeletal muscle (SM), leading to chronic diseases such as type 2 diabetes, hepatic steatosis, and cardiovascular diseases. Obesity is the main cause of IR, however not all subjects with obesity develop clinical insulin resistance, and not all clinically insulin-resistant people have obesity. Recent evidence implies that IR onset is tissue-dependent (AT or SM) and/or substrate-specific (glucometabolic or lipometabolic). Therefore, the aims of the present review are 1) to describe the glucometabolic and lipometabolic activities of insulin in AT and SM in the maintenance of whole-body metabolic homeostasis, 2) to discuss the pathophysiology of substrate-specific IR in AT and SM, and 3) to highlight novel validated tests to assess tissue and substrate-specific IR that are easy to perform in clinical practice. In AT, glucometabolic IR reduces glucose availability for glycerol and fatty acid synthesis, thus decreasing the esterification and synthesis of signaling bioactive lipids. Lipometabolic IR in AT impairs the antilipolytic effect of insulin and lipogenesis, leading to an increase in circulating FFAs and generating lipotoxicity in peripheral tissues. In SM, glucometabolic IR reduces glucose uptake, whereas lipometabolic IR impairs mitochondrial lipid oxidation, increasing oxidative stress and inflammation, all of which lead to metabolic inflexibility. Understanding tissue-dependent and substrate-specific IR is of paramount importance for early detection before clinical manifestations and for the development of more specific treatments or direct interventions to prevent chronic life-threatening diseases.
Collapse
Affiliation(s)
- Diana Calderón-DuPont
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico; Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional en Ciencias Médicas y Nutricíon Salvador Zubirán, Mexico City, 14000, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico.
| |
Collapse
|
23
|
Jorge-Smeding E, Warnken T, Grob AJ, Feige K, Pudert T, Leung YH, Go YY, Kenez A. The sphingolipidome of plasma, liver, and adipose tissues and its association with insulin response to oral glucose testing in Icelandic horses. Am J Physiol Regul Integr Comp Physiol 2022; 323:R397-R409. [PMID: 35938687 DOI: 10.1152/ajpregu.00018.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin dysregulation (ID) is a determinant of equine metabolic syndrome. Among the sphingolipids, ceramides contribute to the development of ID; however, the crosstalk between the liver and adipose tissue (AT) depots and the variation among AT depots in terms of ceramide metabolism are not well-understood. We aimed to characterize the sphingolipidome of plasma, liver, and AT (nuchal, NUAT; subcutaneous, SCAT; omental, OMAT; retroperitoneal, RPAT) and their associations with insulin response to oral glucose testing (OGT) in normoinsulinemic and hyperinsulinemic horses. Plasma, liver, and AT samples were collected from 12 Icelandic horses upon euthanasia and analyzed by liquid chromatography-mass spectrometry. Eighty-four targeted compounds were effectively quantified. Comparing the AT depots, greater (FDR < 0.05) ceramide, dihydroceramide, and sphingomyelin concentrations and lower glucosyl- and galactosyl-ceramides were found in RPAT and OMAT than in NUAT and SCAT. Hyperinsulinemic response to OGT was associated with sphingolipidome alterations primarily in the RPAT and OMAT, while the NUAT sphingolipidome did not show signs of ceramide accumulation, which was inconsistent with the previously proposed role of nuchal adiposity in ID. The plasma sphingolipidome was not significantly associated with the liver or AT sphingolipidomes, indicating that plasma profiles are determined by an interplay of various organs. Further, hepatic sphingolipid profiles were not correlated with the profiles of AT depots. Finally, statistically valid partial least square regression models predicting insulin response were found in the plasma (Q2= 0.58, R2= 0.98), liver (Q2= 0.64, R2= 0.74), and RPAT (Q2= 0.68, R2= 0.79) sphingolipidome, but not in the other adipose tissues.
Collapse
Affiliation(s)
- Ezequiel Jorge-Smeding
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Tobias Warnken
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Anne Julia Grob
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Tanja Pudert
- Clinic for Horses, Department of Surgery and Orthopaedics, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Yue Hei Leung
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Akos Kenez
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
Torres Irizarry VC, Jiang Y, He Y, Xu P. Hypothalamic Estrogen Signaling and Adipose Tissue Metabolism in Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:898139. [PMID: 35757435 PMCID: PMC9218066 DOI: 10.3389/fendo.2022.898139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity has become a global epidemic, and it is a major risk factor for other metabolic disorders such as type 2 diabetes and cardiometabolic disease. Accumulating evidence indicates that there is sex-specific metabolic protection and disease susceptibility. For instance, in both clinical and experimental studies, males are more likely to develop obesity, insulin resistance, and diabetes. In line with this, males tend to have more visceral white adipose tissue (WAT) and less brown adipose tissue (BAT) thermogenic activity, both leading to an increased incidence of metabolic disorders. This female-specific fat distribution is partially mediated by sex hormone estrogens. Specifically, hypothalamic estrogen signaling plays a vital role in regulating WAT distribution, WAT beiging, and BAT thermogenesis. These regulatory effects on adipose tissue metabolism are primarily mediated by the activation of estrogen receptor alpha (ERα) in neurons, which interacts with hormones and adipokines such as leptin, ghrelin, and insulin. This review discusses the contribution of adipose tissue dysfunction to obesity and the role of hypothalamic estrogen signaling in preventing metabolic diseases with a particular focus on the VMH, the central regulator of energy expenditure and glucose homeostasis.
Collapse
Affiliation(s)
- Valeria C. Torres Irizarry
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yuwei Jiang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Recombinant human GLP-1 beinaglutide regulates lipid metabolism of adipose tissues in diet-induced obese mice. iScience 2021; 24:103382. [PMID: 34841227 PMCID: PMC8605346 DOI: 10.1016/j.isci.2021.103382] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
GLP-1 analogs are a class of glucose-lowering agents with multiple benefits in diabetes, but its role in adipose tissues remains to be elucidated. The aim of this study was to determine the action of recombinant human GLP-1 (rhGLP-1) Beinaglutide (BN) in the insulin sensitivity and lipid metabolism of adipose tissues. We have shown that, after BN injection, obese mice displayed lower body weight, fat mass, and plasma lipid levels. In addition, BN promoted the insulin sensitivity in the white adipose tissues. Furthermore, we have found that the BN treatment caused significant changes in content and composition of different lipid classes, including glycerolipids, glycerophospholipids, and sphingolipids, as well as expression of genes in lipid metabolic pathways in the adipose tissues. Taken together, our data demonstrate that BN could resist HFD-induced obesity by targeting the composition of major lipid classes and the expression of genes in lipid metabolism of adipose tissues. Recombinant human GLP-1 Beinaglutide (BN) reduces high-fat-diet-induced obesity BN increases insulin sensitivity of adipocytes in vivo and in vitro BN alters lipidomic and transcriptomic profiles in adipose tissues of obese mice BN promotes thermogenic gene expression in adipose tissues
Collapse
|
26
|
Li M, Zhu M, Chai W, Wang Y, Song Y, Liu B, Cai C, Song Y, Sun X, Xue P, Wang C. Determination of the Heterogeneity of Intramuscular Fat and Visceral Adipose Tissue From Dezhou Donkey by Lipidomics and Transcriptomics Profiling. Front Nutr 2021; 8:746684. [PMID: 34651009 PMCID: PMC8505748 DOI: 10.3389/fnut.2021.746684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Intramuscular fat (IMF) and visceral adipose tissue (VAT) are both lipids, but have significantly different deposition processes. Furthermore, the heterogeneity of lipid molecular characteristics and mechanisms is unclear. Accordingly, this study used non-targeted lipidomics and transcriptomics to analyze the lipid profiles and metabolism of longissimus dorsi muscle (LDM) and VAT from donkeys. A total of 1,146 and 1,134 lipids belonging to 18 subclasses were identified in LDM and VAT, respectively, with LDM having higher glycerophospholipid (GP) and lower glycerolipid (GL) contents. Polyunsaturated fatty acids (PUFAs) were distributed preferentially at the sn-1 positions in triglycerides (TGs), and sn-2 positions in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The percentage PUFA content in TGs was significantly lower in LDM than in VAT, while the opposite trend was observed for PUFAs in PC and PE. A total of 110 different lipid molecules (72 downregulated and 38 upregulated) were identified in LDM compared with VAT, of which 11 were considered potential lipid markers. These different lipids were involved in 17 metabolic pathways, including GL and GP metabolisms. Of the 578 differentially expressed genes screened, 311 were downregulated and 267 were upregulated in LDM compared with VAT. Enriched ontology analysis of the differentially expressed genes mainly involved sphingolipid signaling pathways, and GP, GL, and sphingolipid metabolisms. Overall, lipidomics and transcriptomics indicated differences in lipid profiles and metabolism in LDM and VAT, providing new perspectives for the study of heterogeneity in IMF and VAT.
Collapse
Affiliation(s)
- Mengmeng Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yinghua Song
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Baoxiu Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Changyun Cai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yingzi Song
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xue Sun
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Peng Xue
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
27
|
Mukherjee R, Aich P. The starch-rich diet causes lipidemia while the fat-rich diet induces visceral adiposity, meta-inflammation, and insulin resistance differentially in immune biased mouse strains. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Xu Y, Zhu D, Yang Q, Su D, Chen YQ. PTIP Deficiency in B Lymphocytes Reduces Subcutaneous Fat Deposition in Mice. BIOCHEMISTRY (MOSCOW) 2021; 86:568-576. [PMID: 33993864 DOI: 10.1134/s0006297921050060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent studies have predominantly focused on the role of B cells in metabolic diseases, yet the function of B cells in adipose homeostasis remains unclear. Pax transactivation domain-interacting protein (PTIP), a licensing factor for humoral immunity, is necessary for B cell development and activation. Here, using mice that lack PTIP in B cells (PTIP-/- mice), we explored the role of B cells in adipose homeostasis under physiological conditions. Fat deposition in 8-week-old mice was measured by micro-CT, and PTIP-/- mice presented a marked decrease in the deposition of subcutaneous adipose tissue (SAT). Untargeted lipidomics revealed that the triglyceride composition in SAT was altered in PTIP-/- mice. In addition, there was no difference in the number of adipocyte progenitor cells in the SAT of wild-type (WT) and PTIP-/- mice as measured by flow cytometry. To study the effects of steady-state IgM and IgG antibody levels on fat deposition, PTIP-/- mice were injected intraperitoneally with serum from WT mice once every 3-4 days for 4 weeks. The iSAT mass of the recipient mice showed no significant increase in comparison to the controls after 4 weeks of injections. Our findings reveal that PTIP plays an essential role in regulating subcutaneous adipocyte size, triglyceride composition, and fat deposition under physiological conditions by controlling B cells. The decreased subcutaneous fat deposition in PTIP-/- mice does not appear to be related to the number of adipocyte progenitor cells. The steady-state levels of IgM and IgG antibodies in vivo are not associated with the subcutaneous fat deposition.
Collapse
Affiliation(s)
- Yaqin Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Doudou Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Dan Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China. .,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
29
|
Gui C, Parson J, Meyer GA. Harnessing adipose stem cell diversity in regenerative medicine. APL Bioeng 2021; 5:021501. [PMID: 33834153 PMCID: PMC8018797 DOI: 10.1063/5.0038101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Since the first isolation of mesenchymal stem cells from lipoaspirate in the early 2000s, adipose tissue has been a darling of regenerative medicine. It is abundant, easy to access, and contains high concentrations of stem cells (ADSCs) exhibiting multipotency, proregenerative paracrine signaling, and immunomodulation-a winning combination for stem cell-based therapeutics. While basic science, preclinical and clinical findings back up the translational potential of ADSCs, the vast majority of these used cells from a single location-subcutaneous abdominal fat. New data highlight incredible diversity in the adipose morphology and function in different anatomical locations or depots. Even in isolation, ADSCs retain a memory of this diversity, suggesting that the optimal adipose source material for ADSC isolation may be application specific. This review discusses our current understanding of the heterogeneity in the adipose organ, how that heterogeneity translates into depot-specific ADSC characteristics, and how atypical ADSC populations might be harnessed for regenerative medicine applications. While our understanding of the breadth of ADSC heterogeneity is still in its infancy, clear trends are emerging for application-specific sourcing to improve regenerative outcomes.
Collapse
Affiliation(s)
- Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Jacob Parson
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Gretchen A. Meyer
- Author to whom correspondence should be addressed:. Tel.: (314) 286-1425. Fax: (314) 747-0674
| |
Collapse
|
30
|
Zhou J, Zhang Y, Wu J, Qiao M, Xu Z, Peng X, Mei S. Proteomic and lipidomic analyses reveal saturated fatty acids, phosphatidylinositol, phosphatidylserine, and associated proteins contributing to intramuscular fat deposition. J Proteomics 2021; 241:104235. [PMID: 33894376 DOI: 10.1016/j.jprot.2021.104235] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Intramuscular fat (IMF) content is an important factor in porcine meat quality. Previous studies have screened multiple candidate genes related to IMF deposition, but the lipids that affect IMF deposition and their lipid-protein network remain unknown. In this study, we performed proteomic and lipidomic analyses of the longissimus dorsi (LD) muscle from high-IMF (IMFH) and low-IMF (IMF-L) groups of Xidu black pigs. Eighty-eight proteins and 143 lipids were differentially abundant between the groups. The differentially abundant proteins were found to be involved in cholesterol metabolism, the PPAR signaling pathway, and ferroptosis. The triacylglycerols (TAGs) upregulated in the IMF-H group were mainly shown to be synthesized by saturated fatty acids (SFAs), while the downregulated TAGs were mainly synthesized by polyunsaturated fatty acids (PUFAs). All differentially abundant phosphatidylinositols (PIs) and phosphatidylserines (PSs) were found to be upregulated in the IMF-H group. A correlation analysis of the proteomic and lipidomic revealed candidate proteins (APOA4, VDAC3, PRNP, CTSB, GSPT1) related to TAG, PI, and PS lipids. These results revealed differences in proteins and lipids between the IMF-H and IMF-L groups, which represent new candidate proteins and lipids that should be investigated to determine the molecular mechanisms controlling IMF deposition in pigs. SIGNIFICANCE: Intramuscular fat (IMF) is a key factor affecting meat quality, and meat with a higher IMF content can have a better flavor. In this study, proteomic results show that the ferroptosis pathway, including the PRNP, VDAC3 and CP proteins, affects IMF deposition. Lipid composition is the key factor affecting IMF deposition, but there are few reports on this. In this study, through lipidomic analysis, we suggest that saturated fatty acid (SFA), phosphatidylinositol (PI), and phosphatidylserine (PS) may contribute to IMF deposition. A correlation analysis reveals the potential regulatory network between lipids and proteins. This study clarifies the difference in protein and lipid compositions in longissimus dorsi (LD) muscle with high and low IMF contents. This information suggests that it would be beneficial to increase the intramuscular fat content of pork not only from a genetic perspective but also from a nutritional perspective.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Yu Zhang
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Junjing Wu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Mu Qiao
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Zhong Xu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China.
| |
Collapse
|
31
|
Dahdah N, Gonzalez-Franquesa A, Samino S, Gama-Perez P, Herrero L, Perales JC, Yanes O, Malagón MDM, Garcia-Roves PM. Effects of Lifestyle Intervention in Tissue-Specific Lipidomic Profile of Formerly Obese Mice. Int J Mol Sci 2021; 22:3694. [PMID: 33916315 PMCID: PMC8037078 DOI: 10.3390/ijms22073694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/06/2023] Open
Abstract
Lipids are highly diverse in their composition, properties and distribution in different biological entities. We aim to establish the lipidomes of several insulin-sensitive tissues and to test their plasticity when divergent feeding regimens and lifestyles are imposed. Here, we report a proton nuclear magnetic resonance (1H-NMR) study of lipid abundance across 4 tissues of C57Bl6J male mice that includes the changes in the lipid profile after every lifestyle intervention. Every tissue analysed presented a specific lipid profile irrespective of interventions. Glycerolipids and fatty acids were most abundant in epididymal white adipose tissue (eWAT) followed by liver, whereas sterol lipids and phosphoglycerolipids were highly enriched in hypothalamus, and gastrocnemius had the lowest content in all lipid species compared to the other tissues. Both when subjected to a high-fat diet (HFD) and after a subsequent lifestyle intervention (INT), the lipidome of hypothalamus showed no changes. Gastrocnemius and liver revealed a pattern of increase in content in many lipid species after HFD followed by a regression to basal levels after INT, while eWAT lipidome was affected mainly by the fat composition of the administered diets and not their caloric density. Thus, the present study demonstrates a unique lipidome for each tissue modulated by caloric intake and dietary composition.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Animals
- Caloric Restriction
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Healthy Lifestyle
- Hypothalamus/metabolism
- Lipidomics
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Obesity/complications
- Obesity/diet therapy
- Obesity/metabolism
- Physical Conditioning, Animal
- Mice
Collapse
Affiliation(s)
- Norma Dahdah
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
| | - Alba Gonzalez-Franquesa
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sara Samino
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, 43004 Tarragona, Spain; (S.S.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pau Gama-Perez
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - José Carlos Perales
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, 43004 Tarragona, Spain; (S.S.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Del Mar Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Cordoba, Spain
| | - Pablo Miguel Garcia-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907 Barcelona, Spain; (A.G.-F.); (P.G.-P.); (J.C.P.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| |
Collapse
|
32
|
Miniewska K, Godzien J, Mojsak P, Maliszewska K, Kretowski A, Ciborowski M. Mass spectrometry-based determination of lipids and small molecules composing adipose tissue with a focus on brown adipose tissue. J Pharm Biomed Anal 2020; 191:113623. [PMID: 32966938 DOI: 10.1016/j.jpba.2020.113623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Adipose tissue has been the subject of research for a very long time. Many studies perform a comprehensive analysis of different types of adipose tissue with an emphasis on brown adipose tissue. Mass spectrometry-based approaches are particularly useful in the exploration not only of the metabolic composition of adipose tissue but also its function. In the presented review, a complex and critical overview of publications devoted to the analysis of adipose tissue by means of mass spectrometry was performed. Detailed investigation of analytical aspects related to either untargeted or targeted analysis of adipose tissue was performed, leading to the formation of a collection of hints at the available analytical methods. Moreover, a profound analysis of the metabolic composition of brown adipose tissue was performed. Brown adipose tissue metabolome was characterized on structural and functional levels, providing information about its exact metabolic composition but also connecting these molecules and placing them into biochemical pathways. All our work resulted in a very broad picture of the analysis of adipose tissue, starting from the analytical aspects and finishing on the current knowledge about its composition.
Collapse
Affiliation(s)
- Katarzyna Miniewska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|