1
|
He J, Huang Z, Zou R. Andrographolide ameliorates sepsis-induced acute liver injury by attenuating endoplasmic reticulum stress through the FKBP1A-mediated NOTCH1/AK2 pathway. Cell Biol Toxicol 2025; 41:56. [PMID: 40053226 PMCID: PMC11889056 DOI: 10.1007/s10565-025-10007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/20/2025] [Indexed: 03/10/2025]
Abstract
Andrographolide (AP) has been shown to possess anti-inflammatory activities. In this study, the impact of AP in sepsis-induced acute liver injury (ALI) and the molecules involved were dissected. FKBP1A was predicted to be the sole target protein of AP that was also differentially expressed in the GSE166868 dataset. AP induced the protein expression of FKBP1A and suppressed that of NOTCH1 in a dose-dependent manner. AP ameliorated ALI in mice induced by D-galactosamine and LPS and inhibited LPS-induced liver parenchymal cell injury in vitro. By contrast, the protective effect of AP was significantly lost after the knockdown of FKBP1A. As a positive control, the therapeutic effect of dexamethasone on ALI may be related to NOTCH1, which was not related to FKBP1A. NOTCH1 promoted AK2 transcription in liver parenchymal cells, and FKBP1A inhibited endoplasmic reticulum (ER) stress by impairing NOTCH1/AK2 signaling. Restoration of NOTCH1 significantly reversed the hepatoprotective effect of AP in ALI mice and LPS-induced liver parenchymal cell injury by activating the ER stress pathway. Therefore, AP-promoted FKBP1A expression inhibits ALI progression by blocking the NOTCH1/AK2-mediated ER pathway.
Collapse
Affiliation(s)
- Jiaqi He
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P.R. China
| | - Zepeng Huang
- Department of Hepatobiliary Surgery, Hainan Cancer Hospital, Haikou, 570000, Hainan, P.R. China
| | - Rui Zou
- Department of Hepatobiliary Surgery, Hainan Cancer Hospital, Haikou, 570000, Hainan, P.R. China.
- Hainan Clinical Research Center for Liver Disease and Liver Critical Illness, Haikou, 570000, Hainan, P.R. China.
| |
Collapse
|
2
|
Caliendo F, Vitu E, Wang J, Kuo SH, Sandt H, Enghuus CN, Tordoff J, Estrada N, Collins JJ, Weiss R. Customizable gene sensing and response without altering endogenous coding sequences. Nat Chem Biol 2025; 21:348-359. [PMID: 39266721 DOI: 10.1038/s41589-024-01733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
Synthetic biology aims to modify cellular behaviors by implementing genetic circuits that respond to changes in cell state. Integrating genetic biosensors into endogenous gene coding sequences using clustered regularly interspaced short palindromic repeats and Cas9 enables interrogation of gene expression dynamics in the appropriate chromosomal context. However, embedding a biosensor into a gene coding sequence may unpredictably alter endogenous gene regulation. To address this challenge, we developed an approach to integrate genetic biosensors into endogenous genes without modifying their coding sequence by inserting into their terminator region single-guide RNAs that activate downstream circuits. Sensor dosage responses can be fine-tuned and predicted through a mathematical model. We engineered a cell stress sensor and actuator in CHO-K1 cells that conditionally activates antiapoptotic protein BCL-2 through a downstream circuit, thereby increasing cell survival under stress conditions. Our gene sensor and actuator platform has potential use for a wide range of applications that include biomanufacturing, cell fate control and cell-based therapeutics.
Collapse
Affiliation(s)
- Fabio Caliendo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elvira Vitu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junmin Wang
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Shuo-Hsiu Kuo
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hayden Sandt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Casper Nørskov Enghuus
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jesse Tordoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neslly Estrada
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James J Collins
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Lu L, Feng Y, Geng Y, Liu Z, Wu Y, Cai C, Zhang J, Huang X, Xue T, Gao B. ATF6-mediated mild ER stress inhibits HBV transcription and replication, which is dependent on mTOR activation. Virology 2025; 604:110448. [PMID: 39956079 DOI: 10.1016/j.virol.2025.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Chronic hepatitis B (CHB) remains a serious global health problem. In our previous investigation, HBV was found to activate a mild ER stress, which facilitated the establishment of persistent HBV infection. However, the role of ER stress manipulation in HBV replication and its underlying mechanisms remain still unclear. Our data showed that mild ER stress inhibited HBV transcription and replication, while severe ER stress enhanced them. Mechanistically, in contrary to the effect on HBV replication, mild ER stress activated whereas severe ER stress inhibited mTOR signaling in HBV-infected cells. Further, mTOR signaling was revealed to be critical for mild ER stress-mediated HBV inhibition. Furthermore, ATF6 but not PERK or IRE1α was found to be involved in mild ER stress-mediated mTOR and the following HBV inhibition. Moreover, ATF6, per se, could inhibit HBV transcription and replication via activating mTOR signaling. Together, ATF6-mediated mild ER stress inhibited HBV transcription and replication through mTOR activation, which might present as an important therapeutic target for CHB patients.
Collapse
Affiliation(s)
- Lin Lu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Ying Feng
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Yucai Geng
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Zhixiang Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Yan Wu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Chen Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Shanghai, PR China
| | - Ji Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Shanghai, PR China
| | - Xingda Huang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Tongchun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Shanghai, PR China.
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China.
| |
Collapse
|
4
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, Shu HQ, Peng K, Wu Y, Zhang DY, Qiu Y, Zhou X, Yao YM, Shang Y. Viral sepsis: diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res 2024; 11:78. [PMID: 39676169 PMCID: PMC11648306 DOI: 10.1186/s40779-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.
Collapse
Affiliation(s)
- Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Gang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Lan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Ding-Yu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Wang Y, Li J, Cao H, Li LF, Dai J, Cao M, Deng H, Zhong D, Luo Y, Li Y, Li M, Peng D, Sun Z, Gao X, Moon A, Tang L, Sun Y, Li S, Qiu HJ. African swine fever virus modulates the endoplasmic reticulum stress-ATF6-calcium axis to facilitate viral replication. Emerg Microbes Infect 2024; 13:2399945. [PMID: 39230190 PMCID: PMC11441038 DOI: 10.1080/22221751.2024.2399945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a devastating infectious disease of domestic pigs and wild boar, which threatens the global pig industry. Endoplasmic reticulum (ER) is a multifunctional signaling organelle in eukaryotic cells that is involved in protein synthesis, processing, posttranslational modification and quality control. As intracellular parasitic organisms, viruses have evolved several strategies to modulate ER functions to favor their life cycles. We have previously demonstrated that the differentially expressed genes associated with unfolded protein response (UPR), which represents a response to ER stress, are significantly enriched upon ASFV infection. However, the correlation between the ER stress or UPR and ASFV replication has not been illuminated yet. Here, we demonstrated that ASFV infection induces ER stress both in target cells and in vivo, and subsequently activates the activating transcription factor 6 (ATF6) branch of the UPR to facilitate viral replication. Mechanistically, ASFV infection disrupts intracellular calcium (Ca2+) homeostasis, while the ATF6 pathway facilitates ASFV replication by increasing the cytoplasmic Ca2+ level. More specifically, we demonstrated that ASFV infection triggers ER-dependent Ca2+ release via the inositol triphosphate receptor (IP3R) channel. Notably, we showed that the ASFV B117L protein plays crucial roles in ER stress and the downstream activation of the ATF6 branch, as well as the disruption of Ca2+ homeostasis. Taken together, our findings reveal for the first time that ASFV modulates the ER stress-ATF6-Ca2+ axis to facilitate viral replication, which provides novel insights into the development of antiviral strategies for ASFV.
Collapse
Affiliation(s)
- Yanjin Wang
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Jiaqi Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hongwei Cao
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jingwen Dai
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Mengxiang Cao
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hao Deng
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Dailang Zhong
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Meilin Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Dingkun Peng
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zitao Sun
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiaowei Gao
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Assad Moon
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Su Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
6
|
Saha P, Talwar P. Idiopathic pulmonary fibrosis (IPF): disease pathophysiology, targets, and potential therapeutic interventions. Mol Cell Biochem 2024; 479:2181-2194. [PMID: 37707699 DOI: 10.1007/s11010-023-04845-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, degenerative pulmonary condition. Transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and tumor necrosis factor-α (TNF-α) are the major modulators of IPF that mediate myofibroblast differentiation and promote fibrotic remodeling of the lung. Cigarette smoke, asbestos fiber, drugs, and radiation are known to favor fibrotic remodeling of the lungs. Oxidative stress in the endoplasmic reticulum (ER) also leads to protein misfolding and promotes ER stress, which is predominant in IPF. This phenomenon further results in excess reactive oxygen species (ROS) aggregation, increasing oxidative stress. During protein folding in the ER, thiol groups on the cysteine residue are oxidized and disulfide bonds are formed, which leads to the production of hydrogen peroxide (H2O2) as a by-product. With the accumulation of misfolded proteins in the ER, multiple signaling cascades are initiated by the cell, collectively termed as the unfolded protein response (UPR). UPR also induces ROS production within the ER and mitochondria and promotes both pro-apoptotic and pro-survival pathways. The prevalence of post-COVID-19 pulmonary fibrosis (PCPF) is 44.9%, along with an alarming increase in "Coronavirus Disease 2019" (COVID-19) comorbidities. Fibrotic airway remodeling and declined lung function are the common endpoints of SARS-CoV-2 infection and IPF. Flavonoids are available in our dietary supplements and exhibit medicinal properties. Apigenin is a flavonoid found in plants, including chamomile, thyme, parsley, garlic, guava, and broccoli, and regulates several cellular functions, such as oxidative stress, ER stress, and fibrotic responses. In this study, we focus on the IPF and COVID-19 pathogenesis and the potential role of Apigenin in addressing disease progression.
Collapse
Affiliation(s)
- Pritha Saha
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
Keramidas P, Pitou M, Papachristou E, Choli-Papadopoulou T. Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection. Curr Issues Mol Biol 2024; 46:4286-4308. [PMID: 38785529 PMCID: PMC11120126 DOI: 10.3390/cimb46050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER's ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy.
Collapse
Affiliation(s)
| | | | | | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (M.P.); (E.P.)
| |
Collapse
|
8
|
Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, Syed Mohamed AF, Lam KW, Ibrahim S. Inhibitory effect of food-functioned phytochemicals on dysregulated inflammatory pathways triggered by SARS-CoV-2: a mechanistic review. Crit Rev Food Sci Nutr 2024; 65:2405-2430. [PMID: 38619217 DOI: 10.1080/10408398.2024.2341266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, Shah Alam, Malaysia
| | - Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | | | - Kok Wai Lam
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
9
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Zhang K, Huang Q, Li X, Zhao Z, Hong C, Sun Z, Deng B, Li C, Zhang J, Wang S. The cGAS-STING pathway in viral infections: a promising link between inflammation, oxidative stress and autophagy. Front Immunol 2024; 15:1352479. [PMID: 38426093 PMCID: PMC10902852 DOI: 10.3389/fimmu.2024.1352479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ziqiao Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zeyi Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunling Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
11
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
12
|
Yi C, Yang J, Zhang T, Qin L, Chen D. Identification of Breast Cancer Subtypes Based on Endoplasmic Reticulum Stress-Related Genes and Analysis of Prognosis and Immune Microenvironment in Breast Cancer Patients. Technol Cancer Res Treat 2024; 23:15330338241241484. [PMID: 38725284 PMCID: PMC11085026 DOI: 10.1177/15330338241241484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/02/2024] [Accepted: 03/01/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: Endoplasmic reticulum stress (ERS) was a response to the accumulation of unfolded proteins and plays a crucial role in the development of tumors, including processes such as tumor cell invasion, metastasis, and immune evasion. However, the specific regulatory mechanisms of ERS in breast cancer (BC) remain unclear. Methods: In this study, we analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) for breast cancer and identified 8 core genes associated with ERS: ELOVL2, IFNG, MAP2K6, MZB1, PCSK6, PCSK9, IGF2BP1, and POP1. We evaluated their individual expression, independent diagnostic, and prognostic values in breast cancer patients. A multifactorial Cox analysis established a risk prognostic model, validated with an external dataset. Additionally, we conducted a comprehensive assessment of immune infiltration and drug sensitivity for these genes. Results: The results indicate that these eight core genes play a crucial role in regulating the immune microenvironment of breast cancer (BRCA) patients. Meanwhile, an independent diagnostic model based on the expression of these eight genes shows limited independent diagnostic value, and its independent prognostic value is unsatisfactory, with the time ROC AUC values generally below 0.5. According to the results of logistic regression neural networks and risk prognosis models, when these eight genes interact synergistically, they can serve as excellent biomarkers for the diagnosis and prognosis of breast cancer patients. Furthermore, the research findings have been confirmed through qPCR experiments and validation. Conclusion: In conclusion, we explored the mechanisms of ERS in BRCA patients and identified 8 outstanding biomolecular diagnostic markers and prognostic indicators. The research results were double-validated using the GEO database and qPCR.
Collapse
Affiliation(s)
- Chen Yi
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Jun Yang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, China
| | - Liu Qin
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Xue M, Lin Z, Zhang T, Cheng ZJ, Lin R, Guo B, Zeng Y, Hu F, Li F, Zheng P, Huang H, Li N, Zhao Q, Sun B, Tang X. ERC-BiP Functional Protein Pathway for Assessing Endoplasmic Reticulum Stress Induced by SARS-CoV-2 Replication after Cell Invasion. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:7253779. [PMID: 37849973 PMCID: PMC10578982 DOI: 10.1155/2023/7253779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/24/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Background SARS-CoV-2 induces apoptosis and amplifies the immune response by continuously stressing the endoplasmic reticulum (ER) after invading cells. This study aimed to establish a protein-metabolic pathway associated with ER dysfunction based on the invasion mechanism of SARS-CoV-2. Methods This study included 17 healthy people and 46 COVID-19 patients, including 38 mild patients and 8 severe patients. Proteomics and metabolomics were measured in the patient plasma collected at admission and one week after admission. The patients were further divided into the aggravation and remission groups based on disease progression within one week of admission. Results Cross-sectional comparison showed that endoplasmic reticulum molecular chaperone-binding immunoglobulin protein (ERC-BiP), angiotensinogen (AGT), ceramide acid (Cer), and C-reactive protein (CRP) levels were significantly increased in COVID-19 patients, while the sphingomyelin (SM) level was significantly decreased (P < 0.05). In addition, longitudinal comparative analysis found that the temporal fold changes of ERC-BiP, AGT, Cer, CRP, and SM were significantly different between the patients in the aggravation and remission groups (P < 0.05). ERC-BiP, AGT, and Cer levels were significantly increased in aggravation patients, while SM was significantly decreased (P < 0.05). Meanwhile, ERC-BiP was significantly correlated with AGT (r = 0.439; P < 0.001). Conclusions ERC-BiP can be used as a core index to reflect the degree of ER stress in COVID-19 patients, which is of great value for evaluating the functional state of cells. A functional pathway for AGT/ERC-BiP/glycolysis can directly assess the activation of unfolded protein reactions. The ERC-BiP pathway is closer to the intracellular replication pathway of SARS-CoV-2 and may help in the development of predictive protocols for COVID-19 exacerbation.
Collapse
Affiliation(s)
- Mingshan Xue
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio-Island, Guangzhou 510005, Guangdong Province, China
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Zhiwei Lin
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Teng Zhang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Zhangkai J. Cheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Runpei Lin
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Baojun Guo
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
- School of Medicine, Henan University, Kaifeng 475000, Henan, China
| | - Yifeng Zeng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Peiyan Zheng
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Huimin Huang
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Ning Li
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Baoqing Sun
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
- Guangzhou Laboratory, XingDaoHuanBei Road, Guangzhou International Bio-Island, Guangzhou 510005, Guangdong Province, China
| |
Collapse
|
14
|
Tang SW, Helmeste DM, Leonard BE. COVID-19 as a polymorphic inflammatory spectrum of diseases: a review with focus on the brain. Acta Neuropsychiatr 2023; 35:248-269. [PMID: 36861428 DOI: 10.1017/neu.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
There appear to be huge variations and aberrations in the reported data in COVID-19 2 years now into the pandemic. Conflicting data exist at almost every level and also in the reported epidemiological statistics across different regions. It is becoming clear that COVID-19 is a polymorphic inflammatory spectrum of diseases, and there is a wide range of inflammation-related pathology and symptoms in those infected with the virus. The host's inflammatory response to COVID-19 appears to be determined by genetics, age, immune status, health status and stage of disease. The interplay of these factors may decide the magnitude, duration, types of pathology, symptoms and prognosis in the spectrum of COVID-19 disorders, and whether neuropsychiatric disorders continue to be significant. Early and successful management of inflammation reduces morbidity and mortality in all stages of COVID-19.
Collapse
Affiliation(s)
- Siu Wa Tang
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Daiga Maret Helmeste
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, China
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
15
|
Liguori A, Calvez V, D’Ambrosio F, Sciarra A, Marrone G, Biolato M, Grieco A, Gasbarrini A, Alisi A, Miele L. The bidirectional relationship between fatty liver disease and COVID-19. METABOLISM AND TARGET ORGAN DAMAGE 2023; 3. [DOI: 10.20517/mtod.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
COVID-19 and nonalcoholic fatty liver disease (NAFLD) have emerged as global pandemics affecting millions of people worldwide over the past three years. NAFLD is particularly prevalent in individuals with metabolic comorbidities, such as diabetes and obesity, which have been strongly linked to a severe course of Sars-CoV-2 infection. Recently, due to the close association between metabolic abnormalities and NAFLD, the disease has been redefined as metabolic dysfunction-associated fatty liver disease (MAFLD). This review offers an overview of the biological and cellular mechanisms by which COVID-19 can cause liver damage, with a specific focus on the influence of fatty liver in these mechanisms. Additionally, it explores how fatty liver can exacerbate a COVID-19 infection and, conversely, if the presence of COVID-19 may accelerate the development and progression of fatty liver. Finally, the review examines the existing evidence suggesting that NAFLD or MAFLD independently contributes to a heightened severity of COVID-19, while also considering other factors such as age and metabolic comorbidities that may play a role in the disease’s progression.
Collapse
|
16
|
Mubashshir M, Ahmad N, Negi T, Rawal R, Singhvi N, Khatoon H, Laxmi V, Dubey O, Sharma RB, Negi G, Ovais M. Therapeutic Benefits of Melatonin against COVID-19. Neuroimmunomodulation 2023; 30:196-205. [PMID: 37336193 PMCID: PMC10614475 DOI: 10.1159/000531550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
The assumption of the pineal hormone melatonin as a therapeutic use for COVID-19-affected people seems promising. Its intake has shown significant improvement in the patients' conditions. Higher melatonin titers in children may provide a protective shield against this disease. The hormone melatonin works as an anti-inflammatory, antioxidant, immunomodulator, and strategically slows down the cytokine release which is observed in the COVID-19 disease, thereby improving the overall health of afflicted patients. The medical community is expected shortly to use remedial attributes like anti-inflammatory, antioxidant, antivirals, etc., of melatonin in the successful prevention and cure of COVID-19 morbidity. Thus, the administration of melatonin seems auspicious in the cure and prevention of this COVID-19 fatality. Moreover, melatonin does not seem to reduce the efficiency of approved vaccines against the SARS-CoV-2 virus. Melatonin increases the production of inflammatory cytokines and Th1 and enhances both humoral and cell-mediated responses. Through the enhanced humoral immunity, melatonin exhibits antiviral activities by suppressing multiple inflammatory products such as IL-6, IL1β, and tumor necrosis factor α, which are immediately released during lung injury of severe COVID-19. Hence, the novel use of melatonin along with other antivirals as an early treatment option against COVID-19 infection is suggested. Here, we have chalked out the invasion mechanisms and appropriate implications of the latest findings concerned with melatonin against the virus SARS-CoV-2. Nevertheless, within the setting of a clinical intervention, the promising compounds must go through a series of studies before their recommendation. In the clinical field, this is done in a time-ordered sequence, in line with the phase label affixed to proper protocol of trials: phase I-phase II and the final phase III. Nevertheless, while medical recommendations can only be made on the basis of reassuring evidence, there are still three issues worth considering before implementation: representativeness, validity, and lastly generalizability.
Collapse
Affiliation(s)
- Muhammad Mubashshir
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Nabeel Ahmad
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Tripti Negi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Renu Rawal
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Hina Khatoon
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Vijya Laxmi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Om Dubey
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Renu Bala Sharma
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Ganga Negi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, India
| | - Mohd Ovais
- Department of Bio-Science, Barkatullah University, Bhopal, India
| |
Collapse
|
17
|
Li T, Fu J, Cheng J, Elfiky AA, Wei C, Fu J. New progresses on cell surface protein HSPA5/BiP/GRP78 in cancers and COVID-19. Front Immunol 2023; 14:1166680. [PMID: 37275848 PMCID: PMC10232979 DOI: 10.3389/fimmu.2023.1166680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Heat-shock-protein family A (Hsp70) member 5 (HSPA5), aliases GRP78 or BiP, is a protein encoded with 654 amino acids by the HSPA5 gene located on human chromosome 9q33.3. When the endoplasmic reticulum (ER) was stressed, HSPA5 translocated to the cell surface, the mitochondria, and the nucleus complexed with other proteins to execute its functions. On the cell surface, HSPA5/BiP/GRP78 can play diverse functional roles in cell viability, proliferation, apoptosis, attachments, and innate and adaptive immunity regulations, which lead to various diseases, including cancers and coronavirus disease 2019 (COVID-19). COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which caused the pandemic since the first outbreak in late December 2019. HSPA5, highly expressed in the malignant tumors, likely plays a critical role in SARS-CoV-2 invasion/attack in cancer patients via tumor tissues. In the current study, we review the newest research progresses on cell surface protein HSPA5 expressions, functions, and mechanisms for cancers and SARS-CoV-2 invasion. The therapeutic and prognostic significances and prospects in cancers and COVID-19 disease by targeting HSPA5 are also discussed. Targeting HSPA5 expression by natural products may imply the significance in clinical for both anti-COVID-19 and anti-cancers in the future.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Abdo A. Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
18
|
Mohammed MA. Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Front Pharmacol 2023; 14:1111329. [PMID: 37124230 PMCID: PMC10134036 DOI: 10.3389/fphar.2023.1111329] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
A novel coronavirus strain (COVID-19) caused severe illness and mortality worldwide from 31 December 2019 to 21 March 2023. As of this writing, 761,071,826 million cases have been diagnosed worldwide, with 6,879,677 million deaths accorded by WHO organization and has spread to 228 countries. The number of deaths is closely connected to the growth of innate immune cells in the lungs, mainly macrophages, which generate inflammatory cytokines (especially IL-6 and IL-1β) that induce "cytokine storm syndrome" (CSS), multi-organ failure, and death. We focus on promising natural products and their biologically active chemical constituents as potential phytopharmaceuticals that target virus-induced pro-inflammatory cytokines. Successful therapy for this condition is currently rare, and the introduction of an effective vaccine might take months. Blocking viral entrance and replication and regulating humoral and cellular immunity in the uninfected population are the most often employed treatment approaches for viral infections. Unfortunately, no presently FDA-approved medicine can prevent or reduce SARS-CoV-2 access and reproduction. Until now, the most important element in disease severity has been the host's immune response activation or suppression. Several medicines have been adapted for COVID-19 patients, including arbidol, favipiravir, ribavirin, lopinavir, ritonavir, hydroxychloroquine, chloroquine, dexamethasone, and anti-inflammatory pharmaceutical drugs, such as tocilizumab, glucocorticoids, anakinra (IL-1β cytokine inhibition), and siltuximab (IL-6 cytokine inhibition). However, these synthetic medications and therapies have several side effects, including heart failure, permanent retinal damage in the case of hydroxyl-chloroquine, and liver destruction in the case of remdesivir. This review summarizes four strategies for fighting cytokine storms and immunomodulatory deficiency induced by COVID-19 using natural product therapy as a potential therapeutic measure to control cytokine storms.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
19
|
Diao F, Jiang C, Sun Y, Gao Y, Bai J, Nauwynck H, Wang X, Yang Y, Jiang P, Liu X. Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication. PLoS Pathog 2023; 19:e1011295. [PMID: 36972295 PMCID: PMC10079224 DOI: 10.1371/journal.ppat.1011295] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Calcium (Ca2+), a ubiquitous second messenger, plays a crucial role in many cellular functions. Viruses often hijack Ca2+ signaling to facilitate viral processes such as entry, replication, assembly, and egress. Here, we report that infection by the swine arterivirus, porcine reproductive and respiratory syndrome virus (PRRSV), induces dysregulated Ca2+ homeostasis, subsequently activating calmodulin-dependent protein kinase-II (CaMKII) mediated autophagy, and thus fueling viral replication. Mechanically, PRRSV infection induces endoplasmic reticulum (ER) stress and forms a closed ER–plasma membrane (PM) contacts, resulting the opening of store operated calcium entry (SOCE) channel and causing the ER to take up extracellular Ca2+, which is then released into the cytoplasm by inositol trisphosphate receptor (IP3R) channel. Importantly, pharmacological inhibition of ER stress or CaMKII mediated autophagy blocks PRRSV replication. Notably, we show that PRRSV protein Nsp2 plays a dominant role in the PRRSV induced ER stress and autophagy, interacting with stromal interaction molecule 1 (STIM1) and the 78 kDa glucose-regulated protein 78 (GRP78). The interplay between PRRSV and cellular calcium signaling provides a novel potential approach to develop antivirals and therapeutics for the disease outbreaks.
Collapse
Affiliation(s)
- Feifei Diao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Yuanqi Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- * E-mail: (PJ); (XL)
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- * E-mail: (PJ); (XL)
| |
Collapse
|
20
|
Alkazmi L, Al-Kuraishy HM, Al-Gareeb AI, El-Bouseary MM, Ahmed EA, Batiha GES. Dantrolene and ryanodine receptors in COVID-19: The daunting task and neglected warden. Clin Exp Pharmacol Physiol 2023; 50:335-352. [PMID: 36732880 DOI: 10.1111/1440-1681.13756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Dantrolene (DTN) is a ryanodine receptor (RyR) antagonist that inhibits Ca2+ release from stores in the sarcoplasmic reticulum. DTN is mainly used in the management of malignant hyperthermia. RyRs are highly expressed in immune cells and are involved in different viral infections, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), because Ca2+ is necessary for viral replication, maturation and release. DTN can inhibit the proliferation of SARS-CoV-2, indicating its potential role in reducing entry and pathogenesis of SARS-CoV-2. DTN may increase clearance of SARS-CoV-2 and promote coronavirus disease 2019 (COVID-19) recovery by shortening the period of infection. DTN inhibits N-methyl-D-aspartate (NMDA) mediated platelets aggregations and thrombosis. Therefore, DTN may inhibit thrombosis and coagulopathy in COVID-19 through suppression of platelet NMDA receptors. Moreover, DTN has a neuroprotective effect against SARS-CoV-2 infection-induced brain injury through modulation of NMDA receptors, which are involved in excitotoxicity, neuronal injury and the development of neuropsychiatric disorders. In conclusion, DTN by inhibiting RyRs may attenuate inflammatory disorders in SARS-CoV-2 infection and associated cardio-pulmonary complications. Therefore, DNT could be a promising drug therapy against COVID-19. Preclinical and clinical studies are warranted in this regards.
Collapse
Affiliation(s)
- Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
21
|
Lin YH, Sheu SJ, Liu W, Hsu YT, He CX, Wu CY, Chen KJ, Lee PY, Chiu CC, Cheng KC. Retinal protective effect of curcumin metabolite hexahydrocurcumin against blue light-induced RPE damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154606. [PMID: 36584606 DOI: 10.1016/j.phymed.2022.154606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a disease of retinal pigment epithelium (RPE) cells. We have previously demonstrated that blue light can damage RPE cells and their underlying mechanisms. We found that hexahydrocurcumin (HHC), a metabolite of curcumin, had better retinal protection than curcumin. However, the involved mechanisms remain unclear. METHODS By exposing ARPE-19 human RPE cells and mouse primary RPE cells to blue light, the intracellular mechanisms of HHC in cells were investigated, including the proliferation of RPE cells and the effects of HHC on activating intracellular protective mechanisms and related factors. Next-generation sequencing (NGS) RNA sequencing revealed the underlying mechanisms involved in the induction and regulation of HHC treatment following blue light exposure. RESULTS HHC promoted autophagy by enhancing autophagic flux, reduced oxidative stress and endoplasmic reticulum (ER) stress, and effectively reversed blue light-induced cell death. RNA sequencing-based bioinformatics approaches comprehensively analyze HHC-mediated cellular processes. CONCLUSION Our findings elucidate the mechanisms of HHC against blue light damage in RPE cells and are beneficial for the development of natural metabolite-based preventive drugs or functional foods.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yun-Tzu Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chen-Xi He
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Kuo-Jen Chen
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 807, Taiwan
| | - Po-Yen Lee
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 807, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
| |
Collapse
|
22
|
Yiang GT, Wu CC, Lu CL, Hu WC, Tsai YJ, Huang YM, Su WL, Lu KC. Endoplasmic Reticulum Stress in Elderly Patients with COVID-19: Potential of Melatonin Treatment. Viruses 2023; 15:156. [PMID: 36680196 PMCID: PMC9863214 DOI: 10.3390/v15010156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aging processes, including immunosenescence, inflammation, inflammasome formation, genomic instability, telomeric attrition, and altered autophagy, are involved in viral infections and they may contribute to increased pathophysiological responses to the SARS-CoV-2 infection in the elderly; this poses additional risks of accelerated aging, which could be found even after recovery. Aging is associated with oxidative damage. Moreover, SARS-CoV-2 infections may increase the production of reactive oxygen species and such infections will disturb the Ca++ balance via an endoplasmic reticulum (ER) stress-mediated unfolded protein response. Although vaccine development and anti-inflammation therapy lower the severity of COVID-19, the prevalence and mortality rates are still alarming in some countries worldwide. In this review, we describe the involvement of viral proteins in activating ER stress transducers and their downstream signals and in inducing inflammation and inflammasome formation. Furthermore, we propose the potential of melatonin as an ER stress modulator, owing to its antioxidant, anti-inflammatory, and immunoregulatory effects in viral infections. Considering its strong safety profile, we suggest that additive melatonin supplementation in the elderly could be beneficial in treating COVID-19.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Yi-Ju Tsai
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei 243, Taiwan
| | - Yiao-Mien Huang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Wen-Lin Su
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| |
Collapse
|
23
|
A road to contemporary era of hepatitis B virus regimen replacing existing therapeutics exploiting plant secondary metabolites as emerging heroes in exploring drugs: An expedition for a functional cure. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Liu X, Wang M, Kan Q, Lin Y, Jiang Z. Qingfei Tongluo Formula Mitigates Mycoplasma pneumoniae Infection via the PERK Signaling Pathway. DISEASE MARKERS 2022; 2022:9340353. [PMID: 36523813 PMCID: PMC9747313 DOI: 10.1155/2022/9340353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 08/25/2023]
Abstract
Mycoplasma pneumoniae pneumonia (MPP) is usually found in school-aged children and relapses easily because of antibiotic resistance. The Qingfei Tongluo formula (QTF) is a clinically used traditional Chinese medicine to treat MPP. Our previous study demonstrated that QTF exhibited ameliorative effects on the experimental MPP mice model. In this study, the function and underlying QTF mechanism in MPP was attempted to be further explored. Mycoplasma pneumoniae (MP) was applied to infect A549 cells and BALB/c mice to mimic MPP in vitro and in vivo. Cytokine release and reactive oxygen species (ROS) production were analyzed using enzyme-linked immunosorbent assay (ELISA) assay and flow cytometry. Western blot analysis was used to detect the protein involved in ER stress. MP infection was found to enhance cytokine release and ER stress in vitro and in vivo, and this effect could be alleviated by QTF. Moreover, protein kinase RNA-like endoplasmic reticulum kinase (PERK) knockdown alleviated MP infection-induced cytokine release, ROS production, and ER stress in A549 cells while the PERK overexpression exhibited the opposite effects. In conclusion, QTF alleviated MP infection-induced cytokine release, ROS production, and ER stress via PERK signaling pathway inhibition.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Mingjing Wang
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Qianna Kan
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Yan Lin
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Zhiyan Jiang
- Department of Pediatrics, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
25
|
Host resistance to Mycoplasma gallisepticum infection is enhanced by inhibiting PI3K/Akt pathway in Andrographolide-treating chickens. Int Immunopharmacol 2022; 113:109419. [DOI: 10.1016/j.intimp.2022.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
26
|
Discovery of dehydroandrographolide derivatives with C19 hindered ether as potent anti-ZIKV agents with inhibitory activities to MTase of ZIKV NS5. Eur J Med Chem 2022; 243:114710. [DOI: 10.1016/j.ejmech.2022.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022]
|
27
|
Gómez-Sierra T, Jiménez-Uribe AP, Ortega-Lozano AJ, Ramírez-Magaña KJ, Pedraza-Chaverri J. Antioxidants affect endoplasmic reticulum stress-related diseases. VITAMINS AND HORMONES 2022; 121:169-196. [PMID: 36707134 DOI: 10.1016/bs.vh.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The endoplasmic reticulum (ER) is a complex multifunctional organelle that maintains cell homeostasis. Intrinsic and extrinsic factors alter ER functions, including the rate of protein folding that triggers the accumulation of misfolded proteins and alters homeostasis, thus generating stress in the ER, which activates the unfolded protein response (UPR) pathway to promote cell survival and restore their homeostasis; however, if the damage is not corrected, it could also trigger cell death. In addition, ER stress and oxidative stress are closely related because excessive production of reactive oxygen species (ROS), a well-known inducer of ER stress, promotes the accumulation of misfolded proteins; at the same time, the ER stress enhances ROS production, generating a pathological cycle. Furthermore, it has been described that the dysregulation of the UPR contributes to the progression of various diseases, so the use of compounds capable of regulating ER stress, such as antioxidants, has been used in several experimental models of diseases to alleviate the damage induced by the maladaptive signaling of the UPR, the mechanism of action of antioxidants generally is dose-dependent, and it is specific in each tissue and pathology, could decrease or enhance specific proteins of the UPR to have beneficial or detrimental effects.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Alexis Paulina Jiménez-Uribe
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Ariadna Jazmín Ortega-Lozano
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
28
|
Zhang X, Yang Z, Pan T, Long X, Sun Q, Wang PH, Li X, Kuang E. SARS-CoV-2 ORF3a induces RETREG1/FAM134B-dependent reticulophagy and triggers sequential ER stress and inflammatory responses during SARS-CoV-2 infection. Autophagy 2022; 18:2576-2592. [PMID: 35239449 PMCID: PMC9629087 DOI: 10.1080/15548627.2022.2039992] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 infections have resulted in a very large number of severe cases of COVID-19 and deaths worldwide. However, knowledge of SARS-CoV-2 infection, pathogenesis and therapy remains limited, emphasizing the urgent need for fundamental studies and drug development. Studies have shown that induction of macroautophagy/autophagy and hijacking of the autophagic machinery are essential for the infection and replication of SARS-CoV-2; however, the mechanism of this manipulation and the function of autophagy during SARS-CoV-2 infection remain unclear. In the present study, we identified ORF3a as an inducer of autophagy (in particular reticulophagy) and revealed that ORF3a localizes to the ER and induces RETREG1/FAM134B-related reticulophagy through the HMGB1-BECN1 (beclin 1) pathway. As a consequence, ORF3a induces ER stress and inflammatory responses through reticulophagy and then sensitizes cells to the acquisition of an ER stress-related early apoptotic phenotype and facilitates SARS-CoV-2 infection, suggesting that SARS-CoV-2 ORF3a hijacks reticulophagy and then disrupts ER homeostasis to induce ER stress and inflammatory responses during SARS-CoV-2 infection. These findings reveal the sequential induction of reticulophagy, ER stress and acute inflammatory responses during SARS-CoV-2 infection and imply the therapeutic potential of reticulophagy and ER stress-related drugs for COVID-19.Abbreviations: CQ: chloroquine; DEGs: differentially expressed genes; ER: endoplasmic reticulum; GSEA: gene set enrichment analysis; HMGB1: high mobility group box 1; HMOX1: heme oxygenase 1; MERS-CoV: Middle East respiratory syndrome coronavirus; RETREG1/FAM134B: reticulophagy regulator 1; RTN4: reticulon 4; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TN: tunicamycin.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ziwei Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Xubing Long
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Pei-Hui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Shandong, Jinan, China
| | - Xiaojuan Li
- College of Clinic Medicine, Hubei University of Chinese Medicine, Hubei, Wuhan, China,CONTACT Xiaojuan Li College of Clinic Medicine, Hubei University of Chinese Medicine, Hubei, Wuhan430061, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China,Ersheng Kuang Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, Guangzhou, 510080, China
| |
Collapse
|
29
|
Scientific production on medicinal plants and their efficacy against Covid-19: A review and scientometric analysis based on VOSviewer. ACTA ECOLOGICA SINICA 2022. [PMCID: PMC9613811 DOI: 10.1016/j.chnaes.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Historically, numerous plants have been used to alleviate various diseases, particularly viral diseases (bronchitis, influenza virus and dengue virus). This review evaluated their therapeutic potential against Covid-19 and mapped the 10 most studied plants during the pandemic. The standardized protocol for systematic reviews (PRISMA-P) was developed in this study. All studies involving medicinal plants and their potential against Covid-19 infection were also considered. Two specific search fields “traditional medicine and Covid-19” and “medicinal plants and Covid-19” with appearance in the title, abstract and keywords were used to search for information. Only papers (review and original) published between 2020 and October 2021 were included. Short communications, letters to the editor, books and book chapters were excluded. A total of 24,046 articles were recorded among the four databases and an increase of 69% in publications for the 2021 search date, a higher percentage compared to the previous year (31%). China was the country with the highest production with 28% (2725 papers). The analysis of variance showed that the number of studies of Nigella sativa L. (1.62 ± 0.21; p = 0.02), Glycyrrhiza glabra L. (1.50 ± 0.32; p = 0.03), Zingiber officinale Roscoe (1.51 ± 0.32; p = 0.03) were statistically significant with respect to the other species. This is probably because these species show compounds with high antiviral spectrum. Despite the pharmacological potential found in medicinal plants, more large-scale clinical trials are still needed to demonstrate the efficacy of phytocompounds against viral diseases.
Collapse
|
30
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Of particular interest for this topic are the signaling cascades that regulate cell survival and death, two opposite cell programs whose control is hijacked by viral infections. The AKT and the Unfolded Protein Response (UPR) pathways, which maintain cell homeostasis by regulating these two programs, have been shown to be deregulated during SARS-CoVs infection as well as in the development of cancer, one of the most important comorbidities in relation to COVID-19. Recent evidence revealed two way crosstalk mechanisms between the AKT and the UPR pathways, suggesting that they might constitute a unified homeostatic control system. Here, we review the role of the AKT and UPR pathways and their interaction in relation to SARS-CoV-2 infection as well as in tumor onset and progression. Feedback regulation between AKT and UPR pathways emerges as a master control mechanism of cell decision making in terms of survival or death and therefore represents a key potential target for developing treatments for both viral infection and cancer. In particular, drug repositioning, the investigation of existing drugs for new therapeutic purposes, could significantly reduce time and costs compared to de novo drug discovery.
Collapse
|
31
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
32
|
Al-Kuraishy HM, Al-Gareeb AI, Gabriela Bungau S, Radu AF, El-Saber Batiha G. The potential molecular implications of adiponectin in the evolution of SARS-CoV-2: Inbuilt tendency. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102347. [PMID: 36211634 PMCID: PMC9524222 DOI: 10.1016/j.jksus.2022.102347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/16/2022]
Abstract
Adiponectin (APN) is an adipokine concerned in the regulation of glucose metabolism, insulin sensitivity and fatty acid oxidation. APN plays a critical role in viral infections by regulating the immune response through its anti-inflammatory/pro-inflammatory axis. Reduction of APN may augment the severity of viral infections because APN inhibits immune cells’ response via suppression of inflammatory signaling pathways and stimulation of adenosine monophosphate protein kinase (AMPK). Moreover, APN inhibits the stimulation of nuclear factor kappa B (NF-κB) and regulates the release of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukins (IL-18, IL-6). In COVID-19, abnormalities of the fatty tissue due to oxidative stress (OS) and hyperinflammation may inhibit the production and release of APN. APN has lung-protective effect and can prevent SARS-CoV-2-induced acute lung injury (ALI) through the amelioration of endoplasmic reticulum (ER) stress, endothelial dysfunction (ED) and stimulation of peroxisome proliferator-activated receptor-alpha (PPAR-α). It has been established that there is a potential correlation between inflammatory signal transduction pathways and APN that contributes to the development of SARS-CoV-2 infections. Deregulation of these molecular pathways affects the expression of APN and vice versa. In addition, the reduction of APN effect in SARS-CoV-2 infection could be a potential cause of the exacerbation of pro-inflammatory effects which are associated with the disease severity. In this context, exploratory, developmental, and extensive prospective studies are necessary.
Collapse
|
33
|
Li A, Yang J, Qian J, Shao X, Liao J, Lu X, Fan X. Tracing the cell-type-specific modules of immune responses during COVID-19 progression using scDisProcema. Comput Struct Biotechnol J 2022; 20:3545-3555. [PMID: 35811838 PMCID: PMC9250167 DOI: 10.1016/j.csbj.2022.06.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/16/2022] Open
Abstract
COVID-19 has caused severe threats to lives and damage to property worldwide. The immunopathology of the disease is of particular concern. Currently, researchers have used gene co-expression networks (GCNs) to deepen the study of molecular mechanisms of immune responses to COVID-19. However, most efforts have not fully explored dynamic changes of cell-type-specific molecular networks in the disease process. This study proposes a GCN construction pipeline named single-cell Disease Progression cellular module analysis (scDisProcema), which can trace dynamic changes of immune system response during disease progression using single-cell data. Here, scDisProcema considers changes in cell fate and expression patterns during disease development, identifying gene modules responsible for different immune cells. The hub genes are screened for each module by the specific expression level and the intercellular connectivity of modules. Based on functional items enriched by each gene module, we elucidate the biological processes of different cells involved in disease development and explain the molecular mechanisms underlying the process of cell depletion or proliferation caused by disease. Compared with traditional WGCNA methods, scDisProcema can make more convenient use of the heterogeneity information provided by scRNA-seq data and has great potential in exploring molecular changes during disease progression and organ development.
Collapse
Affiliation(s)
- Anyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jihong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
- Zhang Boli Intelligent Health Innovation Lab, Hangzhou 311100, China
| | - Jingyang Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jie Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xiaoyan Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
- Corresponding author at: College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Lee M, Chang Y, Ahmadinejad N, Johnson-Agbakwu C, Bailey C, Liu L. COVID-19 mortality is associated with pre-existing impaired innate immunity in health conditions. PeerJ 2022; 10:e13227. [PMID: 35547187 PMCID: PMC9083528 DOI: 10.7717/peerj.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 01/12/2023] Open
Abstract
COVID-19 can be life-threatening to individuals with chronic diseases. To prevent severe outcomes, it is critical that we comprehend pre-existing molecular abnormalities found in common health conditions that predispose patients to poor prognoses. In this study, we focused on 14 pre-existing health conditions for which increased hazard ratios of COVID-19 mortality have been documented. We hypothesized that dysregulated gene expression in these pre-existing health conditions were risk factors of COVID-19 related death, and the magnitude of dysregulation (measured by fold change) were correlated with the severity of COVID-19 outcome (measured by hazard ratio). To test this hypothesis, we analyzed transcriptomics data sets archived before the pandemic in which no sample had COVID-19. For a given pre-existing health condition, we identified differentially expressed genes by comparing individuals affected by this health condition with those unaffected. Among genes differentially expressed in multiple health conditions, the fold changes of 70 upregulated genes and 181 downregulated genes were correlated with hazard ratios of COVID-19 mortality. These pre-existing dysregulations were molecular risk factors of severe COVID-19 outcomes. These genes were enriched with endoplasmic reticulum and mitochondria function, proinflammatory reaction, interferon production, and programmed cell death that participate in viral replication and innate immune responses to viral infections. Our results suggest that impaired innate immunity in pre-existing health conditions is associated with increased hazard of COVID-19 mortality. The discovered molecular risk factors are potential prognostic biomarkers and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew Lee
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Yung Chang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Navid Ahmadinejad
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | | | - Celeste Bailey
- Valleywise Health Medical Center, Phoenix, AZ, United States
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States,Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
35
|
Chaudhry ZL, Gamal M, Ferhati I, Warda M, Ahmed BY. ER Stress in COVID-19 and Parkinson’s Disease: In Vitro and In Silico Evidences. Brain Sci 2022; 12:brainsci12040507. [PMID: 35448038 PMCID: PMC9025812 DOI: 10.3390/brainsci12040507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023] Open
Abstract
The outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signifies a serious worldwide concern to public health. Both transcriptome and proteome of SARS-CoV-2-infected cells synergize the progression of infection in host, which may exacerbate symptoms and/or progression of other chronic diseases such as Parkinson’s disease (PD). Oxidative stress is a well-known cause of endoplasmic reticulum (ER) stress observed in both SARS-CoV-2 and PD. In the current study, we aimed to explore the influence of PKR-like ER kinase (PERK) stress pathway under SARS-CoV-2-mediated infection and in human cell model of PD. Furthermore, we investigated whether they are interconnected and if the ER stress inhibitors could inhibit cell death and provide cellular protection. To achieve this aim, we have incorporated in silico analysis obtained from gene set enrichment analysis (GSEA), a literature review and laboratory data. The neurotoxin, 6-hydroxy dopamine (6OHDA), was used to mimic the biochemical and neuropathological characteristics of PD by inducing oxidative stress in dopamine-containing neurons differentiated from ReNVM cell line (dDCNs). Furthermore, we explored if ER stress influences activation of caspases-2, -4 and -8 in SARS-CoV-2 and in stressed dDCNs. Our laboratory data using Western blot, immunocytochemistry and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) analyses indicated that 6OHDA-induced toxicity triggered activation of caspases-2, -4 and -8 in dDCNs. Under SARS-CoV-2 infection of different cell types, GSEA revealed cell-specific sensitivities to oxidative and ER stresses. Cardiomyocytes and type II alveolar epithelial-like cells were more vulnerable to oxidative stress than neural cells. On the other side, only cardiomyocytes activated the unfolded protein response, however, the PERK pathway was operative in both cardiomyocytes and neural cells. In addition, caspase-4 activation by a SARS-CoV-2 was observed via in silico analyses. These results demonstrate that the ER stress pathway under oxidative stress in SARS-CoV-2 and PD are interconnected using diverse pathways. Furthermore, our results using the ER stress inhibitor and caspase specific inhibitors provided cellular protection suggesting that the use of specific inhibitors can provide effective therapeutic approaches for the treatment of COVID-19 and PD.
Collapse
Affiliation(s)
- Zahara L. Chaudhry
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (I.F.)
| | - Mahmoud Gamal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.G.); (M.W.)
| | - Ingrid Ferhati
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (I.F.)
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.G.); (M.W.)
| | - Bushra Y. Ahmed
- Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; (Z.L.C.); (I.F.)
- Correspondence:
| |
Collapse
|
36
|
Chloroquine and COVID-19—A systems biology model uncovers the drug’s detrimental effect on autophagy and explains its failure. PLoS One 2022; 17:e0266337. [PMID: 35390060 PMCID: PMC8989232 DOI: 10.1371/journal.pone.0266337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/19/2022] [Indexed: 12/05/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in an urgent need for identifying potential therapeutic drugs. In the first half of 2020 tropic antimalarial drugs, such as chloroquine (CQ) or hydroxochloroquine (HCQ) were the focus of tremendous public attention. In the initial periods of the pandemic, many scientific results pointed out that CQ/HCQ could be very effective for patients with severe COVID. While CQ and HCQ have successfully been used against several diseases (such as malaria, autoimmune disease and rheumatic illnesses); long term use of these agents are associated with serious adverse effects (i.e. inducing acute kidney injury, among many others) due to their role in blocking autophagy-dependent self-degradation. Recent experimental and clinical trial data also confirmed that there is no sufficient evidence about the efficient usage of CQ/HCQ against COVID-19. By using systems biology techniques, here we show that the cellular effect of CQ/HCQ on autophagy during endoplasmic reticulum (ER) stress or following SARS-CoV-2 infection results in upregulation of ER stress. By presenting a simple mathematical model, we claim that although CQ/HCQ might be able to ameliorate virus infection, the permanent inhibition of autophagy by CQ/HCQ has serious negative effects on the cell. Since CQ/HCQ promotes apoptotic cell death, here we confirm that addition of CQ/HCQ cannot be really effective even in severe cases. Only a transient treatment seemed to be able to avoid apoptotic cell death, but this type of therapy could not limit virus replication in the infected host. The presented theoretical analysis clearly points out the utility and applicability of systems biology modelling to test the cellular effect of a drug targeting key major processes, such as autophagy and apoptosis. Applying these approaches could decrease the cost of pre-clinical studies and facilitate the selection of promising clinical trials in a timely fashion.
Collapse
|
37
|
Programmed cell death: the pathways to severe COVID-19? Biochem J 2022; 479:609-628. [PMID: 35244141 PMCID: PMC9022977 DOI: 10.1042/bcj20210602] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
Collapse
|
38
|
Oxidative Stress Derived from COVID-19 and Its Possible Association with the Development of Neurodegenerative Diseases. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Trinh QD. Recent Research in Cell Stress and Microbial Infection. Microorganisms 2022; 10:622. [PMID: 35336195 PMCID: PMC8951272 DOI: 10.3390/microorganisms10030622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Microbial infection, including bacterial, viral, fungal, and parasitic, is a common human disease leading to various cell stresses [...].
Collapse
Affiliation(s)
- Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
40
|
Liu X, Wen YZ, Huang ZL, Shen X, Wang JH, Luo YH, Chen WX, Lun ZR, Li HB, Qu LH, Shan H, Zheng LL. SARS-CoV-2 causes a significant stress response mediated by small RNAs in the blood of COVID-19 patients. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:751-762. [PMID: 35003892 PMCID: PMC8719421 DOI: 10.1016/j.omtn.2021.12.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a serious impact on the world. In this study, small RNAs from the blood of COVID-19 patients with moderate or severe symptoms were extracted for high-throughput sequencing and analysis. Interestingly, the levels of a special group of tRNA-derived small RNAs (tsRNAs) were found to be dramatically upregulated after SARS-CoV-2 infection, particularly in coronavirus disease 2019 (COVID-19) patients with severe symptoms. In particular, the 3′CCA tsRNAs from tRNA-Gly were highly consistent with the inflammation indicator C-reactive protein (CRP). In addition, we found that the majority of significantly changed microRNAs (miRNAs) were associated with endoplasmic reticulum (ER)/unfolded protein response (UPR) sensors, which may lead to the induction of proinflammatory cytokine and immune responses. This study found that SARS-CoV-2 infection caused significant changes in the levels of stress-associated small RNAs in patient blood and their potential functions. Our research revealed that the cells of COVID-19 patients undergo tremendous stress and respond, which can be reflected or regulated by small non-coding RNA (sncRNAs), thus providing potential thought for therapeutic intervention in COVID-19 by modulating small RNA levels or activities.
Collapse
Affiliation(s)
- Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Yan-Zi Wen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zi-Liang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xia Shen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511458, P. R. China.,Center for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Jun-Hao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yi-Hai Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wen-Xin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hui-Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China.,Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P. R. China
| | - Ling-Ling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
41
|
Li N, Xu D, Huang RH, Zheng JY, Liu YY, Hu BS, Gu YQ, Du Q. A New Source of Diterpene Lactones From Andrographis paniculata (Burm. f.) Nees—Two Endophytic Fungi of Colletotrichum sp. With Antibacterial and Antioxidant Activities. Front Microbiol 2022; 13:819770. [PMID: 35295309 PMCID: PMC8918950 DOI: 10.3389/fmicb.2022.819770] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Endophytic fungi of medicinal plants are abundant, and their metabolites often have antioxidant, antibacterial, and antitumor effects and can produce secondary metabolites identical or similar to those of their hosts, which can mitigate the problem of insufficient supply of medicinal plants. In this study, we screened endophytic fungi for strains that produce the same diterpene lactones as Andrographis paniculata based on their biological activity. Firstly, the dominant group of endophytic fungi of Andrographis paniculata was screened and pathogenicity was studied using Koch’s rule. Secondly, DPPH, ABTS, OH, PTIO radical scavenging, and FRAP assays were used to detect the antioxidant activity of the extracellular extracts of the strains, and total phenol and total flavonoid contents of the strains with high antioxidant capacity were determined. S. aureus, B. subtilis, E. coli, and P. aeruginosa were used to determine the antibacterial activity of the mycelial extracts of the strains. Finally, the secondary metabolites of the mycelial extracts of the strains were examined by high-performance liquid chromatography. The results showed that 32 strains of Andrographis paniculata were relatively isolated > 70% and non-pathogenic. Extracellular extracts of strains AP-1 and AP-4 showed vigorous antioxidant activity, and AP-4, AP-12, AP-47, and AP-48 showed antibacterial activity against four strains of bacteria. The HPLC results indicated that the mycelial extracts of AP-4 and AP-12 contained diterpene lactones. The two endophytic fungi were recognized as Colletotrichum sp. The study successfully obtained diterpene lactones from the endophytic fungus of Andrographis paniculata and confirmed the feasibility of using endophytic fungal strains to produce active substances consistent with the host. It was also useful for exploring endophytic fungi and medicinal plants. The relationship provides theoretical guidance.
Collapse
|
42
|
Wang Q, Zhou L, Wang J, Su D, Li D, Du Y, Yang G, Zhang G, Chu B. African Swine Fever Virus K205R Induces ER Stress and Consequently Activates Autophagy and the NF-κB Signaling Pathway. Viruses 2022; 14:v14020394. [PMID: 35215987 PMCID: PMC8880579 DOI: 10.3390/v14020394] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
African swine fever virus (ASFV) is responsible for enormous economic losses in the global swine industry. The ASFV genome encodes approximate 160 proteins, most of whose functions remain largely unknown. In this study, we examined the roles of ASFV K205R in endoplasmic reticulum (ER) stress, autophagy, and inflammation. We observed that K205R was located in both the cytosolic and membrane fractions, and formed stress granules in cells. Furthermore, K205R triggered ER stress and activated the unfolded protein response through activating the transcription factor 6, ER to nucleus signaling 1, and eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3/PERK) signaling pathways. Moreover, K205R inhibited the serine/threonine kinase 1 and the mechanistic target of the rapamycin kinase signaling pathway, thereby activating unc-51 like autophagy activating kinase 1, and hence autophagy. In addition, K205R stimulated the translocation of P65 into the nucleus and the subsequent activation of the nuclear factor kappa B (NF-κB) signaling pathway. Inhibition of ER stress with a PERK inhibitor attenuated K205R-induced autophagy and NF-κB activation. Our data demonstrated a previously uncharacterized role of ASFV K205R in ER stress, autophagy, and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Q.W.); (L.Z.); (J.W.); (D.S.); (D.L.); (Y.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Henan Agricultural University, Zhengzhou 450046, China
| | - Luyu Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Q.W.); (L.Z.); (J.W.); (D.S.); (D.L.); (Y.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Q.W.); (L.Z.); (J.W.); (D.S.); (D.L.); (Y.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Henan Agricultural University, Zhengzhou 450046, China
| | - Dan Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Q.W.); (L.Z.); (J.W.); (D.S.); (D.L.); (Y.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Henan Agricultural University, Zhengzhou 450046, China
| | - Dahua Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Q.W.); (L.Z.); (J.W.); (D.S.); (D.L.); (Y.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Q.W.); (L.Z.); (J.W.); (D.S.); (D.L.); (Y.D.)
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoyu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
- College of Animal Science & Techmology, Henan University of Animal Husbandry and Economy, Zhengzhou 450047, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Q.W.); (L.Z.); (J.W.); (D.S.); (D.L.); (Y.D.)
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence: (G.Z.); (B.C.)
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Q.W.); (L.Z.); (J.W.); (D.S.); (D.L.); (Y.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China;
- Key Laboratory of Animal Growth and Development, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence: (G.Z.); (B.C.)
| |
Collapse
|
43
|
Kelleni MT. NSAIDs and Kelleni's protocol as potential early COVID-19 treatment game changer: could it be the final countdown? Inflammopharmacology 2022; 30:343-348. [PMID: 34822026 PMCID: PMC8613510 DOI: 10.1007/s10787-021-00896-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
We have previously published several papers illustrating numerous immunomodulatory and anti-inflammatory potential benefits when we repurposed safe, generic non-steroidal anti-inflammatory drugs (NSAIDs)/nitazoxanide/azithromycin (Kelleni's protocol), to early manage our COVID-19 pediatric, adult, and pregnant patients. In this manuscript, we discuss some recently published meta-analysis and clinical studies supporting our practice and discuss a molecular study that might be interpreted as an academic proof that our protocol might also prevent SARS-CoV-2 replication. Moreover, after aspirin has been suggested to be independently associated with reduced risk of mechanical ventilation, ICU admission and in-hospital mortality of COVID-19, we claim that the molecular interpretation of the results that led to this suggestion was not scientifically accurate, and we provide our academic interpretation confirming that low-dose aspirin is least likely to improve COVID-19 mortality through anticoagulation as was suggested. Furthermore, we describe other potential benefits related to aspirin-triggered lipoxins and resolvins while illustrating how NSAIDs interfere with COX-1, COX-2, SARS-CoV-2/ SARS-CoV-2 ORF protein-dependent activation of caspases and their subsequent mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis and necroptosis which were associated with COVID-19 complications. Similarly, NSAIDs are known caspase inhibitors and thus they might independently inhibit other caspase-related COVID-19-associated downstream pathological signaling mechanisms. Finally, we postulated that CARD-14, a caspase recruitment domain-containing protein, polymorphisms might play a role in the development of severe and critical COVID-19 and confirmed our old call to early adopt NSAIDs, as an integral part of Kelleni's protocol, as of choice in its management aiming to end this pandemic.
Collapse
Affiliation(s)
- Mina T Kelleni
- Pharmacology Department, College of Medicine, Minia University, Minya, Egypt.
| |
Collapse
|
44
|
Xue M, Feng L. The Role of Unfolded Protein Response in Coronavirus Infection and Its Implications for Drug Design. Front Microbiol 2022; 12:808593. [PMID: 35003039 PMCID: PMC8740020 DOI: 10.3389/fmicb.2021.808593] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus is an important pathogen with a wide spectrum of infection and potential threats to humans and animals. Its replication occurs in the cytoplasm and is closely related to the endoplasmic reticulum (ER). Studies reported that coronavirus infection causes ER stress, and cells simultaneously initiate unfolded protein response (UPR) to alleviate the disturbance of ER homeostasis. Activation of the three branches of UPR (PERK, IRE1, and ATF6) modulates various signaling pathways, such as innate immune response, microRNA, autophagy, and apoptosis. Therefore, a comprehensive understanding of the relationship between coronavirus and ER stress is helpful to understand the replication and pathogenesis of coronavirus. This paper summarizes the current knowledge of the complex interplay between coronavirus and UPR branches, focuses on the effect of ER stress on coronavirus replication and coronavirus resistance to host innate immunity, and summarizes possible drug targets to regulate the impact of coronavirus infection.
Collapse
Affiliation(s)
- Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
45
|
Satoh T, Trudler D, Oh CK, Lipton SA. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer's Disease, Parkinson's Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants (Basel) 2022; 11:124. [PMID: 35052628 PMCID: PMC8772720 DOI: 10.3390/antiox11010124] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rosemary (Rosmarinus officinalis [family Lamiaceae]), an herb of economic and gustatory repute, is employed in traditional medicines in many countries. Rosemary contains carnosic acid (CA) and carnosol (CS), abietane-type phenolic diterpenes, which account for most of its biological and pharmacological actions, although claims have also been made for contributions of another constituent, rosmarinic acid. This review focuses on the potential applications of CA and CS for Alzheimer's disease (AD), Parkinson's disease (PD), and coronavirus disease 2019 (COVID-19), in part via inhibition of the NLRP3 inflammasome. CA exerts antioxidant, anti-inflammatory, and neuroprotective effects via phase 2 enzyme induction initiated by activation of the KEAP1/NRF2 transcriptional pathway, which in turn attenuates NLRP3 activation. In addition, we propose that CA-related compounds may serve as therapeutics against the brain-related after-effects of SARS-CoV-2 infection, termed "long-COVID." One factor that contributes to COVID-19 is cytokine storm emanating from macrophages as a result of unregulated inflammation in and around lung epithelial and endovascular cells. Additionally, neurological aftereffects such as anxiety and "brain fog" are becoming a major issue for both the pandemic and post-pandemic period. Many reports hold that unregulated NLRP3 inflammasome activation may potentially contribute to the severity of COVID-19 and its aftermath. It is therefore possible that suppression of NLRP3 inflammasome activity may prove efficacious against both acute lung disease and chronic neurological after-effects. Because CA has been shown to not only act systemically but also to penetrate the blood-brain barrier and reach the brain parenchyma to exert neuroprotective effects, we discuss the evidence that CA or rosemary extracts containing CA may represent an effective countermeasure against both acute and chronic pathological events initiated by SARS-CoV-2 infection as well as other chronic neurodegenerative diseases including AD and PD.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Anti-Aging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Japan
| | - Dorit Trudler
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
| | - Chang-Ki Oh
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
| | - Stuart A. Lipton
- Departments of Molecular Medicine and Neuroscience and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; (D.T.); (C.-K.O.)
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Weingartner M, Stücheli S, Jebbawi F, Gottstein B, Beldi G, Lundström-Stadelmann B, Wang J, Odermatt A. Albendazole reduces hepatic inflammation and endoplasmic reticulum-stress in a mouse model of chronic Echinococcus multilocularis infection. PLoS Negl Trop Dis 2022; 16:e0009192. [PMID: 35030165 PMCID: PMC8794265 DOI: 10.1371/journal.pntd.0009192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/27/2022] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinococcus multilocularis causes alveolar echinococcosis (AE), a rising zoonotic disease in the northern hemisphere. Treatment of this fatal disease is limited to chemotherapy using benzimidazoles and surgical intervention, with frequent disease recurrence in cases without radical surgery. Elucidating the molecular mechanisms underlying E. multilocularis infections and host-parasite interactions ultimately aids developing novel therapeutic options. This study explored an involvement of unfolded protein response (UPR) and endoplasmic reticulum-stress (ERS) during E. multilocularis infection in mice. METHODS E. multilocularis- and mock-infected C57BL/6 mice were subdivided into vehicle, albendazole (ABZ) and anti-programmed death ligand 1 (αPD-L1) treated groups. To mimic a chronic infection, treatments of mice started six weeks post i.p. infection and continued for another eight weeks. Liver tissue was then collected to examine inflammatory cytokines and the expression of UPR- and ERS-related genes. RESULTS E. multilocularis infection led to an upregulation of UPR- and ERS-related proteins in the liver, including ATF6, CHOP, GRP78, ERp72, H6PD and calreticulin, whilst PERK and its target eIF2α were not affected, and IRE1α and ATF4 were downregulated. ABZ treatment in E. multilocularis infected mice reversed, or at least tended to reverse, these protein expression changes to levels seen in mock-infected mice. Furthermore, ABZ treatment reversed the elevated levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in the liver of infected mice. Similar to ABZ, αPD-L1 immune-treatment tended to reverse the increased CHOP and decreased ATF4 and IRE1α expression levels. CONCLUSIONS AND SIGNIFICANCE AE caused chronic inflammation, UPR activation and ERS in mice. The E. multilocularis-induced inflammation and consecutive ERS was ameliorated by ABZ and αPD-L1 treatment, indicating their effectiveness to inhibit parasite proliferation and downregulate its activity status. Neither ABZ nor αPD-L1 themselves affected UPR in control mice. Further research is needed to elucidate the link between inflammation, UPR and ERS, and if these pathways offer potential for improved therapies of patients with AE.
Collapse
Affiliation(s)
- Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Bruno Gottstein
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, University Hospital of Bern, Bern, Switzerland
| | | | - Junhua Wang
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
47
|
Do CH, Lee DH. Synergism Between Taurine and Dexamethasone in Anti-inflammatory Response in LPS-Activated Macrophages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:31-39. [DOI: 10.1007/978-3-030-93337-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
48
|
Oussama Kacimi SE, Greca E, Haireche MA, Elhawary AS, Setti MO, Caruana R, Rizwan S, Benyettou H, Essar MY, Shah J, Ghozy S. The Place of Fluvoxamine in the Treatment of Non-critically ill Patients with COVID-19: A Living Systematic Review and Meta-analysis.. [DOI: 10.1101/2021.12.19.21268044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractBackgroundFluvoxamine is a selective serotonin reuptake inhibitor that is known to be used as antidepressant. Repurposing of Fluvoxamine for the treatment of COVID-19 is theorized to help in the prevention of the clinical deterioration of SARS CoV-2 patients. In our systematic review and meta-analysis, we aim to assess the safety and efficacy of the drug under study in terms of its effect on the mortality and the risk of hospitalization and mechanical ventilation in non-critically ill COVID-19 patients.MethodsWe performed a systematic search of seven electronic databases. The search results were screened based on the previously determined inclusion and exclusion criteria. We determined the data related to our objectives. The mortality rates, rates of hospitalization, risk of mechanical ventilation and serious side effects were extracted from the studies that successfully met our inclusion and exclusion criteria. Then, the extracted data from the included studies was included in the meta-analysis.ResultsThree studies, two randomized clinical trials and one observational cohort study, with 1762 patients, were the final outcome of our search and screening processes. Among all participants, 886 patients received Fluvoxamine while 876 were controls. Follow up periods ranged from 7 days to 28 days. There was no significant difference in the intention-to-treat mortality rates between the two groups (RR = 0.66; 95% CI: 0.36 - 1.21, p-value = 0.18; I2 = 0%). However, Fluvoxamine decreased the per-protocol mortality compared to both placebo alone or placebo/standard care (RR = 0.09; 95% CI: 0.01 - 0.64, p-value = 0.02; I2 = 0% and RR = 0.09; 95% CI: 0.01 - 0.72, respectively). As compared to placebo or standard care, the all-cause hospitalization was significantly reduced in the fluvoxamine group (RR = 0.71; 95% CI: 0.54 - 0.93, p-value = 0.01; I2 = 61%). This risk reduction was not significant when compared to placebo alone (RR = 0.76; 95% CI: 0.57 - 1.00; p-value = 0.051; I2 = 48%). Furthermore, the risk of mechanical ventilation was not improved in the fluvoxamine group as compared to placebo (RR = 0.71; 95% CI: 0.43 - 1.16, p-value = 0.17; I2 = 0%). The serious adverse effects were almost the same in the treatment group and the control (13% and 12% respectively).ConclusionFluvoxamine does not significantly reduce the mortality rates or the risk of mechanical ventilation in SARS CoV-2 patients. Nonetheless, it was found to have a good impact on reducing all cause hospitalization among patients with COVID-19 disease. Therefore, further clinical studies are needed to determine the effectiveness of the drug and its mechanisms of action.
Collapse
|
49
|
Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, Guo W, Xu Q, Sun Y. Advances in ameliorating inflammatory diseases and cancers by andrographolide: Pharmacokinetics, pharmacodynamics, and perspective. Med Res Rev 2021; 42:1147-1178. [PMID: 34877672 DOI: 10.1002/med.21873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022]
Abstract
Andrographolide, a well-known natural lactone having a range of pharmacological actions in traditional Chinese medicine. It has long been used to cure a variety of ailments. In this review, we cover the pharmacokinetics and pharmacological activity of andrographolide which supports its further clinical application in cancers and inflammatory diseases. Growing evidence shows a good therapeutic effect in inflammatory diseases, including liver diseases, joint diseases, respiratory system diseases, nervous system diseases, heart diseases, inflammatory bowel diseases, and inflammatory skin diseases. As a result, the effects of andrographolide on immune cells and the processes that underpin them are discussed. The preclinical use of andrographolide to different organs in response to malignancies such as colorectal, liver, gastric, breast, prostate, lung, and oral cancers has also been reviewed. In addition, several clinical trials of andrographolide in inflammatory diseases and cancers have been summarized. This review highlights recent advances in ameliorating inflammatory diseases as well as cancers by andrographolide and its analogs, providing a new perspective for subsequent research of this traditional natural product.
Collapse
Affiliation(s)
- Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qianqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Guoquan You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Ling Ye
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
50
|
Guo Z, Zhuo Y, Li K, Niu S, Dai H. Recent advances in cell homeostasis by African swine fever virus-host interactions. Res Vet Sci 2021; 141:4-13. [PMID: 34634684 DOI: 10.1016/j.rvsc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
African swine fever (ASF) is an acute hemorrhagic disease caused by the infection of domestic swine and wild boar by the African swine fever virus (ASFV), with a mortality rate close to 90-100%. ASFV has been spreading in the world and poses a severe economic threat to the swine industry. There is no high effective vaccine commercially available or drug for this disease. However, attenuated ASFV isolates may infect pigs by chronic infection, and the infected pigs will not be lethal, which may indicate that pigs can produce protective immunity to resistant ASFV. Immunity acquisition and virus clearances are the central pillars to maintain the host normal cell activities and animal survival dependent on virus-host interactions, which has offered insights into the biology of ASFV. This review is organized around general themes including native immunity, endoplasmic reticulum stress, cell apoptosis, ubiquitination, autophagy regarding the intricate relationship between ASFV protein-host. Elucidating the multifunctional role of ASFV proteins in virus-host interactions can provide more new insights on the initial virus sensing, clearance, and cell homeostasis, and contribute to understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Keke Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China.
| |
Collapse
|