1
|
Shen S, Fu B, Tian G, Qin S, Tan Z, Song C, Yi P, Peng L. Paeoniflorin inhibits APEC-induced inflammation in HD11 cells through the NF-κB signaling pathway by activating CB 2R. Poult Sci 2025; 104:104683. [PMID: 39721268 PMCID: PMC11730855 DOI: 10.1016/j.psj.2024.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a bacterial pathogen that threatens poultry reproduction by inciting systemic inflammation and leading to chicken colibacillosis. The endocannabinoid system (ECS) is an immunomodulator system that regulates inflammatory responses. In this study, we aimed to investigate the anti-inflammatory effect of paeoniflorin on APEC-infected HD11 cells and its underlying mechanism. The results showed that paeoniflorin significantly reduced the expression levels of pro-inflammatory factors (IL-1β, IL-6, TNF-α), M1-type macrophage-associated markers (IL-12, iNOS, CD86), and chemokines (CXCL8, CXCL12, CCL1, CCL5, CCL17). Additionally, paeoniflorin significantly reduced the expression of MAGL and restored that of DAGL and CB2R, thereby activating the ECS. Furthermore, we found that paeoniflorin and CB2R exhibited stable conformations through molecular docking and molecular dynamics simulations. The addition of the CB2R inhibitor AM630 notably diminished paeoniflorin's inhibitory effects on the phosphorylation levels of proteins in the NF-κB signaling pathway and on inflammatory responses. These results indicate that the anti-inflammatory effects of paeoniflorin on APEC-induced HD11 cells may be mediated by the inhibition of the NF-κB signaling pathway through the activation of CB2R. This work has the potential to provide a new agent for the control and prevention of chicken colibacillosis, as well as contribute to modern research in traditional Chinese medicine.
Collapse
Affiliation(s)
- Siyang Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Bendong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Guang Tian
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Shiyuan Qin
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Zhengfei Tan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Chengwen Song
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Luyuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
2
|
Marini P, Maccarrone M, Saso L, Tucci P. The Effect of Phytocannabinoids and Endocannabinoids on Nrf2 Activity in the Central Nervous System and Periphery. Neurol Int 2024; 16:776-789. [PMID: 39051218 PMCID: PMC11270200 DOI: 10.3390/neurolint16040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The relationship between nuclear factor erythroid 2-related factor 2 (Nrf2) and phytocannabinoids/endocannabinoids (pCBs/eCBs) has been investigated in a variety of models of peripheral illnesses, with little clarification on their interaction within the central nervous system (CNS). In this context, evidence suggests that the Nrf2-pCBs/eCBS interaction is relevant in modulating peroxidation processes and the antioxidant system. Nrf2, one of the regulators of cellular redox homeostasis, appears to have a protective role toward damaging insults to neurons and glia by enhancing those genes involved in the regulation of homeostatic processes. Specifically in microglia and macroglia cells, Nrf2 can be activated, and its signaling pathway modulated, by both pCBs and eCBs. However, the precise effects of pCBs and eCBs on the Nrf2 signaling pathway are not completely elucidated yet, making their potential clinical employment still not fully understood.
Collapse
Affiliation(s)
- Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
3
|
Barker H, Ferraro MJ. Exploring the versatile roles of the endocannabinoid system and phytocannabinoids in modulating bacterial infections. Infect Immun 2024; 92:e0002024. [PMID: 38775488 PMCID: PMC11237442 DOI: 10.1128/iai.00020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.
Collapse
Affiliation(s)
- Hailey Barker
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Noone J, Rooney MF, Karavyraki M, Yates A, O’Sullivan SE, Porter RK. Cancer-Cachexia-Induced Human Skeletal Muscle Myotube Degeneration Is Prevented via Cannabinoid Receptor 2 Agonism In Vitro. Pharmaceuticals (Basel) 2023; 16:1580. [PMID: 38004445 PMCID: PMC10675367 DOI: 10.3390/ph16111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cachexia syndrome, leading to reduced skeletal muscle and fat mass, is highly prevalent in cancer patients, resulting in further negative implications for these patients. To date, there is no approved therapy for cachexia syndrome. The objective of this study was to establish an in vitro model of cancer cachexia in mature human skeletal muscle myotubes, with the intention of exploiting the cell model to assess potential cachexia therapeutics, specifically cannabinoid related drugs. Having cultured and differentiated primary human muscle myoblasts to mature myotubes, we successfully established two cancer cachexia models using conditioned media (CM) from human colon adenocarcinoma (SW480) and from non-small-cell lung carcinoma (H1299) cultured cells. The cancer-CM-induced extensive myotube degeneration, demonstrated by a significant reduction in mature myotube diameter, which progressed over the period studied. Myotube degeneration is a characteristic feature of cancer cachexia and was used in this study as an index of cachexia. Expression of cannabinoid 1 and 2 receptors (CB1R and CB2R) was confirmed in the mature human skeletal muscle myotubes. Subsequently, the effect of cannabinoid compounds on this myotube degeneration were assessed. Tetrahydrocannabinol (THC), a partial CB1R/CB2R agonist, and JWH133, a selective CB2R agonist, proved efficacious in protecting mature human myotubes from the deleterious effects of both (SW480 and H1299) cancer cachexia conditions. ART27.13, a full, peripherally selective CB1R/CB2R agonist, currently being trialled in cancer cachexia (IRAS ID 278450, REC 20/NE/0198), was also significantly protective against myotube degeneration in both (SW480 and H1299) cancer cachexia conditions. Furthermore, the addition of the CB2R antagonist AM630, but not the CB1R antagonist Rimonabant, abolished the protective effect of ART27.13. In short, we have established a convenient and robust in vitro model of cancer-induced human skeletal muscle cachexia. The data obtained using the model demonstrate the therapeutic potential of ART27.13 in cancer-induced cachexia prevention and provides evidence indicating that this effect is via CB2R, and not CB1R.
Collapse
Affiliation(s)
- John Noone
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Mary F. Rooney
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Marilena Karavyraki
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| | - Andrew Yates
- Artelo Bioscience, Ltd., Alderly Edge, Cheshire SK10 4TG, UK (S.E.O.)
| | | | - Richard K. Porter
- School of Biochemistry & Immunology, Trinity College Dublin, D02R590 Dublin, Ireland; (J.N.); (M.F.R.)
| |
Collapse
|
5
|
Cai SL, Fan XG, Wu J, Wang Y, Hu XW, Pei SY, Zheng YX, Chen J, Huang Y, Li N, Huang ZB. CB2R agonist GW405833 alleviates acute liver failure in mice via inhibiting HIF-1α-mediated reprogramming of glycometabolism and macrophage proliferation. Acta Pharmacol Sin 2023; 44:1391-1403. [PMID: 36697976 PMCID: PMC10310807 DOI: 10.1038/s41401-022-01037-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2022] [Indexed: 01/26/2023]
Abstract
The inflammatory responses involving infiltration and activation of liver macrophages play a vital role in acute liver failure (ALF). In the liver of ALF mice, cannabinoid receptor 2 (CB2R) is significantly upregulated on macrophages, while CB2R agonist GW405833 (GW) could protect against cell death in acute liver damage. In this study, we investigated the molecular mechanisms underlying the protective effects of GW against ALF in vivo and in vitro from a perspective of macrophage glycometabolism. Mice were pretreated with GW (10 mg/kg, i.p.), then were injected with D-GalN (750 mg/kg, i.p.) and LPS (10 mg/kg, i.p.) to induce ALF. We verified the protective effects of GW pretreatment in ALF mice. Furthermore, GW pretreatment significantly reduced liver macrophage infiltration and M1 polarization, and inhibited the release of inflammatory factors TNF-α and IL-1β in ALF mice. These protective effects were eliminated by CB2R antagonist SR144528 or in CB2R-/- ALF mice. We used LPS-stimulated RAW264.7 cells as an in vitro M1 macrophage-centered model of inflammatory response, and demonstrated that pretreatment with GW (10 μM) significantly reduced glucose metabolism by inhibiting glycolysis, which inhibited LPS-induced macrophage proliferation and inflammatory cytokines release. We verified these results in a stable CB2R-/- RAW264.7 cell line. Moreover, we found that GW significantly inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Using a stable HIF-1α-/- RAW264.7 cell line, we confirmed that GW reduced the release of inflammatory cytokines from macrophages and inhibited glycolysis by downregulating HIF-1α expression. In conclusion, activation of CB2Rs inhibits the proliferation of hepatic macrophages and release of inflammatory factors in ALF mice through downregulating HIF-1α to inhibit glycolysis.
Collapse
Affiliation(s)
- Sheng-Lan Cai
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| | - Yang Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xing-Wang Hu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Si-Ya Pei
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi-Xiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
6
|
Watanabe A, Koike H, Kumagami N, Shimba S, Manabe I, Oishi Y. Arntl deficiency in myeloid cells reduces neutrophil recruitment and delays skeletal muscle repair. Sci Rep 2023; 13:6747. [PMID: 37185573 PMCID: PMC10130093 DOI: 10.1038/s41598-023-33830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
After a muscle injury, a process comprising inflammation, repair, and regeneration must occur in a time-sensitive manner for skeletal muscle to be adequately repaired and regenerated. This complex process is assumed to be controlled by various myeloid cell types, including monocytes and macrophages, though the mechanism is not fully understood. Aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) is a transcription factor that controls the circadian rhythm and has been implicated in regulating myeloid cell functions. In the present study, we generated myeloid cell-specific Arntl conditional knockout (cKO) mice to assess the role of Arntl expressed in myeloid cell populations during the repair process after muscle injury. Myeloid cell-specific Arntl deletion impaired muscle regeneration after cardiotoxin injection. Flow cytometric analyses revealed that, in cKO mice, the numbers of infiltrating neutrophils and Ly6Chi monocytes within the injured site were reduced on days 1 and 2, respectively, after muscle injury. Moreover, neutrophil migration and the numbers of circulating monocytes were significantly reduced in cKO mice, which suggests these effects may account, at least in part, for the impaired regeneration. These findings suggest that Arntl, expressed in the myeloid lineage regulates neutrophil and monocyte recruitment and is therefore required for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Aiko Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Naoki Kumagami
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
7
|
He Y, Jia H, Yang Q, Shan W, Chen X, Huang X, Liu T, Sun R. Specific Activation of CB2R Ameliorates Psoriasis-Like Skin Lesions by Inhibiting Inflammation and Oxidative Stress. Inflammation 2023:10.1007/s10753-023-01805-6. [PMID: 37000322 DOI: 10.1007/s10753-023-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease. Inflammation and oxidative stress play crucial roles in the pathogenesis of psoriasis. Cannabinoid receptor type 2 (CB2R) is an attractive target for treating various inflammatory disorders. However, the precise role and mechanism of CB2R activation in psoriasis remain to be further elucidated. In this study, imiquimod (IMQ)-induced experimental psoriasis mice and tumor necrosis factor-α (TNF-α)-activated keratinocytes (HaCaT) were used to examine the effect of CB2R activation on psoriasis-like lesions and the mechanism in vivo and in vitro. Our results demonstrated that activation of CB2R by the specific agonist GW842166X (GW) significantly ameliorated IMQ-induced psoriasiform skin lesions in mice by reducing epidermal thickness and decreasing plaque thickness. On the one hand, GW alleviated inflammation by decreasing inflammatory cytokines and abating inflammatory cell infiltration. On the other hand, this treatment reduced the level of iNOS and downregulated the expression of CB2R in psoriatic skin tissue. Further studies suggested that the Kelch-like ECH-associated protein 1/nuclear factor erythroid-2-related factor (Keap1/Nrf2) signaling pathway might be involved. Our findings reveal that selective activation of CB2R may serve as a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yufeng He
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Honglin Jia
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qunfang Yang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Xiaohong Chen
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Xianqiong Huang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China.
| | - Renshan Sun
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Department of Dermatology, Health Science Center, South China Hospital, Shenzhen University, Guangdong, 518116, China.
| |
Collapse
|
8
|
Tambeli CH. Platelet-rich plasma in pain management. NANOTECHNOLOGY AND REGENERATIVE MEDICINE 2023:397-409. [DOI: 10.1016/b978-0-323-90471-1.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Schouten M, Dalle S, Koppo K. Molecular Mechanisms Through Which Cannabidiol May Affect Skeletal Muscle Metabolism, Inflammation, Tissue Regeneration, and Anabolism: A Narrative Review. Cannabis Cannabinoid Res 2022; 7:745-757. [PMID: 36454174 DOI: 10.1089/can.2022.0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Cannabidiol (CBD), a nonintoxicating constituent of the cannabis plant, recently gained a lot of interest among athletes, since it is no longer considered as a prohibited substance by the World Anti-Doping Agency. The increasing prevalence of CBD use among athletes is driven by a perceived improvement in muscle recovery and a reduction in pain. However, compelling evidence from intervention studies is lacking and the precise mechanisms through which CBD may improve muscle recovery remain unknown. This highlights the need for more scientific studies and an evidence-based background. In the current review, the state-of-the-art knowledge on the effects of CBD on skeletal muscle tissue is summarized with special emphasis on the underlying mechanisms and molecular targets. More specifically, the large variety of receptor families that are believed to be involved in CBD's physiological effects are discussed. Furthermore, in vivo and in vitro studies that investigated the actual effects of CBD on skeletal muscle metabolism, inflammation, tissue regeneration, and anabolism are summarized, together with the functional effects of CBD supplementation on muscle recovery in human intervention trials. Overall, CBD was effective to increase the expression of metabolic regulators in muscle of obese mice (e.g., Akt, glycogen synthase kinase-3). CBD treatment in rodents reduced muscle inflammation following eccentric exercise (i.e., nuclear factor kappa B [NF-κB]), in a model of muscle dystrophy (e.g., interleukin-6, tumor necrosis factor alpha) and of obesity (e.g., COX-2, NF-κB). In addition, CBD did not affect in vitro or in vivo muscle anabolism, but improved satellite cell differentiation in dystrophic muscle. In humans, there are some indications that CBD supplementation improved muscle recovery (e.g., creatine kinase) and performance (e.g., squat performance). However, CBD doses were highly variable (between 16.7 and 150 mg) and there are some methodological concerns that should be considered. Conclusion: CBD has the prospective to become an adequate supplement that may improve muscle recovery. However, this research domain is still in its infancy and future studies addressing the molecular and functional effects of CBD in response to exercise are required to further elucidate the ergogenic potential of CBD.
Collapse
Affiliation(s)
- Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
He Q, Yin J, Zou B, Guo H. WIN55212-2 alleviates acute lung injury by inhibiting macrophage glycolysis through the miR-29b-3p/FOXO3/PFKFB3 axis. Mol Immunol 2022; 149:119-128. [PMID: 35810663 DOI: 10.1016/j.molimm.2022.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe organ dysfunction caused by sepsis. WIN55212-2 (WIN) is a cannabinoid receptor agonist. Activation of cannabinoid type 2 receptor can alleviate septic lung injury. Therefore, the effects of WIN on sepsis-related ALI were evaluated. METHODS MiR-29b-3p, FOXO3 and PFKFB3 levels, as well as M1 and M2 macrophage markers were assessed by RT-qPCR in MH-S cells after lipopolysaccharide (LPS) and WIN treatment. ChIP and dual luciferase reporter assays determined molecules interactions. Glycolysis-related proteins were evaluated by Western blotting assay. Lactic acid and ATP were also tested. Furthermore, the effect of WIN was tested in sepsis mice model. HE staining evaluated the histopathological changes in mouse lung tissues. The number of inflammatory cells and macrophages, protein concentration and lactic acid content were detected in mouse bronchoalveolar lavage fluid. RESULTS We found that WIN suppressed M1 polarization and glycolysis in alveolar macrophages induced by LPS. Moreover, WIN inhibited FOXO3 by up-regulating miR-29b-3p. Furthermore, we verified that FOXO3 induced macrophage M1 polarization and glycolysis through activating PFKFB3. In vivo, WIN alleviated ALI in mice with sepsis. CONCLUSION Our results reveal that WIN inhibits macrophage glycolysis through the miR-29b-3p/ FOXO3/PFKFB3 axis, suggesting new therapeutic targets to alleviate sepsis-related ALI.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency/EICU, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, PR China
| | - Jun Yin
- Department of Emergency/EICU, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, PR China
| | - Baisong Zou
- Department of Emergency/EICU, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, PR China
| | - Hui Guo
- Center of Stomatology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, PR China.
| |
Collapse
|
13
|
Dalle S, Koppo K. Cannabinoid receptor 1 expression is higher in muscle of old vs. young males, and increases upon resistance exercise in older adults. Sci Rep 2021; 11:18349. [PMID: 34526596 PMCID: PMC8443742 DOI: 10.1038/s41598-021-97859-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023] Open
Abstract
Aged skeletal muscle undergoes metabolic and structural alterations eventually resulting in a loss of muscle strength and mass, i.e. age-related sarcopenia. Therefore, novel targets for muscle growth purposes in elderly are needed. Here, we explored the role of the cannabinoid system in muscle plasticity through the expression of muscle cannabinoid receptors (CBs) in young and old humans. The CB1 expression was higher (+ 25%; p = 0.04) in muscle of old (≥ 65 years) vs. young adults (20-27 years), whereas CB2 was not differently expressed. Furthermore, resistance exercise tended to increase the CB1 (+ 11%; p = 0.055) and CB2 (+ 37%; p = 0.066) expression in muscle of older adults. Interestingly, increases in the expression of CB2 following resistance exercise positively correlated with changes in key mechanisms of muscle homeostasis, such as catabolism (FOXO3a) and regenerative capacity (Pax7, MyoD). This study for the first time shows that CB1 is differentially expressed with aging and that changes in CB2 expression upon resistance exercise training correlate with changes in mediators that play a central role in muscle plasticity. These data confirm earlier work in cells and mice showing that the cannabinoid system might orchestrate muscle growth, which is an incentive to further explore CB-based strategies that might counteract sarcopenia.
Collapse
MESH Headings
- Adult
- Aged
- Aging/metabolism
- Aging/physiology
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/metabolism
- Humans
- Male
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- MyoD Protein/genetics
- MyoD Protein/metabolism
- PAX7 Transcription Factor/genetics
- PAX7 Transcription Factor/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Resistance Training
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium.
| |
Collapse
|
14
|
Tang X, Liu Z, Li X, Wang J, Li L. Cannabinoid Receptors in Myocardial Injury: A Brother Born to Rival. Int J Mol Sci 2021; 22:6886. [PMID: 34206926 PMCID: PMC8268439 DOI: 10.3390/ijms22136886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabinoid receptors typically include type 1 (CB1) and type 2 (CB2), and they have attracted extensive attention in the central nervous system (CNS) and immune system. Due to more in-depth studies in recent years, it has been found that the typical CB1 and CB2 receptors confer functional importance far beyond the CNS and immune system. In particular, many works have reported the critical involvement of the CB1 and CB2 receptors in myocardial injuries. Both pharmacological and genetic approaches have been used for studying CB1 and CB2 functions in these studies, revealing that the brother receptors have many basic differences and sometimes antagonistic functions in a variety of myocardial injuries, despite some sequence or location identity they share. Herein, we introduce the general differences of CB1 and CB2 cannabinoid receptors, and summarize the functional rivalries between the two brother receptors in the setting of myocardial injuries. We point out the importance of individual receptor-based modulation, instead of dual receptor modulators, when treating myocardial injuries.
Collapse
Affiliation(s)
| | | | | | | | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.T.); (Z.L.); (X.L.); (J.W.)
| |
Collapse
|
15
|
Rohbeck E, Eckel J, Romacho T. Cannabinoid Receptors in Metabolic Regulation and Diabetes. Physiology (Bethesda) 2021; 36:102-113. [PMID: 33595385 DOI: 10.1152/physiol.00029.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for developing effective drugs to combat the obesity and Type 2 diabetes mellitus epidemics. The endocannabinoid system plays a major role in energy homeostasis. It comprises the cannabinoid receptors 1 and 2 (CB1 and CB2), endogenous ligands called endocannabinoids and their metabolizing enzymes. Because the CB1 receptor is overactivated in metabolic alterations, pharmacological blockade of the CB1 receptor arose as a promising candidate to treat obesity. However, because of the wide distribution of CB1 receptors in the central nervous system, their negative central effects halted further therapeutic use. Although the CB2 receptor is mostly peripherally expressed, its role in metabolic homeostasis remains unclear. This review discusses the potential of CB1 and CB2 receptors at the peripheral level to be therapeutic targets in metabolic diseases. We focus on the impact of pharmacological intervention and/or silencing on peripheral cannabinoid receptors in organs/tissues relevant for energy homeostasis. Moreover, we provide a perspective on novel therapeutic strategies modulating these receptors. Targeting CB1 with peripherally restricted antagonists, neutral antagonists, inverse agonists, or monoclonal antibodies could represent successful strategies. CB2 agonism has shown promising results at preclinical level. Beyond classic antagonism and agonism targeting orthosteric sites, the recently described crystal structures of CB1 and CB2 open new possibilities for therapeutic interventions with negative and positive allosteric modulators. The challenge of simultaneously targeting CB1 and CB2 might be possible by developing dual-steric ligands. The future will tell whether these promising strategies result in a renaissance of the cannabinoid receptors as therapeutic targets in metabolic diseases.
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Juergen Eckel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Romacho
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|