1
|
Abdelmenem AM, Mersal EA, Morsi AA, Abdel All MO, Hussein G, Ibrahim KE, Salim MS. Melamine-induced adrenal structural and functional alterations and the contribution of morin to the adrenal repair in Wistar rats. Tissue Cell 2025; 95:102826. [PMID: 40056657 DOI: 10.1016/j.tice.2025.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Melamine is a prevalent environmental toxicant associated with well-established toxicity on several organs. The adrenal gland is a highly dynamic organ that makes it susceptible to chemicals' toxicity. The current work investigated the adrenal histo-biochemical alterations caused by melamine exposure in rats and explored whether morin has protective potential against such adrenal toxicity. The experiment utilized 32 adult male Wistar rats randomly divided into control, morin, melamine, and melamine/morin groups. Adrenal toxicity was induced by melamine (126 mg/kg/d). Morin was used in a dose of 50 mg/kg/d. All treatments were given via oral gavage for 4 weeks. The adrenal oxidative stress markers, serum corticosterone (CORT), adrenocorticotrophic hormone (ACTH), and the mRNA expression of the steroidogenic genes; StAR (Steroidogenic acute regulatory protein), P450scc (Cholesterol side-chain cleavage enzyme), and11β-HSD1 (11β-Hydroxysteroid dehydrogenase type 1) were evaluated. Also, histological and immunohistochemical examinations of the paraffin-processed adrenal sections were performed. Melamine decreased adrenal tissue superoxide dismutase (SOD) and catalase (CAT) activities, increased adrenal malondialdehyde (MDA) levels, decreased serum CORT and increased ACTH levels, and suppressed the adrenal cortical expression of genes involved in steroidogenesis. Moreover, the inducible nitric oxide synthase (iNOS) and cysteine-aspartic acid protease-3 (caspase-3) expression were upregulated as indicated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. Besides, melamine caused remarkable adrenal histopathological changes. However, morin administration greatly repaired the adrenal injury and restored the adrenal function. Morin maintained the adrenal histoarchitecture and protected against melamine-provoked adrenal toxicity by downregulating the inflammation and the adrenal apoptotic processes and relieving the oxidative stress burden.
Collapse
Affiliation(s)
- Alshaymaa M Abdelmenem
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ezat A Mersal
- Biochemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
| | - Marwa Omar Abdel All
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ghaiath Hussein
- Department of Medical Education, School of Medicine, Trinity College, Dublin, Ireland
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Salim
- Medical Laboratory Technology Department, Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| |
Collapse
|
2
|
Aygörmez S, Küçükler S, Gür C, Akaras N, Maraşli Ş, Mehmet Kandemir F. Investigation of the effects of morin on potassium bromate-induced brain damage in rats via different pathways with biochemical and histopathological methods. Food Chem Toxicol 2025; 201:115466. [PMID: 40252904 DOI: 10.1016/j.fct.2025.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
AIM Potassium bromate (KBrO3) is a colorless, odorless substance used as a food additive. It causes multiple organ damage and neurotoxicity. Morin is a flavonoid from the Moraceae family known to have anti-inflammatory, antioxidant, antiapoptotic, antiautophagic, and neuroprotective properties. Therefore, this study aimed to investigate the effects of Morin against KBrO3-induced brain damage. METHODS 62 mg/kg KBrO3 and 50-100 mg/kg Morin were administered to 35 male rats by oral gavage daily for 14 days. Various analyses were performed using molecular, biochemical, and histological methods. RESULTS The analyses results showed that KBrO3 application decreased antioxidant markers and raised lipid peroxidation in the brain tissue. The KBrO3 application triggered apoptosis, endoplasmic reticulum stress, and inflammation. Morin treatment increased enzymatic and nonenzymatic antioxidant levels and decreased lipid peroxidation. In addition, Morin alleviated KBrO3-induced apoptosis, endoplasmic reticulum stress, and inflammation in the brain tissue. The histopathological analysis revealed an increase in degenerative changes, as well as pyknotic changes and vacuolization in cells, in neurons in the KBrO3 group. Increased hyperemia and congestion were detected in the meninges and vessels in the cerebral cortex. CONCLUSION KBrO3 application caused toxicity in the brain tissue and impaired tissue integrity, whereas Morin treatment alleviated KBrO3-induced toxicity.
Collapse
Affiliation(s)
- Serpil Aygörmez
- Department of Veterinary Biochemistry, Faculty of Veterinary, Kafkas University, Kars, Turkey.
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Şaban Maraşli
- Department of Veterinary Biochemistry, Faculty of Veterinary, Kafkas University, Kars, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Abdel-Megeed RM, Abdel-Hamid AHZ, Kadry MO. Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways. Toxicol Rep 2025; 14:101869. [PMID: 39811821 PMCID: PMC11731616 DOI: 10.1016/j.toxrep.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity. Nevertheless, the comprehensive molecular pathways responsible for DOX-induced testicular damage are not yet fully understood. The current study aims to clarify the role of autophagy and apoptotic signaling pathways in testicular toxicity induced by DOX in the rat model. The study also investigates the potential role of both titanium dioxide nanoparticles (TiO2NP) loaded with DOX and Lactoferrin in combination with DOX in mitigating testicular toxicity induced by DOX the standard antitumor drug. In the present study, male Wister albino rats were intoxicated with a total cumulative dose of DOX (18 mg/kg) via intra-peritoneal injection and served as positive control group. The other two groups administered either TiO2NP-DOX or lactoferrin-DOX. Furthermore, biochemical and molecular analyses were then performed. DOX intoxication induced testicular toxicity, revealing mineral imbalance as indicated by an increase in both calcium and magnesium concentrations. Administration of either TiO2NP-DOX or lactoferrin-DOX resulted in a significant modulation of disrupted mineral concentrations, with TiO2NP-DOX showing superiority in modulating both magnesium and calcium concentrations. Acid Phosphatase level significantly increased upon DOX-induced testicular damage. Molecular analysis of EGFR and K-RAS gene expression showed significant overexpression, while p53 and JAK-2 gene expression was significantly reduced post-DOX intoxication. Protein expression of both AKT and PI3K significantly increased upon DOX administration. Results showed a remarkable modulation of all disrupted gene and protein expressions upon treatment with TiO2NP-DOX or Lactoferrin-DOX with the superiority of TiO2NP-DOX in modulating these parameters. In conclusion, TiO2NP-DOX could be a promising drug delivery system to improve bioavailability and drug release, as well as reducing DOX's adverse effects particularly on testicular function.
Collapse
Affiliation(s)
- Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Abdel-Hamid Z. Abdel-Hamid
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Mai O. Kadry
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
4
|
Kamel GAM, Hussein S. Vinpocetine Mitigates Methotrexate-Induced Liver Injury in Rats Through Modulating Intercellular Communication. J Biochem Mol Toxicol 2025; 39:e70300. [PMID: 40342225 DOI: 10.1002/jbt.70300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/05/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Methotrexate (MTX) has been widely implemented in managing several malignancies, inflammatory conditions such as rheumatic arthritis, and autoimmune illnesses. Hepatotoxicity is a significant side effect of MTX, characterized by increased oxidative stress (OS) and inflammation. Vinpocetine (Vinpo) is a prescription medication with a favorable safety profile. It exerts anti-inflammatory and oxidant implications that might be novel candidates for protecting against MTX-induced hepatotoxicity. This study investigates the therapeutic impact of Vinpo against MTX-stimulated liver damage via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Rats are allocated into three groups: (1) the Control (saline); (2) the MTX-control (20 mg/kg; injected once i.p.), and (3) the Vinpo + MTX groups. Vinpo was administered orally for 7 days, during which MTX was given intraperitoneally once at the end of Day 3. The liver functions, OS markers, inflammatory mediators, Nrf2, HO-1, NF-κB, and apoptotic signals were estimated. Vinpo lead to enhancement in superoxide dismutase (SOD) enzyme activity, elevation in glutathione (GSH), and a hindrance in malondialdehyde (MDA). It also enhances Nrf2 and HO-1, inhibiting NF-κB (p65) expression and apoptotic markers. Moreover, Vinpo therapy, in conjunction with MTX, restores the normal histological structure of hepatic tissues. Our data suggested that Vinpo exerts a preventive effect against MTX-induced toxicity through anti-oxidative, anti-inflammatory, and apoptotic activities, mediated via Nrf2/HO-1/Nf-κB and caspase-3/Bax/Bcl-2 pathways.
Collapse
Affiliation(s)
- Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology & Toxicology, College of Pharmacy, Uruk University, Baghdad, Iraq
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
5
|
Nasr NN, Elbatanony MM, Hamed MA. GC/MS Analysis and Compounds Isolation of Lycium shawii Petroleum Ether Seeds Extract for Regulating Nrf2/OH-1 Pathway, Oxidative Stress, and Inflammation in Acrylamide-Induced Infertility in Female Rats. Chem Biodivers 2025; 22:e202401102. [PMID: 39008802 DOI: 10.1002/cbdv.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Acrylamide is formed during heating of starchy foods at high temperature and induces reproductive toxicity. Our study is designed to evaluate the chemical constitution and anti-infertility effect of Lycium shawii seeds extract on female rats. Nutritional profile was estimated, and major active compounds were isolated and identified. Biological evaluation of L. shawii extract on female rats was performed and measured by prolactin, follicular stimulating hormone, luteinizing hormone, estradiol, progesterone, tumor necrosis factor-α, interleukin-6, heme oxygenase-1, nuclear respiratory factor-2, malondialdehyde, glutathione, DNA fragmentation, and ovarian architecture parameters. Data revealed the presence of ɤ-tocopherol, vitamin C, magnesium, and 38 bioactive compounds in the fractions of L. shawii. Major constituents from gas chromatography/mass spectrometry (GC/MS) were 9, 12-octadecadienoic acid (Z, Z), methyl ester, 2,7-octadiene-1,6-diol, and 2,6-dimethyl hydroxy linalool but further five compounds (i.e., lupenone, betulin, lupeol acetate, stigmasterol, and β-sitosterol-d-glucoside) were isolated and identified. Treatment of rats with the seeds extract post acrylamide administration ameliorated female sex hormones, oxidative stress, inflammation, DNA damage, and ovarian structure. In conclusion, L. shawii petroleum ether seeds fraction may be considered a nutraceutical agent for improving infertility disorders, oxidative stress, and inflammation due to its richness with biologically active phenolic and flavonoids compounds.
Collapse
Affiliation(s)
- Noha N Nasr
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Kumar V, Kumar R, Gurusubramanian G, Rathore SS, Roy VK. Morin hydrate treatment minimizes Di(2-ethylhexyl) phthalate-induced uterine fibrosis, oxidative stress, and apoptosis in mice. Mol Biol Rep 2025; 52:308. [PMID: 40080243 DOI: 10.1007/s11033-025-10423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Di (2-ethylhexyl) phthalate (DEHP), a widely used chemical in plastics, has various health hazards when accumulated in the environment. DEHP has been shown to cause toxicity to various organs like the liver, kidney, and reproductive organs. Phytocompounds have been used to mitigate DEHP-mediated organ toxicity. Morin hydrate (MH), a phytocompound, has also been known to protect tissue and organs against various induced toxic conditions. However, the impact of MH treatment on DEHP-induced uterine dysfunction has not yet been still investigated. Therefore, the present study has investigated the impact of MH on uterine physiology and morphology of DEHP-intoxicated mice. METHODS Twenty Swiss mice were randomly divided into four groups (n = 5): control (CN), Di (2-ethylhexyl) phthalate (DP) (500 mg/kg), Di (2-ethylhexyl) phthalate (DP) + Morin hydrate (MH) (10 mg/kg), and Di (2-ethylhexyl) phthalate (DP) + Morin hydrate (MH) (100 mg/kg) for 14 days. RESULTS Our results showed that the expression of active caspase-3 was up-regulated, and Bcl2 was down-regulated in the uterus of DEHP-treated mice. Furthermore, the uterine histology also showed decreased luminal epithelium height and endometrium thickness in the DEHP-treated mice; however, myometrium layer (outer and inner) thickness was higher in DEHP-treated mice. The uterus of DEHP-treated mice also exhibited elevated oxidative stress and fibrosis, along with decreased estrogen levels and expression of estrogen receptors (ERs). MH treatment at both doses (10 and 100 mg/kg) suppressed DEHP-induced uterine apoptosis (increased Bcl2 and decreased active caspase-3 expression) and fibrosis. MH also increased the circulating estrogen levels at both doses; Further ERα and ERβ expression were elevated in the MH treated in both groups). The levels of oxidative stress malondialdehyde (MDA levels) were higher in the uterus of DEHP alone and DEHP plus MH-treated mice (100 mg/kg). Moreover, the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase (Gpx and SOD) did not show a dose-dependent response to MH treatment; rather, MH showed a differential effect on these enzymes. The elevated oxidative stress in 100 mg/kg MH treated uterus, despite elevated Gpx and SOD, remains unclear. Thus, these results suggest that MH ameliorates DEHP-induced uterine fibrosis, apoptosis, and histoarchitecture through ER modulation. CONCLUSION These findings suggest that MH improves uterine structure and function in DEHP-treated mice.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India.
| |
Collapse
|
7
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025; 39:1494-1530. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
8
|
Ajibare AJ, Odetayo AF, Akintoye OO, Olayaki LA. Zinc ameliorates acrylamide-induced oxidative stress and apoptosis in testicular cells via Nrf2/HO-1/NfkB and Bax/Bcl2 signaling pathway. Redox Rep 2024; 29:2341537. [PMID: 38629506 PMCID: PMC11025409 DOI: 10.1080/13510002.2024.2341537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1β and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Lead City University, Ibadan, Nigeria
| | | | - Olabode Oluwadare Akintoye
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | | |
Collapse
|
9
|
Famurewa AC, Elsawy H, Sedky A. Thymoquinone Abrogates Acrylamide-Induced Cerebellar Toxicity via Modulation of Nuclear Factor Erythroid 2-Related Factor 2/Nuclear Factor Kappa B Signaling, Oxidative Neuroinflammation, and Neuroapoptosis in Rats. J Med Food 2024; 27:1062-1069. [PMID: 39321097 DOI: 10.1089/jmf.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Acrylamide (ACR) is an obligate human neurotoxicant ubiquitously produced and found in foods processed at high temperature. There is an increasing public health concern regarding its probable carcinogenic potential. Its prevailing toxicity mechanism is oxidative inflammation and apoptosis. Herein, we explored whether thymoquinone (TQ), a bioactive quinone in Nigella sativa seed, could mitigate ACR-induced cerebellar toxicity in rats. Our study design featured four rat groups: control, TQ (5 mg/kg bw), ACR (50 mg/kg bw), and TQ + ACR (5 mg/kg + 50 mg/kg). After 14 days of respective treatments, cerebellar homogenate was used to estimate acetylcholinesterase activity (AchE) activity, antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD], and glutathione peroxidase [GPx]), malondialdehyde (MDA), inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, IL-4, and IL-10), nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), caspase-3, and caspase-9. The level of DNA damage by fragmentation and histopathological lesions was also determined in the cerebellum. The rat exposure to ACR caused significant decreases in the cerebellar activities of AchE, CAT, SOD, and GPx, IL-4, IL-10, and expression of Nrf2, whereas the levels of MDA, IL-6, TNF-α, caspase-3, and caspase-9 were prominently increased compared with the control. ACR induced significant DNA fragments and cerebellar lesions when compared with the control. Contrarily, TQ treatment inhibited the depression of CAT, SOD, and GPx activities and reversed the MDA level and expression of Nrf2/NF-κB, cytokines, and caspases. These effects were confirmed by reduced DNA damage and cerebellar histopathological lesions in comparison with the ACR. TQ afforded neuroprotection via its antioxidant, anti-inflammatory, and antiapoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ikwo, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Hany Elsawy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Azza Sedky
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Banaeeyeh S, Razavi BM, Hosseinzadeh H. Neuroprotective Effects of Morin Against Cadmium- and Arsenic-Induced Cell Damage in PC12 Neurons. Biol Trace Elem Res 2024:10.1007/s12011-024-04407-x. [PMID: 39436547 DOI: 10.1007/s12011-024-04407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Arsenic and cadmium, both toxic metals and widespread environmental pollutants, can trigger apoptosis and oxidative stress in various tissues and cells. Morin, a natural flavonoid with diverse biological properties, has been found to protect neurons from oxidative stress and apoptosis-induced damage. This research aimed to examine the protective properties of morin against neurotoxicity caused by arsenic and cadmium, utilizing PC12 cells as a model for nerve cells. The cells were pre-treated with different concentrations of morin and then exposed to arsenic and cadmium, after which cell viability and reactive oxygen species (ROS) production were assessed. Additionally, western blotting was performed to evaluate the protein levels of the Bax/Bcl-2 ratio and cleaved-caspase-3. Following exposure to arsenic and cadmium, there were significant increases in ROS, Bax/Bcl-2 ratio, and cleaved-caspase-3. However, the results of the study demonstrated the beneficial effects of morin at various concentrations, as it increased cell viability and decreased ROS production. Furthermore, morin at a concentration of 10 µM was found to reduce the elevated levels of cleaved-caspase-3 induced by arsenic and diminish the increased Bax/Bcl-2 ratio after exposure to arsenic and cadmium. The findings of this study suggest that morin can effectively protect cells from arsenic and cadmium-induced neurotoxicity through its antioxidant and anti-apoptotic effects. Thus, morin should be considered a promising agent for treating arsenic and cadmium toxicity.
Collapse
Affiliation(s)
- Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Şimşek H, Gür C, Küçükler S, İleritürk M, Akaras N, Öz M, Kandemir FM. Carvacrol Reduces Mercuric Chloride-Induced Testicular Toxicity by Regulating Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Histopathological Changes. Biol Trace Elem Res 2024; 202:4605-4617. [PMID: 38133725 DOI: 10.1007/s12011-023-04022-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Mercuric chloride (HgCl2) is a heavy metal that is toxic to the human body. Carvacrol (CAR) is a flavonoid found naturally in plants and has many biological and pharmacological activities including anti-inflammatory, antioxidant, and anticancer activities. This study aimed to investigate the efficacy of CAR in HgCl2-induced testicular tissue damage. HgCl2 was administered intraperitoneally at a dose of 1.23 mg/kg body weight alone or in combination with orally administered CAR (25 mg/kg and 50 mg/kg body weight) for 7 days. Biochemical and histological methods were used to investigate oxidative stress, inflammation, apoptosis, and autophagy pathways in testicular tissue. CAR treatment increased HgCl2-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels. In addition, CAR reduced MDA levels, a marker of lipid peroxidation. CAR decreased the levels of inflammatory mediators NF-κB, TNF-α, IL-1β, COX-2, iNOS, MAPK14, MAPK15, and JNK. The increases in apoptotic Bax and Caspase-3 with HgCl2 exposure decreased with CAR, while the decreased antiapoptotic Bcl-2 level increased. CAR reduced HgCl2-induced autophagy damage by increasing Beclin-1, LC3A, and LC3B levels. Overall, the data from this study suggested that testicular tissue damage associated with HgCl2 toxicity can be mitigated by CAR administration.
Collapse
Affiliation(s)
- Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Cihan Gür
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Mehmet Öz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
12
|
Yardimci A, Mulayim S, Kaya Tektemur N, Tektemur A, Erensoy A. Chronic levamisole exposure in male rats alters sexual behavior and induces apoptosis in the testis. Drug Chem Toxicol 2024; 47:534-543. [PMID: 37246936 DOI: 10.1080/01480545.2023.2217483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/30/2023]
Abstract
Levamisole is an anti-helminthic drug developed and introduced in veterinary medicine, and it has been used more frequently after the inclusion of its usage in human medicine regarding disorders with immunomodulatory properties. In recent years, it has started to attract attention since it has beneficial effects on the treatment of COVID-19 due to its immunomodulatory properties. To investigate the effects of levamisole on sexual behavior and the reproductive system in male rats, two groups were formed the vehicle (n = 10) and levamisole (n = 10) groups. The vehicle group was given purified water whereas the levamisole group was administered with levamisole (2 mg/kg) by oral gavage daily for 4 weeks. Levamisole treatment significantly increased the mount latency (ML, P < 0.001) as well as the intromission latency (IL, P < 0.01). It also significantly prolonged postejaculatory interval (PEI, P < 0.01), decreased copulatory rate (CR, P < 0.05), and sexual activity index (SAI, P < 0.05). It significantly decreased serum monoamine oxidase A (MAO-A) levels (P < 0.05). Additionally, levamisole induced disorganizations of germinal epithelial cells of seminiferous tubules, congestion, edema in the interstitial area, and metaphase arrest in some spermatocytes (P < 0.001), and it significantly increased the immunohistochemical expressions of apoptotic Bax and cytochrome c, which is crucial proapoptotic protein, in the testis (P < 0.001). Also, levamisole significantly upregulated the mRNA levels of the apoptosis-related key regulatory genes, including Bax (Bcl-2-associated X protein, P = 0.05) and Bax/Bcl-2 ratio (P < 0.01) in testis. The current research is the first to show that levamisole may decrease sexual performance, potency, sexual motivation, and libido and induce apoptosis in the testis.
Collapse
Affiliation(s)
- Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Sefa Mulayim
- Department of Medical Parasitology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Erensoy
- Department of Medical Parasitology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
13
|
Kankılıç NA, Küçükler S, Gür C, Akarsu SA, Akaras N, Şimşek H, İleritürk M, Kandemir FM. Naringin protects against paclitaxel-induced toxicity in rat testicular tissues by regulating genes in pro-inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. J Biochem Mol Toxicol 2024; 38:e23751. [PMID: 38879801 DOI: 10.1002/jbt.23751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 10/11/2024]
Abstract
Paclitaxel (PTX), which is actively used in the treatment of many types of cancer, has a toxic effect by causing increased oxidative stress in testicular tissues. Naringin (NRG) is a natural flavonoid found in plants, and its antioxidant properties are at the forefront. This study aims to investigate the protective feature of NRG in PTX-induced testicular toxicity. Thirty-five male Sprague rats were divided into five groups: control, NRG, PTX, PTX + NRG50, and PTX + NRG100. Rats were administered PTX (2 mg/kg, BW) intraperitoneally once daily for the first 5 days. Then, between the 6th and 14th days, NRG (50 and 100 mg/kg) was administered orally once a day. NRG reduced PTX-induced lipid peroxidation and increased testicular tissue antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, and glutathione). While NRG reduces the mRNA expression levels of nuclear factor kappa B, tumor necrosis factor-alpha, interleukin-1 beta, cyclooxygenase-2, interleukin-6, inducible-nitric oxide synthase, mitogen-activated protein kinase 14 (MAPK)14, MAPK15, c-Jun N-terminal kinase, P53, Apaf1, Caspase3, Caspase6, Caspase9, and Bax in testicular tissues; it caused an increase in Nrf2, HO-1, NQO1 and Bcl-2 levels. NRG also improved the structural and functional integrity of testicular tissue disrupted by PTX. PTX-induced sperm damage was alleviated by NRG. NRG showed a protective effect by alleviating the PTX-induced testicular toxicity by increasing oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
14
|
Seify M, Abedpour N, Talebi SF, Hazari V, Mehrara M, Koohestanidehaghi Y, Shoorei H, Bhandari RK. Impacts of Acrylamide on testis and spermatozoa. Mol Biol Rep 2024; 51:739. [PMID: 38874886 DOI: 10.1007/s11033-024-09677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.
Collapse
Affiliation(s)
- Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Abedpour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | | | - Vajihe Hazari
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehrdad Mehrara
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Shoorei
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
15
|
Shipa AME, Kahilo KA, Elshazly SA, Taher ES, Nasr NE, Alotaibi BS, Almadaly EA, Assas M, Abdo W, Abouzed TK, Salem AE, Kirci D, El-Seedi HR, Refaey MS, Rizk NI, Shukry M, Dorghamm DA. Protective effect of Petroselinum crispum methanolic extract against acrylamide-induced reproductive toxicity in male rats through NF-ĸB, kinesin, steroidogenesis pathways. Reprod Toxicol 2024; 126:108586. [PMID: 38614435 DOI: 10.1016/j.reprotox.2024.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
This study examined the protective effects of a Petroselinum crispum (P. crispum) methanolic extract on reproductive dysfunction induced by acrylamide in male rats. A total of 40 rats were divided into four groups (n=10). The control group received distilled water, the acrylamide group received 10 mg/kg of acrylamide, the P. crispum group received 100 mg/kg of P. crispum extract, and the combined group was pretreated with P. crispum for two weeks before co-administration of P. crispum and acrylamide. All administrations were administered orally using a gastric tube for eight weeks. Acrylamide decreased testosterone levels but did not affect levels of FSH or LH. It also increased testicular levels of (MDA) malondialdehyde and reduced activity of (SOD) superoxide dismutase and impairment of sperm parameters. Furthermore, the administration of acrylamide resulted in an elevation of tumor necrosis factor-alpha (TNF-α) levels and a reduction in the levels of steroidogenic acute regulatory protein (STAR) and cytochrome P450scc (P450scc). Acrylamide negatively affected the histopathological outcomes, Johnsen's score, the diameter of seminiferous tubules, and the thickness of the germinal epithelium. It also upregulated the expression of NF-ĸB P65 and downregulated the expression of kinesin motor protein. In contrast, treatment with P. crispum extract restored the levels of antioxidant enzymes, improved sperm parameters, and normalized the gene expression of TNF-α, IL-10, IL-6, iNOS, NF-ĸB, STAR, CYP17A1, 17β-HSD and P450scc. It also recovered testicular histological parameters and immunoexpression of NF-ĸB P65 and kinesin altered by acrylamide. P. crispum showed protective effects against acrylamide-induced reproductive toxicity by suppressing oxidative damage and inflammatory pathways.
Collapse
Affiliation(s)
- Ahmed M E Shipa
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samir A Elshazly
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Essam A Almadaly
- Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mona Assas
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Walied Abdo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Faculty of Medicine, Biochemistry Department University of Misrata, Libya
| | | | - Damla Kirci
- Department of Pharmacognosy, Faculty of Pharmacy, Selçuk University, Konya, Turkiye
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa A Dorghamm
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
16
|
Yildirim S, Sengul E, Aksu EH, Cinar İ, Gelen V, Tekin S, Dag Y. Selenium reduces acrylamide-induced testicular toxicity in rats by regulating HSD17B1, StAR, and CYP17A1 expression, oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:1402-1414. [PMID: 37987225 DOI: 10.1002/tox.23996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the effects of Selenium (Se) on testis toxicity induced by Acrylamide (ACR) in rats. In our study, 50 male adult rats were used, and the rats were divided into five groups; control, ACR, Se0.5 + ACR, Se1 + ACR, and Se1. Se and ACR treatments were applied for 10 days. On the 11th day of the experimental study, intracardiac blood samples from the rats were taken under anesthesia and euthanized. Sperm motility and morphology were evaluated. Dihydrotestosterone, FSH, and LH levels in sera were analyzed with commercial ELISA kits. MDA, GSH, TNF-α, IL-6, and IL-1β levels and SOD, GPx, and CAT, activities were measured to detect the level of oxidative stress and inflammation in rat testis tissues. Expression analysis of HSD17B1, StAR, CYP17A1, MAPk14, and P-53 as target mRNA levels were performed with Real Time-PCR System technology for each cDNA sample synthesized from rat testis RNA. Testicular tissues were evaluated by histopathological, immunohistochemical, and immunofluorescent examinations. Serum dihydrotestosterone and FSH levels decreased significantly in the ACR group compared to the control group, while LH levels increased and a high dose of Se prevented these changes caused by ACR. A high dose of Se prevented these changes caused by ACR. ACR-induced testicular oxidative stress, inflammation, apoptosis, changes in the expression of reproductive enzymes, some changes in sperm motility and morphology, DNA, and tissue damage, and Se administration prevented these pathologies caused by ACR. As a result of this study, it was determined that Se prevents oxidative stress, inflammation, apoptosis, autophagy, and DNA damage in testicular toxicity induced by ACR in rats.
Collapse
Affiliation(s)
- Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Emrah Hicazi Aksu
- Department of Andrology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - İrfan Cinar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
17
|
Üremi Ş N, Üremi Ş MM, Gül M, Özsoy EN, Türköz Y. Protective effects of vitamin E against acrylamide-induced hepatotoxicity and nephrotoxicity from fetal development to adulthood: Insights into Akt/NF-κB and Bcl-xL/Bax signaling pathways. Toxicology 2024; 502:153729. [PMID: 38242491 DOI: 10.1016/j.tox.2024.153729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Acrylamide (ACR), a toxin present in fried and baked carbohydrate-rich foods, is known to cause liver and kidney damage. This study aimed to investigate the mechanisms of oxidative stress, inflammation, and apoptosis that contribute to liver and kidney damage induced by chronic administration of ACR. Additionally, the effectiveness of vitamin E in mitigating these toxic effects was examined. The study initially involved dividing 40 pregnant rats into four groups. After lactation, the research continued with male offspring rats from each group. The offspring rats were divided into Control, Vitamin E, ACR, and ACR + Vitamin E groups. Following ACR administration, liver and kidney function tests were performed on serum samples. Biochemical analyses, evaluation of inflammation markers, histopathological examination, and assessment of protein levels of Akt/IκBα/NF-κB, Bax, Bcl-xL, and Caspase-9 were conducted on liver and kidney tissues. The analysis demonstrated that ACR adversely affected liver and kidney function, resulting in oxidative stress, increased inflammation, and elevated apoptotic markers. Conversely, administration of vitamin E positively impacted these parameters, restoring them to control levels. Based on the results, the mechanism of ACR's action on oxidative stress and inflammation-induced liver and kidney damage may be associated with the activation of apoptotic markers such as Bax and Caspase-9, as well as the Akt/IκBα/NF-κB signaling pathway. Consequently, the protective properties of vitamin E establish it as an essential vitamin for the prevention or mitigation of various ACR-induced damages.
Collapse
Affiliation(s)
- Nuray Üremi Ş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | | | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Eda Nur Özsoy
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
18
|
Saleh DO, Baraka SM, Jaleel GAA, Hassan A, Ahmed-Farid OA. Eugenol alleviates acrylamide-induced rat testicular toxicity by modulating AMPK/p-AKT/mTOR signaling pathway and blood-testis barrier remodeling. Sci Rep 2024; 14:1910. [PMID: 38253778 PMCID: PMC10803763 DOI: 10.1038/s41598-024-52259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to investigate the effects of eugenol treatment on reproductive parameters in acrylamide (ACR)-intoxicated rats. The study evaluated alterations in relative testes and epididymides weights, sperm quality, serum hormonal status, seminal plasma amino acids, testicular cell energy and phospholipids content, oxidative and nitrosative stress parameters, adenosine monophosphate-activated protein kinase/ phosphoinositide 3-kinase/phosphor-protein kinase B/mammalian target of rapamycin (AMPK/PI3K/p-AKT/mTOR) signaling pathway, blood-testis barrier (BTB) remodeling markers, testicular autophagy and apoptotic markers, as well as histopathological alterations in testicular tissues. The results revealed that eugenol treatment demonstrated a significant improvement in sperm quality parameters, with increased sperm cell concentration, progressive motility live sperm, and a reduction in abnormal sperm, compared to the ACR-intoxicated group. Furthermore, eugenol administration increased the levels of seminal plasma amino acids in a dose-dependent manner. In addition, eugenol treatment dose-dependently improved testicular oxidative/nitrosative stress biomarkers by increasing oxidized and reduced glutathione levels and reducing malondialdehyde and nitric oxide contents as compared to ACRgroup. However, eugenol treatment at a high dose restored the expression of AMPK, PI3K, and mTOR genes, to levels comparable to the control group, while significantly increasing p-AKT content compared to the ACRgroup. In conclusion, the obtained findings suggest the potential of eugenol as a therapeutic agent in mitigating ACR-induced detrimental effects on the male reproductive system via amelioration of ROS-mediated autophagy, apoptosis, AMPK/p-AKT/mTOR signaling pathways and BTB remodeling.
Collapse
Affiliation(s)
- Dalia O Saleh
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt.
| | - Sara M Baraka
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
19
|
Kumar R, Kumar V, Gurusubramanian G, Rathore SS, Roy VK. Morin hydrate ameliorates heat-induced testicular impairment in a mouse model. Mol Biol Rep 2024; 51:103. [PMID: 38219219 DOI: 10.1007/s11033-023-09157-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Heat stress is known to adversely affect testicular activity and manifest the pathogenesis of spermatogenesis. Morin hydrate is a plant-derived compound, which contains a wide range of biological activities. Thus, it is hypothesized that morin hydrate might have an ameliorative effect on heat-induced testicular impairment. There has not been any research on the impact of morin hydrate on heat-induced testicular damage. METHODS The experimental mice were divided into four groups, groups1 as the normal control group (CN), and the second which underwent heat stress (HS) by immersing the lower body for 15 min in a thermostatically controlled water bath kept at 43 °C (HS), and third and fourth heat-stressed followed by two different dosages of morin hydrate 10 mg/kg (HSM10) and 100 mg/kg (HSM100) for 14 days. RESULTS Morin hydrate treatment at 10 mg/kg improved, circulating testosterone levels (increases 3βHSD), and oxidative stress along with improvement in the testis and caput and corpus epididymis histoarchitecture, however, both doses of morin hydrate improved sperm parameters. Morin hydrate treatment significantly increases germ cell proliferation, (GCNA, BrdU staining), expression of Bcl2 and decreases expression of active caspase 3. Heat stress also decreased the expression of AR, ER- α, and ER-β, and Morin hydrate treatment increased the expression of these markers in the 10 mg/kg treatment group. CONCLUSION Morin hydrate ameliorates heat-induced testicular impairment modulating testosterone synthesis, germ cell proliferation, and oxidative stress. These effects could be manifested by regulating androgen and estrogen receptors. However, the two doses showed differential effects of some parameters, which requires further investigations.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India
| | - Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, East Champaran, Motihari, Bihar, 845401, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796 004, India.
| |
Collapse
|
20
|
Abbas NAT, El-Sayed SS, Abd El-Fatah SS, Sarhan WM, Abdelghany EMA, Sarhan O, Mahmoud SS. Mechanistic aspects of ameliorative effects of Eicosapentanoic acid ethyl ester on methotrexate-evoked testiculopathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:357-369. [PMID: 37450014 PMCID: PMC10771366 DOI: 10.1007/s00210-023-02577-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Disrupted spermatogenesis and testicular injury are among the devastating outcomes of methotrexate. A major contributor to methotrexate-induced testiculopathy is oxidative damage which triggers apoptosis and altered autophagy responses. Eicosapentaenoic acid ethyl ester (EPA-E) is an antihyperlipidemic derivative of omega-3 fatty acids that exhibited affinity to peroxisome proliferator-activated receptor-γ (PPAR-γ) that possesses both antioxidant and autophagy modulating properties. This is an exploratory study aiming at assessing the effectiveness of EPA-E to alleviate testicular damage induced by methotrexate. The specific exploratory hypothesis of this experiment is: EPA-E administration for 1 week to methotrexate-treated rats reduces testicular damage compared to control rats. As a secondary outcome, we were interested in identifying the implicated mechanism that mediates the action of EPA-E. In adult male Wistar rats, testiculopathy was achieved by a single methotrexate injection (20 mg/kg, ip). Rats received vehicle, EPA-E (0.3 g/kg/day, po) alone or with selective PPAR-γ antagonist (bisphenol A diglycidyl ether, BADGE) at 30 mg/kg/day, ip for 1 week. EPA-E recuperated methotrexate-attenuated serum total testosterone while reduced testicular inflammation and oxidative stress, restoring superoxide dismutase (SOD) while reducing malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Methotrexate-induced testicular apoptosis (caspase-3 and p53) was suppressed upon EPA-E treatment. Besides, EPA-E curbed methotrexate-induced abnormal autophagy by downregulating LC3A/B and beclin-1. Interestingly, BADGE-coadministration reversed EPA-E beneficial actions. Collectively, our findings suggest PPAR-γ role in EPA-E-mediated mitigation of methotrexate-evoked testiculopathy via suppression of oxidative stress, apoptosis, as well as abnormal autophagy. Furthermore, EPA-E could be used as a preventive therapy for some testiculopathies mediated by oxidative stress.
Collapse
Affiliation(s)
- Noha A T Abbas
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Walaa M Sarhan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
- Wake Forest Institute of Regenerative Medicine (WFIRM), Winston-Salem, NC, USA
| | - Eman M A Abdelghany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig City, Egypt
| | - Omnia Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Shireen S Mahmoud
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig City, 44519, Egypt
| |
Collapse
|
21
|
Buyukdere Y, Akyol A. From a toxin to an obesogen: a review of potential obesogenic roles of acrylamide with a mechanistic approach. Nutr Rev 2023; 82:128-142. [PMID: 37155834 PMCID: PMC10711450 DOI: 10.1093/nutrit/nuad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Obesity and obesity-related disorders such as cancer, type 2 diabetes, and fatty liver have become a global health problem. It is well known that the primary cause of obesity is positive energy balance. In addition, obesity is the consequence of complex gene and environment interactions that result in excess calorie intake being stored as fat. However, it has been revealed that there are other factors contributing to the worsening of obesity. The presence of nontraditional risk factors, such as environmental endocrine-disrupting chemicals, has recently been associated with obesity and comorbidities caused by obesity. The aim of this review was to examine the evidence and potential mechanisms for acrylamide having endocrine-disrupting properties contributing to obesity and obesity-related comorbidities. Recent studies have suggested that exposure to environmental endocrine-disrupting obesogens may be a risk factor contributing to the current obesity epidemic, and that one of these obesogens is acrylamide, an environmental and industrial compound produced by food processing, particularly the processing of foods such as potato chips, and coffee. In addition to the known harmful effects of acrylamide in humans and experimental animals, such as neurotoxicity, genotoxicity, and carcinogenicity, acrylamide also has an obesogenic effect. It has been shown in the literature to a limited extent that acrylamide may disrupt energy metabolism, lipid metabolism, adipogenesis, adipocyte differentiation, and various signaling pathways, and may exacerbate the disturbances in metabolic and biochemical parameters observed as a result of obesity. Acrylamide exerts its main potential obesogenic effects through body weight increase, worsening of the levels of obesity-related blood biomarkers, and induction of adipocyte differentiation and adipogenesis. Additional mechanisms may be discovered. Further experimental studies and prospective cohorts are needed, both to supplement existing knowledge about acrylamide and its effects, and to clarify its established relationship with obesity and its comorbidities.
Collapse
Affiliation(s)
- Yucel Buyukdere
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- are with the Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Gür F, Cengiz M, Gür B, Cengiz O, Sarıçiçek O, Ayhancı A. Therapeutic role of boron on acrylamide-induced nephrotoxicity, cardiotoxicity, neurotoxicity, and testicular toxicity in rats: Effects on Nrf2/Keap-1 signaling pathway and oxidative stress. J Trace Elem Med Biol 2023; 80:127274. [PMID: 37562273 DOI: 10.1016/j.jtemb.2023.127274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/24/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Acrylamide (ACR) is a heat-related carcinogen used in cooking some foods as well as in other thermal treatments. The present study aims to investigate the possible protective effect of boron (BA) against ACR-induced toxicity of kidney, brain, heart, testis, and bladder tissues in rats. METHODS Rats have been divided into 5 equal groups: Control (saline), ACR (38.27 mg/kg), BA (20 mg/kg), BA+ ACR (10 mg/kg + ACR), and BA+ ACR (20 mg/kg BA+ACR). Kidney tissue from rats was collected and the levels of malondialdehyde (MDA), glutathione (GSH), and the activity of superoxide dismutase (SOD) were measured. In addition, the kidneys of these animals, as well as the brain, heart, testes, and bladder tissues were examined for possible histological changes. Total Nrf2 and Keap-1 protein expression in kidney, heart, and testis tissues was examined by immunohistochemistry. RESULTS While significant increases in MDA levels were observed in the kidneys of rats receiving ACR alone, significant decreases in antioxidant markers (SOD and GSH) were observed. Besides, kidney, brain, heart, and testicular tissues were analyzed and damage was observed in the groups receiving ACR. However, no significant histologic changes were noted in the bladder tissue. Both dosages of BA in combination with ACR improved the changes in ACR-induced antioxidant tissue parameters. Despite the fact that MDA levels were decreased with these two dosages, histological structural abnormalities were found to be greatly improved. CONCLUSION Our results show that BA has a strong protective effect on ACR-induced multi-organ toxicity. The study results show that BA could be a potential element to reduce ACR toxicity to which we are often exposed.
Collapse
Affiliation(s)
- Fatma Gür
- Department of Biochemistry, Vocational School of Health Services, Ataturk University, Erzurum, Turkiye
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkiye.
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Turkiye.
| | - Osman Cengiz
- Department of Cardiology, Eskişehir City Hospital, Eskişehir, Turkiye
| | - Osman Sarıçiçek
- Department of Biology, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskisehir, Turkiye
| | - Adnan Ayhancı
- Department of Biology, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskisehir, Turkiye
| |
Collapse
|
23
|
Akarsu SA, Gür C, İleritürk M, Akaras N, Küçükler S, Kandemir FM. Effect of syringic acid on oxidative stress, autophagy, apoptosis, inflammation pathways against testicular damage induced by lead acetate. J Trace Elem Med Biol 2023; 80:127315. [PMID: 37801787 DOI: 10.1016/j.jtemb.2023.127315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Heavy metals are one of the environmental pollutants. Lead (Pb) is one of the most common of these heavy metals. In this study, it was aimed at investigating the effects of syringic acid (SA) against testicular toxicity in rats administered lead acetate (PbAc). METHODS In the present study, a total of 35 Sprague-Dawley rats, 7 in each group, were used. The rats were divided into 5 groups, with 7 male rats in each group. Rats were given PbAc and SA orally for 7 days. The effects of PbAc and SA on epididymal sperm quality and apoptosis, inflammation, oxidative stress and histopathological changes in testicular tissue were determined. RESULTS While PbAc disrupted the seminiferous tubules and produced atrophic images, SA corrected these histological abnormalities. PbAc adminisration significantly reduced the levels of SOD, GSH, GPx, CAT, NRF-2 and NQO1 and significantly increased the levels of MDA and 8-OHdG in the testicular tissue of rats, while SA improved this situation. NF-κB, TNF-α, IL-1β, NLRP3, RAGE, ATF6, PERK, IRE1, CHOP, and GRP78 genes expression levels increased with PbAc administration, however these levels decreased with SA administration. In addition, PbAc increased the levels of apoptotic markers Bax, Caspase-3 and APAF-1 and decreased the level of Bcl-2, while SA improved this situation. It was observed that PbAc significantly reduced sperm quality in rats, while SA positively affected sperm quality. CONCLUSION As a result, SA administered against PbAc-induced testicular dysfunction in rats can provide effective protection at doses of 25 mg/kg/bw and 50 mg/kg/bw.
Collapse
Affiliation(s)
- Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
24
|
Tuncer SÇ, Küçükler S, Gür C, Aygörmez S, Kandemir FM. Effects of chrysin in cadmium-induced testicular toxicity in the rat; role of multi-pathway regulation. Mol Biol Rep 2023; 50:8305-8318. [PMID: 37592178 DOI: 10.1007/s11033-023-08715-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Cadmium (Cd) is a strong toxic agent and causes serious damage to testicular tissues. Chrysin (CHR) is a natural flavonoid with many effective properties, especially antioxidant, anti-inflammatory and anti-apoptotic properties. The current study describes new evidence for the ameliorative effects of CHR on oxidative stress, apoptosis, autophagy and inflammation pathways in Cd-induced testicular tissue toxicity. METHODS Thirty-five male Wistar rats were divided into five groups, control, Cd, CHR, Cd + CHR25, and Cd + CHR50. Cd was administered alone at a dose of 25 mg/kg body weight or in combination with CHR 25 mg/kg and CHR 50 mg/kg for 7 days. Cd and CHR were administered orally. Biochemical, molecular, and histological methods were used to investigate inflammation, apoptosis, autophagy, and oxidant pathways in testicular tissue. RESULTS Cd increased lipid peroxidation, JAK-2/STAT-3 levels, inflammation-related NF-κB, TNF-α, IL-1β, IL-6, COX-2, and iNOS levels, AKT-2, FOXO1, Bax, Apaf-1 and Caspase-3 levels, autophagic Beclin-1, LC3A and LC3B. The Cd also caused a decrease in the activities of antioxidant enzymes and GSH levels, antiapoptotic Bcl-2 levels. CHR, on the other hand, had the opposite effect of all these Cd-induced changes. CONCLUSIONS Overall, the data of this study indicate that testicular damage associated with Cd toxicity could be ameliorated by CHR administration.
Collapse
Affiliation(s)
- Sibel Çiğdem Tuncer
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye.
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Cihan Gür
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Serpil Aygörmez
- Department of Veterinary Biochemistry, Faculty of Veterinary, Kafkas University, Kars, Türkiye
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| |
Collapse
|
25
|
Santos LDD, Souza TLD, Silva GID, Mello MFFD, Oliveira JMD, Romano MA, Romano RM. Prepubertal oral exposure to relevant doses of acrylamide impairs the testicular antioxidant system in adulthood, increasing protein carbonylation and lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122132. [PMID: 37414124 DOI: 10.1016/j.envpol.2023.122132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The increased prevalence of human infertility due to male reproductive disorders has been linked to extensive exposure to chemical endocrine disruptors. Acrylamide (AA) is a compound formed spontaneously during the thermal processing of some foods that are mainly consumed by children and adolescents. We previously found that prepubertal exposure to AA causes reduced sperm production and functionality. Oxidative stress is recognized as the main cause of reduced sperm quality and quantity. In this sense, our objective was to evaluate the expression and activity of genes related to enzymatic antioxidant defense, nonprotein thiols, lipid peroxidation (LPO), protein carbonylation (PC) and DNA damage in the testes of rats exposed to acrylamide (2.5 or 5 mg/kg) from weaning to adult life by gavage. For the AA2.5 and AA5 groups, there were no alterations in the transcript expression of genes related to enzymatic antioxidant defense. The enzymatic activities and metabolic parameters were also not affected in the AA2.5 group. For the AA5 group, the enzymatic activities of G6PDH and GPX were reduced, SOD was increased, and protein carbonylation (PC) was increased. Data were also evaluated by Integrate Biomarker Response (IBRv2), a method to analyze and summarize the effects on biomarkers between doses. The IBRv2 index was calculated as 8.9 and 18.71 for AA2.5 and AA5, respectively. The following biomarkers were affected by AA2.5: decreased enzymatic activities of G6PDH, SOD, and GPX, increased GST and GSH, increased LPO and PC, and decreased DNA damage. For AA5, decreased enzymatic activities of G6PDH, GST, CAT and GPX, increased SOD and GSH, increased PC, and decreased LPO and DNA damage were observed. In conclusion, AA exposure during the prepubertal period causes imbalances in the testicular enzymatic antioxidant defense, contributing to the altered spermatic scenario in the testes of these rats.
Collapse
Affiliation(s)
- Luciana Dalazen Dos Santos
- Laboratory of Reproductive Toxicology and Molecular Biology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, 838, Zip-Code, 85040-167, Parana, Brazil
| | - Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Gabriel Ian da Silva
- Laboratory of Reproductive Toxicology and Molecular Biology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, 838, Zip-Code, 85040-167, Parana, Brazil
| | - Mateus Francescon Ferreira de Mello
- Laboratory of Reproductive Toxicology and Molecular Biology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, 838, Zip-Code, 85040-167, Parana, Brazil
| | - Jeane Maria de Oliveira
- Laboratory of Reproductive Toxicology and Molecular Biology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, 838, Zip-Code, 85040-167, Parana, Brazil
| | - Marco Aurelio Romano
- Laboratory of Reproductive Toxicology and Molecular Biology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, 838, Zip-Code, 85040-167, Parana, Brazil
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology and Molecular Biology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, 838, Zip-Code, 85040-167, Parana, Brazil.
| |
Collapse
|
26
|
Gur C, Akarsu SA, Akaras N, Tuncer SC, Kandemir FM. Carvacrol reduces abnormal and dead sperm counts by attenuating sodium arsenite-induced oxidative stress, inflammation, apoptosis, and autophagy in the testicular tissues of rats. ENVIRONMENTAL TOXICOLOGY 2023; 38:1265-1276. [PMID: 36880177 DOI: 10.1002/tox.23762] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Arsenic (As) is a highly toxic metalloid. Carvacrol (CAR) is the active ingredient of Lamiaceae plants and has various biological and pharmacological properties. The present study investigated the protective effects of carvacrol (CAR) against testicular toxicity induced by sodium arsenite (SA). Rats were given SA (10 mg/kg) and/or CAR (25 or 50 mg/kg) for 14 days. Semen analyzes showed that CAR increased sperm motility and decreased the percentage of abnormal and dead sperm. It was determined that the oxidative stress induced by SA decreased with the increase of Nrf-2 and HO-1 expressions, SOD, CAT, GPx, and GSH levels, and MDA levels decreased after CAR treatment. It was observed that autophagy and inflammation triggered by SA in testicular tissue were alleviated by suppressing the expressions of LC3A, LC3B, MAPK-14, NF-κB, TNF-α, IL-1β, iNOS, and COX-2 biomarkers in rats given CAR. Also, CAR treatment suppressed SA-induced apoptosis by inhibiting Bax and Caspase-3 expressions in testicles and up-regulating Bcl-2 expression. Histopathological analyzes showed that rats given SA had deterioration in tubule structure and spermatogenesis cell line, especially a serious loss of spermatogonia cells, atrophy of seminiferous tubules, and deterioration of germinal epithelium. In the group given CAR, the germinal epithelium and connective tissue were in normal morphological structure and an increase in seminiferous tubule diameters was observed. As a result, it was determined that oxidative stress, inflammation, autophagy, and apoptosis induced by SA were suppressed by CAR, thus protecting the testicular tissue from damage and increasing semen quality.
Collapse
Affiliation(s)
- Cihan Gur
- Faculty of Veterinary Medicine, Department of Biochemistry, Atatürk University, Erzurum, Turkey
| | - Serkan Ali Akarsu
- Faculty of Veterinary Medicine, Department of Fertilization and Artificial Insemination, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Faculty of Medicine, Department of Histology and Embryology, Aksaray University, Aksaray, Turkey
| | - Sibel Cigdem Tuncer
- Faculty of Medicine, Department of Medical Biochemistry, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Faculty of Medicine, Department of Medical Biochemistry, Aksaray University, Aksaray, Turkey
| |
Collapse
|
27
|
Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023; 175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Acrylamide (ACR) is a common pollutant formed during food thermal processing such as frying, baking and roasting. ACR and its metabolites can cause various negative effects on organisms. To date, there have been some reviews summarizing the formation, absorption, detection and prevention of ACR, but there is no systematic summary on the mechanism of ACR-induced toxicity. In the past five years, the molecular mechanism for ACR-induced toxicity has been further explored and the detoxification of ACR by phytochemicals has been partly achieved. This review summarizes the ACR level in foods and its metabolic pathways, as well as highlights the mechanisms underlying ACR-induced toxicity and ACR detoxification by phytochemicals. It appears that oxidative stress, inflammation, apoptosis, autophagy, biochemical metabolism and gut microbiota disturbance are involved in various ACR-induced toxicities. In addition, the effects and possible action mechanisms of phytochemicals, including polyphenols, quinones, alkaloids, terpenoids, as well as vitamins and their analogs on ACR-induced toxicities are also discussed. This review provides potential therapeutic targets and strategies for addressing various ACR-induced toxicities in the future.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
28
|
Research Progress of Programmed Cell Death Induced by Acrylamide. J FOOD QUALITY 2023. [DOI: 10.1155/2023/3130174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Acrylamide exposure through environment pollution and diet is very common in daily life. With the deepening of the study on the toxicity of acrylamide, it has attracted widespread attention for the effects of acrylamide on multiple organs through affecting a variety of programmed cell death. Multiple studies have shown that acrylamide could exert its toxic effect by inducing programmed cell death, but its specific molecular mechanism is still unclear. In this review, the research on the main forms of programmed cell death (apoptosis, autophagy, and programmed necrosis) induced by acrylamide and their possible mechanisms are reviewed. This review may provide basic data for further research of acrylamide and prevention of its toxicity.
Collapse
|
29
|
Sengul E, Gelen V, Yildirim S, Cinar İ, Aksu EH. Effects of naringin on oxidative stress, inflammation, some reproductive parameters, and apoptosis in acrylamide-induced testis toxicity in rat. ENVIRONMENTAL TOXICOLOGY 2023; 38:798-808. [PMID: 36598108 DOI: 10.1002/tox.23728] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/07/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Acrylamide (ACR) is used in many fields such as cosmetics, paper, and textile industries. It also occurs at very high temperatures in some foods. Gonadotoxic effects of ACR have been found in experimental animals. Many studies use flavonoids to prevent the reproductive side effects of ACR. Naringin (NA) is a flavonoid and it has been determined by studies that it has no toxic effect on tissues. In our study, we aimed to determine the protective effect of NA against the damage of ACR on testicular tissue and the reproductive system in rats. In our study, 50 Spraque Dawley male rats weighing 220-250 grams were used. Control: Only intragastric saline was administered for 10 days. ACR: Animals received ACR (40 mg/kg, intraperitoneally) for 10 days. NA50+ACR: Animals were given NA for 10 days and each NA was one hour after the administration of ACR. NA100+ACR: Animals received NA for 10 days and one hour after each NA was given ACR. NA100: Animals were given NA for 10 days. At the end of the applications, the rats were euthanized by cervical dislocation under anesthesia. Serum FSH, LH, and Dihydrotestosterone levels were compared between the groups. In addition, oxidative stress, inflammation, expression of some reproductive enzymes, and apoptosis markers were determined in testicular tissues. When these parameters were compared between groups, ACR induced testicular dysfunction and tissue damage in rats. We determined that only the NA application did not cause tissue damage. and the administration of NA along with ACR significantly reduced ACR-induced testis toxicity.
Collapse
Affiliation(s)
- Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kasfkas University, Kars, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İrfan Cinar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Emrah Hicazi Aksu
- Department of Andrology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
30
|
Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 signaling pathways. Mol Biol Rep 2023; 50:3479-3488. [PMID: 36781607 DOI: 10.1007/s11033-023-08286-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Organ toxicity limits the therapeutic efficacy of methotrexate (MTX), an anti-metabolite therapeutic that is frequently used as an anti-cancer and immunosuppressive medicine. Hepatocellular toxicity is among the most severe side effects of long-term MTX use. The present study unveils new confirmations as regards the remedial effects of morin on MTX-induced hepatocellular injury through regulation of oxidative stress, apoptosis and MAPK signaling. METHODS AND RESULTS Rats were subjected to oral treatment of morin (50 and 100 mg/kg body weight) for 10 days. Hepatotoxicity was induced by single intraperitoneal injection of MTX (20 mg/kg body weight) on the 5th day. MTX related hepatic injury was associated with increased MDA while decreased GSH levels, the activities of endogen antioxidants (glutathione peroxidase, superoxide dismutase and catalase) and mRNA levels of HO-1 and Nrf2 in the hepatic tissue. MTX treatment also resulted in apoptosis in the liver tissue via increasing mRNA transcript levels of Bax, caspase-3, Apaf-1 and downregulation of Bcl-2. Conversely, treatment with morin at different doses (50 and 100 mg/kg) considerably mitigated MTX-induced oxidative stress and apoptosis in the liver tissue. Morin also mitigated MTX-induced increases of ALT, ALP and AST levels, downregulated mRNA expressions of matrix metalloproteinases (MMP-2 and MMP-9), MAPK14 and MAPK15, JNK, Akt2 and FOXO1 genes. CONCLUSION According to the findings of this study, morin may be a potential way to shield the liver tissue from the oxidative damage and apoptosis.
Collapse
|
31
|
Zhang J, Zhu X, Xu W, Hu J, Shen Q, Zhu D, Xu X, Wei Z, Zhou P, Cao Y. Exposure to acrylamide inhibits testosterone production in mice testes and Leydig cells by activating ERK1/2 phosphorylation. Food Chem Toxicol 2023; 172:113576. [PMID: 36565847 DOI: 10.1016/j.fct.2022.113576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Acrylamide (ACR) is formed during the cooking of starchy foods at high temperatures. Accumulating evidence has shown that ACR has toxic effects, but the mechanism of its potential reproductive toxicity remains unclear. In this study, we observed that ACR caused weight loss in mice. There was no significant difference in the weight of testis and epididymis between the low/medium-dose ACR group and the control group. And the number of epididymal sperms, testicular Leydig cells, serum testosterone level, testicular steroidogenic genes and enzymes, including cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were decreased in the medium/high-dose ACR group. Additional cell experiments showed that the apoptosis rate and the level of reactive oxygen species (ROS) were increased, and testosterone levels and CYP17A1 protein expression were reduced in Leydig cells with treated ACR. Furthermore, the phosphorylation levels of extracellular signal-regulated kinases (ERK1/2) increased significantly; however, there was no significant difference in the levels of serine-threonine protein kinase (AKT) phosphorylation in the testis of mice and Leydig cells treated with ACR. These results suggest that ACR exposure leads to the damage of testicular structure and function and a decline in testosterone synthesis in Leydig cells and mouse testis, which may be related to the activated phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqian Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wenjuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Damin Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
32
|
Başaran B, Çuvalcı B, Kaban G. Dietary Acrylamide Exposure and Cancer Risk: A Systematic Approach to Human Epidemiological Studies. Foods 2023; 12:foods12020346. [PMID: 36673439 PMCID: PMC9858116 DOI: 10.3390/foods12020346] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Acrylamide, identified by the International Cancer Research Center as a possible carcinogenic compound to humans, is a contaminant formed as a result of the thermal process in many foods, such as coffee, French fries, biscuits and bread, which are frequently consumed by individuals in their daily lives. The biggest concern about acrylamide is that the health risks have not yet been fully elucidated. For this reason, many studies have been carried out on acrylamide in the food, nutrition and health equation. This study focused on epidemiological studies examining the associations between dietary acrylamide exposure and cancer risk. For this purpose, articles published in PubMed, Isı Web of Knowledge, Scopus and Science Direct databases between January 2002 and April 2022 were systematically examined using various keywords, and a total of 63 articles were included in the study. Although some studies on reproductive, urinary, gastrointestinal, respiratory and other systems and organs stated that there is a positive relationship between dietary acrylamide exposure and cancer risk, many publications did not disclose a relationship in this direction. Studies examining the relationship between dietary acrylamide exposure and cancer should be planned to include more people and foods in order to obtain more reliable results. Making research plans in this way is very important in terms of guiding health policies to be formed in the future.
Collapse
Affiliation(s)
- Burhan Başaran
- Department of Plant and Animal Production/Tea Agriculture and Processing Technology, Pazar Vocational School, Recep Tayyip Erdoğan University, Rize 53100, Turkey
| | - Burcu Çuvalcı
- Health and Care Services/Elderly Care, Health Services Vocational High School, Recep Tayyip Erdoğan University, Rize 53100, Turkey
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Turkey
- Correspondence:
| |
Collapse
|
33
|
Ileriturk M, Kandemir O, Kandemir FM. Evaluation of protective effects of quercetin against cypermethrin-induced lung toxicity in rats via oxidative stress, inflammation, apoptosis, autophagy, and endoplasmic reticulum stress pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2639-2650. [PMID: 35876585 DOI: 10.1002/tox.23624] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 05/27/2023]
Abstract
Cypermethrin (CYP), a type II synthetic pyrethroid, is the most widely used insecticide worldwide. Inhalation of it may cause side effects. This study is aimed to examine potential protection of quercetin (QUE) which is a well-known antioxidant in CYP-induced lung toxicity. Accordingly, 35 Spraque Dawley male rats were divided into five equal groups as follows: I-Control group, II-QUE group (50 mg/kg/b.w. QUE), III-CYP group (25 mg/kg/b.w. CYP), IV-CYP + QUE 25 (25 mg/kg/b.w. CYP + 25 mg/kg/b.w. QUE), V-CYP + QUE (25 mg/kg/b.w. CYP + 50 mg/kg/b.w. QUE) were treated with oral gavage throughout 28 days. CYP intoxication was associated with increased malondialdehyde level while glutathione concentration, activities of glutathione peroxidase, superoxide dismutase, and catalase reduced. CYP adminisitration caused of apoptosis in the lung by up-regulating caspase-3 and Bax levels and down-regulating Bcl-2. CYP also caused of endoplasmic reticulum (ER) stress by increasing mRNA transcript levels of PERK, IRE1, ATF6, and GRP78. Additionally, it was observed that CYP administration activated IL-6/JAK2/STAT3/MAPK14 signaling pathway and levels of IL-1β, NF-κB, TNF-α, and iNOS in the lung tissue. Therefore, it was determined that CYP administration triggered autophagy by upregulating LC3A and LC3B mRNA transcript levels. Moreover, the protein levels of NF-κB, caspase-3, Bax, Bcl-2, and cytochorme-c were examined by Western blot analysis. However, co-treatment with QUE at a dose of 25 and 50 mg/kg considerably protective oxidative stress, inflammation, apoptosis, ER stress, autophagy, and IL-6/JAK2/STAT3/MAPK14 signaling pathway in lung tissue. Overall, the findings of this study suggest that lung damage associated with CYP toxicity could be protected by QUE administration.
Collapse
Affiliation(s)
- Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey
| | - Ozge Kandemir
- Aksaray Technical Sciences Vocational School, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
34
|
Varışlı B, Caglayan C, Kandemir FM, Gür C, Bayav İ, Genç A. The impact of Nrf2/HO-1, caspase-3/Bax/Bcl2 and ATF6/IRE1/PERK/GRP78 signaling pathways in the ameliorative effects of morin against methotrexate-induced testicular toxicity in rats. Mol Biol Rep 2022; 49:9641-9649. [PMID: 36057755 DOI: 10.1007/s11033-022-07873-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Methotrexate (MT) is a broadly used chemotherapeutic drug however its clinical use is confronted with several forms of toxicities containing testicular damage. The current study assessed the ameliorative effects of morin on MT-induced testicular damage with the investigation of its mechanism and the potential involvement of oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in such protection. METHODS The animals were divided into 5 distinct groups (7 rats in each group). Group 1 was control group, group 2 received MT-only (20 mg/kg bw), group 3 received orally morin-only (100 mg/kg bw), group 4 received MT (20 mg/kg bw) + morin (50 mg/kg bw) and group 5 received MT (20 mg/kg bw) + morin (100 mg/kg). In this study, morin was administered orally for 10 days, while MT was administered intraperitoneally on the 5th day. RESULTS MT intoxication was linked with augmented MDA while decreased GSH levels, the enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase and mRNA levels of HO-1 and Nrf2 in the testis tissues. MT injection caused inflammation in the testicular tissue via up-regulation of MAPK14, NFκB, TNF-α and IL-1β. MT application also caused apoptosis and endoplasmic reticulum stress in the testis tissue via increasing mRNA transcript levels of Bax, caspase-3, PERK, IRE1, ATF-6, GRP78 and down-regulation of Bcl-2. CONCLUSION Treatment with morin at a dose of 50 and 100 mg/kg considerably mitigated oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in the testicular tissue indicating that testicular damage related to MT toxicity could be modulated by morin administration.
Collapse
Affiliation(s)
- Behçet Varışlı
- Vocational School of Health Sevices, Final International University, Kazafani, Cyprus
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İbrahim Bayav
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Aydın Genç
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey
| |
Collapse
|
35
|
Caglayan C, Kandemir FM, Ayna A, Gür C, Küçükler S, Darendelioğlu E. Neuroprotective effects of 18β-glycyrrhetinic acid against bisphenol A-induced neurotoxicity in rats: involvement of neuronal apoptosis, endoplasmic reticulum stress and JAK1/STAT1 signaling pathway. Metab Brain Dis 2022; 37:1931-1940. [PMID: 35699857 DOI: 10.1007/s11011-022-01027-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
The exposure to bisphenol A (BPA) is inevitable owing to its common use in the production of polycarbonate plastics. Studies to reduce side effects are gaining importance since BPA causes severe toxicities in important tissues such as testes, lungs, brain, liver and kidney. The current study was planned to study ameliorative effect of 18β-glycyrrhetinic acid (18β-GA) on BPA induced neurotoxicity. Fourty Wistar albino rats were divided into five equal groups as follows: I-Control group, II-18β-GA group (100 mg/kg), III- BPA group (250 mg/kg), IV-250 mg/kg BPA + 50 mg/kg 18β-GA group, V-250 mg/kg BPA + 100 mg/kg 18β-GA group. BPA intoxication was associated with increased MDA level while reduced GSH concentration, activities of glutathione peroxidase, superoxide dismutase, and catalase. BPA supplementation caused apoptosis in the brain by up-regulating caspase-3 and Bax levels and down-regulating Bcl-2. BPA also caused endoplasmic reticulum (ER) stress by increasing mRNA transcript levels of PERK, IRE1, ATF-6 and GRP78. Additionally, it was observed that BPA administration activated JAK1/STAT1 signaling pathway and levels of TNF-α, NF-κB, p38 MAPK and JNK in the brain. However, co-treatment with 18β-GA at a dose of 50 and 100 mg/kg considerably ameliorated oxidative stress, inflammation, apoptosis, ER stress and JAK1/STAT1 signaling pathway in brain tissue. Overall, the data of this study indicate that brain damage associated with BPA toxicity could be ameliorated by 18β-GA administration.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, University Bingol, 12000, Bingol, Turkey
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, University Bingol, 12000, Bingol, Turkey
| |
Collapse
|
36
|
Alturki HA, Elsawy HA, Famurewa AC. Silymarin abrogates acrylamide-induced oxidative stress-mediated testicular toxicity via modulation of antioxidant mechanism, DNA damage, endocrine deficit and sperm quality in rats. Andrologia 2022; 54:e14491. [PMID: 35753048 DOI: 10.1111/and.14491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022] Open
Abstract
Acrylamide (ACR) is a toxic chemical formed in foods processed at high temperature; it is a food-borne toxicant with increasing public health attention due to its carcinogenic, neurotoxic and reproductive toxicities. However, till date, it is unknown whether silymarin (SIL) could attenuate ACR testicular toxicity. Therefore, the present study investigated the effect of SIL on ACR testiculotoxicity in rats. Rats were randomly divided and administered respective agents in Control group, ACR group, SIL group and ACR + SIL group for consecutive 14 days. Rat exposure to ACR resulted in significant reduction in the level of serum testosterone, whereas FSH and LH levels prominently increased compared to control. Acrylamide induced marked decreases in sperm count and sperm motility followed by a considerable increase in sperm abnormality percentage in the ACR-exposed rats in comparison to control. The testicular activities of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were significantly diminished, whereas malondialdehyde (MDA) level considerably increased. Additionally, ACR induced marked DNA fragmentation and histopathological lesions compared to control. Interestingly, the co-treatment of SIL with ACR attenuated the altered reproductive indices and restored antioxidant balance and DNA integrity. Overall, SIL prevents ACR-induced testicular reproductive deficits via modulation of antioxidant mechanism in rats.
Collapse
Affiliation(s)
- Hissah Ahmed Alturki
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hany Amin Elsawy
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ademola Clement Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
37
|
Senthil Kumar S, Swaminathan A, Abdel-Daim MM, Sheik Mohideen S. A systematic review on the effects of acrylamide and bisphenol A on the development of Drosophila melanogaster. Mol Biol Rep 2022; 49:10703-10713. [PMID: 35753027 DOI: 10.1007/s11033-022-07642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
The current global scenario has instigated a steady upsurge of synthetic chemicals usage thereby creating a toxic environment unsuitable for animals and humans. Acrylamide and bisphenol A are some of the most common toxins found in the atmosphere due to their extensive involvement in numerous industrial processes. Acrylamide, an occupational hazard toxin has been known to cause severe nerve damage and peripheral neuronal damage in both animals and humans. General sources of acrylamide exposure are effluents from textile and paper industries, cosmetics, and thermally processed foods rich in starch. Bisphenol A (BPA) is generally found in food packaging materials, dental sealants, and plastic bottles. It is highly temperature-sensitive that can easily leach into the food products or humans on contact. The genotoxic and neurotoxic effects of acrylamide and bisphenol A have been widely researched; however, more attention should be dedicated to understanding the developmental toxicity of these chemicals. The developmental impacts of toxin exposure can be easily understood using Drosophila melanogaster as a model given considering its short life span and genetic homology to humans. In this review, we have discussed the toxic effects of acrylamide and BPA on the developmental process of Drosophila melanogaster.
Collapse
Affiliation(s)
- Swetha Senthil Kumar
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India
| | - Abhinaya Swaminathan
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| | - Sahabudeen Sheik Mohideen
- Developmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
38
|
Varışlı B, Darendelioğlu E, Caglayan C, Kandemir FM, Ayna A, Genç A, Kandemir Ö. Hesperidin Attenuates Oxidative Stress, Inflammation, Apoptosis, and Cardiac Dysfunction in Sodium Fluoride-Induced Cardiotoxicity in Rats. Cardiovasc Toxicol 2022; 22:727-735. [PMID: 35606666 DOI: 10.1007/s12012-022-09751-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/30/2022] [Indexed: 01/08/2023]
Abstract
Excessive fluoride intake has been reported to cause toxicities to brain, thyroid, kidney, liver and testis tissues. Hesperidin (HSP) is an antioxidant that possesses anti-allergenic, anti-carcinogenic, anti-oxidant and anti-inflammatory activities. Presently, the studies focusing on the toxic effects of sodium fluoride (NaF) on heart tissue at biochemical and molecular level are limited. This study was designed to evaluate the ameliorative effects of HSP on toxicity of NaF on the heart of rats in vivo by observing the alterations in oxidative injury markers (MDA, SOD, CAT, GPX and GSH), pro-inflammatory markers (NF-κB, IL-1β, TNF-α), expressions of apoptotic genes (caspase-3, -6, -9, Bax, Bcl-2, p53, cytochrome c), levels of autophagic markers (Beclin 1, LC3A, LC3B), expression levels of PI3K/Akt/mTOR and cardiac markers. HSP treatment attenuated the NaF-induced heart tissue injury by increasing activities of SOD, CAT and GPx and levels of GSH, and suppressing lipid peroxidation. In addition, HSP reversed the changes in expression of apoptotic (caspase-3, -6, -9, Bax, Bcl-2, p53, cytochrome c), levels of autophagic and inflammatory parameters (Beclin 1, LC3A, LC3B, NF-κB, IL-1β, TNF-α), in the NaF-induced cardiotoxicity. HSP also modulated the gene expression levels of PI3K/Akt/mTOR signaling pathway and levels of cardiac markers (LDH, CK-MB). Overall, these findings reveal that HSP treatment can be used for the treatment of NaF-induced cardiotoxicity.
Collapse
Affiliation(s)
- Behçet Varışlı
- Vocational School of Health Sevices, Final International University, Kazafani, Cyprus
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Aydın Genç
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey
| | - Özge Kandemir
- Technical Sciences Vocatinal School, Aksaray University, Aksaray, Turkey
| |
Collapse
|
39
|
Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology 2022; 90:197-204. [DOI: 10.1016/j.neuro.2022.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
|
40
|
Kandemir FM, Ileriturk M, Gur C. Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol Biol Rep 2022; 49:6063-6074. [DOI: 10.1007/s11033-022-07395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
|
41
|
Gur C, Kandemir O, Kandemir FM. Investigation of the effects of hesperidin administration on abamectin-induced testicular toxicity in rats through oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, autophagy, and JAK2/STAT3 pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:401-412. [PMID: 34748272 DOI: 10.1002/tox.23406] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, the potential effects of hesperidin (HES) on chronic toxicity caused by abamectin (ABM) in the testicular tissue were investigated through oxidative stress, inflammation, endoplasmic reticulum stress (ERS), apoptosis, and autophagy pathways. Male Sprague Dawley rats were used in the study. Animals in the ABM group were orally administered 1 mg/kg ABM every other day for 28 days, while HES used against ABM was given at 100 or 200 mg/kg 30 min after ABM administration for 28 days. Markers of oxidative stress, inflammation, ERS, apoptosis, and autophagy in the testicular tissues removed after the animals are sacrificed were analyzed using biochemical, real-time polymerase chain reaction (RT-PCR), or western blot techniques. The results obtained showed that ABM caused oxidative stress, and triggered ERS, inflammation, apoptosis, and autophagy. On the other hand, HES showed antioxidant effect by increasing superoxide dismutase, catalase, glutathione peroxidase enzyme activities, and glutathione levels in testis tissue and attenuated lipid peroxidation. Accordingly, MAPK14 reduced the NF-κB, IL-1β, TNF-α, and IL-6 expression levels, presenting an anti-inflammatory effect. In addition, Bax protected against apoptosis and autophagy by reducing the caspase-3, beclin-1, LC3A, and LC3B expressions, and increasing Bcl-2 expression. It was observed that HES also interrupted the JAK2/STAT3 signaling pathway by suppressing IL-6 expression. Taken into consideration together, HES provided significant protection against the destruction caused by ABM in testicular tissue with antioxidant, anti-inflammatory, antiapoptotic, and anti-autophagic effects. Thus, it was revealed that HES has the potential to serve as an alternative treatment option in ABM toxicity.
Collapse
Affiliation(s)
- Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ozge Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
42
|
Yesildag K, Eroz R, Genc A, Dogan T, Satici E. Evaluation of the protective effects of morin against acrylamide‐induced lung toxicity by biomarkers of oxidative stress, inflammation, apoptosis, and autophagy. J Food Biochem 2022; 46:e14111. [DOI: 10.1111/jfbc.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Kerim Yesildag
- Department of Chest Diseases Konya Numune Hospital Konya Turkey
| | - Recep Eroz
- Medical Faculty, Department of Medical Genetic Aksaray University Aksaray Turkey
| | - Aydin Genc
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| | - Tuba Dogan
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| | - Emine Satici
- Faculty of Veterinary Medicine, Department of Biochemistry Atatürk University Erzurum Turkey
| |
Collapse
|
43
|
Semis HS, Gur C, Ileriturk M, Kandemir FM, Kaynar O. Evaluation of Therapeutic Effects of Quercetin Against Achilles Tendinopathy in Rats via Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Metalloproteinases. Am J Sports Med 2022; 50:486-498. [PMID: 34908488 DOI: 10.1177/03635465211059821] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Achilles tendinopathy, seen in athletes and manual labor workers, is an inflammatory condition characterized by chronic tendon pain. Owing to the toxicity that develops in various organs attributed to the use of anti-inflammatory drugs, there is a need for new therapeutic agents. PURPOSE In the present study, the effects of quercetin (Que), the one that attracted the most attention of researchers studying this group of flavonoids, were investigated against collagenase-induced tendinopathy. STUDY DESIGN Controlled laboratory study. METHODS A total of 35 Sprague-Dawley rats were used in the study. Tendinopathy was created by injecting a single dose of collagenase (10 μL; 10 mg/mL) into the tendons of rats. Thirty minutes after the injection, Que was administered at doses of 25 or 50 mg/kg. Que administration was carried out for 7 days. Animals underwent a motility test at the end of the study. In addition, markers of oxidative stress, inflammation, apoptosis, and autophagy, as well as the expression levels of matrix metalloproteinases (MMPs 2, 3, 9, and 13), ICAM-1, and STAT3, were measured in tendon tissues with biochemical, molecular, and Western blot techniques. RESULTS The results showed that oxidative stress, inflammation, apoptosis, and autophagy were triggered by the injection of collagenase. In addition, MMPs, ICAM-1, and STAT3 were activated to participate in the development of tendinopathy. Que was found to reduce ICAM-1 levels in tendon tissue. Moreover, Que showed antioxidant, anti-inflammatory, antiapoptotic, and antiautophagic effects on tendons against tendinopathy. More important, Que suppressed the expression of MMPs in the tendon tissues. CONCLUSION Que has protective properties against collagenase-induced tendon damage in rats. CLINICAL RELEVANCE We believe that with further study, Que may be shown to be an alternative treatment option for athletes or others who experience tendon injuries.
Collapse
Affiliation(s)
- Halil Sezgin Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Ileriturk
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
44
|
Chen H, Wang Y, Luo J, Kang M, Hou J, Tang R, Zhao L, Shi F, Ye G, He X, Cui H, Guo H, Li Y, Tang H. Autophagy and apoptosis mediated nano-copper-induced testicular damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113039. [PMID: 34922170 DOI: 10.1016/j.ecoenv.2021.113039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Nano-copper has been increasingly employed in various products. In previous studies, we showed that nano-copper caused damage in the rat testis, but it remains unclear whether the toxic reaction can affect the reproductive function. In this study, following 28 d of exposure to nano-copper at a dose of 44, 88, and 175 mg/kg/day, there was a decrease in sperm quality, fructose content, and the secretion of sex hormones. Nano-copper also increased the level of oxidative stress, sperm malformation rate, and induced abnormal structural changes in testicular tissue. Moreover, Nano-copper upregulated the expression of apoptosis-related protein Bax and autophagy-related protein Beclin, and downregulated the expression of Bcl2 and p62. Furthermore, nano-copper (175 mg/kg) downregulated the protein expression of AMPK, p-AKT, mTOR, p-mTOR, p-4E-BP1, p70S6K, and p-p70S6K, and upregulated the protein expression of p-AMPK. Therefore, nano-copper induced damage in testicular tissues and spermatogenesis is highly related to cell apoptosis and autophagy by regulating the Akt/mTOR signaling pathway. In summary, excess exposure to nano-copper may induce testicular apoptosis and autophagy through AKT/mTOR signaling pathways, and damage the reproductive system in adult males, which is associated with oxidative stress in the testes.
Collapse
Affiliation(s)
- Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yanyan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jie Luo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China; National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, Guizhou, China
| | - Min Kang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jin Hou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ruoping Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
45
|
Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci 2021; 287:120104. [PMID: 34743946 DOI: 10.1016/j.lfs.2021.120104] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/15/2023]
Abstract
Paclitaxel (PTX), which is widely used in the treatment of solid tumors, leads to dose limitation because it causes peripheral neuropathy. This study was conducted to evaluate the potential effects of hesperidin (HES), which has various biological and pharmacological properties, against PTX-induced sciatic nerve damage. For this purpose, Sprague Dawley rats were given PTX 2 mg/kg/b.w for 5 days, then 100 or 200 mg/kg/b.w HES for 10 days, and behavioral tests were conducted at the end of the experiment. The data obtained show that PTX-induced MDA, NF-κB, IL-1β, TNF-α, COX-2, nNOS, JAK2, STAT3, and GFAP levels decreased with HES administration. Moreover, it was observed that SOD, CAT, and GPx activities inhibited by PTX increased with HES administration. It was determined that PTX caused apoptosis in the sciatic nerve by increasing Caspase-3 and Bax levels and suppressing Bcl-2 levels. HES, on the other hand, showed an anti-apoptotic effect, increasing Bcl-2 levels and decreasing Caspase-3 and Bax levels. Also, it was observed that PTX could cause endoplasmic reticulum stress (ERS) by increasing PERK, IRE1, ATF-6, GRP78 and CHOP mRNA transcript levels, while HES could alleviate ERS by suppressing them. The results indicate that neuropathic pain associated with PTX-induced peripheral neuropathy can be alleviated by HES administration and that it is a promising compound for cancer patients. In addition, it is thought that the results of the present study contain information that will shed light for researchers regarding further studies to be conducted with HES.
Collapse
Affiliation(s)
- Halil Sezgin Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefik Murat Arikan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
46
|
Guo L, Qin TZ, Liu LY, Lai PP, Xue YZ, Jing YT, Zhang W, Li W, Li J, Ding GR. The Abscopal Effects of Cranial Irradiation Induce Testicular Damage in Mice. Front Physiol 2021; 12:717571. [PMID: 34867437 PMCID: PMC8637864 DOI: 10.3389/fphys.2021.717571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
To investigate whether the abscopal effects of cranial irradiation (C-irradiation) cause testicular damage in mice, male C57BL/6 mice (9weeks of age) were randomly divided into a sham irradiation group, a shielded group and a C-irradiation group and administered sham/shielded irradiation or C-irradiation at a dose rate of 2.33Gy/min (5Gy/d for 4 d consecutively). All mice were sacrificed at 4weeks after C-irradiation. We calculated the testis index, observed testicular histology by haematoxylin-eosin (HE) staining and observed testicular ultrastructure by transmission electron microscopy. Western blotting was used to determine the protein levels of Bax, Bcl-2, Cleaved caspase 3, glial cell line-derived neurotrophic factor (GDNF) and stem cell factor (SCF) in the testes of mice. Immunofluorescence staining was performed to detect the expression of Cleaved caspase 3 and 3β hydroxysteroid dehydrogenase (3βHSD), and a TUNEL assay was used to confirm the location of apoptotic cells. The levels of testosterone (T), GDNF and SCF were measured by ELISA. We also evaluated the sperm quality in the cauda epididymides by measuring the sperm count, abnormality, survival rate and apoptosis rate. The results showed that there was no significant difference in testicular histology, ultrastructure or sperm quality between the shielded group and sham group. Compared with the sham/shielded group, the C-irradiation group exhibited a lower testis index and severely damaged testicular histology and ultrastructure at 4weeks after C-irradiation. The levels of apoptosis in the testes increased markedly in the C-irradiation group, especially in spermatogonial stem cells. The levels of serum T and testicular 3βHSD did not obviously differ between the sham group and the C-irradiation group, but the levels of GDNF and SCF in the testes increased in the C-irradiation group, compared with the sham group. In addition, the sperm count and survival rate decreased in the C-irradiation group, while the abnormality and apoptosis rate increased. Under these experimental conditions, the abscopal effects of C-irradiation induced testicular damage with regard to both structure and function and ultimately decreased sperm quality in mice. These findings provide novel insights into prevention and treatment targets for male reproductive damage induced by C-irradiation.
Collapse
Affiliation(s)
- Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Li-Yuan Liu
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Pan-Pan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Wei Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Wei Li
- Department of Histology and Embryology, School of Basic Medical Science, Fourth Military Medical University, Xi'an, China
| | - Jing Li
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| |
Collapse
|
47
|
Semis HS, Gur C, Ileriturk M, Kaynar O, Kandemir FM. Investigation of the anti-inflammatory effects of caffeic acid phenethyl ester in a model of λ-Carrageenan-induced paw edema in rats. Hum Exp Toxicol 2021; 40:S721-S738. [PMID: 34789018 DOI: 10.1177/09603271211054436] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the present study, it is aimed to evaluate the effects of caffeic acid phenethyl ester (CAPE) against acute paw inflammation induced by carragenan (Carr) at macro and micro levels. Therefore, in this study, 1 hour after administering intraperitoneal of indomethacin (Ind) or CAPE (10 and 30 mg/kg body weight) to Sprague Dawley rats, Carr was injected intraplantarly into their right paws. The paw volumes of the rats were measured with a plethysmometer until the 4th hour. Also, X-ray and thermal camera images were taken to determine edema and temperature changes. At the end of the study, after the paw tissues and serums were taken, oxidative stress and inflammation status were determined using biochemical, molecular, and western blot techniques. In addition, lipid and protein profiles in paw tissue were determined using HPTLC and electrophoresis methods. The results depicted that a high dose of CAPE against Carr-induced inflammation may be almost as effective as Ind used as reference.
Collapse
Affiliation(s)
- Halil Sezgin Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, 37503Ataturk University, Erzurum, Turkey
| | - Mustafa Ileriturk
- Department of Biochemistry, Faculty of Veterinary Medicine, 37503Ataturk University, Erzurum, Turkey
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, 187466Kastamonu University, Kastamonu, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, 37503Ataturk University, Erzurum, Turkey
| |
Collapse
|
48
|
Mohammadi N, Asle-Rousta M, Rahnema M, Amini R. Morin attenuates memory deficits in a rat model of Alzheimer's disease by ameliorating oxidative stress and neuroinflammation. Eur J Pharmacol 2021; 910:174506. [PMID: 34534533 DOI: 10.1016/j.ejphar.2021.174506] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 01/21/2023]
Abstract
This study aimed to investigate the effect of flavonoid morin on oxidative/nitrosative stress, neuroinflammation, and histological, molecular, and behavioral changes caused by amyloid-beta (Aβ)1-42 in male Wistar rats (Alzheimer's disease model). Rats received morin (20 mg/kg, oral gavage) for 14 consecutive days after intrahippocampal injection of Aβ1-42. Morin decreased the levels of malondialdehyde and nitric oxide, increased glutathione content, and enhanced catalase activity in the hippocampus of animals receiving Aβ1-42. It also reduced the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor-kappa B, and N-methyl-D-aspartate receptor subunits 2A and 2B and increased the expression of brain-derived neurotrophic factor and α7 nicotinic acetylcholine receptor in the hippocampus of Aβ1-42-injected rats. Besides, morin modified neuronal loss and histological changes in the CA1 region of the hippocampus. Morin allowed Aβ1-42-infused rats to swim more time in the target quadrant in the Morris water maze test. It is concluded that morin may be suitable for the prevention and treatment of Alzheimer's disease by strengthening the antioxidant system, inhibiting neuroinflammation, preventing neuronal death, and enhancing memory function.
Collapse
Affiliation(s)
- Negin Mohammadi
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
49
|
Abd-Elsalam RM, El Badawy SA, Ogaly HA, Ibrahim FM, Farag OM, Ahmed KA. Eruca sativa seed extract modulates oxidative stress and apoptosis and up-regulates the expression of Bcl-2 and Bax genes in acrylamide-induced testicular dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53249-53266. [PMID: 34024031 DOI: 10.1007/s11356-021-14532-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Acrylamide (ACR) has been previously associated with male sexual dysfunction and infertility. Eruca sativa (L.) (arugula or rocket) have been widely used in traditional remedies in Mediterranean region and western Asia and was known for its strong aphrodisiac effect since Roman times. The current study was designed to investigate LC/MS analysis of total ethanol extract Eruca sativa (L.) and the efficiency and mechanism of action of Eruca sativa seed extract (ESS) in reducing hypogonadism induced by acrylamide in male rats. Male Wistar rats were divided into 6 groups (n = 7): control group, Eruca sativa seed extract (ESS) at doses of 100 and 200 mg\kg, acrylamide (ACR), ACR + ESS 100 mg/kg, and ACR + ESS 200 mg/kg. The animals received ACR at a dose of 10 mg/kg b.wt for 60 days. Sperm indices, testicular oxidative stress, testosterone hormone, and testicular histopathology and immunohistochemistry of PCNA and caspase-3 were investigated. Moreover, the expression level of testicular B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) genes was evaluated. In respect to the LC/MS of total ethanol extract Eruca sativa (L.) seed revealed tentative identification of 39 compounds, which belongs to different classes as sulphur-containing compounds, flavonoids, phenolic acid, and fatty acids. Administration of ESS extract (100, 200 mg/kg) improved semen quality, diminished lipid peroxidation, enhanced testicular antioxidant enzyme, restored serum testosterone level, and reduced testicular degeneration and Leydig cell death in the rats intoxicated with ACR. However, the effects of ESS at the dose of 200 mg/kg were similar to that of control group. Furthermore, ESS treatment significantly induced anti-apoptotic effect indicated by elevation of both Bcl-2 and Bax expressions. Nutriceutics of ESS extract protects testis against ACR-induced testicular toxicity via normalizing testicular steroidogenesis, keeping Leydig cells, and improving oxidative stress status.
Collapse
Affiliation(s)
- Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, Collage of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Faten M Ibrahim
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ola M Farag
- General Organization for Veterinary Services, Giza, 12618, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
50
|
Gur C, Kandemir FM, Darendelioglu E, Caglayan C, Kucukler S, Kandemir O, Ileriturk M. Morin protects against acrylamide-induced neurotoxicity in rats: an investigation into different signal pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49808-49819. [PMID: 33939091 DOI: 10.1007/s11356-021-14049-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The presented study investigates the effects of morin against toxicity induced by acrylamide (ACR) in the brains of Sprague Dawley rats. In this study, neurotoxicity was induced by orally administering 38.27 mg/kg/b.w ACR to rats through gastric gavage for 10 days. Morin was administered at the same time and at different doses (50 and 100 mg/kg/b.w) with ACR. Biochemical and Western blot analyses showed that ACR increased malondialdehyde (MDA), p38α mitogen-activated protein kinase (p38α MAPK), nuclear factor kappa-B (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), p53, caspase-3, bcl-2 associated X protein (Bax), Beclin-1, light chain 3A (LC3A), and light chain 3B (LC3B) levels and decreased those of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), b-cell lymphoma-2 (Bcl-2), mammalian target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) in brain tissue and therefore induced neurotoxicity by causing oxidative stress, inflammation, apoptosis, and autophagy. On the other hand, it was determined that morin positively affected the levels of these markers by displaying antioxidant, anti-inflammatory, anti-apoptotic, and anti-autophagic properties and had a protective effect on ACR-induced neurotoxicity. As a result, morin is an effective substance against brain damage caused by ACR, yet further studies are needed to use it effectively.
Collapse
Affiliation(s)
- Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| | - Ekrem Darendelioglu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ozge Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Mustafa Ileriturk
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|