1
|
Feng X, Zhang W, Liu X, Wang Q, Dang X, Han J, Zhang X. Ferroptosis-associated signaling pathways and therapeutic approaches in depression. Front Neurosci 2025; 19:1559597. [PMID: 40177374 PMCID: PMC11961976 DOI: 10.3389/fnins.2025.1559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Ferroptosis, a newly identified form of cell death, is characterized by excessive iron accumulation and lipid peroxidation. Studies indicate a strong association between ferroptosis and depression; however, the precise signaling pathways and underlying molecular mechanisms remain unclear. This review summarizes the role of ferroptosis in depression and its associated signaling pathways. Additionally, therapeutic approaches for depression based on ferroptosis theory are reviewed, providing novel targets for the prevention and treatment of depression and laying a foundation for future research on the relationship between ferroptosis and depression.
Collapse
Affiliation(s)
- Xuyang Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiuxuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Dang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Shi J, Chen L, Wang X, Ma X. SIRT6 inhibits endoplasmic reticulum stress-mediated ferroptosis by activating Nrf2/HO-1 signaling to alleviate osteoarthritis. Inflamm Res 2025; 74:35. [PMID: 39928137 DOI: 10.1007/s00011-025-01998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a prevalent joint disease featured by articular cartilage destruction, causing a huge socio-economic burden worldwide. Repressing endoplasmic reticulum stress (ERS)-mediated ferroptosis can alleviate the progression of OA. Sirtuin 6 (SIRT6) has been shown to suppress OA, but whether SIRT6 can regulate ferroptosis in OA through ERS remains unclear. METHODS In this study, both in vivo and in vitro models of OA were constructed. Micro-CT scans and three-dimensional reconstruction were used to observe the structural injury of knee joint in mice. H&E, TB, SOFG and TUNEL staining were employed to conduct pathological examination of cartilage tissues. The levels of inflammatory factors were analyzed using ELISA. Besides, ERS was assessed by detecting the levels of ERS-related proteins using immunohistochemistry, immunoblotting and immunofluorescence staining. Iron deposition in cartilage tissues was tested by prussian blue staining. Moreover, the contents of intracellular ROS, lipid ROS and Fe2+ were evaluated in IL-1β-stimulated C28/I2 cells. Finally, ML385 (an inhibitor of Nrf2) or tunicamycin (an agonist of ERS) was added to C28/I2 cells to elucidate the exact mechanism. RESULTS SIRT6 upregulation reduced the structural injury and inflammation in cartilage tissues of OA mice. ERS and ferroptosis were inhibited by SIRT6 overexpression in cartilage tissues of OA mice and C28/I2 cells exposed to IL-1β. Additionally, SIRT6 upregulation activated Nrf2/HO-1 signaling, as evidenced by elevated nuclear Nrf2 and HO-1 expression. Further, ML385 treatment attenuated the impacts of SIRT6 overexpression on inflammation, ERS and ferroptosis in C28/I2 cells under IL-1β conditions. Particularly, tunicamycin intervention blocked the effects of SIRT6 upregulation on ferroptosis in IL-1β-treated C28/I2 cells. CONCLUSIONS Collectively, SIRT6 inhibits ERS-medicated ferroptosis through activation of Nrf2/HO-1 pathway in chondrocytes to alleviate OA.
Collapse
Affiliation(s)
- Jiaqi Shi
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Li Chen
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Xu Wang
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Xin Ma
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
3
|
Sun Q, Weng RX, Li YC, Jia SM, Ma CT, Zhang HH, Tang Y, Li R, Xu GY. Potentiation of visualized exosomal miR-1306-3p from primary sensory neurons contributes to chronic visceral pain via spinal P2X3 receptors. Pain 2025:00006396-990000000-00814. [PMID: 39907482 DOI: 10.1097/j.pain.0000000000003537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Exosomes served as "communicators" to exchange information among different cells in the nervous system. Our previous study demonstrated that the enhanced spinal synaptic transmission contributed to chronic visceral pain in irritable bowel syndrome. However, the underlying mechanism of primary sensory neuron (PSN)-derived exosomes on spinal transmission remains unclear. In this study, an exosome visualization method was established to specifically track exosomes derived from PSNs in CD63-GFPf/+ (green fluorescent protein) mice. Neonatal maternal deprivation (NMD) was adopted to induce chronic visceral pain in CD63-GFPf/+ male mice. The exosome visualization technology demonstrated that NMD increased visible PSN-derived exosomes in the spinal dorsal horn, enhanced spinal synaptic transmission, and led to visceral pain in CD63-GFPf/+ male mice. The PSN-derived exosomal miR-1306-3p sorted from spinal dorsal horn activated P2X3R, enhanced spinal synaptic transmission, and led to visceral pain in NMD mice. Moreover, upregulation of Rab27a in dorsal root ganglia mediated the increased release of PSN-derived exosomes, and intrathecal injection of siR-Rab27a reduced visible PSN-derived exosomes in spinal cord, suppressed spinal synaptic transmission, and alleviated visceral pain in NMD mice. This and future studies would reveal the detailed mechanisms of PSN-derived exosomes and provide a potential target for clinical treatment of chronic visceral pain in patients with irritable bowel syndrome.
Collapse
Affiliation(s)
- Qian Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Shu-Man Jia
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Chun-Tao Ma
- Department of Gastroenterology, Suzhou Xiangcheng People's Hospital, Suzhou, P. R. China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou, P. R. China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
4
|
Du L, Guo C, Zeng S, Yu K, Liu M, Li Y. Sirt6 overexpression relieves ferroptosis and delays the progression of diabetic nephropathy via Nrf2/GPX4 pathway. Ren Fail 2024; 46:2377785. [PMID: 39082470 PMCID: PMC11293269 DOI: 10.1080/0886022x.2024.2377785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE Sirt6, reactive oxygen species and ferroptosis may participate in the pathogenesis of Diabetic Nephropathy (DN). Exploring the relationship between Sirt6, oxidative stress, and ferroptosis provides new scientific ideas to DN. METHODS Human podocytes were stimulated with 30 mM glucose and 5.5 mM glucose. The mice of db/db group were randomly divided into two groups:12 weeks and 16 weeks. Collect mouse blood and urine specimens and renal cortices for investigations. HE, Masson, PAS and immunohistochemical staining were used to observe pathological changes. Western blot, RT-qPCR and immunofluorescence staining were used to evaluate expression of relevant molecules. CCK8 method was introduced to observe cell viability. The changes of podocyte mitochondrial membrane potential and mitochondrial morphology in each group were determined by JC-1 staining and Mito-Tracker. RESULTS The expression level of Sirt6, Nrf2, SLC7A11, HO1, SOD2 and GPX4 were reduced, while ACSL4 was increased in DN. Blood glucose, BUN, Scr, TG, T-CHO and 24h urine protein were upregulated, while ALB was reduced in diabetic group. The treatment of Ferrostatin-1 significantly improved these changes, which proved ferroptosis was involved in the development of DN. Overexpression of Sirt6 might ameliorate the oxidation irritable reaction and ferroptosis. Sirt6 plasmid transfection increased mitochondrial membrane potential and protected morphology and structure of mitochondria. The application of Sirt6 siRNA could aggravated the damage manifestations. CONCLUSION High glucose stimulation could decrease the antioxidant capacity and increase formation of ROS and lipid peroxidation. Sirt6 might alleviate HG-induced mitochondrial dysfunction, podocyte injury and ferroptosis through regulating Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Lingyu Du
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Canghui Guo
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Shengnan Zeng
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Ke Yu
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Maodong Liu
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| | - Ying Li
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
5
|
Zhu YW, Liu ZT, Tang AQ, Liang XY, Wang Y, Liu YF, Jin YQ, Gao W, Yuan H, Wang DY, Ji XY, Wu DD. The Emerging Roles of Hydrogen Sulfide in Ferroptosis. Antioxid Redox Signal 2024; 41:1150-1172. [PMID: 39041626 DOI: 10.1089/ars.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance. Antioxid. Redox Signal. 41, 1150-1172.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Zi-Tao Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Amorim de Souza Lima T, Raissa Ribeiro M, Carneiro de Brito M, Mitiko Kawamoto E. Impaired exploration induced by type 1 diabetes is related to locomotor activity rather than a reduction in motivation. Neuroscience 2024; 560:1-10. [PMID: 39293729 DOI: 10.1016/j.neuroscience.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Type 1 diabetes mellitus (T1D) is associated with cognitive impairments in humans. A well-established animal model of T1D is induced through the administration of streptozotocin (STZ), a glucose analog that induces pancreatic β-cell death, resulting in hyperglycemia and cognitive impairment linked to neuroinflammation and oxidative stress. Tumor necrosis factor (TNF)-α, a key inflammatory mediator, is elevated in the central nervous system (CNS) of diabetic animals. In this study, we utilized TNFR1 knockout mice to investigate the role of TNFR1 signaling in short-term T1D-related cognitive impairment. Our findings showed that diabetic animals did not develop cognitive damage within the first 2 weeks of T1D but exhibited reduced exploration in all behavioral tests. Our findings suggest that this reduction in exploration was attributable to motor impairment, as there was no reduction in motivated novelty-seeking behavior. Additionally, deletion of TNFR1 signaling attenuated gait speed impairment in diabetic mice, but did not affect other motor-related or exploratory behaviors.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/complications
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/psychology
- Mice, Knockout
- Motivation/physiology
- Exploratory Behavior/physiology
- Male
- Mice
- Locomotion/physiology
- Mice, Inbred C57BL
- Cognitive Dysfunction/physiopathology
- Cognitive Dysfunction/etiology
- Streptozocin
Collapse
Affiliation(s)
- Thiago Amorim de Souza Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Martina Raissa Ribeiro
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Malcon Carneiro de Brito
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Zheng Y, Yan F, He S, Luo L. Targeting ferroptosis in autoimmune diseases: Mechanisms and therapeutic prospects. Autoimmun Rev 2024; 23:103640. [PMID: 39278299 DOI: 10.1016/j.autrev.2024.103640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Ferroptosis is a form of regulated cell death that relies on iron and exhibits unique characteristics, including disrupted iron balance, reduced antioxidant defenses, and abnormal lipid peroxidation. Recent research suggests that ferroptosis is associated with the onset and progression of autoimmune disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and multiple sclerosis (MS). However, the precise effects and molecular mechanisms remain incompletely understood. This article presents an overview of how ferroptosis mechanisms contribute to the development and advancement of autoimmune diseases, as well as the involvement of various immune cells in linking ferroptosis to autoimmune conditions. It also explores potential drug targets within the ferroptosis pathway and recent advancements in therapeutic approaches aimed at preventing and treating autoimmune diseases by targeting ferroptosis. Lastly, the article discusses the challenges and opportunities in utilizing ferroptosis as a potential therapeutic avenue for autoimmune disorders.
Collapse
Affiliation(s)
- Yingzi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Fangfang Yan
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
8
|
Wu W, Wen F, Hu J, Li L. Overexpression of ATF4 Inhibits Ferroptosis to Alleviate Anxiety Disorders by Activating the TGF-β Signaling Pathway. Neuropsychiatr Dis Treat 2024; 20:1969-1983. [PMID: 39430656 PMCID: PMC11491069 DOI: 10.2147/ndt.s480782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Background Anxiety disorders seriously impair patients' mental health and quality of life, with limited effectiveness of current treatments. Dysregulation of activating transcription factor 4 (ATF4) is involved in various mental diseases, but the research on its potential roles in alleviating anxiety disorders remains limited. Methods ATF4 was screened out by bioinformatic analysis and its expression was verified in vivo. Mice were treated with 21 d of chronic restraint stress to establish the anxiety mice model. The anxiolytic effect of ATF4 was assessed by a battery of behavior tests and evaluation of hippocampal tissue damage after overexpressing ATF4. Ferroptosis-related indicators were detected by enzyme-linked immunosorbent assay and Western blotting. Then the transforming growth factor beta (TGF-β) signaling pathway was predicted as the downstream regulatory pathway of ATF4 by bioinformatic methods. Western blotting was conducted to detect the protein expression level of TGF-β1, small mothers against decapentaplegic 3 (Smad3), and phospho-Smad3 (p-Smad3). Results ATF4 was screened out as a ferroptosis-related anxiolytic gene after bioinformatics analysis and was down-regulated in the anxiety mice model. Mice with ATF4 overexpression spent more time in the open arms in the elevated plus-maze test, appeared more frequently in the central area in the open-field test, and decreased the immobility time in the forced swimming and tail suspension tests. Hippocampal tissue damage was alleviated, ferroptosis was suppressed, and the levels of TGF-β1 and p-Smad3/Smad3 were increased by AFT4 overexpression. Conclusion ATF4 overexpression can repress ferroptosis to improve anxiety disorders by activating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Wentao Wu
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Fei Wen
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Jiaxin Hu
- Department of Psychiatry, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province, People’s Republic of China
| | - Leijun Li
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou City, Guangdong Province, People’s Republic of China
| |
Collapse
|
9
|
Mao L, You J, Xie M, Hu Y, Zhou Q. Arginine Methylation of β-Catenin Induced by PRMT2 Aggravates LPS-Induced Cognitive Dysfunction and Depression-Like Behaviors by Promoting Ferroptosis. Mol Neurobiol 2024; 61:7796-7813. [PMID: 38430350 DOI: 10.1007/s12035-024-04019-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Depression is a prevalent and debilitating psychiatric disorder, imposing substantial societal and individual burdens. This study aims to investigate the involvement of ferroptosis and microglial polarization in the pathogenesis of depression, as well as the underlying mechanism. Increased protein arginine methyltransferase 2 (PRMT2) expression was observed in BV2 cells and the hippocampus following lipopolysaccharide (LPS) stimulation. Mechanistically, alkylation repair homolog protein 5 (ALKBH5)-mediated m6A modification enhanced the stability of PRMT2 mRNA. PRMT2 promoted arginine methylation of β-catenin and induced proteasomal degradation of β-catenin proteins, resulting in transcriptional inhibition of glutathione peroxidase 4 (GPX4). The upregulation of PRMT2 further accelerated microglia polarization by activating ferroptosis through the β-catenin-GPX4 axis. Depletion of PRMT2 improved LPS-induced depressive- and anxiety-like behaviors as well as cognitive impairment by inhibiting ferroptosis and M1 polarization of microglia. Our findings underscore the crucial involvement of the ALKBH5-PRMT2-β-catenin-GPX4 axis in ferroptosis and M1 polarization of microglia, thereby offering novel insights into the pathogenesis interventions for depression.
Collapse
Affiliation(s)
- Lei Mao
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Jiyue You
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Min Xie
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Yunxia Hu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Qin Zhou
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
10
|
Wang D, Jing L, Zhao Z, Huang S, Xie L, Hu S, Liang H, Chen Y, Zhao E. MicroRNA-124a promoted the differentiation of bone marrow mesenchymal stem cells into neurons through Notch signal pathway. Eur J Med Res 2024; 29:472. [PMID: 39342366 PMCID: PMC11437963 DOI: 10.1186/s40001-024-02061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
This study investigated the possible mechanisms of microRNA-124a on the differentiation of bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanism. β-Thiol ethanol induced Notch1 mRNA expression, microRNA-124a inhibitor reduced the effects of β-thiol ethanol on Notch1 mRNA expression in BMSCs. Baicalin induced Hes1 mRNA expression, and microRNA-124a inhibitor reduced the effects of baicalin on Hes1 mRNA expression in BMSCs. Si-Notch1 suppressed Hes1 mRNA expression in BMSCs. Baicalin increased the effects of Notch1 on Hes1 mRNA expression in BMSCs. Si-Notch1 increased cell growth of BMSCs. Baicalin reduced the effects of si-Notch1 on cell growth and the differentiation of BMSCs. We demonstrated that microRNA-124a promoted the differentiation of BMSCs into neurons through Notch/Hes1 signal pathway.
Collapse
Affiliation(s)
- Daimei Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongyan Zhao
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Ling Xie
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Shijun Hu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Hui Liang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Yanquan Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Eryi Zhao
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China.
| |
Collapse
|
11
|
Liu RX, Song DK, Zhang YY, Gong HX, Jin YC, Wang XS, Jiang YL, Yan YX, Lu BN, Wu YM, Wang M, Li XB, Zhang K, Liu SB. L-Cysteine: A promising nutritional supplement for alleviating anxiety disorders. Neuroscience 2024; 555:213-221. [PMID: 39089569 DOI: 10.1016/j.neuroscience.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.
Collapse
Affiliation(s)
- Rui-Xia Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ying-Ying Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Heng-Xin Gong
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Chen Jin
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Shaanxi, Xi'an 710038, China
| | - Yu-Xuan Yan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bei-Ning Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Zhang CJ, Wang Y, Jin YQ, Zhu YW, Zhu SG, Wang QM, Jing MR, Zhang YX, Cai CB, Feng ZF, Ji XY, Wu DD. Recent advances in the role of hydrogen sulfide in age-related diseases. Exp Cell Res 2024; 441:114172. [PMID: 39053869 DOI: 10.1016/j.yexcr.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.
Collapse
Affiliation(s)
- Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
13
|
Zhang WY, Wei QQ, Zhang T, Wang CS, Chen J, Wang JH, Xie X, Jiang P. Microglial AKAP8L: a key mediator in diabetes-associated cognitive impairment via autophagy inhibition and neuroinflammation triggering. J Neuroinflammation 2024; 21:177. [PMID: 39033121 PMCID: PMC11264944 DOI: 10.1186/s12974-024-03170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Diabetes-associated cognitive impairment (DACI) poses a significant challenge to the self-management of diabetes, markedly elevating the risk of adverse complications. A burgeoning body of evidence implicates microglia as a central player in the pathogenesis of DACI. METHODS We utilized proteomics to identify potential biomarkers in high glucose (HG)-treated microglia, followed by gene knockdown techniques for mechanistic validation in vitro and in vivo. RESULTS Our proteomic analysis identified a significant upregulation of AKAP8L in HG-treated microglia, with concurrent dysregulation of autophagy and inflammation markers, making AKAP8L a novel biomarker of interest. Notably, the accumulation of AKAP8L was specific to HG-treated microglia, with no observed changes in co-cultured astrocytes or neurons, a pattern that was mirrored in streptozotocin (STZ)-induced diabetic mice. Further studies through co-immunoprecipitation and proximity ligation assay indicated that the elevated AKAP8L in HG-treated microglial cells interacts with the mTORC1. In the STZ mouse model, we demonstrated that both AKAP8L knockdown and rapamycin treatment significantly enhanced cognitive function, as evidenced by improved performance in the Morris water maze, and reduced microglial activation. Moreover, these interventions effectively suppressed mTORC1 signaling, normalized autophagic flux, mitigated neuroinflammation, and decreased pyroptosis. CONCLUSIONS Our findings highlight the critical role of AKAP8L in the development of DACI. By interacting with mTORC1, AKAP8L appears to obstruct autophagic processes and initiate a cascade of neuroinflammatory responses. The identification of AKAP8L as a key mediator in DACI opens up new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528403, China
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 510006, China
| | - Qian-Qian Wei
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528403, China
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 510006, China
| | - Tao Zhang
- Translational Pharmaceutical Laboratory, Jining First People ' s Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Chang-Shui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Jining, 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jian-Hua Wang
- Translational Pharmaceutical Laboratory, Jining First People ' s Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Xin Xie
- Translational Pharmaceutical Laboratory, Jining First People ' s Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People ' s Hospital, Shandong First Medical University, Jining, 272000, China.
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China.
| |
Collapse
|
14
|
Du Y, Jiang X, Zhang Y, Ying J, Yi Q. Epigenetic mechanism of SET7/9-mediated histone methylation modification in high glucose-induced ferroptosis in retinal pigment epithelial cells. J Bioenerg Biomembr 2024; 56:297-309. [PMID: 38602631 DOI: 10.1007/s10863-024-10016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Ferroptosis of the retinal pigment epithelial (RPE) cells leads to retinal neuron injury and even visual loss. Our study aims to investigate the role of the SET domain with lysine methyltransferase 7/9 (SET7/9) in regulating high glucose (HG)-induced ferroptosis in RPE cells. The cell model was established by HG treatment. The levels of SET7/9 and Sirtuin 6 (SIRT6) were inhibited and Runt-related transcription factor 1 (RUNX1) was overexpressed through cell transfection, and then their levels in ARPE-19 cells were detected. Cell viability and apoptosis was detected. The levels of reactive oxygen species, malondialdehyde, glutathione, ferrous ion, glutathione peroxidase 4, and acyl-CoA synthetase long-chain family member 4 were detected. SET7/9 and trimethylation of histone H3 at lysine 4 (H3K4me3) levels in the RUNX1 promoter region and RUNX1 level in the SIRT6 promoter region were measured. The relationship between RUNX1 and SIRT6 was verified. SET7/9 and RUNX1 were highly expressed while SIRT6 was poorly expressed in HG-induced ARPE-19 cells. SET7/9 inhibition increased cell viability and inhibited cell apoptosis and ferroptosis. Mechanistically, SET7/9 increased H3K4me3 on the RUNX1 promoter to promote RUNX1, and RUNX1 repressed SIRT6 expression. Overexpression of RUNX1 or silencing SIRT6 partially reversed the inhibitory effect of SET7/9 silencing on HG-induced ferroptosis. In conclusion, SET7/9 promoted ferroptosis of RPE cells through the SIRT6/RUNX1 pathway.
Collapse
Affiliation(s)
- Yue Du
- Pharmacy Department of Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China
| | - Xue Jiang
- Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University, No. 599 Beimingcheng Road, 315042, Ningbo, Zhejiang Province, China
| | - Yanyan Zhang
- Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University, No. 599 Beimingcheng Road, 315042, Ningbo, Zhejiang Province, China
| | - Jianing Ying
- Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University, No. 599 Beimingcheng Road, 315042, Ningbo, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Quanyong Yi
- Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University, No. 599 Beimingcheng Road, 315042, Ningbo, Zhejiang Province, China.
- Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
15
|
Khan A, Huo Y, Guo Y, Shi J, Hou Y. Ferroptosis is an effective strategy for cancer therapy. Med Oncol 2024; 41:124. [PMID: 38652406 DOI: 10.1007/s12032-024-02317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 04/25/2024]
Abstract
Ferroptosis is a form of intracellular iron-dependent cell death that differs from necrosis, autophagy and apoptosis. Intracellular iron mediates Fenton reaction resulting in lipid peroxidation production, which in turn promotes cell death. Although cancer cell exhibit's ability to escape ferroptosis by multiple pathways such as SLC7A11, GPX4, induction of ferroptosis could inhibit cancer cell proliferation, migration and invasion. In tumor microenvironment, ferroptosis could affect immune cell (T cells, macrophages etc.) activity, which in turn regulates tumor immune escape. In addition, ferroptosis in cancer cells could activate immune cell activity by antigen processing and presentation. Therefore, ferroptosis could be an effective strategy for cancer therapy such as chemotherapy, radiotherapy, and immunotherapy. In this paper, we reviewed the role of ferroptosis on tumor progression and therapy, which may provide a strategy for cancer treatment.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yu Huo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yilei Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
- , Zhenjiang, People's Republic of China.
| |
Collapse
|
16
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
17
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
18
|
Zhang Y, Zhao H, Fu X, Wang K, Yang J, Zhang X, Wang H. The role of hydrogen sulfide regulation of pyroptosis in different pathological processes. Eur J Med Chem 2024; 268:116254. [PMID: 38377826 DOI: 10.1016/j.ejmech.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Pyroptosis is one kind of programmed cell death in which the cell membrane ruptures and subsequently releases cell contents and pro-inflammatory cytokines including IL-1β and IL-18. Pyroptosis is caused by many types of pathological stimuli, such as hyperglycemia (HG), oxidative stress, and inflammation, and is mediated by gasdermin (GSDM) protein family. Increasing evidence indicates that pyroptosis plays an important role in multiple diseases, such as cancer, kidney diseases, inflammatory diseases, and cardiovascular diseases. Therefore, the regulation of pyroptosis is crucial for the occurrence, development, and treatment of many diseases. Hydrogen sulfide (H2S) is a biologically active gasotransmitter following carbon monoxide (CO) and nitrogen oxide (NO) in mammalian tissues. So far, three enzymes, including 3-mercaptopyruvate sulphurtransferase (3-MST), cystathionine γ- Lyase (CSE), and Cystine β-synthesis enzyme (CBS), have been found to catalyze the production of endogenous H2S in mammals. H2S has been reported to have multiple biological functions including anti-inflammation, anti-oxidative stress, anti-apoptosis and so on. Hence, H2S is involved in various physiological and pathological processes. In recent years, many studies have demonstrated that H2S plays a critical role by regulating pyroptosis in various pathological processes, such as ischemia-reperfusion injury, alcoholic liver disease, and diabetes cardiomyopathy. However, the relevant mechanism has not been completely understood. Therefore, elucidating the mechanism by which H2S regulates pyroptosis in diseases will help understand the pathogenesis of multiple diseases and provide important new avenues for the treatment of many diseases. Here, we reviewed the progress of H2S regulation of pyroptosis in different pathological processes, and analyzed the molecular mechanism in detail to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Kexiao Wang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Jiahao Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | | | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
19
|
Chen H, Wu J, Zhu X, Ma Y, Li Z, Lu L, Aschner M, Su P, Luo W. Manganese-induced miR-125b-2-3p promotes anxiety-like behavior via TFR1-mediated ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123255. [PMID: 38159631 DOI: 10.1016/j.envpol.2023.123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The toxic effects of excessive manganese (Mn) levels in the environment have led to a severe public health concern. Ferroptosis is a newly form of cell death relying on iron, inherent to pathophysiological processes of psychiatric disorders, such as anxiety and depression-like behaviors. Excessive Mn exposure causes various neurological effects, including neuronal death and mood disorders. Whether Mn exposure causes anxiety and depression-like behaviors, and the underlying mechanisms of Mn-induced ferroptosis have yet to be determined. Here, Mn-exposed mice showed anxiety-like behavior. We also confirmed the accumulation of ferrous ion (Fe2+), lipid peroxidation, and depletion of antioxidant defense system both in vitro and in vivo Mn-exposed models, suggesting that Mn exposure can induce ferroptosis. Furthermore, Mn exposure downregulated the expression of miR-125b-2-3p. In turn, overexpression of miR-125b-2-3p alleviated the Mn-induced ferroptosis by targeting Transferrin receptor protein 1 (TFR1). In summary, this novel study established the propensity of Mn to cause anxiety-like behavior, an effect that was regulated by miR-125b-2-3p and ensuing ferroptosis secondary to the targeting of TFR1. These results offer promising targets for the prevention and treatment of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Honggang Chen
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinxia Wu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaozheng Zhu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Ma
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zeye Li
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Lu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenjing Luo
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
20
|
Bi R, Hu R, Jiang L, Wen B, Jiang Z, Liu H, Mei J. Butyrate enhances erastin-induced ferroptosis of lung cancer cells via modulating the ATF3/SLC7A11 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:529-538. [PMID: 37341073 DOI: 10.1002/tox.23857] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 05/28/2023] [Indexed: 06/22/2023]
Abstract
Ferroptosis is a novel form of programmed cell death triggered by iron-dependent lipid peroxidation and has been associated with various diseases, including cancer. Erastin, an inhibitor of system Xc-, which plays a critical role in regulating ferroptosis, has been identified as an inducer of ferroptosis in cancer cells. In this study, we investigated the impact of butyrate, a short-chain fatty acid produced by gut microbiota, on erastin-induced ferroptosis in lung cancer cells. Our results demonstrated that butyrate significantly enhanced erastin-induced ferroptosis in lung cancer cells, as evidenced by increased lipid peroxidation and reduced expression of glutathione peroxidase 4 (GPX4). Mechanistically, we found that butyrate modulated the pathway involving activating transcription factor 3 (ATF3) and solute carrier family 7 member 11 (SLC7A11), leading to enhanced erastin-induced ferroptosis. Furthermore, partial reversal of the effect of butyrate on ferroptosis was observed upon knockdown of ATF3 or SLC7A11. Collectively, our findings indicate that butyrate enhances erastin-induced ferroptosis in lung cancer cells by modulating the ATF3/SLC7A11 pathway, suggesting its potential as a therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Rui Bi
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bohan Wen
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaolei Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Shentu Y, Chen M, Wang H, Du X, Zhang W, Xie G, Zhou S, Ding L, Zhu Y, Zhu M, Zhang N, Du C, Ma J, Chen R, Yang J, Fan X, Gong Y, Zhang H, Fan J. Hydrogen sulfide ameliorates lipopolysaccharide-induced anxiety-like behavior by inhibiting checkpoint kinase 1 activation in the hippocampus of mice. Exp Neurol 2024; 371:114586. [PMID: 37898396 DOI: 10.1016/j.expneurol.2023.114586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, exhibits the anxiolytic roles through its anti-inflammatory effects, although its underlying mechanisms remain largely elusive. Emerging evidence has documented that cell cycle checkpoint kinase 1 (Chk1)-regulated DNA damage plays an important role in the neurodegenerative diseases; however, there are few relevant reports on the research of Chk1 in neuropsychiatric diseases. Here, we aimed to investigate the regulatory role of H2S on Chk1 in lipopolysaccharide (LPS)-induced anxiety-like behavior focusing on inflammasome activation in the hippocampus. Cystathionine γ-lyase (CSE, a H2S-producing enzyme) knockout (CSE-/-) mice displayed anxiety-like behavior and activation of inflammasome-mediated inflammatory responses, manifesting by the increase levels of interleukin-1β (IL-1β), IL-6, and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) expression in the hippocampus. Importantly, expression of p-Chk1 and γ-H2AX (DNA damage marker) levels were also increased in the hippocampus of CSE-/- mice. LPS treatment decreased the expression of CSE and CBS while increased p-Chk1 and γ-H2AX levels and inflammasome-activated neuroinflammation in the hippocampus of mice. Moreover, p-Chk1 and γ-H2AX protein levels and cellular immunoactivity were significantly increased while CSE and CBS were markedly decreased in cultured BV2 cells followed by LPS treatment. Treatment of mice with GYY4137, a donor of H2S, inhibited LPS-induced increased in p-Chk1 and γ-H2AX levels, mitigated inflammasome activation and inflammatory responses as well as amelioration of anxiety-like behavior. Notably, SB-218078, a selective Chk1 inhibitor treatment attenuated the effect of LPS on inflammasome activation and inflammatory responses and the induction of anxiety-like behavior. Finally, STAT3 knockdown with AAV-STAT3 shRNA alleviated LPS-induced anxiety-like behavior and inhibited inflammasome activation in the hippocampus, and blockade of NLRP3 with MCC950 attenuated neuroinflammation induction and ameliorated LPS-induced anxiety-like behavior. Overall, this study indicates that downregulation of Chk1 activity by H2S activation may be considered as a valid strategy for preventing the progression of LPS-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengfan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaotong Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China
| | - Wenjing Zhang
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guizhen Xie
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shaoyan Zhou
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Ding
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Min Zhu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi 334709, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China.
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China.
| |
Collapse
|
23
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
24
|
Lv S, Zhang G, Huang Y, Li J, Yang N, Lu Y, Ma H, Ma Y, Teng J. Antidepressant pharmacological mechanisms: focusing on the regulation of autophagy. Front Pharmacol 2023; 14:1287234. [PMID: 38026940 PMCID: PMC10665873 DOI: 10.3389/fphar.2023.1287234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The core symptoms of depression are anhedonia and persistent hopelessness. Selective serotonin reuptake inhibitors (SSRIs) and their related medications are commonly used for clinical treatment, despite their significant adverse effects. Traditional Chinese medicine with its multiple targets, channels, and compounds, exhibit immense potential in treating depression. Autophagy, a vital process in depression pathology, has emerged as a promising target for intervention. This review summarized the pharmacological mechanisms of antidepressants by regulating autophagy. We presented insights from recent studies, discussed current research limitations, and proposed new strategies for basic research and their clinical application in depression.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoteng Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
25
|
Li X, Hu J, Zang X, Xing J, Mo X, Hei Z, Gong C, Chen C, Zhou S. Etomidate Improves the Antidepressant Effect of Electroconvulsive Therapy by Suppressing Hippocampal Neuronal Ferroptosis via Upregulating BDNF/Nrf2. Mol Neurobiol 2023; 60:6584-6597. [PMID: 37466875 DOI: 10.1007/s12035-023-03499-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Electroconvulsive therapy (ECT) performed under general anesthesia is an effective treatment for severe depression. Etomidate is an intravenous anesthetic that shows beneficial effects on ECT. However, the potential mechanisms have rarely been reported. In this study, male rats were exposed to chronic unpredictable mild stress for 4 weeks, followed by ECT for 10 days, with or without intervention with ferrostatin-1 (2 mg/kg) or all-trans retinoic acid (ATRA, 5 mg/kg). Rats subjected to etomidate (20 mg/kg) or propofol (120 mg/kg) treatment were administered with designated anesthetic before ECT. Compared to depressive rats without ECT, those who received ECT showed increased numbers of hippocampal neurons, increased expression of negative regulators of ferroptosis including glutathione peroxidase 4, ferritin heavy chain 1, and ferroptosis suppressor protein 1, upregulation of brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor, and downregulation of acyl-CoA synthetase long-chain family member 4, a positive regulator of ferroptosis in the hippocampus. Additionally, compared with propofol, etomidate used in ECT resulted in higher upregulation of BDNF/Nrf2 and inhibited neuronal ferroptosis in hippocampus. These results showed etomidate may enhance the antidepressant effect of ECT by protecting hippocampal neurons against ferroptosis.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Jingping Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Xiangyang Zang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Jibin Xing
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Xingying Mo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China
| | - Chulian Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, Guangdong Province, 510630, People's Republic of China.
| |
Collapse
|
26
|
Chen J, Chen Z, Yu D, Yan Y, Hao X, Zhang M, Zhu T. Neuroprotective Effect of Hydrogen Sulfide Subchronic Treatment Against TBI-Induced Ferroptosis and Cognitive Deficits Mediated Through Wnt Signaling Pathway. Cell Mol Neurobiol 2023; 43:4117-4140. [PMID: 37624470 PMCID: PMC10661805 DOI: 10.1007/s10571-023-01399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Emerging evidence shows that targeting ferroptosis may be a potential therapeutic strategy for treating traumatic brain injury (TBI). Hydrogen sulfide (H2S) has been proven to play a neuroprotective role in TBI, but little is known about the effects of H2S on TBI-induced ferroptosis. In addition, it is reported that the Wnt signaling pathway can also actively regulate ferroptosis. However, whether H2S inhibits ferroptosis via the Wnt signaling pathway after TBI remains unclear. In this study, we first found that in addition to alleviating neuronal damage and cognitive impairments, H2S remarkably attenuated abnormal iron accumulation, decreased lipid peroxidation, and improved the expression of glutathione peroxidase 4, demonstrating the potent anti-ferroptosis action of H2S after TBI. Moreover, Wnt3a or liproxstatin-1 treatment obtained similar results, suggesting that activation of the Wnt signaling pathway can render the cells less susceptible to ferroptosis post-TBI. More importantly, XAV939, an inhibitor of the Wnt signaling pathway, almost inversed ferroptosis inactivation and reduction of neuronal loss caused by H2S treatment, substantiating the involvement of the Wnt signaling pathway in anti-ferroptosis effects of H2S. In conclusion, the Wnt signaling pathway might be the critical mechanism in realizing the anti-ferroptosis effects of H2S against TBI. TBI induces ferroptosis-related changes characterized by iron overload, impaired antioxidant system, and lipid peroxidation at the chronic phase after TBI. However, NaHS subchronic treatment reduces the susceptibility to TBI-induced ferroptosis, at least partly by activating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yufei Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mingxia Zhang
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
27
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
28
|
Yang Y, Ma M, Su J, Jia L, Zhang D, Lin X. Acetylation, ferroptosis, and their potential relationships: Implications in myocardial ischemia-reperfusion injury. Am J Med Sci 2023; 366:176-184. [PMID: 37290744 DOI: 10.1016/j.amjms.2023.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a serious complication affecting the prognosis of patients with myocardial infarction and can cause cardiac arrest, reperfusion arrhythmias, no-reflow, and irreversible myocardial cell death. Ferroptosis, an iron-dependent, peroxide-driven, non-apoptotic form of regulated cell death, plays a vital role in reperfusion injury. Acetylation, an important post-translational modification, participates in many cellular signaling pathways and diseases, and plays a pivotal role in ferroptosis. Elucidating the role of acetylation in ferroptosis may therefore provide new insights for the treatment of MIRI. Here, we summarized the recently discovered knowledge about acetylation and ferroptosis in MIRI. Finally, we focused on the acetylation modification during ferroptosis and its potential relationship with MIRI.
Collapse
Affiliation(s)
- Yu Yang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Mengqing Ma
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Jiannan Su
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Lin Jia
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Dingxin Zhang
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230032, China.
| |
Collapse
|
29
|
Li Y, Ma Y, Gao L, Wang T, Zhuang Y, Zhang Y, Zheng L, Liu X. Upregulation of Microglial Sirt6 and Inhibition of Microglial Activation by Vitamin D3 in Lipopolysaccharide-stimulated Mice and BV-2 Cells. Neuroscience 2023; 526:85-96. [PMID: 37352968 DOI: 10.1016/j.neuroscience.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Vitamin D3 may suppress microglial activation and neuroinflammation, which play a central role in the pathophysiology of many neurological disorders. Sirt6 can remove histone 3 lysine 9 acetylation (H3K9ac) to repress expression of pathological genes and produce anti-inflammatory effects. However, whether vitamin D3 upregulates microglial Sirt6 to exert its protective effects against microglial activation and neuroinflammation is unclear. The effects of lower, normal, and higher dosages (1, 10 and 100 μg/kg/day) of vitamin D3 on behavioral and neuromorphological changes, brain inflammatory factors, Sirt6 and H3K9ac levels, and microglial Sirt6 distribution in hippocampus were evaluated in lipopolysaccharide (LPS)-stimulated mice. In addition, the effects of vitamin D3 on inflammatory factors, reactive oxygen species, Sirt6, and H3K9ac were confirmed in LPS-stimulated BV-2 cells. We verified that vitamin D3 ameliorated the impaired sociability of LPS-stimulated mice by three-chamber test. In addition, vitamin D3 upregulated brain Sirt6 generation, reduced H3K9ac levels and inhibited generation of brain inflammatory factors. Moreover, vitamin D3 promoted microglial Sirt6 distribution and attenuated microglia displaying an activated morphology in the hippocampus of LPS-stimulated mice. Similarly, vitamin D3 upregulated Sirt6 generation and intensity, reduced H3K9ac levels, and inhibited the inflammatory activation of LPS-stimulated BV-2 cells. In conclusion, vitamin D3 may upregulate microglial Sirt6 to reduce H3K9ac and inhibit microglial activation, thereby antagonizing neuroinflammation.
Collapse
Affiliation(s)
- Yanning Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China; Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China.
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Lijie Gao
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China
| | - Ting Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yuchen Zhuang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yuping Zhang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Long Zheng
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xifu Liu
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, People's Republic of China.
| |
Collapse
|
30
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
31
|
Ma A, Feng Z, Li Y, Wu Q, Xiong H, Dong M, Cheng J, Wang Z, Yang J, Kang Y. Ferroptosis-related signature and immune infiltration characterization in acute lung injury/acute respiratory distress syndrome. Respir Res 2023; 24:154. [PMID: 37301835 DOI: 10.1186/s12931-023-02429-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most life-threatening diseases in the intensive care unit with high mortality and morbidity. Ferroptosis is a newly discovered immune related cell death that is associated with various lung diseases. However, the role of immune-mediated ferroptosis in ALI/ARDS has not been elucidated. METHOD We analyzed two Gene Expression Omnibus (GEO) datasets (GSE2411 and GSE109913) and extracted characteristic ferroptosis-related genes (FRGs) between the control and ALI groups through bioinformatic analysis. Then, we prospectively collected bronchoalveolar lavage fluid (BALF) from patients with ARDS and verified the expression of characteristic FRGs. Lastly, we constructed the ALI/ARDS model induced by LPS and isolated the primary neutrophils of mice. Erastin, an ferroptosis inducer, was used at the cellular level to verify the effect of neutrophils on ferroptosis in lung epithelium cells. RESULT We identified three characteristic FRGs, Cp, Slc39a14 and Slc7a11, by analyzing two gene expression profiling datasets. Immune infiltration analysis showed that the three characteristic genes were significantly positively correlated with the infiltration levels of neutrophils. We collected BALF from 59 ARDS patients to verify the expression of Cp, Slc7a11 and Slc39a14 in humans. The results showed that Cp was elevated in patients with severe ARDS (p = 0.019), Slc7a11 was significantly elevated in patients with moderate ARDS (p = 0.021) relative to patients with mild ARDS. The levels of neutrophils in the peripheral blood of ARDS patients were positively correlated with the expression levels of Slc7a11 (Pearson's R2 = 0.086, p = 0.033). Three characteristic FRGs were significantly activated after the onset of ferroptosis (6 h) early in LPS induced ALI model, and that ferroptosis was alleviated after the organism compensated within 12 to 48 h. We extracted primary activated neutrophils from mice and co-cultured them with MLE-12 in transwell, Slc7a11, Cp and Slc39a14 in MLE-12 cells were significantly upregulated as the number of neutrophils increased. The results showed that neutrophil infiltration alleviated erastin-induced MDA accumulation, GSH depletion, and divalent iron accumulation, accompanied by upregulation of Slc7a11 and Gpx4, implying the existence of a compensatory effect of lipid oxidation in neutrophils after acute lung injury in the organism. CONCLUSION We identified three immune-mediated ferroptosis genes, namely, Cp, Slc7a11 and Slc39a14, which possibly regulated by neutrophils during the development of ALI, and their pathways may be involved in anti-oxidative stress and anti-lipid metabolism. Thus, the present study contributes to the understanding of ALI/ARDS and provide novel targets for future immunotherapeutic.
Collapse
Affiliation(s)
- Aijia Ma
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yang Li
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Huaiyu Xiong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Meiling Dong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Jiangli Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhenling Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
32
|
Dai Y, Guo J, Zhang B, Chen J, Ou H, He RR, So KF, Zhang L. Lycium barbarum (Wolfberry) glycopeptide prevents stress-induced anxiety disorders by regulating oxidative stress and ferroptosis in the medial prefrontal cortex. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154864. [PMID: 37182278 DOI: 10.1016/j.phymed.2023.154864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/15/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Lycium barbarum (Wolfberry) extract has been shown to be effective in neuroprotection against aging or neural injury. Knowledge of its potential roles and biological mechanisms in relieving mental disorders, however, remains limited. PURPOSE To investigate the potency of Lycium barbarum glycopeptide (LbGp) in alleviating anxiety disorders and the related biological mechanisms. METHODS LbGp was administrated to mice subjected to 14 days of chronic restrain stress (CRS) via the intragastric route. The anxiolytic effect was evaluated by a battery of behavioral assays. The morphology of neurons and glial cells was evaluated, and cortical neuronal calcium transients were recorded in vivo. The molecular mechanism of LbGp was also investigated. RESULTS LbGp effectively relieved anxiety-like and depressive behaviors under CRS. Mechanistic studies further showed that LbGp treatment relieved oxidative stress and lipid peroxidation in the medial prefrontal cortex (mPFC). In particular, the ferroptosis pathway was inhibited by LbGp, revealing a previously unrecognized mechanism of the anxiolytic role of wolfberry extract. CONCLUSION In summary, our results supported the future development of LbGp to prevent or ameliorate stress-induced anxiety disorders. Our work provides a promising strategy for early intervention for pateitents with mental disorders by applying natural plant extracts.
Collapse
Affiliation(s)
- Yelin Dai
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junxiu Guo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Borui Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junlin Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Haibin Ou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
33
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
34
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
35
|
Liu X, Li G, Chen S, Jin H, Liu X, Zhang L, Zhang Z. Hydrogen sulfide alleviates beryllium sulfate-induced ferroptosis and ferritinophagy in 16HBE cells. J Appl Toxicol 2023. [PMID: 36843388 DOI: 10.1002/jat.4453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Beryllium sulfate (BeSO4 ) can result to lung injuries, such as leading to lipid peroxidation and autophagy, and the treatment of beryllium disease has not been well improved. Ferroptosis is a regulated cell death process driven by iron-dependent and lipid peroxidation, while ferritinophagy is a process mediated by nuclear receptor coactivator 4 (NCOA4), combined with ferritin heavy chain 1 (FTH1) degradation and release Fe2+ , which regulated intracellular iron metabolism and ferroptosis. Hydrogen sulfide (H2 S) has the effects of antioxidant, antiautophagy, and antiferroptosis. This study aimed to investigate the effect of H2 S on BeSO4 -induced ferroptosis and ferritinophagy in 16HBE cells and the underlying mechanism. In this study, BeSO4 -induced 16HBE cell injury model was established based on cellular level and pretreated with deferoxamine (DFO, a ferroptosis inhibitor), sodium hydrosulfide (NaHS, a H2 S donor), or NCOA4 siRNA and, subsequently, performed to detect the levels of lipid peroxidation and Fe2+ and the biomarkers of ferroptosis and ferritinophagy. More importantly, our research found that DFO, NaHS, or NCOA4 siRNA alleviated BeSO4 -induced ferroptosis and ferritinophagy by decreasing the accumulation of Fe2+ and lipid peroxides. Furthermore, the relationship between ferroptosis, ferritinophagy, H2 S, and beryllium disease is not well defined; therefore, our research is innovative. Overall, our results provided a new theoretical basis for the prevention and treatment of beryllium disease and suggested that the application of H2 S, blocking ferroptosis, and ferritinophagy may be a potential therapeutic direction for the prevention and treatment of beryllium disease.
Collapse
Affiliation(s)
- Xiuli Liu
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guilan Li
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shaoxiong Chen
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiyun Jin
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaodong Liu
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linfang Zhang
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhaohui Zhang
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
36
|
Notch1 Is Involved in Physiologic Cardiac Hypertrophy of Mice via the p38 Signaling Pathway after Voluntary Running. Int J Mol Sci 2023; 24:ijms24043212. [PMID: 36834623 PMCID: PMC9966550 DOI: 10.3390/ijms24043212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Appropriate exercise such as voluntary wheel-running can induce physiological cardiac hypertrophy. Notch1 plays an important role in cardiac hypertrophy; however, the experimental results are inconsistent. In this experiment, we aimed to explore the role of Notch1 in physiological cardiac hypertrophy. Twenty-nine adult male mice were randomly divided into a Notch1 heterozygous deficient control (Notch1+/- CON) group, a Notch1 heterozygous deficient running (Notch1+/- RUN) group, a wild type control (WT CON) group, and a wild type running (WT RUN) group. Mice in the Notch1+/- RUN and WT RUN groups had access to voluntary wheel-running for two weeks. Next, the cardiac function of all of the mice was examined by echocardiography. The H&E staining, Masson trichrome staining, and a Western blot assay were carried out to analyze cardiac hypertrophy, cardiac fibrosis, and the expression of proteins relating to cardiac hypertrophy. After two-weeks of running, the Notch1 receptor expression was decreased in the hearts of the WT RUN group. The degree of cardiac hypertrophy in the Notch1+/- RUN mice was lower than that of their littermate control. Compared to the Notch1+/- CON group, Notch1 heterozygous deficiency could lead to a decrease in Beclin-1 expression and the ratio of LC3II/LC3I in the Notch1+/- RUN group. The results suggest that Notch1 heterozygous deficiency could partly dampen the induction of autophagy. Moreover, Notch1 deficiency may lead to the inactivation of p38 and the reduction of β-catenin expression in the Notch1+/- RUN group. In conclusion, Notch1 plays a critical role in physiologic cardiac hypertrophy through the p38 signaling pathway. Our results will help to understand the underlying mechanism of Notch1 on physiological cardiac hypertrophy.
Collapse
|
37
|
Cranial electrotherapy stimulation alleviates depression-like behavior of post-stroke depression rats by upregulating GPX4-mediated BDNF expression. Behav Brain Res 2023; 437:114117. [PMID: 36116735 DOI: 10.1016/j.bbr.2022.114117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
To elucidate whether cranial electrotherapy stimulation (CES) improves depression-like behavior of post-stroke depression (PSD) via regulation of glutathione peroxidase 4 (GPX4)-mediated brain-derived neurotrophic factor (BDNF) expression. Middle cerebral artery occlusion (MCAO) and chronic unpredictable mild stress (CUMS) were used to develop a rat PSD model. CES was applied, and RAS-selective lethal 3 (RSL3) was injected into the hippocampus to inhibit GPX4 in PSD rats. The depression behavior was detected by sucrose preference and forced swimming tests. The structure and morphology of the hippocampus were observed and analyzed by histopathological hematoxylin-eosin (HE) staining. The mRNA and protein expressions of GPX4 and BDNF in the hippocampus were detected by qRT-PCR, western blot and immunohistochemical analysis.The degeneration and necrosis of hippocampal neurons, the depression-like behavior were severer and the expression of BDNF in the hippocampus were decreased in PSD rats than those in MCAO and control groups. CES promoted the hippocampal neuron repair, alleviated the depression-like behavior and increased the expression of BDNF in PSD rats. The inhibition of GPX4 by RSL3 exacerbated the depression-like behavior and decreased the expression of BDNF in PSD rats. In addition, we found that RSL3 disrupted the positive effects of CES on the PSD rats. Conclusion: CES improves depression-like behavior of PSD rats through upregulation of GPX4-mediated BDNF expression in the hippocampus.
Collapse
|
38
|
Zeng J, Guo J, Huang S, Cheng Y, Luo F, Xu X, Chen R, Ma G, Wang Y. The roles of sirtuins in ferroptosis. Front Physiol 2023; 14:1131201. [PMID: 37153222 PMCID: PMC10157232 DOI: 10.3389/fphys.2023.1131201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jieqing Zeng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Junhao Guo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Si Huang
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Fei Luo
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Xusan Xu
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| | - Yajun Wang
- Institute of Respiratory, Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
- *Correspondence: Guoda Ma, ; Yajun Wang,
| |
Collapse
|
39
|
Mi Y, Wei C, Sun L, Liu H, Zhang J, Luo J, Yu X, He J, Ge H, Liu P. Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomed Pharmacother 2023; 157:114048. [PMID: 36463827 DOI: 10.1016/j.biopha.2022.114048] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cataracts are the main cause of reversible blindness worldwide. The ageing of the lens caused by ultraviolet B (UVB) radiation is mostly related to oxidative stress (OS). Little is known about whether OS induced by UVB enhances the sensitivity of lens epithelial cells to ferroptotic stress, which may be a new mechanism leading to age-related cataracts (ARCs). METHODS Ferroptosis was detected by transmission electron microscopy (TEM), iron assay, lipid peroxidation (MDA) assay, real-time PCR, western blotting, and immunofluorescence. Genetic engineering technology was used to investigate the regulatory relationship among Sirtuin 6 (SIRT6), nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear receptor coactivator 4 (NCOA4), glutathione peroxidase 4 (GPX4) and ferritin heavy chain (FTH1). Knockdown and overexpression of SIRT6 locally in vivo in rats were performed to probe the regulatory mechanism of SIRT6 in ferroptosis in ARCs. FINDINGS Here, we observed that UVB can drastically induce ferroptosis in lens epithelial cells in vivo and in vitro. Surprisingly, inhibition of ferroptosis was the direct reason that melatonin rescued B-3, SRA01/04 and HEK-293 T cells survival; the pan-caspase inhibitor Z-Vad-FMK did not significantly reverse the death of UVB-irradiated cells compared with that in the UVB+DMSO group. SIRT6 was an upstream regulator of phosphorylated Nrf2 (p-Nrf2) and NCOA4 in B-3, SRA01/04 and HEK-293 T cells. Melatonin inhibited ferroptosis through the SIRT6/p-Nrf2/GPX4 and SIRT6/COA4/FTH1 pathways to neutralize lipid peroxidation toxicity, which protected cells against ferroptotic stress in vitro and delayed cataract formation caused by UVB exposure in rats. INTERPRETATION Our findings reveal a novel causal role of melatonin in the pathogenesis of ARCs, which raises the possibility of selectively targeting the activation of SIRT6 and ferroptotic resistance as a latent antioxidative therapeutic strategy for ARCs.
Collapse
Affiliation(s)
- Yu Mi
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chaoqun Wei
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Huirui Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiayue Zhang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jialin Luo
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Xiaohan Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Jie He
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| |
Collapse
|
40
|
Zhang M, Lyu D, Wang F, Shi S, Wang M, Yang W, Huang H, Wei Z, Chen S, Xu Y, Hong W. Ketamine May Exert Rapid Antidepressant Effects Through Modulation of Neuroplasticity, Autophagy, and Ferroptosis in the Habenular Nucleus. Neuroscience 2022; 506:29-37. [PMID: 36280022 DOI: 10.1016/j.neuroscience.2022.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder is a burdensome condition with few treatment options, and traditional antidepressants are characterized by slow onset. Sub-anesthetic ketamine has rapid-onset effects for the treatment of major depressive disorder (MDD), the mechanisms of which remain elusive. In this study, we explored whether neuroplasticity, autophagy, and ferroptosis in the habenular nucleus are involved in the rapid antidepressant process of ketamine. The results showed that Chronic Restraint Stress (CRS) treated rats exhibited decreased neuroplasticity, inhibition of autophagy, and enhanced ferroptosis. Depression-like symptoms were significantly improved after ketamine treatment in CRS rats, with changes in physiological parameters. Ketamine-treated CRS rats showed a significant improvement in habenular nuclear neuroplasticity. Electron microscopy observed that ketamine triggered autophagy, with increased levels of autophagy-related proteins. Ferroptosis was inhibited by ketamine by electron microscopy, with increased FTH1 and GPX4 levels and decreased Tfr1 levels. In conclusion, our findings demonstrate that ketamine may exert rapid antidepressant effects by improving neuroplasticity, activating autophagy, and inhibiting ferroptosis in the nuclear complex.
Collapse
Affiliation(s)
- Mengke Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Fan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Shuxiang Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Meiti Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Weichieh Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Haijing Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Zheyi Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - ShenTse Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China
| | - Yi Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China.
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, PR China; Shanghai Key Laboratory of Psychotic Disorders, PR China.
| |
Collapse
|
41
|
Yilmaz-Oral D, Kaya-Sezginer E, Asker H, Gur S. Co-administration of sodium hydrosulfide and tadalafil modulates hypoxia and oxidative stress on bladder dysfunction in a rat model of bladder outlet obstruction. INTERNATIONAL BRAZ J UROL 2022; 48:971-980. [DOI: 10.1590/s1677-5538.ibju.2022.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Heba Asker
- Ankara University, Turkey; Lokman Hekim University, Turkey
| | | |
Collapse
|
42
|
Xu C, Xiong Q, Tian X, Liu W, Sun B, Ru Q, Shu X. Alcohol Exposure Induces Depressive and Anxiety-like Behaviors via Activating Ferroptosis in Mice. Int J Mol Sci 2022; 23:ijms232213828. [PMID: 36430312 PMCID: PMC9698590 DOI: 10.3390/ijms232213828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a global public health problem and is frequently comorbid with mental disorders, including anxiety and depression. Ferroptosis is an iron-dependent cell death, which is involved in the pathological process of various diseases such as neurodegenerative diseases, but the role of ferroptosis in the mediation of AUD and its induced mental disorders is unclear. In this study, we aimed to investigate whether ferroptosis was involved in alcohol-induced depressive and anxiety-like behaviors in mice. Following an 8-week period of intermittent alcohol exposure, the alcohol group showed noticeable depressive and anxiety-like behaviors. In addition, nissl staining revealed that alcohol exposure induced neuron damage in the hippocampus (Hip) and prefrontal cortex (PFC) of mice. The levels of synapse-related proteins were significantly reduced in the alcohol group. Iron staining demonstrated that alcohol increased the number of iron-positive staining cells. The protein expression of the transferrin receptor (TFRC) was increased, and the expression of glutathione peroxidase 4 (GPX4) was decreased, respectively, in the alcohol group. Furthermore, the ferroptosis inhibitor ferrostatin-1 significantly prevented alcohol-induced neuron damage and enhanced the expression of N-methyl-d-aspartic acid (NMDA) receptor 2B (NR2B), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor 1 (GluA1) and GPX4 in vitro. These results indicated that alcohol exposure could induce depressive and anxiety-like behaviors, and that this effect may occur via activating ferroptosis.
Collapse
Affiliation(s)
- Congyue Xu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Wei Liu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Binlian Sun
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430000, China
- Correspondence: (Q.R.); (X.S.); Tel.: +86-27-84225807 (X.S.)
| | - Xiji Shu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430000, China
- Correspondence: (Q.R.); (X.S.); Tel.: +86-27-84225807 (X.S.)
| |
Collapse
|
43
|
SIRT6 Prevents Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6360133. [PMID: 36275897 PMCID: PMC9584736 DOI: 10.1155/2022/6360133] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
Objective Glucocorticoid-induced osteonecrosis of the femoral head is one of the most common causes of nontraumatic osteonecrosis of the femoral head, but its exact pathogenesis remains unclear. The aim of this study was to investigate the role of SIRT6 in the maintenance of bone tissue morphology and structure, intravascular lipid metabolism, and its potential molecular mechanism in glucocorticoid-induced osteonecrosis of the femoral head. Methods SIRT6 adenovirus was transfected into GIONFH in rats. The microstructure of rat bone was observed by micro-CT and histological staining, and the expression of bone formation-related proteins and angiogenesis-related factors was determined through western blot and immunohistochemistry. Alkaline phosphatase activity, alizarin red staining, and the expression levels of Runx2 and osteocalcin were used to evaluate the osteogenic potential. And in vitro tube formation assay and immunofluorescence were used to detect the ability of endothelial cell angiogenesis. Results Dexamethasone significantly inhibited osteoblast differentiation, affected bone formation, and destroyed microvessel formation, increased the intracellular Fe2+ and ROS levels and induced the occurrence of ferroptosis. SIRT6 can inhibit ferroptosis and restore the ability of bone formation and angiogenesis. Conclusion SIRT6 can inhibit the occurrence of ferroptosis, reduce the damage of vascular endothelium, and promote osteogenic differentiation, so as to prevent the occurrence of osteonecrosis of the femoral head.
Collapse
|
44
|
Aschner M, Skalny AV, Ke T, da Rocha JBT, Paoliello MMB, Santamaria A, Bornhorst J, Rongzhu L, Svistunov AA, Djordevic AB, Tinkov AA. Hydrogen Sulfide (H 2S) Signaling as a Protective Mechanism against Endogenous and Exogenous Neurotoxicants. Curr Neuropharmacol 2022; 20:1908-1924. [PMID: 35236265 PMCID: PMC9886801 DOI: 10.2174/1570159x20666220302101854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
In view of the significant role of H2S in brain functioning, it is proposed that H2S may also possess protective effects against adverse effects of neurotoxicants. Therefore, the objective of the present review is to discuss the neuroprotective effects of H2S against toxicity of a wide spectrum of endogenous and exogenous agents involved in the pathogenesis of neurological diseases as etiological factors or key players in disease pathogenesis. Generally, the existing data demonstrate that H2S possesses neuroprotective effects upon exposure to endogenous (amyloid β, glucose, and advanced-glycation end-products, homocysteine, lipopolysaccharide, and ammonia) and exogenous (alcohol, formaldehyde, acrylonitrile, metals, 6-hydroxydopamine, as well as 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenyl pyridine ion (MPP)) neurotoxicants. On the one hand, neuroprotective effects are mediated by S-sulfhydration of key regulators of antioxidant (Sirt1, Nrf2) and inflammatory response (NF-κB), resulting in the modulation of the downstream signaling, such as SIRT1/TORC1/CREB/BDNF-TrkB, Nrf2/ARE/HO-1, or other pathways. On the other hand, H2S appears to possess a direct detoxicative effect by binding endogenous (ROS, AGEs, Aβ) and exogenous (MeHg) neurotoxicants, thus reducing their toxicity. Moreover, the alteration of H2S metabolism through the inhibition of H2S-synthetizing enzymes in the brain (CBS, 3-MST) may be considered a significant mechanism of neurotoxicity. Taken together, the existing data indicate that the modulation of cerebral H2S metabolism may be used as a neuroprotective strategy to counteract neurotoxicity of a wide spectrum of endogenous and exogenous neurotoxicants associated with neurodegeneration (Alzheimer's and Parkinson's disease), fetal alcohol syndrome, hepatic encephalopathy, environmental neurotoxicant exposure, etc. In this particular case, modulation of H2S-synthetizing enzymes or the use of H2S-releasing drugs should be considered as the potential tools, although the particular efficiency and safety of such interventions are to be addressed in further studies.
Collapse
Affiliation(s)
- Michael Aschner
- Address correspondence to this author at the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tucci P, Bove M, Sikora V, Dimonte S, Morgese MG, Schiavone S, Di Cesare Mannelli L, Ghelardini C, Trabace L. Glucoraphanin Triggers Rapid Antidepressant Responses in a Rat Model of Beta Amyloid-Induced Depressive-like Behaviour. Pharmaceuticals (Basel) 2022; 15:ph15091054. [PMID: 36145275 PMCID: PMC9500808 DOI: 10.3390/ph15091054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Glucoraphanin (GRA) is a natural compound that has shown beneficial effects in chronic diseases and in central nervous system disorders. Moreover, GRA displayed antidepressant activity in preclinical models. We have previously demonstrated that a single intracerebroventricular administration of soluble amyloid-beta 1-42 (sAβ 1-42) in rat evokes a depressive-like phenotype by increasing immobility frequency in the forced swimming test (FST). The aim of this work was to investigate the effect of GRA in naïve and in sAβ-1-42-treated rats by using the FST. Behavioural analyses were accompanied by neurochemical and biochemical measurements in the prefrontal cortex (PFC), such as serotonin (5-HT), noradrenaline (NA), kynurenine (KYN), tryptophan (TRP), reactive oxygen species (ROS) and the transcription nuclear factor kappa B (NF-kB) levels. We reported that GRA administration in naïve rats at the dose of 50 mg/kg reduced the immobility frequency in the FST and increased 5-HT and NA levels in the PFC compared to controls. At the same dose, GRA reverted depressive-like effects of sAβ 1-42 administration, restored the 5-HT levels and reduced NF-kB, KYN and ROS levels in PFC. In conclusion, GRA rapidly reverting depressive-like behaviour, together with biochemical and neurochemical alterations, might represent a safe and natural candidate for the treatment of depression.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Department of Pathology, Sumy State University, 40007 Sumy, Ukraine
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, 50139 Firenze, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, 50139 Firenze, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
46
|
Targeting Molecular Mediators of Ferroptosis and Oxidative Stress for Neurological Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3999083. [PMID: 35910843 PMCID: PMC9337979 DOI: 10.1155/2022/3999083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
With the acceleration of population aging, nervous system diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), anxiety, depression, stroke, and traumatic brain injury (TBI) have become a huge burden on families and society. The mechanism of neurological disorders is complex, which also lacks effective treatment, so relevant research is required to solve these problems urgently. Given that oxidative stress-induced lipid peroxidation eventually leads to ferroptosis, both oxidative stress and ferroptosis are important mechanisms causing neurological disorders, targeting mediators of oxidative stress and ferroptosis have become a hot research direction at present. Our review provides a current view of the mechanisms underlying ferroptosis and oxidative stress participate in neurological disorders, the potential application of molecular mediators targeting ferroptosis and oxidative stress in neurological disorders. The target of molecular mediators or agents of oxidative stress and ferroptosis associated with neurological disorders, such as reactive oxygen species (ROS), nuclear factor erythroid 2–related factor-antioxidant response element (Nrf2-ARE), n-acetylcysteine (NAC), Fe2+, NADPH, and its oxidases NOX, has been described in this article. Given that oxidative stress-induced ferroptosis plays a pivotal role in neurological disorders, further research on the mechanisms of ferroptosis caused by oxidative stress will help provide new targets for the treatment of neurological disorders.
Collapse
|
47
|
Liu X, Zhang Y, Wu X, Xu F, Ma H, Wu M, Xia Y. Targeting Ferroptosis Pathway to Combat Therapy Resistance and Metastasis of Cancer. Front Pharmacol 2022; 13:909821. [PMID: 35847022 PMCID: PMC9280276 DOI: 10.3389/fphar.2022.909821] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is an iron-dependent regulated form of cell death caused by excessive lipid peroxidation. This form of cell death differed from known forms of cell death in morphological and biochemical features such as apoptosis, necrosis, and autophagy. Cancer cells require higher levels of iron to survive, which makes them highly susceptible to ferroptosis. Therefore, it was found to be closely related to the progression, treatment response, and metastasis of various cancer types. Numerous studies have found that the ferroptosis pathway is closely related to drug resistance and metastasis of cancer. Some cancer cells reduce their susceptibility to ferroptosis by downregulating the ferroptosis pathway, resulting in resistance to anticancer therapy. Induction of ferroptosis restores the sensitivity of drug-resistant cancer cells to standard treatments. Cancer cells that are resistant to conventional therapies or have a high propensity to metastasize might be particularly susceptible to ferroptosis. Some biological processes and cellular components, such as epithelial–mesenchymal transition (EMT) and noncoding RNAs, can influence cancer metastasis by regulating ferroptosis. Therefore, targeting ferroptosis may help suppress cancer metastasis. Those progresses revealed the importance of ferroptosis in cancer, In order to provide the detailed molecular mechanisms of ferroptosis in regulating therapy resistance and metastasis and strategies to overcome these barriers are not fully understood, we described the key molecular mechanisms of ferroptosis and its interaction with signaling pathways related to therapy resistance and metastasis. Furthermore, we summarized strategies for reversing resistance to targeted therapy, chemotherapy, radiotherapy, and immunotherapy and inhibiting cancer metastasis by modulating ferroptosis. Understanding the comprehensive regulatory mechanisms and signaling pathways of ferroptosis in cancer can provide new insights to enhance the efficacy of anticancer drugs, overcome drug resistance, and inhibit cancer metastasis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yiqian Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Fuyan Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Ma
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
48
|
Zhang Y, Li M, Guo Y, Liu S, Tao Y. The Organelle-Specific Regulations and Epigenetic Regulators in Ferroptosis. Front Pharmacol 2022; 13:905501. [PMID: 35784729 PMCID: PMC9247141 DOI: 10.3389/fphar.2022.905501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is fairly different from other types of cell-death in biochemical processes, morphological changes and genetics as a special programmed cell-death. Here we summarize the current literatures on ferroptosis, including the cascade reaction of key material metabolism in the process, dysfunction of organelles, the relationship between different organelles and the way positive and negative key regulatory factors to affect ferroptosis in the epigenetic level. Based on material metabolism or epigenetic regulation, it is obvious that the regulatory network of ferroptosis is interrelated and complex.
Collapse
Affiliation(s)
- Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingrui Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiming Guo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao,
| |
Collapse
|
49
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
50
|
Jin R, Yang R, Cui C, Zhang H, Cai J, Geng B, Chen Z. Ferroptosis due to Cystathionine γ Lyase/Hydrogen Sulfide Downregulation Under High Hydrostatic Pressure Exacerbates VSMC Dysfunction. Front Cell Dev Biol 2022; 10:829316. [PMID: 35186934 PMCID: PMC8850391 DOI: 10.3389/fcell.2022.829316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 01/25/2023] Open
Abstract
Hydrostatic pressure, stretch, and shear are major biomechanical forces of vessels and play critical roles in genesis and development of hypertension. Our previous work demonstrated that high hydrostatic pressure (HHP) promoted vascular smooth muscle cells (VSMCs) two novel subsets: inflammatory and endothelial function inhibitory VSMCs and then exacerbated VSMC dysfunction. However, the underlying mechanism remains unknown. Here, we first identified that aortic GPX4 (a core regulator of ferroptosis) significantly downregulated association with VSMC novel phenotype elevation in SHR rats and hypertension patients. In primary VSMCs, HHP (200 mmHg) increased iron accumulation, ROS production, and lipid peroxidation compared with normal pressure (100 mmHg). Consistently, the ferroptosis-related gene (COX-2, TFRC, ACSL4, and NOX-1) expression was also upregulated. The ferroptosis inhibitor ferrostatin-1 (Fer-1) administration blocked HHP-induced VSMC inflammatory (CXCL2 expression) and endothelial function inhibitory (AKR1C2 expression) phenotyping switch association with elevation in the GPX4 expression, reduction in the reactive oxygen species (ROS), and lipid peroxidation production. In contrast, the ferroptosis inducer RLS3 increased HHP-induced CXCL2 and AKR1C2 expressions. These data indicate HHP-triggering ferroptosis contributes to VSMC inflammatory and endothelial function inhibitory phenotyping switch. In mechanism, HHP reduced the VSMC GSH content and cystathionine gamma-lyase (CSE)/hydrogen sulfide (H2S)—an essential system for GSH generation. Supplementation of the H2S donor-NaHS increased the VSMC GSH level, alleviated iron deposit, ROS and lipid peroxidation production. NaHS administration rescues both HHP- and RLS3-induced ferroptosis. Collectively, HHP downregulated VSMC CSE/H2S triggering GSH level reduction, resulting in ferroptosis, which contributed to the genesis of VSMC inflammation and endothelial function inhibitory phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Geng
- *Correspondence: Bin Geng, ; Zhenzhen Chen,
| | | |
Collapse
|