1
|
Ren Z, Zheng Y, Liu J, Liu Z, Chen J, Liu H, Qi R, Ma H. Cadmium induces the secretion of SASP factors regulated by MAPK and NF-κB signaling pathways in HEK293 cells: A possible mechanism of acute kidney damage induced by cadmium. Toxicology 2025; 515:154166. [PMID: 40288561 DOI: 10.1016/j.tox.2025.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant, which can accumulate in the kidney, induce cell damage and trigger inflammatory responses. However, the specific regulation mechanism of nephrotoxicity induced by Cd remains unclear. This study was conducted to investigate the toxic effects of Cd on human embryonic kidney 293 (HEK293) cells and explore its potential mechanisms. Cell viability was assessed with MTT assay. Reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated through DCFH-DA staining and Rhodamine staining. Apoptosis was detected with Hoechst 33258 staining. The expression of the DNA damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) was detected with the 8-OHdG ELISA kit. Senescence-associated secretory phenotype (SASP) factors and signaling pathways were analyzed by Western blot. The results showed that Cd exposure could induce oxidative stress and cellular inflammation. It could also impair MMP, contribute to cell apoptosis and activate MAPK and NF-κB signaling pathways. Finally, exposure to Cd triggered DNA damage and SASP production. However, NF-κB inhibitor BAY11-7082 and antioxidant NAC could inhibit these effects by suppressing NF-κB and MAPK signaling pathways. The present study revealed the specific mechanisms of Cd toxicity in HEK293 cells and provided useful information for elucidating the nephrotoxicity of Cd.
Collapse
Affiliation(s)
- Ziqi Ren
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Yuanchen Zheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China.
| | - Zhicun Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Jiahe Chen
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Haotian Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Ruiquan Qi
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang 110036, P.R. China
| | - Huiping Ma
- Shenyang Women's and Children's Hospital, Center of Reproductive Medicine, Shenyang 110011, P.R. China.
| |
Collapse
|
2
|
Chen H, Liu B, Xu P, Wang H, Guo X, Liu G, Yuan J. Mechanistic role of environmental toxicants in inducing cellular ferroptosis and its associated diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118269. [PMID: 40344778 DOI: 10.1016/j.ecoenv.2025.118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/04/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
Due to exposure factors such as industrial exhaust, sewage discharge, pesticide runoff, automobile exhaust, and fuel combustion, environmental toxicants are widely present in daily life. Organisms are exposed to these environmental toxicants through contaminated air, food, and drinking water, and these environmental toxicants enter the human body and cause cytotoxicity and diseases through various pathways. As a new cell death mode that is different from cell necrosis, apoptosis, and autophagy, ferroptosis are mainly dysregulation of intracellular iron metabolism, lipid metabolism disorders, and the dysregulation of the antioxidant defense system, leading to lipid peroxidation and ultimately to the rupture of the cell membrane, damage, and cell death. Studies have shown that environmental toxicants induce a series of diseases, such as digestive diseases, urinary diseases, respiratory diseases, neurological disorders, and reproductive diseases, through the above mechanisms. We elaborate the mechanism of common environmental toxicants in inducing ferroptosis and the related systemic diseases mediated through the ferroptosis to provide the theoretical basis for preventing and treating environmental toxicant-related diseases. Nonetheless, our understanding of ferroptosis remains incomplete. For example, mechanisms and methods for the selective control of ferroptosis remain elusive, elucidating these mechanisms and strategies may be critical for leveraging knowledge of ferroptosis to treat related diseases.
Collapse
Affiliation(s)
- Hong Chen
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Bingchun Liu
- Stem Cell Laboratory; Central Laboratory of Organ Transplantation;Inner Mongolia Autonomous Region Engineering Laboratory for Genetic Test and Research of Tumor Cells, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Peixin Xu
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Huizeng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Xin Guo
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Gang Liu
- Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Jianlong Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
3
|
Duan J, Pei F, Miao J, Liu S, Tan L, Lu M, Liu Y, Zhang C. Swietenine improved the progression of diabetic nephropathy through inhibiting ferroptosis via activating Akt/GSK-3β/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119981. [PMID: 40378934 DOI: 10.1016/j.jep.2025.119981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Swietenia macrophylla King is a traditional medicinal plant extensively utilized in Asia and its pharmacological properties primarily involve antidiabetic, anti-inflammatory, antioxidant, antibacterial, and antitumor effects. Swietenine (Swi), the major bioactive compound presents in the fruits of S. macrophylla, has demonstrated beneficial therapeutic effects on diabetic nephropathy (DN). However, the underlying mechanism through which Swi influences DN remains unclear. AIM OF THE STUDY The current research aims to investigate the effects of Swi on DN and explore its underlying mechanisms associated with ferroptosis, both in vivo and in vitro. METHODS A model of streptozotocin/high-fat diet (STZ/HFD)-induced Sprague-Dawley (SD) rats was employed to assess the effect of Swi on improving DN and resisting ferroptosis in vivo. Additionally, mouse podocyte cells (MPC-5 cells) were induced by high glucose (HG) and cultured to explore the potential mechanisms of Swi in treating DN in vitro. To further validate the protective effects of Swi, pathway-specific inhibitors were administered to HG-induced MPC-5 cells to confirm the involvement of the Akt/GSK-3β/Nrf2 signaling pathway in the inhibition of ferroptosis. A combination of proteomics, immunohistochemical staining, western blotting, and cell culture techniques was utilized to explore the pharmacological mechanisms of Swi. Furthermore, network pharmacology and molecular docking analyses were conducted to predict the targets of Swi in relation to DN, which were subsequently validated through Western blotting analysis. RESULTS Administration of Swi significantly enhanced renal function and ameliorated pathological alterations in DN rats, as well as improved oxidative stress and inhibited ferroptosis. In vitro studies revealed that Swi dramatically improved the cell viability and mitigated oxidative stress, and inhibited ferroptosis via activating the Akt/GSK-3β/Nrf2 signaling pathway in HG-induced MPC-5 cells. CONCLUSION This study demonstrates that Swi improves DN by inhibiting ferroptosis via activating Akt/GSK-3β/Nrf2 signaling pathway for the first time, thereby providing a scientific basis that Swi is expected to be a promising candidate drug for the treatment of DN.
Collapse
Affiliation(s)
- Jingyu Duan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Feilong Pei
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Jiale Miao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Shuang Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Lin Tan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Mengyuan Lu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Yaowu Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Chunping Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| |
Collapse
|
4
|
Zhu X, Zhao X, Zhang J, Zhang Y, Dong X, Hou Y, Jia Z, Zhang Y, Gao W. BaZiBuShen inhibition of oocyte ferroptosis in primordial follicles through activation of NF2-YAP pathway for the treatment of chemotherapy-induced premature ovarian insufficiency. JOURNAL OF ETHNOPHARMACOLOGY 2025; 351:119945. [PMID: 40412775 DOI: 10.1016/j.jep.2025.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/27/2025]
Abstract
ETHNOPATHOLOGICAL RELEVANCE BaZiBuShen (BZBS) is an innovative, patented traditional Chinese medicine known for its kidney-tonifying and anti-aging effects. It contains active ingredients such as flavonoids and amino acid analogues, which have anti-inflammatory and antioxidant properties, and is used to alleviate symptoms of "kidney essence" deficiency. AIM OF THE STUDY This study evaluated the efficacy of BZBS on cyclophosphamide (CTX)-induced premature ovarian insufficiency (POI) and explored its possible mechanism of action. METHODS POI models in rats were established using CTX to assess the therapeutic effects of BZBS. HPLC-MS was used to analyze the components, while ELISA was adopted to determine the serum hormone levels. Ovarian morphology and number of follicles were evaluated by H&E staining. The ultrastructure of mitochondria was examined by TEM. The expression levels of proteins related to ferroptosis and the NF2-YAP signalling pathway were analysed using immunohistochemistry, immunofluorescence, and Western blotting. RESULTS In CTX-induced POI rats, BZBS treatment effectively restored ovarian weight, while simultaneously decreasing serum FSH and LH levels and increasing E2 levels. Histological analysis of the ovaries revealed that BZBS significantly increased the number of primordial, growing, and mature follicles, as well as reducing the number of atretic follicles. Furthermore, BZBS treatment mitigated ferroptosis by decreasing key markers Fe2+, TFR, ACSL4, and restoring the levels of GSH and GPX4. Additionally, BZBS modulated the expression of critical proteins involved in ferroptosis and cell signalling pathways. Specifically, it down-regulated p-RB1, while up-regulating SLC7A11 and RB1. Moreover, BZBS upregulates NF2 while downregulating YAP expression and its nuclear translocation, thereby regulating the NF2-YAP signaling pathway involved in ferroptosis. CONCLUSIONS In a CTX-induced POI rat model, BZBS effectively restores hormonal levels, mitigates ovarian damage, and curbs excessive primordial follicle activation. It also modulates ferroptosis-related protein expression, activates the NF2-YAP pathway, and could provide a potential therapeutic approach for POI.
Collapse
Affiliation(s)
- Xiaoni Zhu
- Graduate School, Hebei University of Chinese Medicine, No.326 Xinshinan Road, Qiaoxi, Shijiazhuang 050051, Hebei, PR China; Hebei Key Laboratory of Health Care with Traditional Chinese Medicine, No.3 Xingyuan Road, Luquan, Shijiazhuang 050200, Hebei, PR China
| | - Xiling Zhao
- Graduate School, Hebei University of Chinese Medicine, No.326 Xinshinan Road, Qiaoxi, Shijiazhuang 050051, Hebei, PR China; Hebei Key Laboratory of Health Care with Traditional Chinese Medicine, No.3 Xingyuan Road, Luquan, Shijiazhuang 050200, Hebei, PR China
| | - Jing Zhang
- Graduate School, Hebei University of Chinese Medicine, No.326 Xinshinan Road, Qiaoxi, Shijiazhuang 050051, Hebei, PR China; Hebei Key Laboratory of Health Care with Traditional Chinese Medicine, No.3 Xingyuan Road, Luquan, Shijiazhuang 050200, Hebei, PR China
| | - Yi Zhang
- College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Luquan, Shijiazhuang 050200, Hebei, PR China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No.3 Xingyan Road, Luquan, Shijiazhuang 050200, PR China
| | - Xianhui Dong
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No.3 Xingyan Road, Luquan, Shijiazhuang 050200, PR China; College of Integrative Medicine, Hebei University of Chinese Medicine, No.3 Xingyan Road, Luquan, Shijiazhuang 050200, PR China
| | - Yunlong Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Hebei Yiling Hospital, Tianshan Street, Yuhua, Shijiazhuang 050200, Hebei, PR China; Key Laboratory of State Administration of TCM (Cardio-Cerebral VesselCollateral Disease), Tianshan, Yuhua, Shijiazhuang, 050200, Hebei, PR China
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Hebei Yiling Hospital, Tianshan Street, Yuhua, Shijiazhuang 050200, Hebei, PR China
| | - Ying Zhang
- Hebei Key Laboratory of Health Care with Traditional Chinese Medicine, No.3 Xingyuan Road, Luquan, Shijiazhuang 050200, Hebei, PR China; College of Basic Medicine, Hebei University of Chinese Medicine, No.3 Xingyuan Road, Luquan, Shijiazhuang 050200, Hebei, PR China.
| | - Weijuan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, No.3 Xingyan Road, Luquan, Shijiazhuang 050200, PR China; College of Integrative Medicine, Hebei University of Chinese Medicine, No.3 Xingyan Road, Luquan, Shijiazhuang 050200, PR China.
| |
Collapse
|
5
|
Yang A, Zhang H, Zhang H, Li N, Chen C, Yang X, Tian J, Sun J, Li G, Sun Y, Liu B, Jiang Y. Pitavastatin and resveratrol bio-nanocomplexes against hyperhomocysteinemia-induced atherosclerosis via blocking ferroptosis-related lipid deposition. J Control Release 2025; 381:113598. [PMID: 40043912 DOI: 10.1016/j.jconrel.2025.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Atherosclerosis (AS) therapy has been commonly based on lipid-lowering agents (e.g., statins), supplemented by other therapies, such as anti-inflammatory agents and antioxidants, through traditional Chinese herbs. Ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, has been implicated in the progression of AS, particularly in macrophages. In the study, we constructed a macrophage targeted hybridization nanodrug of HMLRPP, which used Pit-loaded Poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) and Res-loaded liposomes as nano-core, then, coated with a macrophage membrane hybridized by hyaluronic acid. The nanodrug prolonged blood circulation time and achieved optimal Res and Pit accumulation in the atherosclerotic plaques by effectively evading immune system clearance. In vivo studies demonstrated that HMLRPP NPs significantly attenuated plaque progression, characterized by decreased plaque area, less lipid deposition, and increased collagen. Meanwhile, HMLRPP NPs inhibited macrophage ferroptosis by decreasing the expression of β-Hydroxybutyrate dehydrogenase 1 (BDH1), Orosomucoid 1 (ORM1) and enhancing the expression of Ribosomal protein S27-like (RPS27L), which resulted in the alleviation of lipid accumulation and inflammation. Our data suggest that the HMLRPP nanodrug delivery system with ferroptosis-regulating capability provides a feasible therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Anning Yang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; College of Biology, Hunan University, Changsha 410082, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Hongwen Zhang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Huiping Zhang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410000, China
| | - Nan Li
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Cong Chen
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiaoling Yang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Jue Tian
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Jianmin Sun
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Guizhong Li
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China
| | - Yue Sun
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China.
| | - Bin Liu
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; College of Biology, Hunan University, Changsha 410082, China.
| | - Yideng Jiang
- General Hospital, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan 750004, China.
| |
Collapse
|
6
|
Liu Y, Wang Q, Hou Z, Gao Y, Li P. Electroacupuncture Inhibits Ferroptosis by Modulating Iron Metabolism and Oxidative Stress to Alleviate Cerebral Ischemia-Reperfusion Injury. J Mol Neurosci 2025; 75:63. [PMID: 40317390 PMCID: PMC12049298 DOI: 10.1007/s12031-025-02355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Abstract
Ischemic stroke (IS) is one of the leading causes of mortality and long-term disability worldwide. Electroacupuncture (EA) is commonly used in the treatment of IS, meaning that may reduce cerebral ischemia-reperfusion injury (CIRI). The middle cerebral artery occlusion/reperfusion (MCAO/R) rat models were created by the modified Zea Longa suture method. EA treatment was performed for 7 consecutive days at the acupoints Neiguan (PC6), Shuigou (GV26), and Sanyinjiao (SP6). The neurological function was assessed using the Zausinger six-point neurological deficiency score. The cerebral infarct volume was detected by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Hematoxylin and eosin (HE) staining was employed to observe the pathological changes in brain tissues. Prussian blue staining was employed to investigate iron deposition within the brain tissues. Transmission electron microscopy (TEM) was utilized to examine the morphological characteristics of mitochondria. Simultaneously, flow cytometry was utilized to detect the fluorescence intensity of reactive oxygen species (ROS). Assay kits were employed to measure the levels of Fe2+ and glutathione (GSH). Additionally, western blot (WB) and real-time quantitative polymerase chain reaction (RT-qPCR) assays were performed to evaluate the expression levels of proteins associated with ferroptosis. Compared with the MCAO/R group, both the MCAO/R + EA and MCAO/R + DFO groups exhibited significant improvements in neurological function following cerebral ischemia-reperfusion (CIR), attenuated the pathological brain tissue injury, and reduced the cerebral infarct volume and iron deposition in brain tissue. Furthermore, both the MCAO/R + EA and MCAO/R + DFO groups displayed a marked reduction in mitochondrial injury. There was a substantial decrease in Fe2+ and ROS levels, accompanied by a notable increase in GSH level and glutathione peroxidase 4 (GPX4) activity. Compared with the MCAO/R group, the levels of ferroportin1 (FPN1) protein and mRNA expression were significantly increased in the MCAO/R + EA and MCAO/R + DFO groups, and the expression levels of transferrin (TF), transferrin receptor 1 (TFR1), divalent metal transporter 1 (DMT1) protein and mRNA, as well as ferritin (FER) protein, were significantly decreased. EA inhibits ferroptosis by modulating iron metabolism and oxidative stress to alleviate CIRI, exerting neuroprotective effects.
Collapse
Affiliation(s)
- Yaoyao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qi Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ziwen Hou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Peng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
7
|
Wang L, Li G, Hui A, Li Y, Leng W, Cui H, Liu X. Palygorskite-based antibacterial composites induced intracellular S. aureus ferroptosis through SSTR2. Int J Biol Macromol 2025; 311:143897. [PMID: 40319975 DOI: 10.1016/j.ijbiomac.2025.143897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Intracellular bacterial infections are paid more and more attention in clinic since there are no efficient antibiotics can be applied so far. It is well known that ZnO nanoparticles have excellent antibacterial properties, but high cytotoxicity limits their clinical application. As a natural one-dimensional nanomaterial, palygorskite (Pal) is an excellent carrier of ions and drugs due to its special crystal structure. The Pal-carried ZnO (ZnO@Pal) not only enhances its antibacterial properties, but also reduces the cytotoxicity. Our research group has successfully prepared ZnO@Pal-based antibacterial composites (Pal-ACPs) in the early stage, and confirmed that Pal-ACPs have excellent antibacterial performance. Moreover, a recent study has reported that ferroptotic stress promotes macrophages against intracellular bacteria. Whether Pal-ACPs can promote ferroptosis signaling in macrophages and lead to death of intracellular S. aureus remains largely unknown. In this study, we elucidated the mechanism of antibacterial effect of Pal-ACPs upon intracellular S. aureus and demonstrated that Pal-ACPs induced S. aureus undergoing ferroptosis in macrophages through SSTR2, and SSTR2 knockout prevented Pal-ACPs-induced ferrous iron accumulating in the bacteria, thus promote the survival of S. aureus in macrophages. Collectively, our new Pal-ACPs exhibit remarkably antibacterial potential and bear great prospects to be applied in clinical infectious disease therapy.
Collapse
Affiliation(s)
- Lu Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China; Department of Cell Fate and Diseases, Jilin Provincial Key Laboratory of Women's Reproductive Health, Jilin Provincial Clinical Research Center for Birth Defect and Rare Disease, The First Hospital of Jilin University, Changchun 130061, China
| | - Aiping Hui
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yalong Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Wenting Leng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xinyue Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
8
|
Wang YY, Wang YS, Li JJ, Wan ZY, Zhang H. Unusual chaetoglobosins and a new type of ferroptosis inducer from an endophytic fungus Chaetomium sp. UJN-EF006. Bioorg Chem 2025; 158:108342. [PMID: 40058224 DOI: 10.1016/j.bioorg.2025.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025]
Abstract
Seven unreported chaetoglobosin-type alkaloids, namely brachaetoglobosin A (1), chaetochalasins BF (2-6) and armochaeglobine C (7), together with the formerly described cytoglobosin C (8) and chaetoglobosin E (9), were obtained from an endophytic fungus Chaetomium sp. UJN-EF006 isolated from the leaves of Vaccinium bracteatum. Their structures were characterized through various spectral techniques including MS, NMR, X-ray crystallography and electronic circular dichroism. Also, this is only the second record of novel chaetochalasin and armochaeglobine skeletons of the cytochalasin super family, after 27 and 10 years of the first report, respectively. Compound 9 showed significant cytotoxic effect against two human tumor cell lines (MDA-MB231 and A549) and was identified as a new type of ferroptosis inducer (toward A549 cells) that could be used as a molecular tool in future related research.
Collapse
Affiliation(s)
- Yin-Yin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yu-Song Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jun-Jiang Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ze-Yi Wan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
9
|
Famurewa AC, Akhigbe RE, George MY, Adekunle YA, Oyedokun PA, Akhigbe TM, Fatokun AA. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4747-4778. [PMID: 39636404 PMCID: PMC11985630 DOI: 10.1007/s00210-024-03623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy (CT) is one of the flagship options for the treatment of cancers worldwide. It involves the use of cytotoxic anticancer agents to kill or inhibit the proliferation of cancer cells. However, despite its clinical efficacy, CT triggers side effect toxicities in several organs, which may impact cancer patient's quality of life and treatment outcomes. While the side effect toxicity is consistent with non-ferroptotic mechanisms involving oxidative stress, inflammation, mitochondrial impairment and other aberrant signalling leading to apoptosis and necroptosis, recent studies show that ferroptosis, a non-apoptotic, iron-dependent cell death pathway, is also involved in the pathophysiology of CT organ toxicity. CT provokes organ ferroptosis via system Xc-/GPX-4/GSH/SLC7A11 axis depletion, ferritinophagy, iron overload, lipid peroxidation and upregulation of ferritin-related proteins. Cisplatin (CP) and doxorubicin (DOX) are common CT drugs indicated to induce ferroptosis in vitro and in vivo. Studies have explored natural preventive and therapeutic strategies using ginger rhizome and its major bioactive compounds, 6-gingerol (6G) and zingerone (ZG), to combat mechanisms of CT side effect toxicity. Ginger extract, 6G and ZG mitigate non-ferroptotic oxidative inflammation, apoptosis and mitochondrial dysfunction mechanisms of CT side effect toxicity, but their effects on CT-induced ferroptosis remain unclear. Systematic investigations are, therefore, needed to unfold the roles of ginger, 6G and ZG on ferroptosis involved in CT side effect toxicity, as they are potential natural agents for the prevention of CT toxicity. This review reveals the ferroptotic and non-ferroptotic toxicity mechanisms of CT and the protective mechanisms of ginger, 6G and ZG against CT-induced, ferroptotic and non-ferroptotic organ toxicities.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria.
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Yemi A Adekunle
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
10
|
B N, K G V, V Chavannavar S, Chavan M. Antioxidant, antidiabetic, and antimicrobial efficacy of germinated Ocimum gratissimum and Ocimum basilicum seed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3843-3856. [PMID: 39873157 DOI: 10.1002/jsfa.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND The edible seeds of Ocimum gratissimum and Ocimum basilicum were found to be a potent source of phytochemicals with noteworthy antioxidant, antidiabetic, and antimicrobial properties. This study aimed to investigate the impact of germination and extraction solvents (ethanol (EtOH), distilled water) on the therapeutic properties exhibited and the ability of seed extracts to act as natural food preservatives. RESULTS The EtOH extracts of germinated O. gratissimum and O. basilicum seeds exhibited more phytoconstituents content with significantly higher phenols (21.03 ± 0.01 mg gallic acid equivalent (GAE)/g and 21.46 ± 0.01 mg GAE/g respectively) and flavonoids (11.92 ± 0.03 mg quercetin equivalent (QE)/g and 14.45 ± 0.04 mg QE/g respectively) than other extracts did. Thus, they exhibited superior antioxidant potential with substantially lower half-maximal inhibitory concentration (IC50) values for scavenging 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (0.013 ± 0.00 mg mL-1 and 0.007 ± 0.00 mg mL-1 respectively) and superoxide anion radical (4.33 ± 0.01 mg mL-1 and 4.14 ± 0.00 mg mL-1 respectively) and for inhibiting lipid oxidation (2.57 ± 0.00 mg mL-1 and 2.33 ± 0.00 mg mL-1 respectively) compared with other extracts. Further, they exhibited better antidiabetic potential with substantially lower IC50 values for inhibiting α-amylase activity (0.93 ± 0.01 mg mL-1 and 1.01 ± 0.01 mg mL-1 respectively) and α-glucosidase activity (0.60 ± 0.01 mg mL-1 and 0.51 ± 0.01 mg mL-1 respectively). Also, they showed superior antimicrobial potential with higher inhibition zones for Bacillus subtilis (13.98 ± 0.18 mm, 17.02 ± 0.18 mm respectively), Vibrio parahaemolyticus (19.00 ± 0.20 mm, 22.58 ± 0.45 mm respectively), Salmonella enterica (24.98 ± 0.18 mm, 22.17 ± 0.15 mm respectively), and Escherichia coli (23.50 ± 0.50 mm, 27.00 ± 0.20 mm respectively) and better inhibition of Aspergillus flavus growth (93.28% and 81.77% respectively) compared with other extracts. CONCLUSION Both the O. gratissimum and O. basilicum seed extracts can be utilized efficiently as therapeutic agents to manage inflammation-driven diseases and diabetes, or as natural preservatives in foods and in edible films or coatings. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neeharika B
- ICAR-NIRCA-Krishi Vigyan Kendra, Kandukur, India
| | | | | | - Mohan Chavan
- University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
11
|
Zhang L, Li Y, Qian Y, Xie R, Peng W, Zhou W. Advances in the Development of Ferroptosis-Inducing Agents for Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202500010. [PMID: 40178208 DOI: 10.1002/ardp.202500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Cancer is the main leading cause of death worldwide and poses a great threat to human life and health. Although pharmacological treatment with chemotherapy and immunotherapy is the main therapeutic strategy for cancer patients, there are still many shortcomings during the treatment such as incomplete killing of cancer cells and development of drug resistance. Emerging evidence indicates the promise of inducing ferroptosis for cancer treatment, particularly for eliminating aggressive malignancies that are resistant to conventional therapies. This review covers recent advances in important regulatory targets in the ferroptosis metabolic pathway and ferroptosis inducers (focusing mainly on the last 3 years) to delineate their design, mechanisms of action, and anticancer applications. To date, many compounds, including inhibitors, degraders, and active molecules from traditional Chinese medicine, have been demonstrated to have ferroptosis-inducing activity by targeting the different biomolecules in the ferroptosis pathway. However, strictly defined ferroptosis inducers have not yet been approved for clinical use; therefore, the discovery of new highly active, less toxic, and selective compounds remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Li Zhang
- Maternal and Child Health Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, Zhejiang Province, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Qian
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Ruliang Xie
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, Jiangsu Province, China
| | - Wei Peng
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
12
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Liu J, Zhang M, Wu C, Pan X, Huang Z. TPGS/soluplus® blended micelles: an effective strategy for improving loading capacity of ferroptosis inducer erastin. J DISPER SCI TECHNOL 2025; 46:523-535. [DOI: 10.1080/01932691.2023.2295024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/09/2023] [Indexed: 06/25/2024]
Affiliation(s)
| | | | | | - Xin Pan
- College of Pharmacy, Sun Yat-Sen University
| | | |
Collapse
|
14
|
Sun L, Niu Y, Liao B, Liu L, Peng Y, Li K, Chen X, Chen Q, Bai D. CUR-PDT induces ferroptosis of RA-FLS via the Nrf2/xCT/GPX4 pathway to inhibit proliferation in rheumatoid arthritis. Inflamm Res 2025; 74:53. [PMID: 40085199 DOI: 10.1007/s00011-025-02019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE Ferroptosis is a non-apoptotic cell death mechanism driven by reactive oxygen species (ROS) and iron. Its significance in inflammatory arthritis is well-established, but its role in rheumatoid arthritis (RA) remains uncertain. This study aimed to clarify the mechanisms through which curcumin-mediated photodynamic therapy (CUR-PDT) triggers ferroptosis in RA fibroblast-like synoviocytes (FLSs). METHODS In vivo studies using a collagen-induced arthritis (CIA) rat model evaluated CUR-PDT effects on joint edema, synovial inflammation, and fibrosis through paw volume measurements and H&E and Masson's trichrome staining. The expression of Nrf2, xCT, and GPX4 in FLSs was assessed via ELISA and immunohistochemistry. In vitro, MH7A cells treated with TNF-α were analyzed for viability, proliferation, invasion, and migration through various assays. Mitochondrial potential and morphology were examined using JC-1 staining and transmission electron microscopy (TEM). Ferroptosis biomarkers, including ROS, malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and Fe2+ levels, were measured. Nrf2, xCT, and GPX4 levels were quantified with RT-qPCR, Western blot, and immunofluorescence. Small interfering RNA (siRNA) was employed to knock down Nrf2 to validate the effect of CUR-PDT on ferroptosis in RA-FLS. RESULTS The CUR-PDT therapy markedly reduced joint inflammation and collagen deposition in the synovial tissue of CIA rats. It effectively alleviated both inflammation and hyperplasia. Moreover, this therapy facilitated ferroptosis within the synovial tissue. In vitro analyses indicated that CUR-PDT diminished the proliferation and viability of FLSs, resulting in increased ROS levels in the cells. This cascade initiated ferroptosis, as evidenced by decreased glutathione, heightened iron concentrations, mitochondrial shrinkage, and reduced mitochondrial membrane potential. Crucially, the expression of xCT and GPX4 was significantly lowered. Interestingly, knocking down the Nrf2 gene amplified this effect, leading to an even greater reduction in xCT and GPX4 expression. In this context, RA-FLSs exhibited more pronounced ferroptotic traits, including diminished proliferation, invasion, and migration. CONCLUSIONS This study elucidated a mechanism by which CUR-PDT triggers ferroptosis in FLSs through the downregulation of the Nrf2-xCT-GPX4 signaling cascade, thereby effectively hindering the progression of RA and emphasizing the importance of targeting Nrf2 in disease advancement.
Collapse
Affiliation(s)
- Lihua Sun
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yajuan Niu
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bo Liao
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Linlin Liu
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yi Peng
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kaiting Li
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xinhua Chen
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qing Chen
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Dingqun Bai
- Department of Rehabilitation Medicine, Key Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health Commission, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
15
|
Liu Y, Fu X, Li J, Guo J, Zhao Z, Zheng J. Gallic acid alleviates ferroptosis by negatively regulating APOC3 and improves nerve function deficit caused by traumatic brain injury. Sci Rep 2025; 15:7815. [PMID: 40050387 PMCID: PMC11885476 DOI: 10.1038/s41598-025-92383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
Traumatic brain injury (TBI) is more common than ever and is becoming a global public health issue. A variety of secondary brain injuries occur after TBI, including ferroptosis characterized by iron-dependent lipid peroxidation. Gallic acid is a kind of traditional Chinese medicine, which has many biological effects such as anti-inflammatory and antioxidant. We further investigated whether Gallic acid can improve the neurological impairment caused by ferroptosis after TBI by targeting APOC3. Weighted gene coexpression network analyses (WGCNA) and 3 kinds of machine-learning algorithms were used to find the potential biomarkers. Then the HERB database was used to select the Chinese herb that acted on the target gene APOC3. Finally, we selected Gallic acid as a drug targeting APOC3 and verified by Western blotting. The effect of Gallic acid on the improvement of neurological function was studied by Nissl staining and FJB staining. Finally, the effect of Gallic acid on the cognitive ability of TBI mice was explored through behavioral experiments. Gallic acid can inhibit the expression level of APOC3 and thus inhibit the level of ferroptosis after TBI. It can also reduce the degeneration of nerve tissue by inhibiting ferroptosis and improve the neurological function deficit. The behavioral experiment proved that Gallic acid can alleviate the behavioral cognitive impairment caused by TBI. Gallic acid can reduce ferroptosis by inhibiting APOC3, and then alleviate neurological impairment after TBI.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223022, China
| | - Xiaojia Fu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223022, China
- Xuzhou Medical University, Xuzhou, 221000, China
| | - Jing Li
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223022, China
| | - Jianqiang Guo
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223022, China
- Xuzhou Medical University, Xuzhou, 221000, China
| | - Zongren Zhao
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223022, China.
| | - Jinyu Zheng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223022, China.
| |
Collapse
|
16
|
Maddirala S, Tadepalli SP, Lakshiakanthan E, Ganesan JJ, Issac R, Basavegowda N, Baek KH, Haldar D. Biodegradable composite films of barley fibers for food packaging applications: A review. Int J Biol Macromol 2025; 295:139611. [PMID: 39788235 DOI: 10.1016/j.ijbiomac.2025.139611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The conventional food packaging is creating a significant cause of environmental hazards, posing challenges in disposal and recycling. Lignocellulose fibers possess remarkable biodegradable properties and can be modified or blended with other polymers. Thus, using lignocellulose biocomposite films derived from barley, a renewable source can mitigate and potentially transform into sustainable, innovative packaging material in the food sectors. Hence, this review focuses on barley lignocellulose fibers incorporated into different film matrix phases, showing promising enhanced mechanical, and functional properties. Barley biocomposites provide the necessary protective functions to replace traditional plastic for food packaging applications and that could reduce the negative effects on the environment. In addition, we highlighted various recently developed barley lignocellulose-based biocomposite films for a variety of food packaging applications. Furthermore, an overview of the environmental impact of plastic pollution and its effects on ecological niches has been emphasized. Additionally, aspects of different sustainable goals (SDGs 9, 12, 13) are discussed. Based on the existing research gaps, this article is concluded with the challenges and discussed further perspectives of biocomposites enriched with barley lignocellulose fibers.
Collapse
Affiliation(s)
- Samuel Maddirala
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Sai Prabhat Tadepalli
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Emisha Lakshiakanthan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Janet Joshiba Ganesan
- Railway Technical Centre, Department of Electronic Engineering, National Kaohsiung University of Science and Technology (First campus), No 1, Daxue road, Yanchao District, Kaohsiung City 82445, Taiwan
| | - Reya Issac
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India.
| |
Collapse
|
17
|
Chen Z, Zheng M, Wan T, Li J, Yuan X, Qin L, Zhang L, Hou T, Liu C, Li R. Gestational exposure to nanoplastics disrupts fetal development by promoting the placental aging via ferroptosis of syncytiotrophoblast. ENVIRONMENT INTERNATIONAL 2025; 197:109361. [PMID: 40080956 DOI: 10.1016/j.envint.2025.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Micro(nano)plastics (MNPs), are emerging environmental pollutants that have garnered widespread attention. Epidemiological and animal studies have shown that MNPs exposure during pregnancy is associated with adverse pregnancy outcomes, such as intrauterine growth restriction (IUGR) and miscarriage. However, the underlying mechanisms remain poorly understood. In this study, we found that exposure to a high dose (1 μg·mL-1) of 100 nm polystyrene nanoparticles (NPs) from gestational day (GD) 0 to GD17 significantly decreased fetal weight and increased the number of resorptions compared to the control group. Moreover, fetal weight was significantly lower in the high-dose group than in the low-dose (0.1 μg·mL-1) group. Meanwhile, ferroptosis and senescence were observed in placentas from mice exposed to high dose of NPs. In vitro experiments using human syncytiotrophoblast (STB) cells differentiated from BeWo cells, we found that NPs caused ferroptosis and senescence in STB cells. Subsequent investigations revealed that the inhibition of the ferroptosis signaling by ferrostain-1 (Fer-1) or deferiprone (DFP) ameliorated senescence induced by NPs in human STB cells. Furthermore, alleviating placental senescence using Fer-1 significantly improves fetal weight loss caused by NPs exposure during pregnancy in mice. Taken together, our results demonstrated that NPs exposure during pregnancy activated the ferroptosis pathway in placental STB, resulting in senescence of STB, which may attribute to the NPs-induced IUGR. This study not only elucidated the mechanistic link between NPs exposure and adverse pregnancy outcomes but also highlighted the necessity for targeted interventions to protect fetal health, underscoring the broader implications for environmental and public health policy.
Collapse
Affiliation(s)
- Zhuan Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingmeng Zheng
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Teng Wan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyi Yuan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Hou
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
18
|
Liu H, Fu M, Ren Z, Liu Z, Cao X, Chen J, Pang Y, Liu J. Cadmium exposure induces inflammation, oxidative stress and DNA damage in HUVEC and promotes THP-1 adhesion: A possible mechanism on the formation of atherosclerotic plaque. Toxicology 2025; 511:154046. [PMID: 39778856 DOI: 10.1016/j.tox.2025.154046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Observational studies have shown that cadmium exposure increases the risk of cardiovascular disease, but the underlying mechanism is still unclear. Atherosclerotic plaque can cause vascular obstruction, which is important for the death from cardiovascular disease. Cell damage and monocyte adhesion are two early events in atherosclerotic plaque formation that can be induced by cadmium exposure, but the mechanism remains to be determined. This study was carried out to investigate the toxicity of cadmium in HUVECs and the effect of cadmium on the adhesion of THP-1 cells, and further explored the possible mechanisms. Rhodamine staining, DCFH-DA staining, Hoechst33258 staining, morphological observation and western blot were used to detect mitochondrial membrane potential, ROS, apoptosis, cell adhesion, signaling pathways and cell adhesion factors respectively. The results indicated that cadmium exposure increased the level of ROS, activated MAPK signaling pathway and resulted in cellular oxidative stress in HUVECs. Exposure to cadmium made nuclear shrinkage, activated DNA damage response pathways and mitochondria-mediated intrinsic apoptosis pathway in HUVECs. Cadmium exposure activated the NLRP3 inflammasome and NF-κB signaling pathway, led to the upregulation of inflammatory cytokines in HUVECs. In addition, cadmium exposure also upregulated the adhesion factors including ICAM-1, VCAM-1 and E-Selectin via NF-κB signaling pathway and resulted in the adhesion of THP-1 cells. The present study elucidated that cadmium could damage the HUVECs and promote the adhesion of THP-1 cells, which clarified the toxicity of cadmium in HUVECs and revealed the possible mechanism for the occurrence of cardiovascular disease induced by cadmium.
Collapse
Affiliation(s)
- Haotian Liu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Mingyang Fu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Ziqi Ren
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Zhaoshuo Liu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jiahe Chen
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Yulin Pang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jianli Liu
- School of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
19
|
Zhu Z, Wang J, Cheng H, Zhao H, Liu C, Zhou X, Yang J. Combined Toxicity Assessment of Deoxynivalenol and Pb 2+ on HK-2 Cells Involved in Excessive ROS-Induced Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2573-2584. [PMID: 39818813 DOI: 10.1021/acs.jafc.4c11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The cocontamination of food by several mycotoxins and heavy metals poses significant health risks, and their combined toxic effects remain poorly understood. Particularly, specific studies exploring their combined impact on ferroptosis remain limited. In this work, we investigated the combined toxic effects of a mycotoxin, called deoxynivalenol (DON), and a heavy metal, called plumbum (Pb), and explored the potential mechanisms of DON and Pb co-occurrence via excessive ROS-induced ferroptosis in HK-2 cells. It was found that combined toxicity of DON and Pb2+ showed a synergism at low concentrations and an antagonism at high concentrations. The increase of the ROS level and iron content as well as the change expression of four ferroptosis marker proteins were observed in DON and Pb2+ individual and combined groups. Furthermore, the addition of ferroptosis inhibitor Fer-1 could mitigate the imbalance of oxidative stress and ferroptosis. Our results suggest that the co-occurrence of DON and Pb2+ might pose a slight threat to the nephrotoxicity due to the interactions related to the excessive ROS-induced ferroptosis, which would provide valuable insights into their potential combined toxic impacts to human and animal health.
Collapse
Affiliation(s)
- Zuoyin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Jie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Haisheng Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Hanke Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Chengbin Liu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xinli Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhua Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| |
Collapse
|
20
|
Famurewa AC, Prabhune NM, Prabhu S. Natural product mitigation of ferroptosis in platinum-based chemotherapy toxicity: targeting the underpinning oxidative signaling pathways. J Pharm Pharmacol 2025; 77:1-17. [PMID: 39485898 DOI: 10.1093/jpp/rgae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVES Platinum-based anticancer chemotherapy (PAC) represents a cornerstone in cancer treatment, retaining its status as the gold standard therapy. However, PAC's efficacy is countered by significant toxicities, such as nephrotoxicity, ototoxicity, and neurotoxicity. Recent studies have linked these toxicities to ferroptosis, characterized by iron accumulation, reactive oxygen species generation, and lipid peroxidation. This review explores the mechanisms underlying PAC-induced toxicities, focusing on the involvement of ferroptosis with three major PAC drugs-cisplatin, carboplatin, and oxaliplatin. Further, we provide a comprehensive analysis of the natural product mitigation of PAC-induced ferroptotic toxicity. KEY FINDINGS The mechanistic role of ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, while studies on carboplatin-induced ferroptotic toxicities are lacking. Natural compounds targeting molecular pathways of ferroptosis have been explored to mitigate PAC-induced ferroptotic toxicity. CONCLUSION While ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, there remains a notable dearth of studies examining its involvement in carboplatin-induced toxicities. Hence, further exploration is warranted to define the role of ferroptosis in carboplatin-induced toxicities, and its further mitigation. Moreover, in-depth mechanistic evaluation is necessary to establish natural products evaluated against PAC-induced ferroptosis, as PAC adjuvants.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ikwo 482103, Ebonyi State, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Nupura Manish Prabhune
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sudharshan Prabhu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
21
|
Sun KY, Bai XY, Zhang L, Zhang X, Hu QQ, Song YX, Qiang RR, Zhang N, Zou JL, Yang YL, Xiang Y. A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis. Exp Neurol 2024; 382:114961. [PMID: 39288829 DOI: 10.1016/j.expneurol.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
Collapse
Affiliation(s)
- Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- School of Medicine, Yan'an University, Yan'an, China
| | - Yu Xuan Song
- School of Medicine, Yan'an University, Yan'an, China
| | | | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Jia Lun Zou
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, China; College of Physical Education, Yan'an University, Yan'an, China.
| |
Collapse
|
22
|
Dai X, Yang Y. Metal-organic frameworks: potential synergies with cold atmospheric plasmas for cancer control. J Mater Chem B 2024; 12:10770-10785. [PMID: 39350546 DOI: 10.1039/d4tb00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Metal-organic frameworks (MOFs) have attracted increasing attention for cancer treatment due to their unique characteristics such as crystallized porous structures, high surface area, and diverse and modifiable chemical properties. Despite the plethora of reports on MOF-based onco-therapeutic designs, these nanocomposites have rarely been launched for clinical use, given, at least, one unavoidable concern, i.e., biosafety. Among the diverse possibilities that MOFs can be engaged for cancer treatment, one unignorable opportunity is how MOFs can be combined with other emerging anti-cancer approaches as one treatment modality to resolve issues of either one for surpassed treatment efficacy. Taking cold atmospheric plasmas (CAPs) as an example, this review delineates the unique features of MOFs and discusses the possible synergies they can create with CAPs for mutual benefits. By providing one example on how MOFs can help overcome the issues of other pre-clinical cancer treatment regimens, this review identifies one research niche that may thrive the field of plasma medicine and revolutionize the schema of MOFs for biological applications.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Yixuan Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| |
Collapse
|
23
|
Tang Q, Wang Y, Yan B, Zhang J, Wang T, Fang Y, Ye Z, Zhang N, Zhang N, Wu Z, Fan H, Lyu Y, Liu X, Wu R. Intracellular Magnetic Hyperthermia Sensitizes Sorafenib to Orthotopic Hepatocellular Carcinoma Via Amplified Ferroptosis. ACS NANO 2024; 18:29804-29819. [PMID: 39431335 DOI: 10.1021/acsnano.4c09500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sorafenib (SRF) is recognized as the primary treatment for hepatocellular carcinoma (HCC), yet the emergence of SRF resistance in many HCC patients results in unfavorable outcomes. Enhancing the efficacy of SRF in HCC remains a significant challenge. SRF works in inducing ferroptosis, a form of cell death, in cancer cells through the inhibition of glutathione peroxidase 4 (GPX4). The effectiveness of this process is limited by the low levels of cellular iron and reactive oxygen species (ROS). A promising approach to circumvent this limitation is the use of intracellular magnetic hyperthermia (MH) mediated by magnetic iron oxide nanomaterials (MIONs). When MIONs are subjected to an alternating magnetic field (AMF), they heat up, enhancing the Fenton reaction, which in turn significantly increases the production of ROS within cells. In this study, we explore the capability of MH facilitated by high-performance ferrimagnetic vortex-domain iron oxide nanoring (FVIO) to enhance the effectiveness of SRF treatment in HCC. The increased iron uptake facilitated by FVIO significantly enhances the sensitivity of HCC cells to SRF-induced ferroptosis. Moreover, the nanoheat generated by FVIO in response to an AMF further elevates ROS levels and stimulates lipid hydroperoxide (LPO) production and GPX4 inactivation, thereby intensifying ferroptosis. Both in vitro and in vivo animal studies demonstrate that combining FVIO-mediated MH with SRF significantly reduces cell viability and inhibits tumor growth, primarily through enhanced ferroptosis, with minimal side effects. The effectiveness of this combination therapy is affected by the ferroptosis inhibitor ferrostatin-1 (Fer-1) and the iron chelator deferoxamine (DFO). The combination treatment of FVIO-mediated MH and SRF offers a strategy for HCC treatment by promoting accelerated ferroptosis, presenting a different perspective for the development of ferroptosis-based anticancer therapies.
Collapse
Affiliation(s)
- Qianqian Tang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanyun Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bin Yan
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Fang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zirui Ye
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Nan Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Nana Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Haiming Fan
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoli Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
24
|
Liu XQ, Shi MZ, Bai YT, Su XL, Liu YM, Wu JC, Chen LR. Hypoxia and ferroptosis. Cell Signal 2024; 122:111328. [PMID: 39094672 DOI: 10.1016/j.cellsig.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.
Collapse
Affiliation(s)
- Xiao-Qian Liu
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Meng-Zhen Shi
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yu-Ting Bai
- Qinghai Provincial People's Hospital, Xining 810001, PR China.
| | - Xiao-Ling Su
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yan-Min Liu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Jin-Chun Wu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Li-Rong Chen
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| |
Collapse
|
25
|
Zhang H, Zhou J, Liu Z, Wang K, Jiang H. Bioinformatics analysis of ferroptosis in frozen shoulder. BMC Med Genomics 2024; 17:234. [PMID: 39334338 PMCID: PMC11428309 DOI: 10.1186/s12920-024-02011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Frozen shoulder is a common shoulder disease that significantly affects the patient's life and work. Ferroptosis is a new type of programmed cell death, which is involved in many diseases. However, there have been no studies reporting the relationship between frozen shoulders and ferroptosis. This study identified potential molecular markers of ferroptosis in frozen shoulders to provide more effective strategies for the treatment of frozen shoulders. METHODS GSE238053 was downloaded from the Gene Expression Omnibus (GEO) dataset and intersected with ferroptosis genes to obtain differentially expressed genes (DEGs). The signaling pathways and biological functions of DEGs were performed by WebGestalt and Metascape. The interactions related to these DEGs and the key genes between frozen shoulders and ferroptosis was performed by STRING and Cytoscape. A frozen shoulders rat model was used to validate our predicted genes, Western Blot and qRT-PCR was used to assess the expression levels of our genes of interest. RESULTS A total of 34 DEGs between GSE238053 and Ferroptosis Database were obtained, most of which were involved in the HIF-1 signaling pathway and inflammatory response. A protein-protein interaction network was obtained by Cytoscape and the key genes (IL-6, HMOX1 and TLR4) were screened by MCODE. Our results of Western Blot showed that the protein expression level of TLR4 and HMOX1 were elevated, and the protein level of IL-6 decreased in frozen shoulders rat model. The mRNA level after frozen shoulders showed that IL-6 was upregulated, whereas TLR4 and HMOX1were downregulated. CONCLUSIONS The results demonstrated that ferroptosis may affect the pathological process of frozen shoulders through these signaling pathways and genes. The identification of IL-6, HMOX1 and TLR4 genes can provide new therapeutic targets for frozen shoulders.
Collapse
Affiliation(s)
- Hongcui Zhang
- Department of Rehabilitation Medicine, Wendeng Orthopedic and Traumatic Hospital, Weihai City, Shandong Province, China
| | - Jiahua Zhou
- Department of Massage, Wendeng Orthopedic and Traumatic Hospital, Weihai City, Shandong Province, China
| | - Zhihua Liu
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao City, Shandong Province, China
| | - Kaile Wang
- Department of Tendon and Wounds, Wendeng Orthopedic and Traumatic Hospital, Weihai City, Shandong Province, China
| | - Hexun Jiang
- Department of Orthopedics, Wendeng Orthopedic and Traumatic Hospital, Weihai City, Shandong Province, China.
| |
Collapse
|
26
|
Wen J, Li L, Yang Y, Ou D, Yang J, Xie J, Du W, Tong Y. Phytochemicals targeting ferroptosis in cardiovascular diseases: Recent advances and therapeutic perspectives. Phytother Res 2024; 38:4386-4405. [PMID: 38973263 DOI: 10.1002/ptr.8278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024]
Abstract
Ferroptosis is a form of iron-dependent regulatory cell death that is related to the pathogenesis and progression of various cardiovascular diseases, such as arrhythmia, diabetic cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, and heart failure. This makes it a promising therapeutic target for cardiovascular diseases. It is interesting that a significant number of cardiovascular disease treatment drugs derived from phytochemicals have been shown to target ferroptosis, thus producing cardioprotective effects. This study offers a concise overview of the initiation and control mechanisms of ferroptosis. It discusses the core regulatory factors of ferroptosis as potential new therapeutic targets for various cardiovascular diseases, elucidating how ferroptosis influences the progression of cardiovascular diseases. In addition, this review systematically summarizes the regulatory effects of phytochemicals on ferroptosis, emphasizing their potential mechanisms and clinical applications in treating cardiovascular diseases. This study provides a reference for further elucidating the molecular mechanisms of phytochemicals in treating cardiovascular diseases. This may accelerate their application in the treatment of cardiovascular diseases and is worth further research in this field.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Lu Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yi Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Dinglin Ou
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Junjie Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Jiachen Xie
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Wenya Du
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yuling Tong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| |
Collapse
|
27
|
Liang X, Long L, Guan F, Xu Z, Huang H. Research status and potential applications of circRNAs affecting colorectal cancer by regulating ferroptosis. Life Sci 2024; 352:122870. [PMID: 38942360 DOI: 10.1016/j.lfs.2024.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Ferroptosis is an emerging form of non-apoptotic programmed cell death (PCD), characterized by iron-mediated oxidative imbalance. This process plays a significant role in the development and progression of various tumors, including colorectal cancer, gastric cancer, and others. Circular RNA (circRNA) is a stable, non-coding RNA type with a single-stranded, covalently closed loop structure, which is intricately linked to the proliferation, invasion, and metastasis of tumor cells. Recent studies have shown that many circRNAs regulate various pathways leading to cellular ferroptosis. Colorectal cancer, known for its high incidence and mortality among cancers, is marked by a poor prognosis and pronounced chemoresistance. To enhance our understanding of how circRNA-mediated regulation of ferroptosis influences colorectal cancer development, this review systematically examines the mechanisms by which specific circRNAs regulate ferroptosis and their critical role in the progression of colorectal cancer. Furthermore, it explores the potential of circRNAs as biomarkers and therapeutic targets in colorectal cancer treatment, offering a novel approach to clinical management.
Collapse
Affiliation(s)
- Xiyuan Liang
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Linna Long
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Fan Guan
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Zilu Xu
- School of Basic Medical Science, Central South University, Changsha 410013, China
| | - He Huang
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
28
|
Liu R, Jiang H, Yang W, Zheng Z, Wang X, Tian Z, Wang D, Kan D, Zhang D, Tang Z. Peroxynitrite imaging in ferroptosis-mediated drug-induced liver injury with a near-infrared fluorescence probe. Anal Chim Acta 2024; 1309:342673. [PMID: 38772656 DOI: 10.1016/j.aca.2024.342673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Over-consumption of drugs can result in drug-induced liver damage (DILI), which can worsen liver failure. Numerous studies have shown the significant role ferroptosis plays in the pathophysiology of DILI, which is typified by a marked imbalance between the generation and breakdown of lipid reactive oxygen species (ROS). The content of peroxynitrite (ONOO-) rapidly increased during this process and was thought to be a significant marker of early liver injury. Therefore, the construction of fluorescence probe for the detection and imaging of ONOO- holds immense importance in the early diagnosis and treatment of ferroptosis-mediated DILI. RESULTS We designed a probe DILI-ONOO based on the ICT mechanism for the purpose of measuring and visualizing ONOO- in ferroptosis-mediated DILI processes and associated studies. This probe exhibited significant fluorescence changes with good sensitivity, selectivity, and can image exogenous and endogenous ONOO- in cells with low cytotoxicity. Using this probe, we were able to show changes in ONOO- content in ferroptosis-mediated DILI cells and mice models induced by the intervention of acetaminophen (APAP) and isoniazid (INH). By measuring the concentration of ferroptosis-related indicators in mice liver tissue, we were able to validate the role of ferroptosis in DILI. It is worth mentioning that compared to existing alanine transaminase (ALT) and aspartate aminotransferase (AST) detection methods, this probe can achieve early identification of DILI prior to serious liver injury. SIGNIFICANCE This work has significant reference value in researching the relationship between ferroptosis and DILI and visualizing research. The results indicate a strong correlation between the progression of DILI and ferroptosis. Additionally, the use of DILI-ONOO shows promise in investigating the DILI process and assessing the effectiveness of medications in treating DILI.
Collapse
Affiliation(s)
- Ruixin Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haijing Jiang
- Wendeng Osteopathic Hospital of Shandong Province, Wendeng, 264400, China
| | - Wenjie Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhijuan Zheng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongfang Kan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhixin Tang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
29
|
Zhu L, Zhou J, Yu C, Gu L, Wang Q, Xu H, Zhu Y, Guo M, Hu M, Peng W, Fang H, Wang H. Unraveling the Molecular Regulation of Ferroptosis in Respiratory Diseases. J Inflamm Res 2024; 17:2531-2546. [PMID: 38689798 PMCID: PMC11059637 DOI: 10.2147/jir.s457092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 05/02/2024] Open
Abstract
Ferroptosis, a type of programmed cell death that relies on iron, is distinct in terms of its morphological, biochemical and genetic features. Unlike other forms of cell death, such as autophagy, apoptosis, necrosis, and pyroptosis, ferroptosis is primarily caused by lipid peroxidation. Cells that die due to iron can potentially trigger an immune response which intensifies inflammation and causes severe inflammatory reactions that eventually lead to multiple organ failure. In recent years, ferroptosis has been identified in an increasing number of medical fields, including neurological pathologies, chronic liver diseases and sepsis. Ferroptosis has the potential to cause an inflammatory tempest, with many of the catalysts and pathological indications of respiratory ailments being linked to inflammatory reactions. The growing investigation into ferroptosis in respiratory disorders has also garnered significant interest to better understand the mechanism of ferroptosis in these diseases. In this review, the recent progress in understanding the molecular control of ferroptosis and its mechanism in different respiratory disorders is examined. In addition, this review discusses current challenges and prospects for understanding the link between respiratory diseases and ferroptosis.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Chen Yu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lei Gu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hanglu Xu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Wei Peng
- Department of Intensive Care Unit, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hao Fang
- Department of Trauma Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Haizhen Wang
- Department of Health Management Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
30
|
Liang T, Dong H, Wang Z, Lu L, Song X, Qi J, Zhang Y, Wang J, Du G. Discovery of novel urea derivatives as ferroptosis and autophagy inducer for human colon cancer treatment. Eur J Med Chem 2024; 268:116277. [PMID: 38422700 DOI: 10.1016/j.ejmech.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A series of novel urea derivatives were designed, synthesized and evaluated for their inhibitory activities against HT-29 cells, and structure-activity relationships (SAR) were summarized. Compound 10p stood out from these derivatives, exhibiting the most potent antiproliferative activity. Further biological studies demonstrated that 10p arrested cell cycle at G2/M phase via regulating cell cycle-related proteins CDK1 and Cyclin B1. The underlying molecular mechanisms demonstrated that 10p induced cell death through ferroptosis and autophagy, but not apoptosis. Moreover, 10p-induced ferroptosis and autophagy were both related with accumulation of ROS, but they were independent of each other. Our findings substantiated that 10p combines ferroptosis induction and autophagy trigger in single molecule, making it a potential candidate for colon cancer treatment and is worth further development.
Collapse
Affiliation(s)
- Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Haiyang Dong
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuangzhuang Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Lu Lu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Xueting Song
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Jianguo Qi
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China; Huaihe Hospital of Henan University, Kaifeng, 475004, Henan, China.
| | - Guanhua Du
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, 475004, Henan, China; School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
31
|
Petkov N, Tadjer A, Encheva E, Cherkezova-Zheleva Z, Paneva D, Stoyanova R, Kukeva R, Dorkov P, Pantcheva I. Experimental and DFT Study of Monensinate and Salinomycinate Complexes Containing {Fe 3(µ 3-O)} 7+ Core. Molecules 2024; 29:364. [PMID: 38257278 PMCID: PMC10818969 DOI: 10.3390/molecules29020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Two trinuclear oxo-centred iron(III) coordination compounds of monensic and salinomycinic acids (HL) were synthesized and their spectral properties were studied using physicochemical/thermal methods (FT-IR, TG-DTA, TG-MS, EPR, Mössbauer spectroscopy, powder XRD) and elemental analysis. The data suggested the formation of [Fe3(µ3-O)L3(OH)4] and the probable complex structures were modelled using the DFT method. The computed spectral parameters of the optimized constructs were compared to the experimentally measured ones. In each complex, three metal centres were joined together at the axial position by a μ3-O unit to form a {Fe3O}7+ core. The antibiotics monoanions served as bidentate ligands through the carboxylate and hydroxyl groups located at the termini. The carboxylate moieties played a dual role bridging each two metal centres. Hydroxide anions secured the overall neutral character of the coordination species. Mössbauer spectra displayed asymmetric quadrupole doublets that were consistent with the existence of two types of high-spin iron(III) sites with different environments-two Fe[O5] and one Fe[O6] centres. The solid-state EPR studies confirmed the +3 oxidation state of iron with a total spin St = 5/2 per trinuclear cluster. The studied complexes are the first iron(III) coordination compounds of monensin and salinomycin reported so far.
Collapse
Affiliation(s)
- Nikolay Petkov
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (A.T.); (E.E.)
| | - Alia Tadjer
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (A.T.); (E.E.)
| | - Elzhana Encheva
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (A.T.); (E.E.)
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Zara Cherkezova-Zheleva
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Z.C.-Z.); (D.P.)
| | - Daniela Paneva
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Z.C.-Z.); (D.P.)
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.S.); (R.K.)
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.S.); (R.K.)
| | - Petar Dorkov
- Research and Development Department, Biovet Ltd., 4550 Peshtera, Bulgaria;
| | - Ivayla Pantcheva
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria; (A.T.); (E.E.)
| |
Collapse
|
32
|
Liu R, Zhou Y, Cao Y. CircRNA and ferroptosis in human disease: Insights for new treatments. Animal Model Exp Med 2023; 6:508-517. [PMID: 38093404 PMCID: PMC10757220 DOI: 10.1002/ame2.12365] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/19/2023] [Indexed: 12/31/2023] Open
Abstract
Circular RNA (circRNA), classified as a type of non-coding RNA, has gained significant attention in the field of biology due to its distinctive ring structure and functional properties. Recent research has provided evidence that specific circRNAs have the ability to modulate disease progression through diverse mechanisms, one of which is by regulating cellular ferroptosis. Ferroptosis is a form of regulated cell death that is driven by iron dependency and lipid peroxidation, and extensive investigations have revealed a relationship between ferroptosis and disease development. In addition to evidence that both circRNAs and ferroptosis exert critical roles in disease progression, circRNAs have also been shown to actively mediate the process of ferroptosis. The relationship between circRNAs and ferroptosis therefore influences disease progression and offers novel targets for disease treatment. By directly or indirectly modulating the expression of circRNAs that regulate the expression of ferroptosis-related proteins, it may be possible to impact disease progression by promoting or inhibiting ferroptosis. Current research indicates such approaches may hold significant value in a wide variety of common diseases across physiological systems. This review comprehensively summarizes the findings of recent studies investigating the roles of circRNAs in the regulation of ferroptosis in various diseases.
Collapse
Affiliation(s)
- Ruoyu Liu
- Department of Clinical LaboratoryChina‐Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yun Zhou
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Yongtong Cao
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
33
|
Zhang L, Kang H, Zhang W, Wang J, Liu Z, Jing J, Han L, Gao A. Probiotics ameliorate benzene-induced systemic inflammation and hematopoietic toxicity by inhibiting Bacteroidaceae-mediated ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165678. [PMID: 37478946 DOI: 10.1016/j.scitotenv.2023.165678] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The intestinal microbiota is associated with the development of benzene-induced hematopoietic toxicity. Modulation of intestinal homeostasis by probiotic supplementation has been considered an effective strategy to prevent adverse health effects. However, the role and mechanism of probiotics in benzene-induced hematopoietic toxicity are unclear. After 45 days of exposure, benzene caused bone marrow hematopoietic toxicity in mice. Furthermore, we found that benzene altered the intestinal barrier in mice, leading to an increase in the abundance of Bacteroidaceae and the activation of systemic inflammation. Interestingly, Fe2+ accumulation, lipid peroxidation, and differential expression of ferroptosis proteins were observed in the intestinal tissues of benzene-exposed mice. After fecal microbiota transplantation, stool microbes from benzene-exposed mice led to the development of intestinal ferroptosis in recipient mice. In particular, oral probiotics significantly reversed elevated Bacteroidaceae and intestinal ferroptosis, ultimately improving benzene-induced hematopoietic damage. We further used the benzene metabolite 1,4-BQ to treat human normal colonic epithelial cells (NCM460) and intervened with the ferroptosis inhibitor liproxstatin-1 (Lip-1) to validate the relationship between intestinal ferroptosis and inflammation. The results showed that 1,4-BQ treatment resulted in increased intracellular ROS levels and abnormal expression of ferroptosis proteins and the inflammatory factors IL-5 and IL-13. However, the use of Lip-1 significantly inhibited oxidative stress, ferroptosis, and inflammation in NCM460 cells. This result suggested that ferroptosis might be involved in benzene-induced hematopoietic toxicity by mediating Th2-type systemic inflammation. Overall, these findings revealed a role for Bacteroidaceae-intestinal ferroptosis-inflammation in benzene-induced hematopoietic toxicity and highlighted that probiotics could be a promising strategy to prevent adverse hematologic outcomes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
34
|
Chen B, Zhao L, Yang R, Xu T. The recent advancements of ferroptosis in the diagnosis, treatment and prognosis of ovarian cancer. Front Genet 2023; 14:1275154. [PMID: 38028615 PMCID: PMC10665572 DOI: 10.3389/fgene.2023.1275154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Ovarian cancer affects the female reproductive system and is the primary cause of cancer related mortality globally. The imprecise and non-specific nature of ovarian cancer symptoms often results in patients being diagnosed at an advanced stage, with metastatic lesions extending beyond the ovary. This presents a significant clinical challenge and imposes a substantial economic burden on both patients and society. Despite advancements in surgery, chemotherapy, and immunotherapy, the prognosis for most patients with ovarian cancer remains unsatisfactory. Therefore, the development of novel treatment strategies is imperative. Ferroptosis, a distinct form of regulated cell death, characterized by iron-dependent lipid peroxidation, differs from autophagy, apoptosis, and necrosis, and may hold promise as a novel cell death. Numerous studies have demonstrated the involvement of ferroptosis in various conventional signaling pathways and biological processes. Recent investigations have revealed the significant contribution of ferroptosis in the initiation, progression, and metastasis of diverse malignant tumors, including ovarian cancer. Moreover, ferroptosis exhibits a synergistic effect with chemotherapy, radiotherapy, and immunotherapy in restraining the proliferation of ovarian cancer cells. The aforementioned implies that ferroptosis holds considerable importance in the management of ovarian cancer and has the potential to serve as a novel therapeutic target. The present review provides a comprehensive overview of the salient features of ferroptosis, encompassing its underlying mechanisms and functional role in ovarian cancer, along with the associated signaling pathways and genes. Furthermore, the review highlights the prospective utility of ferroptosis in the treatment of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Han L, Pei J, Tao H, Guo X, Wei Y, Yang Z, Zhang H. The potential role of ferroptosis in the physiopathology of deep tissue injuries. Int Wound J 2023; 21:e14466. [PMID: 37905685 PMCID: PMC10828531 DOI: 10.1111/iwj.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
Deep tissue injuries (DTIs) are a serious type of pressure injuries that mainly occur at the bony prominences and can develop rapidly, making prevention and treatment more difficult. Although consistent research efforts have been made over the years, the cellular and molecular mechanisms contributing to the development of DTIs remain unclear. More recently, ferroptosis, a novel regulatory cell death (RCD) type, has been identified that is morphological, biochemical and genetic criteria distinct from apoptosis, autophagy and other known cell death pathways. Ferroptosis is characterized by iron overload, iron-dependent lipid peroxidation and shrunken mitochondria. We also note that some of the pathological features of DTI are known to be key features of the ferroptosis pathway. Numerous studies have confirmed that ferroptosis may be involved in chronic wounds, including DTIs. Here, we elaborate on the basic pathological features of ferroptosis. We also present the evidence that ferroptosis is involved in the pathology of DTIs and highlight a future perspective on this emerging field, desiring to provide more possibilities for the prevention and treatment of DTIs.
Collapse
Affiliation(s)
- Lin Han
- Department of NursingGansu Provincial HospitalLanzhouChina
- School of NursingLanzhou UniversityLanzhouChina
| | - Juhong Pei
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Hongxia Tao
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | | | - Yuting Wei
- School of NursingLanzhou UniversityLanzhouChina
| | - Zhuang Yang
- School of NursingLanzhou UniversityLanzhouChina
| | - Hongyan Zhang
- Department of NursingGansu Provincial HospitalLanzhouChina
| |
Collapse
|
36
|
Wang J, Wang Z, Li Y, Hou Y, Yin C, Yang E, Liao Z, Fan C, Martin LL, Sun D. Blood brain barrier-targeted delivery of double selenium nanospheres ameliorates neural ferroptosis in Alzheimer's disease. Biomaterials 2023; 302:122359. [PMID: 39491374 DOI: 10.1016/j.biomaterials.2023.122359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) as a common neurodegenerative disease showed progressive cognitive dysfunction and behavioral impairment. Currently, the deposition of amyloid β-protein (Aβ) remains the main pathomechanism. However, preventing neuronal death induced by Aβ remains elusive, and no effective strategy in clinic was found to combat AD. Herein, a multifunctional double selenium nanosphere (CLNDSe) was designed and prepared, and A2AAR agonist (CGS) modification endowed CLNDSe NPs with A2AAR-targeted blood brain barrier (BBB) delivery in vitro and in vivo. CLNDSe NPs after modification of LPFFD short peptide effectively inhibited Aβ42 aggregation and attenuated Aβ42-induced neural toxicity by inhibiting oxidative damage and mitochondrial dysfunctions. Nerve growth factor (NGF) linked to large Se sphere significantly attenuated Tau phosphorylation and gliocytes activation in APP/PS1 mice. CLNDSe NPs administration in vivo also effectively restored GPX1/4 antioxidant ability, alleviated neural loss and neurofibrillary tangles, prevented neural ferroptosis, and eventually ameliorated cognitive deficits of APP/PS1 mice. Importantly, CLNDSe NPs showed good safety and biocompatibility. Taken together, our finding validated the rational design that BBB-targeted delivery of double selenium nanosphere may be a novel strategy to ameliorate Alzheimer's disease by inhibiting neural ferroptosis.
Collapse
Affiliation(s)
- Jingyuan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yajun Hou
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ziyu Liao
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Cundong Fan
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
37
|
Wang S, Guo Q, Xu R, Lin P, Deng G, Xia X. Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma. J Nanobiotechnology 2023; 21:383. [PMID: 37858186 PMCID: PMC10585872 DOI: 10.1186/s12951-023-02146-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Immunotherapy has good potential to eradicate tumors in the long term. However, due to the low immunogenicity of tumor cells, current cancer immunotherapies are not effective. To address this limitation, we constructed a BSA-FA functionalized iron-containing metal-organic framework (TPL@TFBF) that triggers a potent systemic anti-tumor immune response by inducing ferroptosis and pyroptosis in tumor cells and releasing large quantities of damage-associated molecular patterns (DAMPs) to induce immunogenicity, and showing excellent efficacy against melanoma lung metastases in vivo. This nanoplatform forms a metal-organic framework through the coordination between tannic acid (TA) and Fe3+ and is then loaded with triptolide (TPL), which is coated with FA-modified BSA. The nanoparticles target melanoma cells by FA modification, releasing TPL, Fe3+ and TA. Fe3+ is reduced to Fe2+ by TA, triggering the Fenton reaction and resulting in ROS production. Moreover, TPL increases the production of intracellular ROS by inhibiting the expression of nuclear factor erythroid-2 related factor (Nrf2). Such simultaneous amplification of intracellular ROS induces the cells to undergo ferroptosis and pyroptosis, releasing large amounts of DAMPs, which stimulate antigen presentation of dendritic cells (DCs) and the proliferation of cytotoxic T lymphocytes (CD4+/CD8 + T cells) to inhibit tumor and lung metastasis. In addition, combining nanoparticle treatment with immune checkpoint blockade (ICB) further inhibits melanoma growth. This work provides a new strategy for tumor immunotherapy based on various combinations of cell death mechanisms.
Collapse
Affiliation(s)
- Shengmei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Peng Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Guoyan Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
38
|
Li F, Li PF, Hao XD. Circular RNAs in ferroptosis: regulation mechanism and potential clinical application in disease. Front Pharmacol 2023; 14:1173040. [PMID: 37332354 PMCID: PMC10272566 DOI: 10.3389/fphar.2023.1173040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Ferroptosis, an iron-dependent non-apoptotic form of cell death, is reportedly involved in the pathogenesis of various diseases, particularly tumors, organ injury, and degenerative pathologies. Several signaling molecules and pathways have been found to be involved in the regulation of ferroptosis, including polyunsaturated fatty acid peroxidation, glutathione/glutathione peroxidase 4, the cysteine/glutamate antiporter system Xc-, ferroptosis suppressor protein 1/ubiquinone, and iron metabolism. An increasing amount of evidence suggests that circular RNAs (circRNAs), which have a stable circular structure, play important regulatory roles in the ferroptosis pathways that contribute to disease progression. Hence, ferroptosis-inhibiting and ferroptosis-stimulating circRNAs have potential as novel diagnostic markers or therapeutic targets for cancers, infarctions, organ injuries, and diabetes complications linked to ferroptosis. In this review, we summarize the roles that circRNAs play in the molecular mechanisms and regulatory networks of ferroptosis and their potential clinical applications in ferroptosis-related diseases. This review furthers our understanding of the roles of ferroptosis-related circRNAs and provides new perspectives on ferroptosis regulation and new directions for the diagnosis, treatment, and prognosis of ferroptosis-related diseases.
Collapse
|
39
|
Liang Z, Wang Y, Wang J, Xu T, Ma S, Liu Q, Zhao L, Wei Y, Lian X, Huang D. Multifunctional Fe 3O 4-PEI@HA nanoparticles in the ferroptosis treatment of hepatocellular carcinoma through modulating reactive oxygen species. Colloids Surf B Biointerfaces 2023; 227:113358. [PMID: 37207386 DOI: 10.1016/j.colsurfb.2023.113358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Ferroptosis is a novel form of regulated cell death induced by iron-dependent lipid peroxidation imbalance. It has emerged as a promising antitumor therapeutic strategy in recent years. In this work, we successfully synthesized a complex magnetic nanocube Fe3O4 modified with PEI and HA by the thermal decomposition method. While loading a ferroptosis inducer RSL3 inhibited cancer cells through the ferroptosis signal transduction pathway. The drug delivery system could actively target tumor cells through an external magnetic field and HA-CD44 binding. Zeta potential analysis showed that Fe3O4-PEI@HA-RSL3 nanoparticles were more stable and uniformly dispersed in tumor acidic environment. Moreover, cellular experiments demonstrated that Fe3O4-PEI@HA-RSL3 nanoparticles could significantly inhibit the proliferation of hepatoma cells without a cytotoxic effect on normal hepatic cells. In addition, Fe3O4-PEI@HA-RSL3 played a vital role in ferroptosis by accelerating ROS production. The expression of ferroptosis-related genes Lactoferrin, FACL 4, GPX 4 and Ferritin was significantly suppressed with increasing treatment of Fe3O4-PEI@HA-RSL3 nanocubes. Therefore, this ferroptosis nanomaterial has great potential in Hepatocellular carcinoma (HCC) therapy.
Collapse
Affiliation(s)
- Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Tao Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shilong Ma
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Qi Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| |
Collapse
|
40
|
Meng Q, Ding B, Ma P, Lin J. Interrelation between Programmed Cell Death and Immunogenic Cell Death: Take Antitumor Nanodrug as an Example. SMALL METHODS 2023; 7:e2201406. [PMID: 36707416 DOI: 10.1002/smtd.202201406] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Indexed: 05/17/2023]
Abstract
Programmed cell death (PCD, mainly including apoptosis, necrosis, ferroptosis, pyroptosis, and autophagy) and immunogenic cell death (ICD), as important cell death mechanisms, are widely reported in cancer therapy, and understanding the relationship between the two is significant for clinical tumor treatments. Considering that vast nanodrugs are developed to induce tumor PCD and ICD simultaneously, in this review, the interrelationship between PCD and ICD is described using nanomedicines as examples. First, an overview of PCD patterns and focus on the morphological differences and interconnections among them are provided. Then the interrelationship between apoptosis and ICD in terms of endoplasmic reticulum stress is described by introducing various cancer treatments and the recent developments of nanomedicines with inducible immunogenicity. Next, the crosstalk between non-apoptotic (including necrosis, ferroptosis, pyroptosis, and autophagy) signaling pathways and ICD is introduced and their relationship through various nanomedicines as examples is further illustrated. Finally, the relationship between PCD and ICD and its application prospects in the development of new ICD nanomaterials are summarized. This review is believed to deepen the understanding of the relationship between PCD and ICD, extend the biomedical applications of various nanodrugs, and promote the progress of clinical tumor therapy.
Collapse
Affiliation(s)
- Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
41
|
Wang Y, Wang S, Zhang W. HRD1 functions as a tumor suppressor in ovarian cancer by facilitating ubiquitination-dependent SLC7A11 degradation. Cell Cycle 2023; 22:1116-1126. [PMID: 36809917 PMCID: PMC10081055 DOI: 10.1080/15384101.2023.2178102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023] Open
Abstract
The E3 ubiquitin ligase 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) was found to be a tumor suppressor in diverse types of cancers; we aimed to explore its expression pattern and biological function in ovarian cancer (OC). HRD1 expression in OC tumor tissues was detected using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The overexpression plasmid of HRD1 was transfected into OC cells. Cell proliferation, colony formation, and apoptosis were analyzed using bromodeoxy uridineassay, colony formation assay, and flow cytometry, respectively. OC mice models were established to explore the effect of HRD1 on OC in vivo. Ferroptosis was evaluated by malondialdehyde, reactive oxygen species, and intracellular ferrous iron. Expressions offerroptosis-related factors were examined using qRT-PCR and western blot. Erastin and Fer-1 were, respectively, employed to promote or inhibit ferroptosis in OC cells. Online bioinformatics tool and co-immunoprecipitation assay were performed to predict and verify the interactive genes of HRD1 in OC cells, respectively. Gain-of-function studies were carried out to determine the roles of HRD1 in cell proliferation, apoptosis, and ferroptosis in vitro. HRD1 was under-expressed in OC tumor tissues. The overexpression of HRD1 inhibited OC cell proliferation and colony formation in vitro and suppressed OC tumor growth in vivo. The overexpression of HRD1 promoted cell apoptosis and ferroptosis in OC cell lines. HRD1 interacted with the solute carrier family 7 member 11 (SLC7A11) in OC cells, and HRD1 regulated the stability and ubiquitination in OC. SLC7A11 overexpression recovered the effect of HRD1 overexpression in OC cell lines. HRD1 inhibited tumor formation and promoted ferroptosis in OC through enhancing SLC7A11 degradation.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of obstetrics and gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shanfeng Wang
- Department of obstetrics and gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wenjuan Zhang
- Department of obstetrics and gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
42
|
Wang X, Wei Y, Wei F, Kuang H. Regulatory mechanism and research progress of ferroptosis in obstetrical and gynecological diseases. Front Cell Dev Biol 2023; 11:1146971. [PMID: 37065851 PMCID: PMC10098117 DOI: 10.3389/fcell.2023.1146971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Ferroptosis is a novel type of regulated cell death driven by iron-dependent lipid peroxidation, which is distinguished from traditional types of programmed cell death, such as apoptosis, proptosis and necrosis et al. Impaired iron homeostasis, lipid peroxidation and antioxidants depletion are three hallmarks of ferroptosis. Over the past years, emerging studies support the notion that ferroptosis might be involved in the pathology of obstetrical and gynecological diseases, including preeclampsia (PE), endometriosis (EMs) and polycystic ovarian syndrome (PCOS). In the PE condition, the high sensitivity of trophoblasts towards ferroptosis has been found to potentially link to inflammation, suboptimal vascular remodeling and aberrant hemodynamics, which are three prominent pathophysiological features of PE. As for EMs, compromised ferroptosis of endometrial cells was associated with the formation ectopic lesions, whereas in the nearby lesions, the presence of ferroptosis was suggested to promote the progression of EMs, contributing to the relative clinical manifestations. Ferroptosis has been implicated a crucial role in the initiation of ovarian follicular atresia, which might help to manage ovulation in PCOS patients. Taken together, this review explored the basis of ferroptosis mechanisms and comprehensively summarized the latest discovery of roles of ferroptosis on PE, EMs and PCOS, gaining a deeper insight into the pathogenesis of these obstetrical and gynecological diseases and investigation of novel therapeutic interventions.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yanchen Wei
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Fangyi Wei
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
- *Correspondence: Haibin Kuang,
| |
Collapse
|
43
|
Ke D, Zhang Z, Liu J, Chen P, Li J, Sun X, Chu Y, Li L. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1135723. [PMID: 36970345 DOI: 10.3389/fcvm.2023.1135723if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 09/15/2024] Open
Abstract
Diabetes is a common chronic metabolic disease, and its incidence continues to increase year after year. Diabetic patients mainly die from various complications, with the most common being diabetic cardiomyopathy. However, the detection rate of diabetic cardiomyopathy is low in clinical practice, and targeted treatment is lacking. Recently, a large number of studies have confirmed that myocardial cell death in diabetic cardiomyopathy involves pyroptosis, apoptosis, necrosis, ferroptosis, necroptosis, cuproptosis, cellular burial, and other processes. Most importantly, numerous animal studies have shown that the onset and progression of diabetic cardiomyopathy can be mitigated by inhibiting these regulatory cell death processes, such as by utilizing inhibitors, chelators, or genetic manipulation. Therefore, we review the role of ferroptosis, necroptosis, and cuproptosis, three novel forms of cell death in diabetic cardiomyopathy, searching for possible targets, and analyzing the corresponding therapeutic approaches to these targets.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
44
|
Ke D, Zhang Z, Liu J, Chen P, Li J, Sun X, Chu Y, Li L. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1135723. [PMID: 36970345 PMCID: PMC10036800 DOI: 10.3389/fcvm.2023.1135723] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Diabetes is a common chronic metabolic disease, and its incidence continues to increase year after year. Diabetic patients mainly die from various complications, with the most common being diabetic cardiomyopathy. However, the detection rate of diabetic cardiomyopathy is low in clinical practice, and targeted treatment is lacking. Recently, a large number of studies have confirmed that myocardial cell death in diabetic cardiomyopathy involves pyroptosis, apoptosis, necrosis, ferroptosis, necroptosis, cuproptosis, cellular burial, and other processes. Most importantly, numerous animal studies have shown that the onset and progression of diabetic cardiomyopathy can be mitigated by inhibiting these regulatory cell death processes, such as by utilizing inhibitors, chelators, or genetic manipulation. Therefore, we review the role of ferroptosis, necroptosis, and cuproptosis, three novel forms of cell death in diabetic cardiomyopathy, searching for possible targets, and analyzing the corresponding therapeutic approaches to these targets.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- Correspondence: Yanhui Chu Luxin Li
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- Correspondence: Yanhui Chu Luxin Li
| |
Collapse
|
45
|
Bhattacharya S. An empirical review on the resistance mechanisms of epidermal growth factor receptor inhibitors and predictive molecular biomarkers in colorectal cancer. Crit Rev Oncol Hematol 2023; 183:103916. [PMID: 36717006 DOI: 10.1016/j.critrevonc.2023.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Despite advances in cytotoxic treatments, colorectal cancer remains a leading cause of death. Metastatic colorectal cancer (mCRC) patients have a poor prognosis despite improved treatments and more prolonged median survival. Monoclonal antibodies like cetuximab and panitumumab target the epidermal growth factor receptor (EGFR). They play an essential role in the treatment of metastatic colorectal cancer (mCRC) due to their efficacy in multiple phase III clinical trials across multiple treatment lines. It was discovered that anti-EGFR moAbs were only effective for a small number of patients. Mutations in KRAS and NRAS have been identified as biomarkers of drug resistance. New molecular predictors and prognostic markers are used clinically. The K-Ras mutation is the first molecular marker of a lack of response to EGFR-targeted therapy in K-Ras-mutant patients. Validating predictive and prognostic markers will improve cancer treatments. This article examines molecular markers that can predict colorectal cancer prognosis.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
46
|
Du Y, Guo Z. Recent progress in ferroptosis: inducers and inhibitors. Cell Death Dis 2022; 8:501. [PMID: 36581640 PMCID: PMC9800531 DOI: 10.1038/s41420-022-01297-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Ferroptosis is a new iron-dependent form of programmed cell death characterized by iron accumulation and lipid peroxidation. In recent years, ferroptosis has garnered enormous interest in disease treatment research communities in pursuit to reveal the mechanism and key targets of ferroptosis because ferroptosis is closely related to the pathophysiological processes of many diseases. Recent studies have shown some key targets, such as glutathione peroxidase 4 (GPX4) and System Xc-, and several inducers and inhibitors have been developed to regulate these key targets. With the emergence of new ferroptosis targets, studies on inducers and inhibitors have made new developments. The selection and use of inducers and inhibitors are very important for related work. This paper briefly introduces important regulatory targets in the ferroptosis metabolic pathway, lists and categorizes commonly used and recently developed inducers and inhibitors, and discusses their medical application. The paper ends of with potential future research direction for ferroptosis.
Collapse
Affiliation(s)
- Yunxi Du
- grid.20513.350000 0004 1789 9964Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Zhong Guo
- grid.20513.350000 0004 1789 9964Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China ,grid.20513.350000 0004 1789 9964Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
47
|
Zhang M, Lei Q, Huang X, Wang Y. Molecular mechanisms of ferroptosis and the potential therapeutic targets of ferroptosis signaling pathways for glioblastoma. Front Pharmacol 2022; 13:1071897. [PMID: 36506514 PMCID: PMC9729877 DOI: 10.3389/fphar.2022.1071897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Ferroptosis is a newly identified form of cell death that differs from autophagy, apoptosis and necrosis, and its molecular characteristics include iron-dependent lipid reactive oxygen species accumulation, mitochondrial morphology changes, and membrane permeability damage. These characteristics are closely related to various human diseases, especially tumors of the nervous system. Glioblastoma is the most common primary malignant tumor of the adult central nervous system, and the 5-year survival rate is only 4%-5%. This study reviewed the role and mechanism of ferroptosis in glioblastoma and the research status and progress on ferroptosis as a potential therapeutic target. The mechanism of ferroptosis is related to the intracellular iron metabolism level, lipid peroxide content and glutathione peroxidase 4 activity. It is worth exploring how ferroptosis can be applied in disease treatment; however, the relation between ferroptosis and other apoptosis methods is poorly understood and methods of applying ferroptosis to drug-resistant tumors are insufficient. Ferroptosis is a promising therapeutic target for glioblastoma. In-depth studies of its mechanism of action in glioblastoma and applications for clinical treatment are expected to provide insights for glioblastoma patients.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Anesthesiology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|