1
|
Shen Y, Fan N, Ma S, Cheng X, Yang X, Wang G. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm (Beijing) 2025; 6:e70168. [PMID: 40255918 PMCID: PMC12006732 DOI: 10.1002/mco2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Dysbiosis refers to the disruption of the gut microbiota balance and is the pathological basis of various diseases. The main pathogenic mechanisms include impaired intestinal mucosal barrier function, inflammation activation, immune dysregulation, and metabolic abnormalities. These mechanisms involve dysfunctions in the gut-brain axis, gut-liver axis, and others to cause broader effects. Although the association between diseases caused by dysbiosis has been extensively studied, many questions remain regarding the specific pathogenic mechanisms and treatment strategies. This review begins by examining the causes of gut microbiota dysbiosis and summarizes the potential mechanisms of representative diseases caused by microbiota imbalance. It integrates clinical evidence to explore preventive and therapeutic strategies targeting gut microbiota dysregulation, emphasizing the importance of understanding gut microbiota dysbiosis. Finally, we summarized the development of artificial intelligence (AI) in the gut microbiota research and suggested that it will play a critical role in future studies on gut dysbiosis. The research combining multiomics technologies and AI will further uncover the complex mechanisms of gut microbiota dysbiosis. It will drive the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Nairui Fan
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Shu‐xia Ma
- Basic Medical College of Jiamusi UniversityHeilongjiangChina
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- International SchoolGuangzhou Huali College, ZengchengGuangzhouChina
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal MedicineDivision of Histology and EmbryologySchool of MedicineJinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine of the Ministry of EducationJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryGuangdong Second Provincial General HospitalSchool of MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Xu D, Zhao M, Liu G, Zhu T, Cai Y, Murayama R, Yue Y, Hashimoto K. The vagus nerve-dependent lung-brain axis mediates brain demyelination following acute lung injury. Brain Behav Immun Health 2025; 44:100966. [PMID: 40028232 PMCID: PMC11871466 DOI: 10.1016/j.bbih.2025.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Patients with acute lung injury (ALI) often experience psychiatric and neurological symptoms; however, the precise underlying mechanisms remain unclear. Given that white matter loss (demyelination) contributes to these symptoms, we investigated whether lipopolysaccharide (LPS)-induced ALI leads to brain demyelination via a vagus nerve-dependent lung-brain axis. A single intratracheal injection of LPS caused severe lung injury and demyelination in the corpus callosum (CC) of mouse brains. Subdiaphragmatic vagotomy did not affect LPS-induced lung injury or demyelination in the CC. Interestingly, cervical vagotomy significantly attenuated LPS-induced hypo-locomotion, plasma interleukin-6 levels, and demyelination in the CC of ALI mice without influencing lung injury. These findings demonstrate that ALI can induce demyelination in the CC of the mouse brain via a cervical vagus nerve-dependent lung-brain axis, highlighting the critical role of this pathway in the psychiatric and neurological symptoms observed in ALI patients.
Collapse
Affiliation(s)
- Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Mingming Zhao
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266100, PR China
| | - Tingting Zhu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yi Cai
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Rumi Murayama
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| |
Collapse
|
3
|
Murayama R, Liu G, Zhao MM, Xu D, Zhu TT, Cai Y, Yue Y, Nakamura H, Hashimoto K. Microbiome depletion by broad-spectrum antibiotics does not influence demyelination and remyelination in cuprizone-treated mice. Pharmacol Biochem Behav 2025; 247:173946. [PMID: 39672388 DOI: 10.1016/j.pbb.2024.173946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/10/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Demyelination in the central nervous system (CNS) is a feature of various psychiatric and neurological disorders. Emerging evidence suggests that the gut-brain axis may play a crucial role in CNS demyelination. The cuprizone (CPZ) model, which involves the administration of CPZ-containing food pellets, is commonly used to study the effects of different compounds on CNS demyelination and subsequent remyelination. This study aimed to evaluate the impact of microbiome depletion, induced by an antibiotic cocktail (ABX), on demyelination in CPZ-treated mice and the subsequent remyelination following CPZ withdrawal. Our findings indicate that a chronic 4-week oral ABX regimen, administered both during and after a 6-week CPZ exposure, does not affect demyelination or remyelination in the brains of CPZ-treated mice. Specifically, ABX treatment for 2 weeks before and 2 weeks after CPZ exposure, in the final 4 weeks before sacrifice, and for 4 weeks post-CPZ withdrawal, did not significantly alter these processes compared to control mice receiving water instead of ABX. These results indicate that despite effective microbiome depletion, a 4-week oral ABX regimen does not influence demyelination or remyelination in the CPZ model. Thus, it is unlikely that gut microbiota depletion by ABX plays a significant role in these processes. However, further research is needed to fully understand the role of the host microbiome on CPZ-induced demyelination.
Collapse
Affiliation(s)
- Rumi Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Ming-Ming Zhao
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting-Ting Zhu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Cai
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
4
|
Zhang D, Yang G, Hu X, Liu X, Zhang J, Jia D, Zhang A. Antibiotics versus Non-Antibiotic in the treatment of Aspiration Pneumonia: analysis of the MIMIC-IV database. BMC Pulm Med 2024; 24:621. [PMID: 39695560 DOI: 10.1186/s12890-024-03441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Aspiration pneumonia (AP) is a common complication in the intensive care unit (ICU), which is associated with significantly increased morbidity and mortality and has a significant impact on patient prognosis. Antibiotics are commonly used in the clinical treatment of AP. However, the prognostic impact of antibiotics on patients with AP has not been adequately characterized. The purpose of this study is to illustrate the relationship between the use of antibiotics and in-hospital mortality of AP patients, as well as to analyze the effects of different antibiotic treatment regimens on the prognosis of the patients, and to further understand the distribution of pathogens and drug resistance in AP patients, so as to provide guidance information for the rational use of medication for patients in the clinic. METHODS Clinical data of AP patients were extracted from the MIMIC-IV database. Statistical methods included multivariate logistic regression, propensity score matching (PSM), and inverse probability weighting (IPW) based on propensity scores to ensure the robustness of the findings. In addition, the characteristics of the medications used by patients with AP were described using statistical graphs and tables. RESULTS A total of 4132 patients with AP were included. In-hospital mortality was significantly lower in the group using antibiotics compared to the group not using antibiotics (odds ratio [OR] = 0.44, 95% confidence interval [CI] 0.27- 0.71, P = 0.001). Furthermore, in the group using mechanical ventilation (MV), antibiotics use significantly reduced in-hospital mortality (OR = 0.30, 95% CI 0.15-0.57, P < 0.001). Vancomycin and cephalosporins are the most commonly used antibiotics to treat AP. Specifically, vancomycin in combination with piperacillin-tazobactam was used most frequently with 396 cases. The highest survival rate (97.6\%) was observed in patients treated with levofloxacin combined with metronidazole. Additionally, vancomycin combined with piperacillin-tazobactam had many inflammation related features that differed significantly from those in patients who did not receive medication. CONCLUSIONS Antibiotics use is closely associated with lower in-hospital mortality in ICU patients with AP. Moreover, understanding antibiotics use, the composition of pathogenic bacteria, and the rates of drug resistance in patients with AP can aid in disease prevention and prompt infection control.
Collapse
Affiliation(s)
- Di Zhang
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Guan Yang
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China.
- Zhengzhou Key Laboratory of Text Processing and Image Understanding, Zhengzhou, State, 450007, China.
| | - Xingang Hu
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China.
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450000, China.
| | - Xiaoming Liu
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China
- China Language Intelligence Research Center, Beijing, 100000, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450000, China
| | - Dongqing Jia
- Medical Department, Kaifeng University, Kaifeng, 475004, China
| | - Aojun Zhang
- School of Computer Science, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
5
|
Du C, Zhang Y, Zhang H, Zhang H, Liu J, Shen N. Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome. Pathogens 2024; 13:996. [PMID: 39599549 PMCID: PMC11597221 DOI: 10.3390/pathogens13110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The lung microbiome has emerged as a pivotal area of research in human health. Despite the increasing number of publications, there is a lack of research that comprehensively and objectively presents the current status of lung microbiome-related studies. Thus, this study aims to address this gap by examining over two decades of publications through bibliometric analysis. The original bibliographic data of this study were obtained from the Web of Science Core Collection, focusing on publications from 2003 to 2023. The analysis included the data extraction and examination of authors, affiliations, countries, institutions, abstracts, keywords, references, publication dates, journals, citations, H-indexes, and journal impact factors. A total of 845 publications were identified, showing an increasing trend in both publications and citations over the years, particularly in the last decade. The analysis highlighted the most productive authors, institutions, and countries/regions, and identified potential partners for interested researchers. Co-citation analysis revealed that lung microbiome- and infectious/pulmonary disease-related studies are at the forefront of the field. The hotspots and frontiers of the lung microbiome field have progressed from basic composition to exploring specific mechanisms and the clinical value of diseases. In conclusion, this study provides a comprehensive overview of the current research status and trends in the field of the lung microbiome over the past two decades and highlights the areas that need more attention and research efforts. It offers valuable insights for researchers and institutions and identifies key hotspots and frontiers, which can serve as references for related researchers and future research.
Collapse
Affiliation(s)
- Chunjing Du
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing 100191, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Hanwen Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
6
|
Wang R, Ma S, Yang J, Luo K, Qian Q, Pan J, Liang K, Wang Y, Gao Y, Li M. Sodium Hydrosulfide Protects Rats from Hypobaric-Hypoxia-Induced Acute Lung Injury. Int J Mol Sci 2024; 25:10734. [PMID: 39409062 PMCID: PMC11477091 DOI: 10.3390/ijms251910734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Hydrogen sulfide (H2S), as a key gas signaling molecule, plays an important role in regulating various diseases, with appropriate concentrations providing antioxidative, anti-inflammatory, and anti-apoptotic effects. The specific role of H2S in acute hypoxic injury remains to be clarified. This study focuses on the H2S donor sodium hydrosulfide (NaHS) and explores its protective effects and mechanisms against acute hypoxic lung injury. First, various mouse hypoxia models were established to evaluate H2S's protection in hypoxia tolerance. Next, a rat model of acute lung injury (ALI) induced by hypoxia at 6500 m above sea level for 72 h was created to assess H2S's protective effects and mechanisms. Evaluation metrics included blood gas analysis, blood routine indicators, lung water content, and lung tissue pathology. Additionally, LC-MS/MS and bioinformatic analyses were combined in performing quantitative proteomics on lung tissues from the normoxic control group, the hypoxia model group, and the hypoxia model group with NaHS treatment to preliminarily explore the protective mechanisms of H2S. Further, enzyme-linked immunosorbent assays (ELISA) were used to measure oxidative stress markers and inflammatory factors in rat lung tissues. Lastly, Western blot analysis was performed to detect Nrf2, HO-1, P-NF-κB, NF-κB, HIF-1α, Bcl-2, and Bax proteins in lung tissues. Results showed that H2S exhibited significant anti-hypoxic effects in various hypoxia models, effectively modulating blood gas and blood routine indicators in ALI rats, reducing pulmonary edema, improving lung tissue pathology, and alleviating oxidative stress, inflammatory responses, and apoptosis levels.
Collapse
Affiliation(s)
- Renjie Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (S.M.); (J.Y.); (K.L.); (K.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
| | - Shuhe Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (S.M.); (J.Y.); (K.L.); (K.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
| | - Jun Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (S.M.); (J.Y.); (K.L.); (K.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
| | - Kai Luo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (S.M.); (J.Y.); (K.L.); (K.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
| | - Qingyuan Qian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jinchao Pan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100083, China
| | - Keke Liang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (S.M.); (J.Y.); (K.L.); (K.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
| | - Yihao Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
- National Key Laboratory of Kidney Diseases, Beijing 100850, China
| | - Maoxing Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Q.Q.); (J.P.); (Y.W.)
- National Key Laboratory of Kidney Diseases, Beijing 100850, China
| |
Collapse
|
7
|
Zeng J, Jia X. Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine. ENGINEERING 2024; 40:28-50. [DOI: 10.1016/j.eng.2024.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
|
8
|
Qin H, Fu Y, Deng C, Chen Y, Huang K, Ruan Y, Liu K. The role of gut microbiota and the gut-lung axis in sepsis: A case study of a pregnant woman with severe rickettsial pneumonia and septic shock complicated by MODS. Clin Case Rep 2024; 12:e8815. [PMID: 38840756 PMCID: PMC11150134 DOI: 10.1002/ccr3.8815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 06/07/2024] Open
Abstract
Key Clinical Message In this case report, we describe the successful management of severe scrub typhus with pneumonia, sepsis, and multiple organ dysfunction in a pregnant woman. Despite initial challenges, the patient responded favorably to fecal microbiota transplantation and oral fecal microbiota capsule therapy. Abstract Scrub typhus, caused by Orientia tsutsugamushi, can lead to severe multiorgan dysfunction and carries a mortality rate of up to 70% if not treated properly. In this report, we present the case of a 27-year-old pregnant woman at 18 + 6 weeks gestation whose symptoms worsened 15 days after onset and progressed to severe pneumonia with sepsis and multiple organ dysfunction syndrome. After the pathogen was confirmed by next-generation sequencing analysis of bronchoalveolar-lavage fluid and blood samples, the patient's treatment was switched to antiinfective chloramphenicol. The patient also underwent uterine evacuation due to a miscarriage. Extracorporeal membrane oxygenation was discontinued once the pulmonary infection significantly improved. Subsequently, the patient had recurrent diarrhea, abdominal distension, and difficulty eating. The antibiotic regimen was adjusted according to the drug sensitivity, but the diarrhea and abdominal distension still did not improve. Following a comprehensive multidisciplinary risk assessment, we initiated fecal microbiota transplantation and oral fecal microbiota capsule therapy. As a result, the patient's condition was effectively managed, and they were gradually discharged. Fecal microbiota transplantation may be a safe and effective treatment for severe pneumonia and shock in pregnant women. This has significant implications for maternal health. However, further clinical cases are required to observe its long-term effectiveness.
Collapse
Affiliation(s)
- Hongmei Qin
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Yaoqing Fu
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Caixia Deng
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Yanxing Chen
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Keming Huang
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Yiyang Ruan
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Ke Liu
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| |
Collapse
|
9
|
Du Y, Zhang R, Zheng XX, Zhao YL, Chen YL, Ji S, Guo MZ, Tang DQ. Mulberry (Morus alba L.) leaf water extract attenuates type 2 diabetes mellitus by regulating gut microbiota dysbiosis, lipopolysaccharide elevation and endocannabinoid system disorder. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117681. [PMID: 38163557 DOI: 10.1016/j.jep.2023.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry (Morus alba L.) leaf is a well-known herbal medicine and has been used to treat diabetes in China for thousands of years. Our previous studies have proven mulberry leaf water extract (MLWE) could improve type 2 diabetes mellitus (T2D). However, it is still unclear whether MLWE could mitigate T2D by regulating gut microbiota dysbiosis and thereof improve intestinal permeability and metabolic dysfunction through modulation of lipopolysaccharide (LPS) and endocannabinoid system (eCBs). AIM OF STUDY This study aims to explore the potential mechanism of MLWE on the regulation of metabolic function disorder of T2D mice from the aspects of gut microbiota, LPS and eCBs. MATERIALS AND METHODS Gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. LPS, N-arachidonoylethanolamine (AEA) and 2-ararchidonylglycerol (2-AG) contents in blood were determined by kits or liquid phase chromatography coupled with triple quadrupole tandem mass spectrometry, respectively. The receptors, enzymes or tight junction protein related to eCBs or gut barrier were detected by RT-PCR or Western blot, respectively. RESULTS MLWE reduced the serum levels of AEA, 2-AG and LPS, decreased the expressions of N-acylphophatidylethanolamine phospholipase D, diacylglycerol lipase-α and cyclooxygenase 2, and increased the expressions of fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), alpha/beta hydrolases domain 6/12 in the liver and ileum and occludin, monoacylglycerol lipase and cannabinoid receptor 1 in the ileum of T2D mice. Furthermore, MLWE could change the abundances of the genera including Acetatifactor, Anaerovorax, Bilophila, Colidextribacter, Dubosiella, Gastranaerophilales, Lachnospiraceae_NK4A136_group, Oscillibacter and Rikenella related to LPS, AEA and/or 2-AG. Moreover, obvious improvement of MLWE treatment on serum AEA level, ileum occludin expression, and liver FAAH and NAAA expression could be observed in germ-free-mimic T2D mice. CONCLUSION MLWE could ameliorate intestinal permeability, inflammation, and glucose and lipid metabolism imbalance of T2D by regulating gut microbiota, LPS and eCBs.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Medical Affairs, Xuzhou RenCi Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiao-Xiao Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221116, China
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China
| | - Yu-Lang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, 221202, China.
| |
Collapse
|
10
|
Verma A, Bhagchandani T, Rai A, Nikita, Sardarni UK, Bhavesh NS, Gulati S, Malik R, Tandon R. Short-Chain Fatty Acid (SCFA) as a Connecting Link between Microbiota and Gut-Lung Axis-A Potential Therapeutic Intervention to Improve Lung Health. ACS OMEGA 2024; 9:14648-14671. [PMID: 38585101 PMCID: PMC10993281 DOI: 10.1021/acsomega.3c05846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 04/09/2024]
Abstract
The microbiome is an integral part of the human gut, and it plays a crucial role in the development of the immune system and homeostasis. Apart from the gut microbiome, the airway microbial community also forms a distinct and crucial part of the human microbiota. Furthermore, several studies indicate the existence of communication between the gut microbiome and their metabolites with the lung airways, called "gut-lung axis". Perturbations in gut microbiota composition, termed dysbiosis, can have acute and chronic effects on the pathophysiology of lung diseases. Microbes and their metabolites in lung stimulate various innate immune pathways, which modulate the expression of the inflammatory genes in pulmonary leukocytes. For instance, gut microbiota-derived metabolites such as short-chain fatty acids can suppress lung inflammation through the activation of G protein-coupled receptors (free fatty acid receptors) and can also inhibit histone deacetylase, which in turn influences the severity of acute and chronic respiratory diseases. Thus, modulation of the gut microbiome composition through probiotic/prebiotic usage and fecal microbiota transplantation can lead to alterations in lung homeostasis and immunity. The resulting manipulation of immune cells function through microbiota and their key metabolites paves the way for the development of novel therapeutic strategies in improving the lung health of individuals affected with various lung diseases including SARS-CoV-2. This review will shed light upon the mechanistic aspect of immune system programming through gut and lung microbiota and exploration of the relationship between gut-lung microbiome and also highlight the therapeutic potential of gut microbiota-derived metabolites in the management of respiratory diseases.
Collapse
Affiliation(s)
- Anjali Verma
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tannu Bhagchandani
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Rai
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Urvinder Kaur Sardarni
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neel Sarovar Bhavesh
- Transcription
Regulation Group, International Centre for
Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Sameer Gulati
- Department
of Medicine, Lady Hardinge Medical College
(LHMC), New Delhi 110058, India
| | - Rupali Malik
- Department
of Medicine, Vardhman Mahavir Medical College
and Safdarjung Hospital, New Delhi 110029, India
| | - Ravi Tandon
- Laboratory
of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Zhang Y, Ma Y, Sun W, Zhou X, Wang R, Xie P, Dai L, Gao Y, Li J. Exploring gut-lung axis crosstalk in SARS-CoV-2 infection: Insights from a hACE2 mouse model. J Med Virol 2024; 96:e29336. [PMID: 38193530 DOI: 10.1002/jmv.29336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Based on the forefront of clinical research, there is a growing recognition that the gut microbiota, which plays a pivotal role in shaping both the innate and adaptive immune systems, may significantly contribute to the pathogenesis of coronavirus disease 2019 (COVID-19). Although an association between altered gut microbiota and COVID-19 pathogenesis has been established, the causative mechanisms remain incompletely understood. Additionally, the validation of the precise functional alterations within the gut microbiota relevant to COVID-19 pathogenesis has been limited by a scarcity of suitable animal experimental models. In the present investigation, we employed a newly developed humanized ACE2 knock-in (hACE2-KI) mouse model, capable of recapitulating critical aspects of pulmonary and intestinal infection, to explore the modifications in the gut microbiota following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Examination of fecal samples using 16S rRNA gene profiling unveiled a notable reduction in species richness and conspicuous alterations in microbiota composition at 6 days postinfection (dpi). These alterations were primarily characterized by a decline in beneficial bacterial species and an escalation in certain opportunistic pathogens. Moreover, our analysis entailed a correlation study between the gut microbiota and plasma cytokine concentrations, revealing the potential involvement of the Lachnospiraceae_NK4A136_group and unclassified_f_Lachnospiraceae genera in attenuating hyperinflammatory responses triggered by the infection. Furthermore, integration of gut microbiota data with RNA-seq analysis results suggested that the increased presence of Staphylococcus in fecal samples may signify the potential for bacterial coinfection in lung tissues via gut translocation. In summary, our hACE2-KI mouse model effectively recapitulated the observed alterations in the gut microbiota during SARS-CoV-2 infection. This model presents a valuable tool for elucidating gut microbiota-targeted strategies aimed at mitigating COVID-19.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yifang Ma
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaoyang Zhou
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Ruixuan Wang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Peng Xie
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Lu Dai
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Ren Z, Zheng Z, Feng X. Role of gut microbes in acute lung injury/acute respiratory distress syndrome. Gut Microbes 2024; 16:2440125. [PMID: 39658851 PMCID: PMC11639474 DOI: 10.1080/19490976.2024.2440125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Acute lung injury (ALI) is an acute, diffuse inflammatory lung condition triggered by factors of severe infections, trauma, shock, burns, ischemia-reperfusion, and mechanical ventilation. It is primarily characterized by refractory hypoxemia and respiratory distress. The more severe form, acute respiratory distress syndrome (ARDS), can progress to multi-organ failure and has a high mortality rate. Despite extensive research, the exact pathogenesis of ALI and ARDS remains complex and not fully understood. Recent advancements in studying the gut microecology of patients have revealed the critical role that gut microbes play in ALI/ARDS onset and progression. While the exact mechanisms are still under investigation, evidence increasingly points to the influence of gut microbes and their metabolites on ALI/ARDS. This review aims to summarize the role of gut microbes and their metabolites in ALI/ARDS caused by various triggers. Moreover, it explores potential mechanisms and discusses how gut microbe-targeting interventions might offer new clinical strategies for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Zixuan Ren
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Hashimoto K. Detrimental effects of COVID-19 in the brain and therapeutic options for long COVID: The role of Epstein-Barr virus and the gut-brain axis. Mol Psychiatry 2023; 28:4968-4976. [PMID: 37402856 PMCID: PMC11041741 DOI: 10.1038/s41380-023-02161-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a serious public health burden worldwide. In addition to respiratory, heart, and gastrointestinal symptoms, patients infected with SARS-CoV-2 experience a number of persistent neurological and psychiatric symptoms, known as long COVID or "brain fog". Studies of autopsy samples from patients who died from COVID-19 detected SARS-CoV-2 in the brain. Furthermore, increasing evidence shows that Epstein-Barr virus (EBV) reactivation after SARS-CoV-2 infection might play a role in long COVID symptoms. Moreover, alterations in the microbiome after SARS-CoV-2 infection might contribute to acute and long COVID symptoms. In this article, the author reviews the detrimental effects of COVID-19 on the brain, and the biological mechanisms (e.g., EBV reactivation, and changes in the gut, nasal, oral, or lung microbiomes) underlying long COVID. In addition, the author discusses potential therapeutic approaches based on the gut-brain axis, including plant-based diet, probiotics and prebiotics, fecal microbiota transplantation, and vagus nerve stimulation, and sigma-1 receptor agonist fluvoxamine.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
15
|
Shen J, Wang S, Xia H, Han S, Wang Q, Wu Z, Zhuge A, Li S, Chen H, Lv L, Chen Y, Li L. Akkermansia muciniphila attenuated lipopolysaccharide-induced acute lung injury by modulating the gut microbiota and SCFAs in mice. Food Funct 2023; 14:10401-10417. [PMID: 37955584 DOI: 10.1039/d3fo04051h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Gut microbiota are closely related to lipopolysaccharide (LPS)-induced acute lung injury (ALI). Akkermansia muciniphila (A. muciniphila) maintains the intestinal barrier function and regulates the balance of reduced glutathione/oxidized glutathione. However, it may be useful as a treatment strategy for LPS-induced lung injury. Our study aimed to explore whether A. muciniphila could improve lung injury by affecting the gut microbiota. The administration of A. muciniphila effectively attenuated lung injury tissue damage and significantly decreased the oxidative stress and inflammatory reaction induced by LPS, with lower levels of myeloperoxidase (MDA), enhanced superoxide dismutase (SOD) activity, decreased pro-inflammatory cytokine levels, and reduced macrophage and neutrophil infiltration. Moreover, A. muciniphila maintained the intestinal barrier function, reshaped the disordered microbial community, and promoted the secretion of short-chain fatty acids (SCFAs). A. muciniphila significantly downregulated the expression of TLR2, MyD88 and NF-kappa B (P < 0.05). Butyrate supplementation demonstrated a significant improvement in the inflammatory response (P < 0.05) and mitigation of histopathological damage in mice with ALI, thereby restoring the intestinal butyric acid concentration. In conclusion, our findings indicate that A. muciniphila inhibits the accumulation of inflammatory cytokines and attenuates the activation of the TLR2/Myd88/NF-κB pathway due to exerting anti-inflammatory effects through butyrate. This study provides an experimental foundation for the potential application of A. muciniphila and butyrate in the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shuting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
16
|
Li T, Wan M, Qing C, Guan X, Pi J, Lv H, Li W. Lung protection of Chimonanthus nitens Oliv. essential oil driven by the control of intestinal disorders and dysbiosis through gut-lung crosstalk. Life Sci 2023; 333:122156. [PMID: 37805165 DOI: 10.1016/j.lfs.2023.122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
This work aimed to investigate whether Chimonanthus nitens Oliv. essential oil (CEO)-mediated lung protection was implicated in gut-lung crosstalk. Results showed that CEO attenuated lung and intestinal impairment by improving histopathological changes and inhibiting TLR4/NF-κB signaling pathway in LPS-stimulated rats, suggesting that there might be a mechanism for its lung protection involved in gut-lung interaction through manipulating the overlap in pathological changes via the similar inflammatory response. Furthermore, CEO-triggered intestinal protection was in parallel with the mitigation of ROS production, apoptosis, Ca2+ transport and mitochondrial membrane potential loss in vivo, and its intestinal protection was confirmed in vitro through IEC-6 cells. Importantly, a combination with CEO and LPS significantly remodeled gut microbiota composition compared with LPS alone in rats, while no significant impact on lung microbiota. Therefore, CEO-exerted lung protection was linked to gut and lung interactions involvement with the control of intestinal disorders and dysbiosis.
Collapse
Affiliation(s)
- Teng Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Min Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Cheng Qing
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiuping Guan
- Qianhu College, Nanchang University, Nanchang 330031, China
| | - Jinchan Pi
- College of Future Technology, Nanchang University, Nanchang 330031, China
| | - Hao Lv
- College of Optometry, Nanchang University, Nanchang 330031, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
17
|
Lv L, Cui EH, Wang B, Li LQ, Hua F, Lu HD, Chen N, Chen WY. Multiomics reveal human umbilical cord mesenchymal stem cells improving acute lung injury via the lung-gut axis. World J Stem Cells 2023; 15:908-930. [PMID: 37900940 PMCID: PMC10600741 DOI: 10.4252/wjsc.v15.i9.908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) and its final severe stage, acute respiratory distress syndrome, are associated with high morbidity and mortality rates in patients due to the lack of effective specific treatments. Gut microbiota homeostasis, including that in ALI, is important for human health. Evidence suggests that the gut microbiota improves lung injury through the lung-gut axis. Human umbilical cord mesenchymal cells (HUC-MSCs) have attractive prospects for ALI treatment. This study hypothesized that HUC-MSCs improve ALI via the lung-gut microflora. AIM To explore the effects of HUC-MSCs on lipopolysaccharide (LPS)-induced ALI in mice and the involvement of the lung-gut axis in this process. METHODS C57BL/6 mice were randomly divided into four groups (18 rats per group): Sham, sham + HUC-MSCs, LPS, and LPS + HUC-MSCs. ALI was induced in mice by intraperitoneal injections of LPS (10 mg/kg). After 6 h, mice were intervened with 0.5 mL phosphate buffered saline (PBS) containing 1 × 106 HUC-MSCs by intraperitoneal injections. For the negative control, 100 mL 0.9% NaCl and 0.5 mL PBS were used. Bronchoalveolar lavage fluid (BALF) was obtained from anesthetized mice, and their blood, lungs, ileum, and feces were obtained by an aseptic technique following CO2 euthanasia. Wright's staining, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, Evans blue dye leakage assay, immunohistochemistry, fluorescence in situ hybridization, western blot, 16S rDNA sequencing, and non-targeted metabolomics were used to observe the effect of HUC-MSCs on ALI mice, and the involvement of the lung-gut axis in this process was explored. One-way analysis of variance with post-hoc Tukey's test, independent-sample Student's t-test, Wilcoxon rank-sum test, and Pearson correlation analysis were used for statistical analyses. RESULTS HUC-MSCs were observed to improve pulmonary edema and lung and ileal injury, and decrease mononuclear cell and neutrophil counts, protein concentrations in BALF and inflammatory cytokine levels in the serum, lung, and ileum of ALI mice. Especially, HUC-MSCs decreased Evans blue concentration and Toll-like receptor 4, myeloid differentiation factor 88, p-nuclear factor kappa-B (NF-κB)/NF-κB, and p-inhibitor α of NF-κB (p-IκBα)/IκBα expression levels in the lung, and raised the pulmonary vascular endothelial-cadherin, zonula occludens-1 (ZO-1), and occludin levels and ileal ZO-1, claudin-1, and occludin expression levels. HUC-MSCs improved gut and BALF microbial homeostases. The number of pathogenic bacteria decreased in the BALF of ALI mice treated with HUC-MSCs. Concurrently, the abundances of Oscillospira and Coprococcus in the feces of HUS-MSC-treated ALI mice were significantly increased. In addition, Lactobacillus, Bacteroides, and unidentified_Rikenellaceae genera appeared in both feces and BALF. Moreover, this study performed metabolomic analysis on the lung tissue and identified five upregulated metabolites and 11 downregulated metabolites in the LPS + MSC group compared to the LPS group, which were related to the purine metabolism and the taste transduction signaling pathways. Therefore, an intrinsic link between lung metabolite levels and BALF flora homeostasis was established. CONCLUSION This study suggests that HUM-MSCs attenuate ALI by redefining the gut and lung microbiota.
Collapse
Affiliation(s)
- Lu Lv
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, Zhejiang Province, China
| | - En-Hai Cui
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, Zhejiang Province, China.
| | - Bin Wang
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, Zhejiang Province, China
| | - Li-Qin Li
- Traditional Chinese Medicine Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Huzhou 313000, Zhejiang Province, China
| | - Feng Hua
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, Zhejiang Province, China
| | - Hua-Dong Lu
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, Zhejiang Province, China
| | - Na Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, Zhejiang Province, China
| | - Wen-Yan Chen
- Department of Respiratory and Critical Care Medicine, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
18
|
Hashimoto K. Emerging role of the host microbiome in neuropsychiatric disorders: overview and future directions. Mol Psychiatry 2023; 28:3625-3637. [PMID: 37845499 PMCID: PMC10730413 DOI: 10.1038/s41380-023-02287-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
The human body harbors a diverse ecosystem of microorganisms, including bacteria, viruses, and fungi, collectively known as the microbiota. Current research is increasingly focusing on the potential association between the microbiota and various neuropsychiatric disorders. The microbiota resides in various parts of the body, such as the oral cavity, nasal passages, lungs, gut, skin, bladder, and vagina. The gut microbiota in the gastrointestinal tract has received particular attention due to its high abundance and its potential role in psychiatric and neurodegenerative disorders. However, the microbiota presents in other body tissues, though less abundant, also plays crucial role in immune system and human homeostasis, thus influencing the development and progression of neuropsychiatric disorders. For example, oral microbiota imbalance and associated periodontitis might increase the risk for neuropsychiatric disorders. Additionally, studies using the postmortem brain samples have detected the widespread presence of oral bacteria in the brains of patients with Alzheimer's disease. This article provides an overview of the emerging role of the host microbiota in neuropsychiatric disorders and discusses future directions, such as underlying biological mechanisms, reliable biomarkers associated with the host microbiota, and microbiota-targeted interventions, for research in this field.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
19
|
Wu X, Xuan W, Yang X, Liu W, Zhang H, Jiang G, Cao B, Jiang Y. Ficolin A knockout alleviates sepsis-induced severe lung injury in mice by restoring gut Akkermansia to inhibit S100A4/STAT3 pathway. Int Immunopharmacol 2023; 121:110548. [PMID: 37356123 DOI: 10.1016/j.intimp.2023.110548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease with high morbidity and mortality. Our previous results demonstrated that Ficolin A (FcnA) protected against lipopolysaccharide (LPS)-induced mild ALI via activating complement, however the mechanism of severe lung damage caused by sepsis remains unclear. This study aimed to investigate whether FcnA modulated gut microbiota to affect the progression of sepsis-induced severe ALI. Fcna-/- and Fcnb-/- C57BL/6 mice were applied to establish the ALI model by injection of LPS intraperitoneally. Mice were treated with antibiotics, fecal microbiota transplantation (FMT), and intratracheal administration of recombinant protein S100A4. Changes in body weight of mice were recorded, and lung injury were assessed. Then lung tissue wet/dry weight was calculated. We found knockout of FcnA, but not FcnB, alleviated sepsis-induced severe ALI evidenced by increased body weight change, decreased wet/dry weight of lung tissue, reduced inflammatory infiltration, decreased lung damage score, decreased Muc-2, TNF-α, IL-1β, IL-6, and Cr levels, and increased sIgA levels. Furthermore, knockout of FcnA restored gut microbiota homeostasis in mice. Correlation analysis showed that Akkermansia was significantly negatively associated with TNF-α, IL-1β, and IL-6 levels in serum and bronchoalveolar lavage fluid (BALF). Moreover, knockout of FcnA regulated gut microbiota to protect ALI through S100A4. Finally, we found knockout of FcnA alleviated ALI by inhibiting S100A4 via gut Akkermansia in mice, which may provide further insights and new targets into treating sepsis-induced severe lung injury.
Collapse
Affiliation(s)
- Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Weixia Xuan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Drugs of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Wei Liu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Gang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.
| |
Collapse
|
20
|
Wang J, Dong P, Zheng S, Mai Y, Ding J, Pan P, Tang L, Wan Y, Liang H. Advances in gut microbiome in metabonomics perspective: based on bibliometrics methods and visualization analysis. Front Cell Infect Microbiol 2023; 13:1196967. [PMID: 37325519 PMCID: PMC10266355 DOI: 10.3389/fcimb.2023.1196967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background and aims Gastrointestinal microbial metabolomics is closely related to the state of the organism and has significant interaction with the pathogenesis of many diseases. Based on the publications in Web of Science Core Collection(WoSCC) from 2004 to 2022, this study conducted a bibliometric analysis of this field, aiming to understand its development trend and frontier, and provide basic information and potential points for in-depth exploration of this field. Methods All articles on gastrointestinal flora and metabolism published from 2004 to 2022 were collected and identified in WoCSS. CiteSpace v.6.1 and VOSviewer v.1.6.15.0 were used to calculate bibliometric indicators, including number of publications and citations, study categories, countries/institutions, authors/co-cited authors, journals/co-cited journals, co-cited references, and keywords. A map was drawn to visualize the data based on the analysis results for a more intuitive view. Results There were 3811 articles in WoSCC that met our criteria. Analysis results show that the number of publications and citations in this field are increasing year by year. China is the country with the highest number of publications and USA owns the highest total link strength and citations. Chinese Acad Sci rank first for the number of institutional publications and total link strength. Journal of Proteome Research has the most publications. Nicholson, Jeremy K. is one of the most important scholars in this field. The most cited reference is "Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease". Burst detection indicates that Urine, spectroscopy, metabonomic and gut microflora are long-standing hot topics in this field, while autism spectrum disorder and omics are likely to be at the forefront of research. The study of related metabolic small molecules and the application of gastrointestinal microbiome metabolomics in various diseases are currently emerging research directions and frontier in this field. Conclusion This study is the first to make a bibliometric analysis of the studies related to gastrointestinal microbial metabolomics and reveal the development trends and current research hotspots in this field. This can contribute to the development of the field by providing relevant scholars with valuable and effective information about the current state of the field.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzen, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yiyin Mai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Liugang Tang
- Tendon and Injury Department, Sichuan Provincial Orthopedics Hospital, Chengdu, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| | - Hui Liang
- Department of Urology, The People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzen, China
| |
Collapse
|
21
|
D'Alessandro VF, D'Alessandro-Gabazza CN, Yasuma T, Toda M, Takeshita A, Tomaru A, Tharavecharak S, Lasisi IO, Hess RY, Nishihama K, Fujimoto H, Kobayashi T, Cann I, Gabazza EC. Inhibition of a Microbiota-derived Peptide Ameliorates Established Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00113-X. [PMID: 36965776 PMCID: PMC10035802 DOI: 10.1016/j.ajpath.2023.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Acute lung injury is a clinical syndrome characterized by a diffuse lung inflammation that commonly evolves into acute respiratory distress syndrome and respiratory failure. The lung microbiota is involved in the pathogenesis of acute lung injury. Corisin, a proapoptotic peptide derived from the lung microbiota, plays a role in acute lung injury and acute exacerbation of pulmonary fibrosis. Preventive therapeutic intervention with a monoclonal anticorisin antibody inhibits acute lung injury in mice. However, whether inhibition of corisin with the antibody ameliorates established acute lung injury is unknown. Here, the therapeutic effectiveness of the anticorisin antibody in already established acute lung injury in mice was assessed. Lipopolysaccharide was used to induce acute lung injury in mice. After causing acute lung injury, the mice were treated with a neutralizing anticorisin antibody. Mice treated with the antibody showed significant improvement in lung radiological and histopathological findings, decreased lung infiltration of inflammatory cells, reduced markers of lung tissue damage, and inflammatory cytokines in bronchoalveolar lavage fluid compared to untreated mice. In addition, the mice treated with anticorisin antibody showed significantly increased expression of antiapoptotic proteins with decreased caspase-3 activation in the lungs compared to control mice treated with an irrelevant antibody. In conclusion, these observations suggest that the inhibition of corisin is a novel and promising approach for treating established acute lung injury.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaiah O Lasisi
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca Y Hess
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaac Cann
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Science, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Center for East Asian & Pacific Studies, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
22
|
Impact of broad-spectrum antibiotics on the gut-microbiota-spleen-brain axis. Brain Behav Immun Health 2022; 27:100573. [PMID: 36583066 PMCID: PMC9793168 DOI: 10.1016/j.bbih.2022.100573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The spleen is a key immune-related organ that plays a role in communication between the brain and the immune system through the brain-spleen axis and brain-gut-microbiota axis. However, how the gut microbiota affects spleen and brain function remains unclear. Here, we investigated whether microbiome depletion induced by administration of an antibiotic cocktail (ABX) affects spleen and brain function. Treatment with ABX for 14 days resulted in a significant decrease in spleen weight and significant alterations in splenic functions, including the percentage of neutrophils, NK cells, macrophages, and CD8+ T cells. Furthermore, ABX treatment resulted in the depletion of a large portion of the gut microbiota. Untargeted metabolomics analysis showed that ABX treatment caused alterations in the levels of certain compounds in the plasma, spleen, and brain. Moreover, ABX treatment decreased the expression of microglia marker Iba1 in the cerebral cortex. Interestingly, correlations were found between the abundance of different microbiome components and metabolites in various tissues, as well as splenic cell populations and spleen weight. These findings suggest that ABX-induced microbiome depletion and altered metabolite levels may affect spleen and brain function through the gut-microbiota-spleen-brain axis.
Collapse
|