1
|
Song L, Yan H, Xu Q, Zhou C, Liang J, Lin S, Zhang R, Yu J, Xia Y, Yang N, Zeng L, Zhang Y. Analysis of Baseline Molecular Factors Associated With the Risk of Central Nervous System Progression Among Alectinib-Treated Patients With ALK-Positive NSCLC. JTO Clin Res Rep 2024; 5:100729. [PMID: 39502496 PMCID: PMC11532761 DOI: 10.1016/j.jtocrr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Despite receiving alectinib therapy, patients with ALK-positive NSCLC remain at risk of central nervous system (CNS) progression. Our retrospective study aimed to identify baseline clinical and molecular factors associated with the risk of CNS progression in this patient subset. Methods We analyzed the clinical, molecular, and imaging data of 318 patients with ALK-positive advanced NSCLC who received alectinib as first-line (1L-alectinib) or second-line (2L-alectinib) therapy at baseline (1L, n = 183; 2L, n = 135) and at disease progression (1L, n = 80; 2L, n = 76). Results The incidence rates of CNS progression were 23.7% after 1L-alectinib treatment and 31.6% after 2L-alectinib treatment. Compared with patients who received 1L-alectinib, CNS progression was similar in patients who received 2L-alectinib (p > 0.05). Oligoprogression was detected in 55.0% (44 of 80) of patients who progressed after first-line alectinib, with the remaining 45.0% (36 of 80) having nonoligoprogression. Univariate and multivariate analyses and stepwise regression analyses consistently identified a higher likelihood of CNS progression among (1) patients who received 2L-alectinib than 1L-alectinib, (2) patients with non-3a/b variant ALK fusion than those with echinoderm microtubule-associated protein-like 4-ALK variant 3a/b, and (3) patients with programmed death ligand 1 (PD-L1) tumor proportion score (TPS) of 50% or higher than PD-L1 TPS of less than 50%. Conclusions Our study provided real-world evidence that patients who harbored PD-L1 TPS of 50% or higher were more likely to experience CNS progression during alectinib therapy. The association between CNS progression and breakpoint variants warrants further investigation. Our findings suggest that close monitoring and prompt intervention are crucial in prolonging the quality of life of this patient subset.
Collapse
Affiliation(s)
- Lianxi Song
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
- Department of Medical Oncology, Yiyang Center Hospital, Yiyang, People's Republic of China
| | - Huan Yan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, People's Republic of China
| | - Chunhua Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Juan Liang
- Department of Medical Oncology, Yiyang Center Hospital, Yiyang, People's Republic of China
| | - Shaoding Lin
- Department of Medical Oncology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Juan Yu
- Department of Medical Oncology, Zhangjiajie People’s Hospital, Zhangjiajie, Hunan, People's Republic of China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
- Faculty of Furong Laboratory, Changsha, People's Republic of China
| |
Collapse
|
2
|
Acharya B, Saha D, Armstrong D, Jabali B, Hanafi M, Herrera-Rueda A, Lakkaniga NR, Frett B. Kinase inhibitor macrocycles: a perspective on limiting conformational flexibility when targeting the kinome with small molecules. RSC Med Chem 2024; 15:399-415. [PMID: 38389874 PMCID: PMC10880908 DOI: 10.1039/d3md00457k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/10/2023] [Indexed: 02/24/2024] Open
Abstract
Methods utilized for drug discovery and development within the kinome have rapidly evolved since the approval of imatinib, the first small molecule kinase inhibitor. Macrocycles have received increasing interest as a technique to improve kinase inhibitor drug properties evident by the FDA approvals of lorlatinib, pacritinib, and repotrectinib. Compared to their acyclic counterparts, macrocycles can possess improved pharmacodynamic and pharmacokinetic properties. This review highlights clinical success stories when implementing macrocycles in kinase-based drug discovery and showcases that macrocyclization is a clinically validated drug discovery strategy when targeting the kinome.
Collapse
Affiliation(s)
- Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
- Conrad Prebys Centre for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute San Diego CA USA
| | - Daniel Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| | - Baha'a Jabali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| | - Maha Hanafi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University Cairo 11526 Egypt
| | - Alan Herrera-Rueda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR USA
| |
Collapse
|
3
|
Nardone V, Romeo C, D'Ippolito E, Pastina P, D'Apolito M, Pirtoli L, Caraglia M, Mutti L, Bianco G, Falzea AC, Giannicola R, Giordano A, Tagliaferri P, Vinciguerra C, Desideri I, Loi M, Reginelli A, Cappabianca S, Tassone P, Correale P. The role of brain radiotherapy for EGFR- and ALK-positive non-small-cell lung cancer with brain metastases: a review. LA RADIOLOGIA MEDICA 2023; 128:316-329. [PMID: 36786970 PMCID: PMC10020247 DOI: 10.1007/s11547-023-01602-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Non-small cell lung cancer (NSCLC) is frequently complicated by central nervous system (CNS) metastases affecting patients' life expectancy and quality. At the present clinical trials including neurosurgery, radiotherapy (RT) and systemic treatments alone or in combination have provided controversial results. CNS involvement is even more frequent in NSCLC patients with EGFR activating mutations or ALK rearrangement suggesting a role of target therapy in the upfront treatment in place of loco-regionals treatments (i.e. RT and/or surgery). So far clinical research has not explored the potential role of accurate brain imaging (i.e. MRI instead of the routine total-body contrast CT and/or PET/CT staging) to identify patients that could benefit of local therapies. Moreover, for patients who require concomitant RT there are no clear guidelines on the timing of intervention with respect to innovative precision medicine approaches with Tyrosine Kinase Inhibitors, ALK-inhibitors and/or immuno-oncological therapies. On this basis the present review describes the therapeutic strategies integrating medical and radiation oncology in patients with metastatic NSCLC (mNSCLC) adenocarcinoma with CNS involvement and EGFR activating mutations or ALK rearrangement.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Caterina Romeo
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Emma D'Ippolito
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | | | - Maria D'Apolito
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Giovanna Bianco
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Antonella Consuelo Falzea
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | | | - Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Mauro Loi
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100, Catanzaro, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, "Bianchi Melacrino Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
4
|
Cicin I, Martin C, Haddad CK, Kim SW, Smolin A, Abdillah A, Yang X. ALK TKI therapy in patients with ALK-positive non-small cell lung cancer and brain metastases: A review of the literature and local experiences. Crit Rev Oncol Hematol 2022; 180:103847. [DOI: 10.1016/j.critrevonc.2022.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
|
5
|
Jiang Y, Wang Y, Fu S, Chen T, Zhou Y, Zhang X, Chen C, He LN, Du W, Li H, Lin Z, Zhao Y, Yang Y, Zhao H, Fang W, Huang Y, Hong S, Zhang L. A CT-based radiomics model to predict subsequent brain metastasis in patients with ALK-rearranged non-small cell lung cancer undergoing crizotinib treatment. Thorac Cancer 2022; 13:1558-1569. [PMID: 35437945 PMCID: PMC9161316 DOI: 10.1111/1759-7714.14386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, therefore, allowing for selection of enriched patient populations for prevention therapies. Methods A total of 75 eligible patients were enrolled from Sun Yat‐sen University Cancer Center between June 2014 and September 2019. The primary endpoint was brain metastasis‐free survival (BMFS), estimated from the initiation of crizotinib to the date of the occurrence of BM. Patients were randomly divided into two cohorts for model training (n = 51) and validation (n = 24), respectively. A radiomics signature was constructed based on features extracted from chest CT before crizotinib treatment. Clinical model was developed using the Cox proportional hazards model. Log‐rank test was performed to describe the difference of BMFS risk. Results Patients with low radiomics score had significantly longer BMFS than those with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048). The nomogram combining smoking history and the radiomics signature showed good performance for the estimation of BMFS, both in the training (concordance index [C‐index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort (C‐index, 0.724; 95% CI, 0.601–0.847). Conclusion We have developed a CT‐based radiomics model to predict subsequent BM in patients with non‐brain metastatic NSCLC undergoing crizotinib treatment. Selection of an enriched patient population at high BM risk will facilitate the design of clinical trials or strategies to prevent BM.
Collapse
Affiliation(s)
- Yongluo Jiang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixing Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha Fu
- Cellular & Molecular Diagnostics Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixin Zhou
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuanye Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chen Chen
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Na He
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Du
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haifeng Li
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zuan Lin
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaodong Hong
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Ma HC, Liu YH, Ding KL, Liu YF, Zhao WJ, Zhu YJ, Chang XS, Chen YD, Xiao ZZ, Yu YY, Zhou R, Zhang HB. Comparative efficacy and safety of first-line treatments for advanced non-small cell lung cancer with ALK-rearranged: a meta-analysis of clinical trials. BMC Cancer 2021; 21:1278. [PMID: 34836510 PMCID: PMC8620528 DOI: 10.1186/s12885-021-08977-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022] Open
Abstract
Background Whereas there are many pharmacological interventions prescribed for patients with advanced anaplastic lymphoma kinase (ALK)- rearranged non-small cell lung cancer (NSCLC), comparative data between novel generation ALK-tyrosine kinase inhibitors (TKIs) remain scant. Here, we indirectly compared the efficacy and safety of first-line systemic therapeutic options used for the treatment of ALK-rearranged NSCLC. Methods We included all phase 2 and 3 randomised controlled trials (RCTs) comparing any two or three treatment options. Eligible studies reported at least one of the following outcomes: progression free survival (PFS), overall survival (OS), objective response rate (ORR), or adverse events of grade 3 or higher (Grade ≥ 3 AEs). Subgroup analysis was conducted according to central nervous system (CNS) metastases. Results A total of 9 RCTs consisting of 2484 patients with 8 treatment options were included in the systematic review. Our analysis showed that alectinib (300 mg and 600 mg), brigatinib, lorlatinib and ensartinib yielded the most favorable PFS. Whereas there was no significant OS or ORR difference among the ALK-TKIs. According to Bayesian ranking profiles, lorlatinib, alectinib 600 mg and alectinib 300 mg had the best PFS (63.7%), OS (35.9%) and ORR (37%), respectively. On the other hand, ceritinib showed the highest rate of severe adverse events (60%). Conclusion Our analysis indicated that alectinib and lorlatinib might be associated with the best therapeutic efficacy in first-line treatment for major population of advanced NSCLC patients with ALK-rearrangement. However, since there is little comparative evidence on the treatment options, there is need for relative trials to fully determine the best treatment options as well as the rapidly evolving treatment landscape. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08977-0.
Collapse
Affiliation(s)
- Hao-Chuan Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yi-Hong Liu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Kai-Lin Ding
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yu-Feng Liu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Wen-Jie Zhao
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yan-Juan Zhu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory, of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China
| | - Xue-Song Chang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ya-Dong Chen
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Zhen-Zhen Xiao
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Ya-Ya Yu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Rui Zhou
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hai-Bo Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China. .,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory, of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China. .,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Zing N, Fischer T, Federico M, Chiattone C, Ferreri AJM. Diagnosis, prevention and treatment of central nervous system involvement in peripheral t-cell lymphomas. Crit Rev Oncol Hematol 2021; 167:103496. [PMID: 34653598 DOI: 10.1016/j.critrevonc.2021.103496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Non-Hodgkin lymphomas with T-cell immunophenotype encompass a heterogeneous group of infrequent neoplasms that follow variable clinical courses but prevalently include aggressive behavior and high mortality rates. The involvement of the central nervous system (CNS) is an uncommon event in T-cell lymphomas, with wide variability among the different disease entities. CNS can be affected either at initial diagnosis or at recurrence, and both forms are considered "secondary CNS T-cell lymphoma". Given the low incidence of secondary CNS T-cell lymphoma, related literature is sparse, contradictory, and primarily constituted by small case series and single case reports. However, reported studies uniformly suggest high mortality rates related to this event. Therefore, to improve our ability to identify high-risk patients and offer them successful CNS prophylaxis or timely and effective treatment once the event has occurred may prevent CNS-related T-cell lymphomas deaths. For example, some entities like aggressive adult T-cell leukemia/lymphoma, extranodal natural killer/T-cell lymphoma, and other peripheral T-cell lymphomas with involvement of two or more extranodal organs are prone to CNS dissemination and should be considered for personalized CNS prophylaxis. The level of evidence suggesting an increased risk of CNS recurrence for other T-cell lymphomas and for other risk factors is lower. Published case series show that, following the example of aggressive B-cell lymphomas, patients with T-cell lymphomas and putative increased CNS risk receive different forms of prophylaxis, mostly methotrexate and cytarabine delivered by intrathecal and/or intravenous routes, with varied success. To date, achievements in the treatment of CNS involvement in patients with aggressive B-cell lymphoma were not replicated in secondary CNS T-cell lymphomas, and identification of effective therapies remains an urgent research target. This review is focused on clinical findings, diagnosis, treatment, and prognosis of patients with T-cell lymphoma experiencing CNS dissemination either at presentation or relapse. It aims to provide logical and, oftentimes, evidence-based answers to the most common questions on the most probable risk factors to CNS involvement in patients with T-cell lymphoma, the indications and strategies to prevent this life-threating event, and the management of patients with CNS disease.
Collapse
Affiliation(s)
- Natalia Zing
- Departament of Onco-Hematology, Hospital Beneficência Portuguesa de São Paulo, Brazil; T-cell Brazil Project, Brazil
| | - Thais Fischer
- Hospital AC Camargo Cancer Center, Brazil; T-cell Brazil Project, Brazil
| | - Massimo Federico
- Medical Oncology, CHIMOMO Department, University of Modena and Reggio Emilia, Modena, Italy; T-cell Brazil Project, Brazil
| | - Carlos Chiattone
- Hospital Samaritano de São Paulo, Brazil; T-cell Brazil Project, Brazil; Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Andrés J M Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Jablonska PA, Bosch-Barrera J, Serrano D, Valiente M, Calvo A, Aristu J. Challenges and Novel Opportunities of Radiation Therapy for Brain Metastases in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13092141. [PMID: 33946751 PMCID: PMC8124815 DOI: 10.3390/cancers13092141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lung cancer is the most common primary malignancy that tends to metastasize to the brain. Owing to improved survival of lung cancer patients, the prevalence of brain metastases is a matter of growing concern. Brain radiotherapy remains the mainstay in the management of metastatic CNS disease. However, new targeted therapies such as the tyrosine kinase or immune checkpoint inhibitors have demonstrated intracranial activity and promising tumor response rates. Here, we review the current and emerging therapeutical strategies for brain metastases from non-small cell lung cancer, both brain-directed and systemic, as well as the uncertainties that may arise from their combination. Abstract Approximately 20% patients with non-small cell lung cancer (NSCLC) present with CNS spread at the time of diagnosis and 25–50% are found to have brain metastases (BMs) during the course of the disease. The improvement in the diagnostic tools and screening, as well as the use of new systemic therapies have contributed to a more precise diagnosis and prolonged survival of lung cancer patients with more time for BMs development. In the past, most of the systemic therapies failed intracranially because of the inability to effectively cross the blood brain barrier. Some of the new targeted therapies, especially the group of tyrosine kinase inhibitors (TKIs) have shown durable CNS response. However, the use of ionizing radiation remains vital in the management of metastatic brain disease. Although a decrease in CNS-related deaths has been achieved over the past decade, many challenges arise from the need of multiple and repeated brain radiation treatments, which carry along not insignificant risks and toxicity. The combination of stereotactic radiotherapy and systemic treatments in terms of effectiveness and adverse effects, such as radionecrosis, remains a subject of ongoing investigation. This review discusses the challenges of the use of radiation therapy in NSCLC BMs in view of different systemic treatments such as chemotherapy, TKIs and immunotherapy. It also outlines the future perspectives and strategies for personalized BMs management.
Collapse
Affiliation(s)
- Paola Anna Jablonska
- Brain Metastases and CNS Oncology Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +1-416-946-2000
| | - Joaquim Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, 17007 Girona, Spain;
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071 Girona, Spain
| | - Diego Serrano
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | | | - Alfonso Calvo
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Javier Aristu
- Department of Radiation Oncology and Protontherapy Unit, Clinica Universidad de Navarra, 28027 Madrid, Spain;
| |
Collapse
|
9
|
Raffa EH, Branson HM, Ngan B, Alexander S, Abla O. Central nervous system relapse in a child with anaplastic large cell lymphoma: potential for new therapeutic strategies. Cancer Rep (Hoboken) 2021; 4:e1377. [PMID: 33822480 PMCID: PMC8551994 DOI: 10.1002/cnr2.1377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) relapse is rare in childhood anaplastic large cell lymphoma (ALCL) and is associated with a poor prognosis. CASE We describe an 8-year-old boy with ALCL who developed an early CNS relapse without initial CNS disease. Despite aggressive medical management, the patient's neurological status deteriorated rapidly and he died shortly after. CONCLUSION Optimal treatment for children with relapsed ALCL involving the CNS remains unclear. Novel agents, including ALK inhibitors, that have CNS-penetration might be helpful and pediatric studies are warranted.
Collapse
Affiliation(s)
- Enass H Raffa
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helen M Branson
- Division of Neuroradiology, Department of Diagnostic Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bo Ngan
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Alexander
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Oussama Abla
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Bauer TM, Shaw AT, Johnson ML, Navarro A, Gainor JF, Thurm H, Pithavala YK, Abbattista A, Peltz G, Felip E. Brain Penetration of Lorlatinib: Cumulative Incidences of CNS and Non-CNS Progression with Lorlatinib in Patients with Previously Treated ALK-Positive Non-Small-Cell Lung Cancer. Target Oncol 2021; 15:55-65. [PMID: 32060867 PMCID: PMC7028836 DOI: 10.1007/s11523-020-00702-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Lorlatinib is a potent, third-generation ALK/ROS1 tyrosine kinase inhibitor (TKI) designed to penetrate the blood–brain barrier. Objective We report the cumulative incidence of central nervous system (CNS) and non-CNS progression with lorlatinib in patients with ALK-positive non-small-cell lung cancer (NSCLC) previously treated with ALK TKIs. Patients and methods In an ongoing phase II study (NCT01970865), 198 patients with ALK-positive NSCLC with ≥ 1 prior ALK TKI were enrolled into expansion cohorts (EXP) based on treatment history. Patients received lorlatinib 100 mg once daily. Patients were analyzed for progressive disease, categorized as CNS or non-CNS progression, by independent central review. Cumulative incidence probabilities were calculated adopting a competing risks approach. Results Fifty-nine patients received crizotinib as their only prior ALK TKI (EXP2–3A); cumulative incidence rates (CIRs) of CNS and non-CNS progression were both 22% at 12 months in patients with baseline CNS metastases (n = 37), and CIR of non-CNS progression at 12 months was higher versus that for CNS progression in patients without baseline CNS metastases [43% vs. 9% (n = 22)]. In patients who received ≥ 1 prior second-generation ALK TKI [EXP3B–5 (n = 139)], CIR of non-CNS progression at 12 months was higher versus that for CNS progression in patients both with and without baseline CNS metastases (35% vs. 23% (n = 94) and 55% vs. 12% (n = 45), respectively). Conclusions Lorlatinib showed substantial intracranial activity in patients with pretreated ALK-positive NSCLC, with or without baseline CNS metastases, whose disease progressed on crizotinib or second-generation ALK TKIs. ClinicalTrials.gov identifier NCT01970865. Electronic supplementary material The online version of this article (10.1007/s11523-020-00702-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Todd M Bauer
- Sarah Cannon Cancer Research Institute/Tennessee Oncology, PLLC, 250 25th Ave N, Nashville, TN, 37203, USA.
| | - Alice T Shaw
- Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Melissa L Johnson
- Sarah Cannon Cancer Research Institute/Tennessee Oncology, PLLC, 250 25th Ave N, Nashville, TN, 37203, USA
| | - Alejandro Navarro
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Justin F Gainor
- Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Holger Thurm
- Pfizer Oncology, 10777 Science Center Dr, La Jolla, CA, USA
| | | | | | - Gerson Peltz
- Pfizer Oncology, 280 Shennecossett Rd, Groton, CT, USA
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
11
|
Chen Y, Cai C, Li Y. The impact of baseline brain metastases on clinical benefits and progression patterns after first-line crizotinib in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. Medicine (Baltimore) 2021; 100:e24784. [PMID: 33663095 PMCID: PMC7909142 DOI: 10.1097/md.0000000000024784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
Baseline brain metastasis (BBM) commonly occurs in anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer. Crizotinib prolongs the survival of patients with ALK rearrangement but lacks significant effect on brain metastasis. It remains unclear whether BBM and local therapy affect therapeutic outcomes and progression patterns during crizotinib treatment.Patients with ALK-positive (immunotherapy) non-small cell lung cancer were screened from West China Hospital between May 2013 and January 2019. A total of 155 patients were enrolled in this research, with entirely recorded statistics to analyze retrospectively.Baseline brain metastasis occurred in 64 patients (55.7%). Thirty-seven patients received local therapy, while 24 patients did not. We observed higher overall response rate in patients receiving local therapy (70.2% vs. 41.7%, P = .026), but no statistical difference was found in median progression free survival (mPFS) (12.0 months vs 13.0 months, P = .633). A significantly shorter mPFS was found in patients not receiving local treatment compared with the 16.5 months mPFS of patients without BBM (P = .029). Intracranial progressions were recorded in 35 patients with BBM (71%) and 16 patients who don't have (30%). As for extracranial progression, there is a higher occurrence rate (75.5%) in patients who had baseline extracranial metastases versus 49.0% in BBM patients. A significantly higher occurrence rate of multiple progression was noted in patients with BBM (14/49 vs. 6/53).Baseline intracranial metastasis changes the location and number of progressions after the first-line crizotinib and results in poor prognosis. There is no evidence that local treatment for brain metastasis had a protective effect on intracranial progression.
Collapse
Affiliation(s)
| | - Chengzhi Cai
- Department of Thoracic Oncology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan, P. R. China
| | - Yanying Li
- Department of Thoracic Oncology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan, P. R. China
| |
Collapse
|
12
|
Carcereny E, Fernández-Nistal A, López A, Montoto C, Naves A, Segú-Vergés C, Coma M, Jorba G, Oliva B, Mas JM. Head to head evaluation of second generation ALK inhibitors brigatinib and alectinib as first-line treatment for ALK+ NSCLC using an in silico systems biology-based approach. Oncotarget 2021; 12:316-332. [PMID: 33659043 PMCID: PMC7899557 DOI: 10.18632/oncotarget.27875] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Around 3-7% of patients with non-small cell lung cancer (NSCLC), which represent 85% of diagnosed lung cancers, have a rearrangement in the ALK gene that produces an abnormal activity of the ALK protein cell signaling pathway. The developed ALK tyrosine kinase inhibitors (TKIs), such as crizotinib, ceritinib, alectinib, brigatinib and lorlatinb present good performance treating ALK+ NSCLC, although all patients invariably develop resistance due to ALK secondary mutations or bypass mechanisms. In the present study, we compare the potential differences between brigatinib and alectinib's mechanisms of action as first-line treatment for ALK+ NSCLC in a systems biology-based in silico setting. Therapeutic performance mapping system (TPMS) technology was used to characterize the mechanisms of action of brigatinib and alectinib and the impact of potential resistances and drug interferences with concomitant treatments. The analyses indicate that brigatinib and alectinib affect cell growth, apoptosis and immune evasion through ALK inhibition. However, brigatinib seems to achieve a more diverse downstream effect due to a broader cancer-related kinase target spectrum. Brigatinib also shows a robust effect over invasiveness and central nervous system metastasis-related mechanisms, whereas alectinib seems to have a greater impact on the immune evasion mechanism. Based on this in silico head to head study, we conclude that brigatinib shows a predicted efficacy similar to alectinib and could be a good candidate in a first-line setting against ALK+ NSCLC. Future investigation involving clinical studies will be needed to confirm these findings. These in silico systems biology-based models could be applied for exploring other unanswered questions.
Collapse
Affiliation(s)
- Enric Carcereny
- Catalan Institute of Oncology B-ARGO Group, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | - Guillem Jorba
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
13
|
Frost N, Christopoulos P, Kauffmann-Guerrero D, Stratmann J, Riedel R, Schaefer M, Alt J, Gütz S, Christoph DC, Laack E, Faehling M, Fischer R, Fenchel K, Haen S, Heukamp L, Schulz C, Griesinger F. Lorlatinib in pretreated ALK- or ROS1-positive lung cancer and impact of TP53 co-mutations: results from the German early access program. Ther Adv Med Oncol 2021; 13:1758835920980558. [PMID: 33613692 PMCID: PMC7876585 DOI: 10.1177/1758835920980558] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Introduction: We report on the results of the German early access program (EAP) with the third-generation ALK- and ROS1-inhibitor lorlatinib. Patients and Methods: Patients with documented treatment failure of all approved ALK/ROS1-specific therapies or with resistance mutations not covered by approved inhibitors or leptomeningeal carcinomatosis were enrolled and analyzed. Results: In total, 52 patients were included [median age 57 years (range 32–81), 54% female, 62% never smokers, 98% adenocarcinoma]; 71% and 29% were ALK- and ROS1-positive, respectively. G1202R and G2032R resistance mutations prior to treatment with lorlatinib were observed in 10 of 26 evaluable patients (39%), 11 of 39 patients showed TP53 mutations (28%). Thirty-six patients (69%) had active brain metastases (BM) and nine (17%) leptomeningeal carcinomatosis when entering the EAP. Median number of prior specific TKIs was 3 (range 1–4). Median duration of treatment, progression-free survival (PFS), response rate and time to treatment failure were 10.4 months, 8.0 months, 54% and 13.0 months. Calculated 12-, 18- and 24-months survival rates were 65, 54 and 47%, overall survival since primary diagnosis (OS2) reached 79.6 months. TP53 mutations were associated with a substantially reduced PFS (3.7 versus 10.8 month, HR 3.3, p = 0.003) and were also identified as a strong prognostic biomarker (HR for OS2 3.0 p = 0.02). Neither prior treatments with second-generation TKIs nor BM had a significant influence on PFS and OS. Conclusions: Our data from real-life practice demonstrate the efficacy of lorlatinib in mostly heavily pretreated patients, providing a clinically meaningful option for patients with resistance mutations not covered by other targeted therapies and those with BM or leptomeningeal carcinomatosis.
Collapse
Affiliation(s)
- Nikolaj Frost
- Department of Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, D-13353, Germany Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Berlin, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany, and Translational Research Center Heidelberg, Member of the German Center for Lung Research (DZL)
| | - Diego Kauffmann-Guerrero
- Division of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V University of Munich (LMU), Thoracic Oncology Centre Munich (TOM), Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Bayern, Germany
| | - Jan Stratmann
- Department of Internal Medicine II, University Clinic of Frankfurt, Frankfurt, Germany
| | - Richard Riedel
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Monica Schaefer
- HELIOS Klinikum Emil-von-Behring, Lungenklinik Heckeshorn, Berlin, Germany
| | - Jürgen Alt
- Department of Internal Medicine III (Hematology, Oncology, Pneumology), University Medical Center Mainz, Mainz, Germany
| | - Sylvia Gütz
- Department of Respiratory Medicine and Cardiology, Evangelisches Diakonissenkrankenhaus Leipzig, Leipzig, Germany
| | - Daniel C Christoph
- Department of Hematology and Oncology, Evang. Kliniken Essen-Mitte, Essen, Germany
| | | | - Martin Faehling
- Department of Cardiology, Angiology and Pneumonology, Klinikum Esslingen, Esslingen, Germany
| | | | - Klaus Fenchel
- Private Practice for Hematology and Oncology, Saalfeld, Germany
| | - Sebastian Haen
- Department of Hematology and Oncology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christian Schulz
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Frank Griesinger
- Department Internal Medicine-Oncology, Pius Hospital, Oldenburg, Germany
| |
Collapse
|
14
|
Singh SS, Dahal A, Shrestha L, Jois SD. Genotype Driven Therapy for Non-Small Cell Lung Cancer: Resistance, Pan Inhibitors and Immunotherapy. Curr Med Chem 2020; 27:5274-5316. [PMID: 30854949 DOI: 10.2174/0929867326666190222183219] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Eighty-five percent of patients with lung cancer present with Non-small Cell Lung Cancer (NSCLC). Targeted therapy approaches are promising treatments for lung cancer. However, despite the development of targeted therapies using Tyrosine Kinase Inhibitors (TKI) as well as monoclonal antibodies, the five-year relative survival rate for lung cancer patients is still only 18%, and patients inevitably become resistant to therapy. Mutations in Kirsten Ras Sarcoma viral homolog (KRAS) and epidermal growth factor receptor (EGFR) are the two most common genetic events in lung adenocarcinoma; they account for 25% and 20% of cases, respectively. Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor tyrosine kinase, and ALK rearrangements are responsible for 3-7% of NSCLC, predominantly of the adenocarcinoma subtype, and occur in a mutually exclusive manner with KRAS and EGFR mutations. Among drug-resistant NSCLC patients, nearly half exhibit the T790M mutation in exon 20 of EGFR. This review focuses on some basic aspects of molecules involved in NSCLC, the development of resistance to treatments in NSCLC, and advances in lung cancer therapy in the past ten years. Some recent developments such as PD-1-PD-L1 checkpoint-based immunotherapy for NSCLC are also covered.
Collapse
Affiliation(s)
- Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| |
Collapse
|
15
|
Cravero P, Vaz N, Ricciuti B, Clifford SE, DiUbaldi G, Drevers D, Morton K, Rivenburgh RE, Nishino M, Awad MM. Leptomeningeal Response to Capmatinib After Progression on Crizotinib in a Patient With MET Exon 14-Mutant NSCLC. JTO Clin Res Rep 2020; 1:100072. [PMID: 34589954 PMCID: PMC8474223 DOI: 10.1016/j.jtocrr.2020.100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/16/2023] Open
Affiliation(s)
- Paola Cravero
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Nuno Vaz
- Department of Radiology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sarah E. Clifford
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Gianluca DiUbaldi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Dawn Drevers
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kaitlin Morton
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rebecca E. Rivenburgh
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital and Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts,Corresponding author. Address for correspondence: Mark M. Awad, MD, PhD, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
16
|
Treatment Sequencing in Patients with Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer in Japan: A Real-World Observational Study. Adv Ther 2020; 37:3311-3323. [PMID: 32472430 DOI: 10.1007/s12325-020-01392-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) alectinib was approved in Japan in 2014 for the treatment of ALK fusion gene-positive advanced non-small cell lung cancer (NSCLC). With the approvals of crizotinib in 2012 and ceritinib in 2017, Japan became the first country with multiple ALK TKIs available for first-line or later use in patients with ALK-positive advanced NSCLC. Here, we collected and evaluated real-world data on ALK TKI clinical usage patterns and sequencing in patients with ALK-positive NSCLC in Japan. METHODS This retrospective observational study used the Japanese Medical Data Vision database to analyze data from patients with a confirmed diagnosis of lung cancer who visited a healthcare facility in the database between April 2010 and March 2017, underwent an ALK test, received a prescription for an ALK TKI, and were at least 18 years old as of the date of the first ALK TKI prescription. There were no exclusion criteria. Descriptive analyses of demographics, baseline characteristics, ALK TKI treatment patterns and sequences, non-ALK TKI treatments received before, during, and after ALK TKI treatment, and treatment durations were reported. RESULTS A total of 378 patients met the inclusion criteria and were evaluated in mutually exclusive groups of patients receiving one, two, or three ALK TKIs. The initial ALK TKI prescribed was crizotinib for 52.1% of patients and alectinib for 47.9% of patients; however, the proportion of patients receiving alectinib as the initial ALK TKI increased over time following the Japanese approval of alectinib in 2014. Of the 117 patients who received two or three ALK TKIs, 106 received crizotinib as the first ALK TKI and 11 received alectinib. Before the date of the patient's first ALK TKI prescription, 153 of 378 patients (40.5%) had received chemotherapy. Of 104 patients who discontinued ALK therapy, 46.2% received chemotherapy and 5.8% received immunotherapy as their next treatment. CONCLUSION At the time of this analysis, most patients who received more than one ALK TKI received crizotinib as the initial ALK TKI. Additional ALK TKIs have since been approved in Japan as first-line or later therapeutic options for patients with ALK-positive NSCLC, but the optimal sequence of ALK TKI usage remains undetermined. As new data continue to emerge, additional research will be warranted to evaluate ALK TKI sequences that do not include crizotinib as the first therapy in this patient population.
Collapse
|
17
|
Yang CY, Liao WY, Ho CC, Chen KY, Tsai TH, Hsu CL, Liu YN, Su KY, Chang YL, Wu CT, Liao BC, Hsu CC, Hsu WH, Lee JH, Lin CC, Shih JY, Yang JCH, Yu CJ. Association of Programmed Death-Ligand 1 Expression with Fusion Variants and Clinical Outcomes in Patients with Anaplastic Lymphoma Kinase-Positive Lung Adenocarcinoma Receiving Crizotinib. Oncologist 2020; 25:702-711. [PMID: 32386255 DOI: 10.1634/theoncologist.2020-0088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) expression is associated with clinical outcomes of epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma (ADC) treated with tyrosine kinase inhibitors (TKIs). However, whether PD-L1 expression plays a role in anaplastic lymphoma kinase (ALK)-positive lung ADC is unknown. We aimed to evaluate the impact of PD-L1 in patients with ALK-positive lung ADC receiving crizotinib. MATERIALS AND METHODS PD-L1 expression was identified by immunohistochemistry (IHC). Reverse transcriptase-polymerase chain reaction was used for ALK variant detection, and immunofluorescence-based multiplex staining was applied for exploring immune cells in tumor microenvironments. RESULTS A total of 78 patients with ALK-positive advanced ADC were enrolled in our study, of whom 52 received crizotinib. Compared with EGFR/ALK wild-type tumors, PD-L1 expression was lower in ALK-positive ADC. ALK fusion variants were identified in 32 patients, and those with variant 3 and 5 (short variants) had higher PD-L1 expression than those with other variants. The crizotinib objective response rate (ORR) and progression-free survival (PFS) was better in tumors with negative PD-L1 expression (ORR/PFS in PD-L1 0% vs. 1%-49% vs. 50%-100%: 60.7%/11.8 months vs. 38.5%/6.5 months vs. 36.4%/4.0 months, p = .007/.022). The multivariate Cox proportional hazards model revealed that PD-L1 0% (vs. ≥1%) was an independent factor for longer PFS (adjusted hazard ratio 0.322, 95% confidence interval 0.160-0.650, p = .002). Multiplex IHC in three cases showed a varied extent of immune cell infiltrations in tumors with different PD-L1 expression. CONCLUSION Positive PD-L1 expression was associated with unfavorable clinical outcomes in patients with ALK-positive lung ADC receiving crizotinib. IMPLICATIONS FOR PRACTICE Not all lung adenocarcinoma with sensitizing driver mutations experienced durable responses to small-molecule tyrosine kinase inhibitors (TKIs). Similar to the negative impact of programmed death-ligand 1 (PD-L1) in epidermal growth factor receptor mutant tumors treated with TKIs, this study demonstrated that positive PD-L1 expression was also associated with worse response rate and shorter progression-free survival of anaplastic lymphoma kinase (ALK)-positive adenocarcinoma treated with crizotinib. Among different ALK fusion partners, tumors with short variants (V3 and V5) had higher PD-L1 compared with long variants (V1, V2, and V6). Testing PD-L1 before initiating crizotinib for ALK-positive lung cancer could be a simple method to provide important prognostic information.
Collapse
Affiliation(s)
- Ching-Yao Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Yu Liao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hsiu Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Lin Hsu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bin-Chi Liao
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chi Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hsun Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jih-Hsiang Lee
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
18
|
Yang Y, Zhou J, Zhou J, Feng J, Zhuang W, Chen J, Zhao J, Zhong W, Zhao Y, Zhang Y, Song Y, Hu Y, Yu Z, Gong Y, Chen Y, Ye F, Zhang S, Cao L, Fan Y, Wu G, Guo Y, Zhou C, Ma K, Fang J, Feng W, Liu Y, Zheng Z, Li G, Wu N, Song W, Liu X, Zhao S, Ding L, Mao L, Selvaggi G, Yuan X, Fu Y, Wang T, Xiao S, Zhang L. Efficacy, safety, and biomarker analysis of ensartinib in crizotinib-resistant, ALK-positive non-small-cell lung cancer: a multicentre, phase 2 trial. THE LANCET RESPIRATORY MEDICINE 2019; 8:45-53. [PMID: 31628085 DOI: 10.1016/s2213-2600(19)30252-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ensartinib is a potent new-generation ALK inhibitor with high activity against a broad range of known crizotinib-resistant ALK mutations and CNS metastases. We aimed to assess the efficacy and safety of ensartinib in ALK-positive patients with non-small-cell lung cancer (NSCLC), in whom crizotinib therapy was unsuccessful. The associations between ensartinib efficacy and crizotinib-resistant mutations were also explored. METHODS We did a single-arm, open-label, phase 2 study at 27 centres in China. Patients were aged 18 years or older, had stage IIIb or stage IV ALK-positive NSCLC that had progressed while they were on crizotinib therapy, an Eastern Cooperative Oncology Group performance status of 2 or less, had measurable disease, and had received fewer than three previous treatments. Patients with CNS metastases were included if these metastases were asymptomatic and did not require steroid therapy. All patients received 225 mg ensartinib orally once daily on a continuous dosing schedule. The primary outcome was the proportion of patients with an objective response according to the Response Evaluation Criteria in Solid Tumors (version 1.1), as assessed by an independent review committee in all patients who received at least one dose of ensartinib with no major violations of the inclusion criteria (ie, the full analysis set). Safety was assessed in all enrolled patients who received at least one dose of ensartinib. This trial was registered with ClinicalTrials.gov, NCT03215693. FINDINGS Between Sept 28, 2017, and April 11, 2018, 160 patients were enrolled and had at least one dose of ensartinib (safety analysis set). Four patients had inclusion violations and were excluded from the efficacy analysis, which thus included 156 patients (full analysis set). 97 (62%) patients in the full analysis set had brain metastases. 76 (52% [95% CI 43-60]) of 147 patients in the full analysis set, with responses that could be assessed by the independent review committee, had an objective response. 28 (70% [53-83]) of 40 patients with measurable brain metastases as assessed by the independent review committee had an intracranial objective response. 145 (91%) of 160 patients had at least one treatment-related adverse event, which were mostly grade 1 or 2. The most common treatment-related adverse events were rash (89 [56%]), increased alanine aminotransferase concentrations (74 [46%]), and increased aspartate aminotransferase concentrations (65 [41%]). INTERPRETATION Ensartinib has activity and is well tolerated in patients with crizotinib-refractory, ALK-positive NSCLC, including those with brain metastases. The role of ensartinib in patients in whom other second-generation ALK inhibitors have been unsuccessful warrants further studies. FUNDING Betta Pharmaceuticals.
Collapse
Affiliation(s)
- Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Zhuang
- Department of Thoracic Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jianhua Chen
- Department of Medical Oncology-Chest, Hunan Cancer Hospital, Changsha, China
| | - Jun Zhao
- Department of Thoracic Oncology, Beijing Cancer Hospital, Beijing, China
| | - Wei Zhong
- Department of Pulmonary Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanqiu Zhao
- Respiratory Department of Internal Medicine, Henan Provincial Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiping Zhang
- Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yong Song
- Division of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yi Hu
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youling Gong
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Ye
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lejie Cao
- Respiratory Medicine, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Yun Fan
- Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yubiao Guo
- Pulmonary & Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengzhi Zhou
- Respiratory Medicine Department, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kewei Ma
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jian Fang
- Department of Thoracic Oncology, Beijing Cancer Hospital, Beijing, China
| | - Weineng Feng
- Department of Head and Neck and Thoracic Medical Oncology, The First People's Hospital Of Foshan, Foshan, China
| | - Yunpeng Liu
- Oncology Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Zhendong Zheng
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, China
| | - Gaofeng Li
- 2nd Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Ning Wu
- Department of Diagnostic Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoqing Liu
- Department of Pulmonary Oncology, The Fifth Medical Centre Chinese PLA General Hospital, Beijing, China
| | - Shijun Zhao
- Department of Diagnostic Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Li Mao
- Betta Pharmaceuticals, Hangzhou, China
| | | | | | | | - Tao Wang
- Hangzhou Repugene Technology, Hangzhou, China
| | | | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Lin YT, Liu YN, Shih JY. The Impact of Clinical Factors, ALK Fusion Variants, and BIM Polymorphism on Crizotinib-Treated Advanced EML4-ALK Rearranged Non-small Cell Lung Cancer. Front Oncol 2019; 9:880. [PMID: 31608224 PMCID: PMC6768009 DOI: 10.3389/fonc.2019.00880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
Patients' clinical factors and genetics factors such as anaplastic lymphoma kinase (ALK) fusion variants and BIM (Bcl-2-like 11) polymorphism were reported to be associated with clinical outcome in crizotinib-treated advanced non-small cell lung cancer (NSCLC). However, the results were still controversial. We analyzed outcome of 54 patients with known ALK fusion variants who received crizotinib for advanced NSCLC. Thirty of them had successful BIM polymorphism analysis and 6 (20%) had a BIM deletion. Multivariate Cox regression analysis found that previous anticancer therapy [adjusted hazard ratio (aHR) 1.35, 95% confidence interval (CI), 1.04–1.76 for each additional line of therapy, p = 0.025] and Eastern Cooperative Oncology Group (ECOG) performance status ≥2 (aHR 8.35, 95% CI, 1.52–45.94, p = 0.015) were independent factors for progression-free survival (PFS). Only ECOG performance status ≥2 (aHR 7.20, 95% CI, 1.27–40.79, p = 0.026) was an independent factor for overall survival (OS). Neither ALK fusion variants nor the presence of a BIM deletion was associated with crizotinib PFS or OS. After adjusting with clinical factors, different ALK variants and BIM polymorphism might not be independent factors for crizotinib PFS or OS in advanced NSCLC with ALK rearrangement.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Yuan Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Wang W, Sun X, Hui Z. Treatment Optimization for Brain Metastasis from Anaplastic Lymphoma Kinase Rearrangement Non-Small-Cell Lung Cancer. Oncol Res Treat 2019; 42:599-606. [PMID: 31527380 DOI: 10.1159/000502755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/14/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Brain metastasis is common in non-small-cell lung cancer (NSCLC) with driver gene mutations. Anaplastic lymphoma kinase (ALK) gene rearrangement is one of the common driver mutations in NSCLC. Tyrosine kinase inhibitor (TKI) has been the research hotspot at present. However, there are relatively few studies specified on the treatment of brain metastasis from ALK gene rearrangement NSCLC. The prognosis of these patients, the role of ALK-TKI, and the proper combination model of ALK-TKI with radiotherapy are worth further exploring. This review focuses on new data on the prognosis of ALK-TKI and the proper combination model of ALK-TKI with radiotherapy. SUMMARY According to some retrospective trials, for ALKi-naïve ALK rearrangement NSCLC patients with brain metastasis, crizotinib together with radiotherapy seem to improve intracranial control rate, progression-free survival, and very likely improve overall survival; next-generation ALK-TKIs are now replacing crizotinib as first-line treatment. For patients with central nervous system progression during crizotinib application, combining radiotherapy could improve the local control rate while continuing crizotinib to control systemic disease. Second-/third-generation ALK inhibitors had higher intracranial ORR and DCR even after crizotinib-refractory situations, and they alone had a strong efficacy against intracranial tumors, in which situation radiotherapy might be omitted. Stereotactic radiosurgery (SRS) and whole-brain radiotherapy (WBRT) were both local treatment options for brain metastasis, and the preferred choice was hard to make. ALK resistance is complicated with a wide range of molecular changes, and future studies are needed to solve these problems. Anyway, further and larger prospective studied are worth exploring to offer a confirmed preferred choice of drugs and radiation. Key Messages: Next-generation ALK-TKIs are now replacing crizotinib as first-line treatment in ALKi-naïve ALK rearrangement NSCLC patients with brain metastasis, and they alone might have a strong efficacy against intracranial tumors in crizotinib-refractory situations in which occasion radiotherapy might be omitted. SRS and WBRT are both local treatment options for brain metastasis.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academic of Medical Science and Peking Union Medical College, Beijing, China
| | - Xin Sun
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academic of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academic of Medical Science and Peking Union Medical College, Beijing, China, .,Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academic of Medical Science and Peking Union Medical College, Beijing, China,
| |
Collapse
|
21
|
Abstract
OPINION STATEMENT There has been rapid progress in the use of targeted therapies for ALK-positive which has led to improve dramatically PFS and OS in the metastatic ALK-rearranged NSCLC patients. There are several molecules now available (crizotinib, ceritinib, brigatinib, alectinib, and lorlatinib) and others in development. Such an improvement in treatment efficacy has even more highlighted the importance of an adequate identification of ALK alterations. Efficient and easily accessible testing tools are required to identify eligible patients in a timely fashion. Different methods for detecting ALK+ NSCLC patients are now available, with fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) currently representing validated diagnostic techniques for the initial assessment of ALK status. Furthermore the widespread use of next-generation sequencing to detect other possible different activating mutations has allowed to identify individual ALK fusion variants. Several more expensive and time-consuming methods are also available nowadays which have the advantage to detect even rarer uncommon ALK fusion variants and mutations in tumour or blood samples. A review of the evolving testing-treatment landscape is needed to highlight the importance of properly diagnosing and treating this group of patients.
Collapse
|
22
|
Brigatinib: New-generation ALK inhibitor for nonsmall cell lung cancer. Curr Probl Cancer 2019; 43:100477. [PMID: 31109722 DOI: 10.1016/j.currproblcancer.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022]
Abstract
Lung cancer, specifically nonsmall cell lung cancer (NSCLC) is the leading cause of death around the world. First-line therapies for metastatic NSCLC such as crizotinib, a tyrosine kinase inhibitor (TKI), have developed resistance due to a rearrangement of the anaplastic lymphoma kinase (ALK) gene. Brigatinib, approved in May 2016, is an ALK inhibitor specifically indicated for ALK-positive metastatic NSCLC in patients who have progressed on or resistant to crizotinib therapy. In several clinical trials, brigatinib has exhibited significant improvement in progression-free survival in patients that have experienced resistance to crizotinib therapy. The optimal dose of brigatinib was found to be 180 mg once daily and demonstrated greater efficacy as compared to its 90 mg once daily dose. Brigatinib was also found to be well tolerated. Although more studies are needed, the current data from these studies indicate brigatinib may be the most favorable therapeutic approach to treat NSCLC ALK-positive patients.
Collapse
|
23
|
Zhang Z, Guo H, Lu Y, Hao W, Han L. Anaplastic lymphoma kinase inhibitors in non-small cell lung cancer patients with brain metastases: a meta-analysis. J Thorac Dis 2019; 11:1397-1409. [PMID: 31179082 DOI: 10.21037/jtd.2019.03.76] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Patients with anaplastic lymphoma kinase (ALK) rearrangements are particularly prone to development of brain metastases (BMs). Newer anti-ALK treatments have demonstrated far greater intracranial efficacy. Here we performed a meta-analysis with the aim of assessing the efficacy of ALK inhibitors on BMs. Methods A search of published trials was conducted in PubMed, The Cochrane Library, Web of Science, and Embase. Data were pooled using the number of events/number of evaluable patients (non-small cell lung cancer patients with BMs) according to fixed or random effect models. Intracranial efficacy was assessed through overall response rate (ORR), disease control rate (DCR), and median progression-free survival (PFS). Subgroup analyses for baseline BMs, previous treatment with ALK inhibitor, study type, and current ALK inhibitor were made. Results Twenty studies accounting for 2,715 patients were included. The pooled iORR was 48% (95% CI: 32-63%) in fifteen single-arm studies. The overall DCR was 65% (95% CI: 60-69%) from three studies include available data. The iORR was 79% (95% CI: 64-91%), 45% (24-67%), 48% (34-63%), 18% (13-24%) in patients receiving alectinib, ceritinib, brigatinib, and crizotinib, respectively. Five randomized studies assessed the intracranial efficacy of anti-ALK agents versus chemotherapy, the pooled RR for iORR was 3.54 (95% CI: 2.38-5.26), and the pooled HR for iPFS was 0.52 (95% CI: 0.36-0.75; P=0.71) estimated in 2 studies. Conclusions Despite the limitation from lack of published clinical data, our results showed that ALK inhibitors are effective at the brain site regardless of previous anti-ALK treatments, systemic therapy with ALK inhibitors should be considered as a preferred approach over for controlling BMs from ALK-positive NSCLC.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Department of Oncology, Beijing Daxing District People's Hospital, Capital Medical University, Beijing 102600, China
| | - Hongwei Guo
- Department of Oncology, Beijing Daxing District People's Hospital, Capital Medical University, Beijing 102600, China
| | - Yuanli Lu
- Department of Oncology, Beijing Daxing District People's Hospital, Capital Medical University, Beijing 102600, China
| | - Wei Hao
- Department of Oncology, Beijing Daxing District People's Hospital, Capital Medical University, Beijing 102600, China
| | - Lei Han
- Department of Oncology, Beijing Daxing District People's Hospital, Capital Medical University, Beijing 102600, China
| |
Collapse
|
24
|
Davies J, Martinec M, Coudert M, Delmar P, Crane G. Real-world anaplastic lymphoma kinase (ALK) rearrangement testing patterns, treatment sequences, and survival of ALK inhibitor-treated patients. Curr Med Res Opin 2019; 35:535-542. [PMID: 30296185 DOI: 10.1080/03007995.2018.1533458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The anaplastic lymphoma kinase (ALK) treatment landscape is crowded following recent ALK inhibitor approvals, and updated information on real-world treatment patterns in advanced non-small-cell lung cancer (aNSCLC) with ALK rearrangement (ALK+) is needed. METHODS This retrospective US cohort study used Flatiron Health's longitudinal electronic health record (EHR)-derived database. Patients (≥ 18 years old) diagnosed with stage IIIB/IV aNSCLC, with documented ALK rearrangement and ≥2 visits after January 1, 2011 were followed until February 28, 2016. Patients enrolled on a clinical trial or exposed to ALK inhibitors other than crizotinib or ceritinib were excluded. Treatment patterns, time and type of biomarker testing, and overall survival (OS) were analyzed. RESULTS Median age (n = 300) was 62.5 years; 55% female; 48% non-smokers; 8.7% central nervous system (CNS) metastases at diagnosis. Overall, 73% and 86% received their first ALK biomarker test before/at diagnosis, or before/during first-line treatment, respectively. In total, 90.0%, 78.1%, and 74.7% received first-, second-, and third-line therapy, respectively. Most patients received ALK-targeted treatment; 62% received crizotinib, of which 21% reported a dose reduction. Progression was the most common reason for crizotinib (78%) and ceritinib (41%) discontinuation. Median OS was 29.4 months (95% CI =24.7-39.6) overall; 27.1 months (95% CI =22.0-35.0) in patients with CNS metastases, and 36.9 months (95% CI =25.1-not reached) without. CONCLUSIONS Despite widespread crizotinib use in patients with ALK+ aNSCLC, a high proportion of patients progressed. Ongoing analyses of EHR-derived cohorts are valuable in assessing real-world testing rates and therapeutic use of ALK inhibitors.
Collapse
Affiliation(s)
| | | | - Mathieu Coudert
- c F. Hoffmann-La Roche Ltd , Boulogne-Billancourt Cedex , France
| | - Paul Delmar
- b F. Hoffmann-La Roche AG Ltd , Basel , Switzerland
| | | |
Collapse
|
25
|
Barrows SM, Wright K, Copley-Merriman C, Kaye JA, Chioda M, Wiltshire R, Torgersen KM, Masters ET. Systematic review of sequencing of ALK inhibitors in ALK-positive non-small-cell lung cancer. LUNG CANCER (AUCKLAND, N.Z.) 2019; 10:11-20. [PMID: 30804692 PMCID: PMC6372008 DOI: 10.2147/lctt.s179349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of this study was to understand outcomes of patients treated with ALK inhibitors, especially when ALK inhibitors are followed by other ALK inhibitors. A systematic literature review was conducted in PubMed, Embase, and Cochrane through July 17, 2017. Conference abstracts (three meetings in past 2 years) also were searched. Of 504 unique publications, 80 met inclusion criteria (47 clinical trials, 33 observational studies). Observational studies have the potential to provide information for ALK inhibitors used sequentially. Ten observational studies reported median overall survival of crizotinib-led sequences ranging from 30.3 to 63.75 months from initiation of crizotinib; 49.4-89.6 months from metastatic non-small-cell lung cancer diagnosis; and 15.5-22.0 months from initiation of the second-generation ALK inhibitor after initial crizotinib. Sequencing of ALK inhibitors may benefit patients progressing on initial ALK inhibitors.
Collapse
Affiliation(s)
- Stephanie M Barrows
- Market Access and Outcomes Strategy, RTI Health Solutions, Ann Arbor, MI, USA,
| | - Kelly Wright
- Market Access and Outcomes Strategy, RTI Health Solutions, Ann Arbor, MI, USA,
| | | | - James A Kaye
- Epidemiology and Clinical Research, RTI Health Solutions, Waltham, MA, USA
| | - Marc Chioda
- Medical Affairs, Pfizer, Inc., New York, NY, USA
| | | | | | | |
Collapse
|
26
|
Khan M, Lin J, Liao G, Tian Y, Liang Y, Li R, Liu M, Yuan Y. ALK Inhibitors in the Treatment of ALK Positive NSCLC. Front Oncol 2019; 8:557. [PMID: 30687633 PMCID: PMC6333640 DOI: 10.3389/fonc.2018.00557] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023] Open
Abstract
Background: ALK inhibitors have shown positive advance in the treatment of ALK+ NSCLC. They have achieved better results in prolonging the progression free survival and improving quality of life in comparison to chemotherapy. We have assembled the evidence related to the efficacy and safety of these agents in the treatment of ALK positive NSCLC. Materials and Methods: A comprehensive search was conducted using electronic databases of PubMed, Medline and Cochrane Library to identify the studies involving comparison of ALK inhibitors to chemotherapy and Next generation ALK inhibitors to crizotinib. PFS was the primary outcome while other outcomes like ORR, adverse events, quality of life and OS were also analyzed and compared. Hazard ratios and odds ratios obtained were analyzed using fixed effect or random effects model in Review Manager Software. Results: A total of 12 studies (n = 3,297) met the criteria for inclusion in this review and meta-analysis. ALK inhibitors including crizotinib, ceritinib and alectinib revealed significantly better PFS (HR 0.42 [0.35, 0.50; p < 0.00001]), ORR (Overall OR 6.59 [4.86, 8.94; p < 0.00001] as compared to chemotherapy in the first line as well as second line treatment settings. Intracranial response rate was better with ALK inhibitors (ceritinib and alectinib) as compared to chemotherapy OR 6.51 [2.86, 14.83; p < 0.00001]. No significant increase in grade 3 or 4 adverse events was observed with crizotinib (OR 1.21 [0.82, 1.77; p = 0.34]) or ceritinib (OR 1.49 [0.86, 2.57; p = 0.17]) when compared to chemotherapy individually. Quality of life indicators assessed were significantly improved with ALK inhibitors. Next generation agents (ceritinib, alectinib and brigatinib) revealed significant improvement in PFS (HR 0.50 [0.43, 0.57; p < 0.00001]), ORR (OR 1.57 [1.21, 2.04; p = 0.0006]) in comparison to crizotinib. Next generation agents (Alectinib and brigatinib) yielded better response intra-cranially than crizotinib in terms of objective response rate (OR 5.87 [3.49, 9.87; p < 0.00001]) and time to CNS progression (HR 0.25 [0.13, 0.46; p < 0.0001]). Alectinib by far resulted in fewer adverse events than chemotherapy or crizotinib. Conclusions: Overall ALK inhibitors are safe and effective treatment option in ALK+ non-small cell lung cancer. Of the ALK inhibitors, Next generation agents in particular alectinib and brigatinib are safer and more effective intra-cranially and can be preferred as first option.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- Department of Oncology, First affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Guixiang Liao
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yingying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Mengzhong Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Sun Yat-sen Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Sun Yat-sen Medical University, Guangzhou, China
| |
Collapse
|
27
|
Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, Chiari R, Bearz A, Lin CC, Gadgeel SM, Riely GJ, Tan EH, Seto T, James LP, Clancy JS, Abbattista A, Martini JF, Chen J, Peltz G, Thurm H, Ou SHI, Shaw AT. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol 2018; 19:1654-1667. [PMID: 30413378 DOI: 10.1016/s1470-2045(18)30649-1] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lorlatinib is a potent, brain-penetrant, third-generation inhibitor of ALK and ROS1 tyrosine kinases with broad coverage of ALK mutations. In a phase 1 study, activity was seen in patients with ALK-positive non-small-cell lung cancer, most of whom had CNS metastases and progression after ALK-directed therapy. We aimed to analyse the overall and intracranial antitumour activity of lorlatinib in patients with ALK-positive, advanced non-small-cell lung cancer. METHODS In this phase 2 study, patients with histologically or cytologically ALK-positive or ROS1-positive, advanced, non-small-cell lung cancer, with or without CNS metastases, with an Eastern Cooperative Oncology Group performance status of 0, 1, or 2, and adequate end-organ function were eligible. Patients were enrolled into six different expansion cohorts (EXP1-6) on the basis of ALK and ROS1 status and previous therapy, and were given lorlatinib 100 mg orally once daily continuously in 21-day cycles. The primary endpoint was overall and intracranial tumour response by independent central review, assessed in pooled subgroups of ALK-positive patients. Analyses of activity and safety were based on the safety analysis set (ie, all patients who received at least one dose of lorlatinib) as assessed by independent central review. Patients with measurable CNS metastases at baseline by independent central review were included in the intracranial activity analyses. In this report, we present lorlatinib activity data for the ALK-positive patients (EXP1-5 only), and safety data for all treated patients (EXP1-6). This study is ongoing and is registered with ClinicalTrials.gov, number NCT01970865. FINDINGS Between Sept 15, 2015, and Oct 3, 2016, 276 patients were enrolled: 30 who were ALK positive and treatment naive (EXP1); 59 who were ALK positive and received previous crizotinib without (n=27; EXP2) or with (n=32; EXP3A) previous chemotherapy; 28 who were ALK positive and received one previous non-crizotinib ALK tyrosine kinase inhibitor, with or without chemotherapy (EXP3B); 112 who were ALK positive with two (n=66; EXP4) or three (n=46; EXP5) previous ALK tyrosine kinase inhibitors with or without chemotherapy; and 47 who were ROS1 positive with any previous treatment (EXP6). One patient in EXP4 died before receiving lorlatinib and was excluded from the safety analysis set. In treatment-naive patients (EXP1), an objective response was achieved in 27 (90·0%; 95% CI 73·5-97·9) of 30 patients. Three patients in EXP1 had measurable baseline CNS lesions per independent central review, and objective intracranial responses were observed in two (66·7%; 95% CI 9·4-99·2). In ALK-positive patients with at least one previous ALK tyrosine kinase inhibitor (EXP2-5), objective responses were achieved in 93 (47·0%; 39·9-54·2) of 198 patients and objective intracranial response in those with measurable baseline CNS lesions in 51 (63·0%; 51·5-73·4) of 81 patients. Objective response was achieved in 41 (69·5%; 95% CI 56·1-80·8) of 59 patients who had only received previous crizotinib (EXP2-3A), nine (32·1%; 15·9-52·4) of 28 patients with one previous non-crizotinib ALK tyrosine kinase inhibitor (EXP3B), and 43 (38·7%; 29·6-48·5) of 111 patients with two or more previous ALK tyrosine kinase inhibitors (EXP4-5). Objective intracranial response was achieved in 20 (87·0%; 95% CI 66·4-97·2) of 23 patients with measurable baseline CNS lesions in EXP2-3A, five (55·6%; 21·2-86·3) of nine patients in EXP3B, and 26 (53·1%; 38·3-67·5) of 49 patients in EXP4-5. The most common treatment-related adverse events across all patients were hypercholesterolaemia (224 [81%] of 275 patients overall and 43 [16%] grade 3-4) and hypertriglyceridaemia (166 [60%] overall and 43 [16%] grade 3-4). Serious treatment-related adverse events occurred in 19 (7%) of 275 patients and seven patients (3%) permanently discontinued treatment because of treatment-related adverse events. No treatment-related deaths were reported. INTERPRETATION Consistent with its broad ALK mutational coverage and CNS penetration, lorlatinib showed substantial overall and intracranial activity both in treatment-naive patients with ALK-positive non-small-cell lung cancer, and in those who had progressed on crizotinib, second-generation ALK tyrosine kinase inhibitors, or after up to three previous ALK tyrosine kinase inhibitors. Thus, lorlatinib could represent an effective treatment option for patients with ALK-positive non-small-cell lung cancer in first-line or subsequent therapy. FUNDING Pfizer.
Collapse
Affiliation(s)
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, Villejuif, France; Department of Cancer Medicine, Paris-Sud University, Orsay, France
| | - Todd M Bauer
- Sarah Cannon Cancer Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USA
| | | | - Ross A Soo
- National University Hospital Singapore, Singapore
| | - D Ross Camidge
- Medical Oncology Department, University of Colorado, Aurora, CO, USA
| | - Rita Chiari
- Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | | | - Chia-Chi Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | - Shirish M Gadgeel
- Barbara Ann Karmanos Cancer Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brastianos PK, Ippen FM, Hafeez U, Gan HK. Emerging Gene Fusion Drivers in Primary and Metastatic Central Nervous System Malignancies: A Review of Available Evidence for Systemic Targeted Therapies. Oncologist 2018; 23:1063-1075. [PMID: 29703764 PMCID: PMC6192601 DOI: 10.1634/theoncologist.2017-0614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Primary and metastatic tumors of the central nervous system present a difficult clinical challenge, and they are a common cause of disease progression and death. For most patients, treatment consists primarily of surgery and/or radiotherapy. In recent years, systemic therapies have become available or are under investigation for patients whose tumors are driven by specific genetic alterations, and some of these targeted treatments have been associated with dramatic improvements in extracranial and intracranial disease control and survival. However, the success of other systemic therapies has been hindered by inadequate penetration of the drug into the brain parenchyma. Advances in molecular characterization of oncogenic drivers have led to the identification of new gene fusions driving oncogenesis in some of the most common sources of intracranial tumors. Systemic therapies targeting many of these alterations have been approved recently or are in clinical development, and the ability to penetrate the blood-brain barrier is now widely recognized as an important property of such drugs. We review this rapidly advancing field with a focus on recently uncovered gene fusions and brain-penetrant systemic therapies targeting them. IMPLICATIONS FOR PRACTICE Driver gene fusions involving receptor tyrosine kinases have been identified across a wide range of tumor types, including primary central nervous system (CNS) tumors and extracranial solid tumors that are associated with high rates of metastasis to the CNS (e.g., lung, breast, melanoma). This review discusses the systemic therapies that target emerging gene fusions, with a focus on brain-penetrant agents that will target the intracranial disease and, where present, also extracranial disease.
Collapse
Affiliation(s)
- Priscilla K Brastianos
- Department of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franziska Maria Ippen
- Department of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Umbreen Hafeez
- Medical Oncology, Austin Hospital, Heidelberg, Melbourne, Australia
| | - Hui K Gan
- Medical Oncology, Austin Hospital, Heidelberg, Melbourne, Australia
- La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
29
|
Efficacy of ALK inhibitors on NSCLC brain metastases: A systematic review and pooled analysis of 21 studies. PLoS One 2018; 13:e0201425. [PMID: 30052658 PMCID: PMC6063430 DOI: 10.1371/journal.pone.0201425] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background Patients with anaplastic lymphoma kinase rearranged (ALK+) non-small cell lung cancer (NSCLC) have a higher risk of developing brain metastases (BMs) than patients with other NSCLC sub-types. ALK inhibitors have activity in BMs due to ALK+ NSCLC. We performed a systematic review of the literature with the aim of assessing the efficacy of ALK inhibitors on BMs. Material and methods A systematic search of the literature was performed using the databases Pubmed, EMBASE, Web of Science, The Cochrane Library, and SCOPUS. Relevant publications reporting activity of ALK inhibitors in NSCLC BMs were retrieved. Data were pooled using the number of events/number of evaluable patients according to fixed or random effect models. Intracranial tumour response was assessed through overall response rate (ORR), disease control rate (DCR: ORR + stable disease rate), median progression-free survival (PFS), and overall survival (OS). The primary endpoint was intracranial overall response rate (IC ORR). Results A total of 1,016 patients with BMs from 21 studies were analysed. In patients receiving ALK inhibitors in the first line setting, the pooled IC ORR was 39.17% (95%CI 13.1–65.2%), while the pooled IC ORR observed in further lines was 44.2% (95%CI 33.3–55.1%). Intracranial disease control rate (IC DCR) was 70.3% and 78.2% in naïve and pre-treated patients, respectively. Patients who had not received brain radiation attained an IC ORR of 49.0%. Conclusions Based on these data, ALK inhibitors are effective in both naive and pre-treated patients with similar IC ORR and IC DCR, irrespective of the line of therapy.
Collapse
|
30
|
Ruf S, Hebart H, Hjalgrim LL, Kabickova E, Lang P, Steinbach D, Schwabe GC, Woessmann W. CNS progression during vinblastine or targeted therapies for high-risk relapsed ALK-positive anaplastic large cell lymphoma: A case series. Pediatr Blood Cancer 2018. [PMID: 29512859 DOI: 10.1002/pbc.27003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vinblastine and targeted therapies induce remissions in patients with relapsed or progressive anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL). Central nervous system (CNS) prophylaxis often is not included during re-induction in CNS-negative relapse patients. We report on five patients with progressive or early relapsed ALK-positive ALCL who developed CNS progression during re-induction with vinblastine, crizotinib, or brentuximab vedotin given for bridging to allogeneic blood stem cell transplantation. These observations suggest that CNS prophylaxis should be considered in ALCL patients suffering progression during initial therapy who receive re-induction using agents with limited CNS penetration.
Collapse
Affiliation(s)
- Stephanie Ruf
- Department of Pediatric Hematology and Oncology, Justus Liebig University Giessen, Giessen, Germany
| | - Holger Hebart
- Department of Internal Medicine, Stauferklinikum Schwaebisch Gmuend, Mutlangen, Germany
| | - Lisa Lyngsie Hjalgrim
- The Child and Youth Clinic, Department of Pediatric Hematology and Oncology, University Hospital Copenhagen, Copenhagen, Denmark
| | - Edita Kabickova
- Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Daniel Steinbach
- Department of Pediatric Hematology and Oncology, University Hospital Ulm, Ulm, Germany
| | | | - Wilhelm Woessmann
- Department of Pediatric Hematology and Oncology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
31
|
Martín C, Cardona A, Zatarain-Barrón Z, Ruiz-Patiño A, Castillo O, Oblitas G, Corrales L, Lupinacci L, Pérez M, Rojas L, González L, Chirinos L, Ortíz C, Lema M, Vargas C, Puparelli C, Carranza H, Otero J, Arrieta O. Real-World Treatment Patterns, Survival, and Prediction of CNS Progression in ALK-Positive Non-Small-Cell Lung Cancer Patients Treated with First-Line Crizotinib in Latin America Oncology Practices. Oncology 2018; 94:297-305. [DOI: 10.1159/000486862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
|
32
|
Zhou J, Zheng J, Zhang X, Zhao J, Zhu Y, Shen Q, Wang Y, Sun K, Zhang Z, Pan Z, Shen Y, Zhou J. Crizotinib in patients with anaplastic lymphoma kinase-positive advanced non-small cell lung cancer versus chemotherapy as a first-line treatment. BMC Cancer 2018; 18:10. [PMID: 29298713 PMCID: PMC5751674 DOI: 10.1186/s12885-017-3720-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
Background To compare the efficacy of crizotinib, pemetrexed and other chemotherapy regimens as a first-line treatment in patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) in real world clinical use and to evaluate the +86–571-87,236,876 predictive clinical factors of the efficacy of crizotinib. Methods The 73 patients with ALK-positive advanced NSCLC were divided into three groups based on the first-line treatment: first-line crizotinib group (1-CRZ group, n = 32); first-line platinum-based pemetrexed treatment group (1-PP group, n = 28), and first-line chemotherapy platinum-based non-pemetrexed group (N1-PP, n = 12). Sixty eight of the 73 patients received crizotinib treatment and followed up in our hospital. Differences in the objective response rate (ORR), disease control rate (DCR) and progression-free survival (PFS) were compared in the different groups. The clinical factors were evaluated to predict the efficacy of crizotinib by the Kaplan–Meier survival analysis and Cox proportional hazards model. Results The PFS, ORR, DCR were 16.1 months, 78.1% (25/32) and 100% (32/32) in the 1-CRZ group; were 6.0 months, 17.9% (5/28) and 57.2% (16/28) in the 1-PP group; and were 2.9 months, 15.4% (2/13) and 46.2% (6/13) in the N1-PP group. The PFS of the 1-CRZ group was significantly longer than that of the 1-PP group (P < 0.001) and the N1-PP group (P < 0.001). The ORR and DCR of the 1-CRZ group was significantly greater than that of the 1-PP group and the N1-PP group (all the P < 0.001). Higher Eastern Cooperative Oncology Group (ECOG) performance status score (> = 2) (HR 2.345, 95% CI 1.137–4.834, P = 0.021) and patients received crizotinib after N1-PP chemotherapy (HR 2.345, 95% CI 1.137–4.834, P = 0.021) were two factors associated with shorter PFS after crizotinib treatment. Conclusions In patients with ALK-positive NSCLC who did not receive previous treatment, crizotinib was superior to standard chemotherapy for the longer PFS and greater ORR and DCR. Higher ECOG score (> = 2) and patients received crizotinib after N1-PP chemotherapy predict poor efficacy of crizotinib.
Collapse
Affiliation(s)
- Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China.
| | - Jing Zheng
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Shangcheng District, Hangzhou, China
| | - Jing Zhao
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Shangcheng District, Hangzhou, China
| | - Yanping Zhu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China
| | - Qian Shen
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China
| | - Yuehong Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China
| | - Ke Sun
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Shangcheng District, Hangzhou, China
| | - Zeying Zhang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China
| | - Zhijie Pan
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China
| | - Yihong Shen
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qingchun Road, Xiacheng District, Hangzhou, China.
| |
Collapse
|
33
|
Abstract
Alectinib is an ATP-competitive small molecule and a second-generation inhibitor of ALK. EML4-ALK rearrangement is found in 3-5% of patients with NSCLC. The first-generation inhibitor crizotinib has changed the treatment dramatically, though most of the patients show disease progression within one year. Extra-thoracic progress, i.e., CNS metastases is common. The second-generation inhibitor alectinib has shown significant improvement in PFS and a remarkable prolongation of time to CNS progression. Alectinib has received approval as first-line therapy as well as second-line therapy after crizotinib failure. The toxicity profile is favorable compared to crizotinib and chemotherapy.
Collapse
Affiliation(s)
- M Herden
- Department of Haematology, Oncology and Stem Cell Transplantation, University Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Cornelius F Waller
- Department of Haematology, Oncology and Stem Cell Transplantation, University Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
34
|
Uemura T, Hida T. Alectinib can replace crizotinib as standard first-line therapy for ALK-positive lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:433. [PMID: 29201885 DOI: 10.21037/atm.2017.08.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takehiro Uemura
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Toyoaki Hida
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
35
|
Singh M, Bakhshinyan D, Venugopal C, Singh SK. Preclinical Modeling and Therapeutic Avenues for Cancer Metastasis to the Central Nervous System. Front Oncol 2017; 7:220. [PMID: 28971065 PMCID: PMC5609558 DOI: 10.3389/fonc.2017.00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
Metastasis is the dissemination of cells from the primary tumor to other locations within the body, and continues to be the predominant cause of death among cancer patients. Metastatic progression within the adult central nervous system is 10 times more frequent than primary brain tumors. Metastases affecting the brain parenchyma and leptomeninges are associated with grave prognosis, and even after successful control of the primary tumor the median survival is a dismal 2-3 months with treatment options typically limited to palliative care. Current treatment options for brain metastases (BM) and disseminated brain tumors are scarce, and the improvement of novel targeted therapies requires a broader understanding of the biological complexity that characterizes metastatic progression. In this review, we provide insight into patterns of BM progression and leptomeningeal spread, outlining the development of clinically relevant in vivo models and their contribution to the discovery of innovative cancer therapies. In vivo models paired with manipulation of in vitro methods have expanded the tools available for investigators to develop agents that can be used to prevent or treat metastatic disease. The knowledge gained from the use of such models can ultimately lead to the prevention of metastatic dissemination and can extend patient survival by transforming a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.
Collapse
Affiliation(s)
- Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Surgery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Qian M, Zhu B, Wang X, Liebman M. Drug resistance in ALK-positiveNon-small cell lungcancer patients. Semin Cell Dev Biol 2017; 64:150-157. [DOI: 10.1016/j.semcdb.2016.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
|
37
|
Wang P, Xiao P, Ye Y, Liu P, Han L, Dong L, She C, Yu J. Rapid response of brain metastasis to crizotinib in a patient with KLC1-ALK fusion and MET gene amplification positive non-small cell lung cancer: a case report. Cancer Biol Med 2017; 14:183-186. [PMID: 28607809 PMCID: PMC5444930 DOI: 10.20892/j.issn.2095-3941.2017.0017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) ranks as the leading cause of cancer-related death in the world. Brain metastasis (BM) is a common complication of NSCLC, with 25%–40% of patients developing BM during the course of the disease. A significant strategy of local disease control in the central nervous system is radiation therapy. With the development of precision medicine, the concept of treating lung cancer BM has gradually changed. In this case, we performed a surgical procedure to obtain enough tumor tissue for the detection of the target gene and other related experiments after the patient was informed. Finally, we found that the patient had both hepatocyte growth factor receptor (MET) gene amplification and kinesin light chain 1-anaplastic lymphoma kinase fusion (KLC1-ALK) through next-generation sequencing and showed sensitivity to the targeted therapy of crizotinib. The patient exhibited good response. Our case was successful and underwent targeted therapy with the guidance of precise diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Lei Han
- Department of Neuro-Oncology
| | - Li Dong
- Department of Neuro-Oncology
| | | | | |
Collapse
|
38
|
Hayashi H, Nakagawa K. Current evidence in support of the second-generation anaplastic lymphoma kinase ( ALK) tyrosine kinase inhibitor alectinib for the treatment of non-small cell lung cancer positive for ALK translocation. J Thorac Dis 2016; 8:E1311-E1316. [PMID: 27867615 DOI: 10.21037/jtd.2016.10.82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|