1
|
Zhao S, Du X, Zhang Y, Bai J, Meng L, Li X, Ma J, Sheng H, Fu X, Guan Y, Yi Y, Yang L, Xia X, Yi X, Tan X, Zhou C. Development and application of a whole transcriptome sequencing assay for the detection of gene fusions in clinical cancer specimens. BMC Cancer 2025; 25:842. [PMID: 40340691 PMCID: PMC12063385 DOI: 10.1186/s12885-025-14186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Gene fusions are an important driver of cancer and require rapid and accurate detection to guide clinical decisions. However, the performance characteristics of whole transcriptome sequencing (WTS) for the detection of gene fusions have not been thoroughly investigated. METHODS We developed a novel WTS-based assay for the detection of gene fusions, MET exon 14 skipping and EGFR VIII alterations in clinical samples. RESULTS We defined a DV200 value ≥ 30% as the threshold for RNA degradation, RNA input, fusion expression and number of mapped reads greater than 100 ng, 40 copies/ng and 80 Mb for optimal sensitivity of the WTS assay. Our assay successfully identified 62 out of 63 known gene fusions, achieving a sensitivity of 98.4%. The specificity of the assay was 100%, as no fusions were detected in the 21 fusion-negative samples. Good repeatability and reproducibility were observed in replicates, except for the TPM3::NTRK1 fusion, which was expressed below the threshold. Of all fusions identified in 101 NSCLC samples, 68.9% (20/29) were potentially actionable, compared to 20% in pan-cancer samples. In addition to actionable fusions, we also identified many fusions with potential diagnostic and prognostic value in pan-cancer. CONCLUSIONS We have developed a novel WTS assay with high sensitivity, specificity, repeatability and reproducibility. This assay can identify potentially actionable gene fusions and provides valuable insights into the fusion landscape in various cancers, which may help guide treatment decisions and aid in diagnosis and prognosis.
Collapse
Affiliation(s)
- Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinhua Du
- Geneplus-Beijing Institute, Beijing, China
| | - Yan Zhang
- Geneplus-Beijing Institute, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing, China
- College of Future Technology, Peking University, Beijing, China
| | - Lu Meng
- Geneplus-Beijing Institute, Beijing, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Jiaxin Ma
- Geneplus-Beijing Institute, Beijing, China
| | - HeYu Sheng
- Geneplus-Beijing Institute, Beijing, China
| | - Xiaorui Fu
- Geneplus-Beijing Institute, Beijing, China
| | | | - Yuting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Ling Yang
- Geneplus-Beijing Institute, Beijing, China
| | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Xinxin Tan
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, Guangdong, China.
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Shanghai, China.
| |
Collapse
|
2
|
Tian G, Nie J, Dai L, Hu W, Zhang J, Wu D, Ma X, Chen X, Han S, Han J, Zhang Z, Long J, Zhao X, Fang J. Real-world analysis of the efficacy and safety of lorlatinib in ALK-positive non-small cell lung cancer patients in China. Front Oncol 2025; 15:1577607. [PMID: 40376587 PMCID: PMC12078162 DOI: 10.3389/fonc.2025.1577607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction Lorlatinib, a third-generation ALK inhibitor, has demonstrated strong efficacy in treating advanced ALK-positive NSCLC, though real-world data, particularly from China, are limited. This study evaluates the real-world efficacy and safety of lorlatinib in Chinese patients with advanced ALK-positive NSCLC. Materials and methods This retrospective study analyzed 65 patients with advanced ALK-positive NSCLC who received lorlatinib at Peking University Cancer Hospital between September 2017 and August 2024. The study assessed the overall response rate (ORR), progression-free survival (PFS), and safety outcomes, comparing first-line treatment to subsequent treatments after prior ALK inhibitor exposure. Results The real-world ORR (rwORR) for all patients was 49.2%, with a real-world disease control rate (rwDCR) of 92.3%. In the first-line treatment group (n=8), lorlatinib showed an ORR of 100%, and no patients experienced progressive disease (PD) during a median follow-up of 9 months. The mPFS for the entire cohort was 37.83 months, with the median OS (mOS) not reached (NR, 95% CI: NR-NR). Patients who had received one prior ALK inhibitor had a mPFS of 49.73 months, while those who had received two or more prior ALK inhibitors had a mPFS of 12.17 months. A statistically significant difference in mOS was found between patients with one prior ALKi and those with two or more prior ALKis (p = 0.032). Lorlatinib demonstrated strong intracranial efficacy, with a 45.2% intracranial ORR in patients with brain metastases. The safety profile was consistent with previous reports, with the most common AEs being hyperlipidemia. However, the incidence of severe AEs was manageable with dose adjustments and supportive treatments. Conclusions Lorlatinib demonstrates strong efficacy and manageable safety, especially in first-line treatment of advanced ALK-positive NSCLC, supporting its role as an effective treatment option.
Collapse
Affiliation(s)
- Guangming Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Nie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ling Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weiheng Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Di Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangjuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoling Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sen Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jindi Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziran Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jieran Long
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinliang Zhao
- Department of Medical Genetics, School of Basic Sciences, Peking University, Beijing, China
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Thoracic Oncology Department II, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
3
|
Naulleau G, Birsen G, Mansuet-Lupo A, Leroy K, Wislez M. [ALK rearrangement in non-small cell lung cancer]. Bull Cancer 2025; 112:3S86-3S94. [PMID: 40155081 DOI: 10.1016/s0007-4551(25)00161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The discovery of ALK gene rearrangement in 3 to 5% of non-small cell lung carcinomas has revolutionized our understanding and therapeutic approach of these cancers. This oncogenic driver is associated with specific clinical and biological features is associated with specific clinical and biological features, mainly affecting young and never-smoker patients, with a particular tropism for brain metastases. The development of ALK tyrosine kinase inhibitors has transformed patient outcomes, with remarkable efficacy of latest-generation molecules, particularly in controlling brain metastases. However, the emergence of complex resistance mechanisms, whether ALK-dependent or ALK-independent, remains a major challenge. The comprehensive understanding of these resistance mechanisms now guides the development of next-generation inhibitors and innovative therapeutic strategies, paving the way for increasingly personalized precision medicine.
Collapse
Affiliation(s)
- Gaspard Naulleau
- Service de Pneumologie, Unité d'Oncologie Thoracique, Hôpital Cochin, AP-HP. Centre, Université Paris Cité, Paris, France
| | - Gary Birsen
- Service de Pneumologie, Unité d'Oncologie Thoracique, Hôpital Cochin, AP-HP. Centre, Université Paris Cité, Paris, France.
| | - Audrey Mansuet-Lupo
- Service d'Anatomie Pathologique, Hôpital Cochin, AP-HP.Centre, Université Paris Cité, Paris, France; Équipe « Inflammation, Complément et Cancer », INSERM U1138, Centre de Recherche des Cordeliers, Université Paris Cité, Paris, France
| | - Karen Leroy
- Service de Biochimie, Unité d'Oncogénétique Somatique Théranostique et Pharmacogénétique, Hôpital Européen Georges Pompidou, AP-HP.Centre, Université Paris Cité, Paris, France
| | - Marie Wislez
- Service de Pneumologie, Unité d'Oncologie Thoracique, Hôpital Cochin, AP-HP. Centre, Université Paris Cité, Paris, France; Équipe « Inflammation, Complément et Cancer », INSERM U1138, Centre de Recherche des Cordeliers, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Zhang Y, Cheng J, Jin P, Lv L, Yu H, Yang C, Zhang S. Comprehensive profiling of T-cell exhaustion signatures and establishment of a prognostic model in lung adenocarcinoma through integrated RNA-sequencing analysis. Technol Health Care 2025; 33:848-862. [PMID: 40105167 DOI: 10.1177/09287329241290937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundT-cell exhaustion (TEX) in the tumor microenvironment causes immunotherapy resistance and poor prognosis.ObjectiveWe used bioinformatics to identify crucial TEX genes associated with the molecular classification and risk stratification of lung adenocarcinoma (LUAD).MethodsBulk RNA sequencing data of patients with LUAD were acquired from open sources. LUAD samples exhibited abnormal TEX gene expression, compared with normal samples. TEX gene-based prognostic signature was established and validated in both TCGA and GSE50081 datasets. Immune correlation and risk group-related functional analyses were also performed.ResultsEight optimized TEX genes were identified using the LASSO algorithm: ERG, BTK, IKZF3, DCC, EML4, MET, LATS2, and LOX. Several crucial Kyoto encyclopedia of genes and genomes (KEGG) pathways were identified, such as T-cell receptor signaling, toll-like receptor signaling, leukocytes trans-endothelial migration, Fcγ R-mediated phagocytosis, and GnRH signaling. Eight TEX gene-based risk score models were established and validated. Patients with high-risk scores had worse prognosis (P < 0.001). A nomogram model comprising three independent clinical factors showed good predictive efficacy for survival rate in patients with LUAD. Correlation analysis revealed that the TEX signature significantly correlated with immune cell infiltration, tumor purity, stromal cells, estimate, and immunophenotype score.ConclusionTEX-derived risk score is a promising and effective prognostic factor that is closely correlated with the immune microenvironment and estimated score. TEX signature may be a useful clinical diagnostic tool for evaluating pre-immune efficacy in patients with LUAD.
Collapse
Affiliation(s)
- Yingying Zhang
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Jiaqi Cheng
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Pingyan Jin
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Lizheng Lv
- Department of Thoracic Surgery, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Haijuan Yu
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Chunxiao Yang
- Oncology Department, Hulunbuir Second People's Hospital, Zhalantun, Hulunbuir, China
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Feng J, Hueniken K, Fan ZJ, Zhan LJ, Faour E, Corke L, Alghabban A, Leighl NB, Liu G, Bradbury PA, Sacher A, Eng L, Stockley TL, Tsao MS, Shepherd FA. Prognostic and predictive effects of TP53 co-mutation in patients with non-small cell lung cancer with rare treatable driver mutations. Lung Cancer 2025; 204:108452. [PMID: 40373457 DOI: 10.1016/j.lungcan.2025.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND TP53 mutations (TP53-MUT) are common in NSCLC and have been reported as predictive of response and prognostic of poor outcome in EGFR-mutant NSCLC. The impact of TP53-MUT in NSCLCs with rarer driver mutations and approved targeted treatments is unclear. METHODS Records of 436 patients were reviewed and associations between TP53 status, demographics, and outcomes (overall response [ORR], survival [OS] and progression-free survival [PFS], and incidence of brain metastases [BM]), were investigated. RESULTS TP53-MUTs were found in 184/436 (42.4 %) with a significant demographic difference noted in stage distribution (p = 0.044). Median (m)OS was significantly shorter in TP53-MUT at 23.3 m (95 %CI 19.6-30.7) v 66.4 m (CI 55.0-not reached [NR]) (stage adjusted harzard ratio [aHR] 2.62, CI 1.98-3.46, p < 0.001). mRFS in early stage trended towards worse outcomes in TP53-MUT (p = 0.142). mPFS on first line treatment was shorter in TP53-MUT 5.0 m (CI 3.4-7.6) v 10.0 m (CI 6.1-13.5) (aHR 1.64, CI 1.23-2.19, p < 0.001). ORR to first instance of targeted treatment was 62 % v 70 % (TP53-MUT v WT) with more progressive disease as best response 24 % v 11 % (p = 0.0177). TP53-MT had a non-significant trend towards more BM at any point (46 % v 34 % p = 0.063) and a higher cumulative incidence of BM in stage I-III patients (Gray's test p < 0.001). When comparing disruptive versus non-disruptive TP53 mutations, there were no significant differences in demographics or survival outcomes. CONCLUSIONS Co-occurring TP53 variants with rare driver mutations are predictive of a poor response to targeted treatments and associated with shorter OS and PFS in NSCLC.
Collapse
Affiliation(s)
- Jamie Feng
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | | | - Zhen Jason Fan
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Luna Jia Zhan
- Department of Biostatistics, PMCC, UHN, Toronto, ON, Canada
| | - Elizabeth Faour
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lucy Corke
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Abdulrahman Alghabban
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Natasha B Leighl
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Geoffrey Liu
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Penelope A Bradbury
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Adrian Sacher
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lawson Eng
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tracy L Stockley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Ming Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Frances A Shepherd
- Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Huang X, Zhou L, Xia J, Jian H, Liu J, Huang Y, Chen Q. Ensartinib for EML4-ALK-positive lung adenocarcinoma with comorbid mutations in TP53, EGFR, and ERBB2: a case report. Front Oncol 2025; 15:1520287. [PMID: 40052122 PMCID: PMC11883823 DOI: 10.3389/fonc.2025.1520287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
Background In non-small cell lung cancer (NSCLC), anaplastic lymphoma kinase (ALK) gene rearrangements are commonly detected in lung adenocarcinoma. ALK-positive (ALK+) patients may occasionally exhibit concurrent genetic alterations that potentially impact prognosis. New therapeutic strategies are needed for ALK+ NSCLC patients with multiple simultaneous gene mutations. Case presentation A 58-year-old man was diagnosed with lung adenocarcinoma (stage IVB, T4N3M1c) with an echinoderm microtubule-associated protein-like 4-ALK+ (EML4-ALK+) rearrangement, harboring tumor protein 53 (TP53), epidermal growth factor receptor (EGFR), and receptor tyrosine-protein kinase erbB-2 (ERBB2) mutations. After three cycles of chemotherapy, the patient developed intolerance. Subsequently, ensartinib (225 mg daily) was administered orally on April 14, 2021. After 3 months of ensartinib treatment, the patient achieved a partial response and reached stable disease at six months, which sustained for 30 months till April 8, 2024, with grade 1 rash and no brain metastases. Currently, the patient remains on ensartinib treatment, without disease progression. Conclusion This case demonstrates the potential for ensartinib in the treatment of EML4-ALK+ lung adenocarcinoma with multiple gene mutations. Further investigation through clinical trials is needed to evaluate the safety and efficacy of this targeted therapy.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Department of Oncology and Hematology, The Second People's Hospital of
Foshan, Foshan, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Luo T, Ji W, Guo W, Zhang D, Liang J, Lv Y. Rare dual MYH9-ROS1 fusion variants in a patient with lung adenocarcinoma: A case report. Medicine (Baltimore) 2025; 104:e41350. [PMID: 39854762 PMCID: PMC11771589 DOI: 10.1097/md.0000000000041350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
RATIONALE ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported. Here, we report an even rare case with coexistence of short and long variants MYH9-ROS1 fusions at the RNA level accompanied by TP53 mutation, insensitively to antitumor therapy. PATIENT CONCERNS AND DIAGNOSIS A 37-year-old nonsmoking man was diagnosed with stage IVB (T4N3M1c) lung adenocarcinoma. The tumor was identified to have MYH9 (exon 37)-ROS1 (exon 35) rearrangement with TP53 mutation at the DNA level by DNA-NGS analysis of lymph node biopsy tissue in March 2023. Interestingly, it was transcribed into coexistence of short and long variants MYH9-ROS1 (M36, R36) and MYH9-ROS1 (M36, R35) fusions at RNA level by RNA-NGS analysis. INTERVENTIONS First-line tyrosine kinase inhibitors crizotinib was given firstly, showing partial response (PR) but significant progression within 3 months. To determine the resistance mechanism to crizotinib and the genetic variation, DNA-NGS and RNA-NGS were performed again on a new biopsy tissue of lymph node in August 2023. OUTCOMES Rare coexistence of short and long variants of MYH9-ROS1 fusions was identified again, but the typical mechanisms of crizotinib resistance were not observed. Switching to lorlatinib resulted in brief PR about 2 months. Subsequent 2 courses of system chemotherapy provided short-term PR less than 2 months. The patient died with a total survival of 10 months. LESSONS We must pay attention to rare dual short and long variants of the MYH9-ROS1 fusions, it may affect the efficacy of ROS1-tyrosine kinase inhibitors targeted therapy.
Collapse
Affiliation(s)
- Tian Luo
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wentao Ji
- Department of Respiratory and Critical Care Medicine, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province, China
| | - Weihong Guo
- Department of Respiratory and Critical Care Medicine, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province, China
| | - Dandan Zhang
- Department of Respiratory and Critical Care Medicine, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province, China
| | - Jianping Liang
- Department of Respiratory and Critical Care Medicine, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province, China
| | - Yanhua Lv
- Department of Respiratory and Critical Care Medicine, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province, China
| |
Collapse
|
8
|
Bearz A, Bertoli E, Stanzione B, De Carlo E, Del Conte A, Bortolot M, Torresan S, Berto E, Da Ros V, Pelin GM, Fassetta K, Rossetto S, Spina M. EML4-ALK: Update on ALK Inhibitors. Int J Mol Sci 2025; 26:308. [PMID: 39796163 PMCID: PMC11719670 DOI: 10.3390/ijms26010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Since the discovery of the first-generation ALK inhibitor, many other tyrosine kinase inhibitors have been demonstrated to be effective in the first line or further lines of treatment in patients with advanced non-small cell lung cancer with EMLA4-ALK translocation. This review traces the main milestones in the treatment of ALK-positive metastatic patients and the survival outcomes in the first-line and second-line settings with different ALK inhibitors. It presents the two options available for first-line treatment at the present time: sequencing different ALK inhibitors versus using the most potent inhibitor in front-line treatment. The efficacy outcomes of different ALK inhibitors in the first-line setting; the molecular profile of the disease, including mutation resistances and ALK variants and co-mutations; and patients' co-morbidities and inhibitor toxicities should be taken into account to address the choice of the first-line treatment, as suggested in this review.
Collapse
Affiliation(s)
- Alessandra Bearz
- Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (A.D.C.); (G.M.P.); (S.R.)
| | - Elisa Bertoli
- Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (A.D.C.); (G.M.P.); (S.R.)
| | - Brigida Stanzione
- Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy; (B.S.); (E.D.C.); (E.B.); (V.D.R.); (K.F.); (M.S.)
| | - Elisa De Carlo
- Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy; (B.S.); (E.D.C.); (E.B.); (V.D.R.); (K.F.); (M.S.)
| | - Alessandro Del Conte
- Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (A.D.C.); (G.M.P.); (S.R.)
| | - Martina Bortolot
- Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy; (B.S.); (E.D.C.); (E.B.); (V.D.R.); (K.F.); (M.S.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Sara Torresan
- Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy; (B.S.); (E.D.C.); (E.B.); (V.D.R.); (K.F.); (M.S.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Eleonora Berto
- Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy; (B.S.); (E.D.C.); (E.B.); (V.D.R.); (K.F.); (M.S.)
| | - Valentina Da Ros
- Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy; (B.S.); (E.D.C.); (E.B.); (V.D.R.); (K.F.); (M.S.)
| | - Giulia Maria Pelin
- Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (A.D.C.); (G.M.P.); (S.R.)
| | - Kelly Fassetta
- Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy; (B.S.); (E.D.C.); (E.B.); (V.D.R.); (K.F.); (M.S.)
| | - Silvia Rossetto
- Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (E.B.); (A.D.C.); (G.M.P.); (S.R.)
| | - Michele Spina
- Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy; (B.S.); (E.D.C.); (E.B.); (V.D.R.); (K.F.); (M.S.)
| |
Collapse
|
9
|
Chan SWS, Zeng J, Young J, Barghout SH, Al-Agha F, Raptis S, Brown MC, Liu G, Juergens R, Jao K. A Poor Prognostic ALK Phenotype: A Review of Molecular Markers of Poor Prognosis in ALK Rearranged Nonsmall Cell Lung Cancer. Clin Lung Cancer 2025; 26:e22-e32.e2. [PMID: 39578168 DOI: 10.1016/j.cllc.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Patients with nonsmall cell lung cancer with anaplastic lymphoma kinase (ALK) rearrangements derive a significant and durable clinical benefit from tyrosine kinase inhibitors (TKIs). However, early progression/death on treatment occurs in a subset of patients, which we term the poor prognostic ALK phenotype. This review aims to summarize the known molecular mechanisms that underlie this phenotype with a focus on variant 3 and TP53 mutations. METHODS A scoping review was performed using scientific databases such as Ovid Medline, Ovid Embase, and Cochrane Central Register of Controlled Trials. Studies included molecular markers of poor prognosis, with a focus on TP53 mutations, variant 3 re-arrangements, and poor clinical response to TKIs. RESULTS Of 4371 studies screened, 108 were included. Numerous studies implicated a negative prognostic role of variant 3, likely mediated through the acquisition of on-target resistance mutations and TP53 mutations which are associated with greater chromosomal instability and mutational burden. Co-occurring variant 3 and TP53 mutations were associated with even worse survival. Other mediators of early resistance development include aberrations in cell cycle regulators and mutations in cell signaling pathways. Comprehensive genomic analysis from first-line TKI clinical trial data was unable to identify a singular genomic signature that underlies the poor prognostic phenotype but implicated a combination of pathways. CONCLUSIONS This scoping review highlights that the poor prognostic ALK phenotype is likely composed of a heterogeneous variety of genomic factors. There remains an unmet need for a genomic assay to integrate these various molecular markers to predict this ALK phenotype.
Collapse
Affiliation(s)
- Sze Wah Samuel Chan
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Joy Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jack Young
- Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Faisal Al-Agha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stavroula Raptis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rosalyn Juergens
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Kevin Jao
- Division of Medical Oncology and Hematology, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Lin JJ, Horan JC, Tangpeerachaikul A, Swalduz A, Valdivia A, Johnson ML, Besse B, Camidge DR, Fujino T, Yoda S, Nguyen-Phuong L, Mizuta H, Bigot L, Nobre C, Lee JB, Yu MR, Mente S, Sun Y, Kohl NE, Porter JR, Shair MD, Zhu VW, Felip E, Cho BC, Friboulet L, Hata AN, Pelish HE, Drilon A. NVL-655 Is a Selective and Brain-Penetrant Inhibitor of Diverse ALK-Mutant Oncoproteins, Including Lorlatinib-Resistant Compound Mutations. Cancer Discov 2024; 14:2367-2386. [PMID: 39269178 PMCID: PMC11609626 DOI: 10.1158/2159-8290.cd-24-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
Three generations of tyrosine kinase inhibitors (TKI) have been approved for anaplastic lymphoma kinase (ALK) fusion-positive non-small cell lung cancer. However, none address the combined need for broad resistance coverage, brain activity, and avoidance of clinically dose-limiting TRK inhibition. NVL-655 is a rationally designed TKI with >50-fold selectivity for ALK over 96% of the kinome tested. In vitro, NVL-655 inhibits diverse ALK fusions, activating alterations, and resistance mutations, showing ≥100-fold improved potency against ALKG1202R single and compound mutations over approved ALK TKIs. In vivo, it induces regression across 12 tumor models, including intracranial and patient-derived xenografts. NVL-655 inhibits ALK over TRK with 22-fold to >874-fold selectivity. These preclinical findings are supported by three case studies from an ongoing first-in-human phase I/II trial of NVL-655 which demonstrate preliminary proof-of-concept clinical activity in heavily pretreated patients with ALK fusion-positive non-small cell lung cancer, including in patients with brain metastases and single or compound ALK resistance mutations. Significance: By combining broad activity against single and compound ALK resistance mutations, brain penetrance, and selectivity, NVL-655 addresses key limitations of currently approved ALK inhibitors and has the potential to represent a distinct advancement as a fourth-generation inhibitor for patients with ALK-driven cancers.
Collapse
Affiliation(s)
- Jessica J. Lin
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | | | | | - Augusto Valdivia
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Benjamin Besse
- Paris-Saclay University, Gustave Roussy Cancer Center, Villejuif, France
| | - D. Ross Camidge
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Toshio Fujino
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Satoshi Yoda
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Hayato Mizuta
- Paris-Saclay University, Gustave Roussy Cancer Center, Villejuif, France
| | - Ludovic Bigot
- Paris-Saclay University, Gustave Roussy Cancer Center, Villejuif, France
| | - Catline Nobre
- Paris-Saclay University, Gustave Roussy Cancer Center, Villejuif, France
| | - Jii Bum Lee
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ra Yu
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scot Mente
- Nuvalent, Inc., Cambridge, Massachusetts
| | - Yuting Sun
- Nuvalent, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Enriqueta Felip
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Byoung Chul Cho
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Luc Friboulet
- Paris-Saclay University, Gustave Roussy Cancer Center, Villejuif, France
| | - Aaron N. Hata
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Du M, Liu C, Chen L, Li Z, Zhang S, Meng R. Concomitant ALK Fusion and TP53/EGFR Mutation Lead to Adverse Prognostic Outcome. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70041. [PMID: 39681089 PMCID: PMC11649250 DOI: 10.1111/crj.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Lung cancer treatment has evolved at the molecular level. Detecting the presence of driver genes in lung cancer fundamentally alters the choice of therapeutic regimens and the outcome of this disease. ALK fusion mutation is one of the most important mutations in nonsmall cell lung cancer (NSCLC). Also, it often has other coexisting mutation types. TP53 is the most common coexisting mutation type, whereas the EGFR/ALK coexisting mutation type is extremely rare. There is still no definite conclusion about the impact of the multimutation and best treatment options for NSCLC patients with advanced multimutation. In this study, we report three cases of NSCLC with ALK fusion mutations as well as ALK combined with TP53 mutations and ALK combined with EGFR mutations. Combining cases from our oncology center and previous literature, we found that NSCLC patients with coexisting ALK fusion mutations and other mutations have poorer response to targeted therapy and poorer prognosis, and we also compared the efficacy rates of various types of coexisting mutations for different treatment regimens. Therefore, this review can help to evaluate the prognosis of NSCLC patients with coexisting mutations and the efficacy of targeted therapies and to find more favorable treatment options for patients with this type of coexisting mutations.
Collapse
Affiliation(s)
- Mingyuan Du
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Institute of Radiation Oncology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cuiwei Liu
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Institute of Radiation Oncology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Institute of Radiation Oncology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Institute of Radiation Oncology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Institute of Radiation Oncology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Institute of Radiation Oncology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Fujimura T, Furugaki K, Mizuta H, Muraoka S, Nishio M, Adachi J, Uchibori K, Miyauchi E, Hayashi H, Katayama R, Yoshiura S. Targeting ErbB and tankyrase1/2 prevent the emergence of drug-tolerant persister cells in ALK-positive lung cancer. NPJ Precis Oncol 2024; 8:264. [PMID: 39551860 PMCID: PMC11570601 DOI: 10.1038/s41698-024-00757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Targeting the drug tolerant persister (DTP) state in cancer cells should prevent further development of resistance mechanisms. This study explored combination therapies to inhibit alectinib-induced DTP cell formation from anaplastic lymphoma kinase-positive non-small cell lung cancer (ALK + NSCLC) patient-derived cells. After drug-screening 3114 compounds, pan-HER inhibitors (ErbB pathway) and tankyrase1/2 inhibitors (Wnt/β-catenin signaling) emerged as top candidates to inhibit alectinib-induced DTP cells growth. We confirmed knockdown of both TNKS1/2 in DTP cells recovered the sensitivity to alectinib. Further, our study suggested knockdown of TNKS1/2 increased stability of Axin1/2, which induced β-catenin degradation and decreased its nuclear translocation, thereby suppressing transcription of antiapoptotic and proliferation-related genes (survivin, c-MYC). Targeting both pathways with alectinib+pan-HER inhibitor and alectinib+TNKS1/2 inhibitor suppressed alectinib-induced DTP cells, and the triple combination almost completely prevented the appearance of DTP cells. In conclusion, combination with ALK-TKI, pan-HER and TNKS1/2 inhibitors has the potential to prevent the emergence of DTP in ALK + NSCLC.
Collapse
Affiliation(s)
- Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Koh Furugaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Hayato Mizuta
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Makoto Nishio
- Department of Respiratory Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ken Uchibori
- Department of Respiratory Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Sayama, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Yokohama, Japan.
| |
Collapse
|
13
|
Zakharova G, Suntsova M, Rabushko E, Mohammad T, Drobyshev A, Seryakov A, Poddubskaya E, Moisseev A, Smirnova A, Sorokin M, Tkachev V, Simonov A, Guguchkin E, Karpulevich E, Buzdin A. A New Approach of Detecting ALK Fusion Oncogenes by RNA Sequencing Exon Coverage Analysis. Cancers (Basel) 2024; 16:3851. [PMID: 39594806 PMCID: PMC11592821 DOI: 10.3390/cancers16223851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND In clinical practice, various methods are used to identify ALK gene rearrangements in tumor samples, ranging from "classic" techniques, such as IHC, FISH, and RT-qPCR, to more advanced highly multiplexed approaches, such as NanoString technology and NGS panels. Each of these methods has its own advantages and disadvantages, but they share the drawback of detecting only a restricted (although sometimes quite extensive) set of preselected biomarkers. At the same time, whole transcriptome sequencing (WTS, RNAseq) can, in principle, be used to detect gene fusions while simultaneously analyzing an incomparably wide range of tumor characteristics. However, WTS is not widely used in practice due to purely analytical limitations and the high complexity of bioinformatic analysis, which requires considerable expertise. In particular, methods to detect gene fusions in RNAseq data rely on the identification of chimeric reads. However, the typically low number of true fusion reads in RNAseq limits its sensitivity. In a previous study, we observed asymmetry in the RNAseq exon coverage of the 3' partners of some fusion transcripts. In this study, we conducted a comprehensive evaluation of the accuracy of ALK fusion detection through an analysis of differences in the coverage of its tyrosine kinase exons. METHODS A total of 906 human cancer biosamples were subjected to analysis using experimental RNAseq data, with the objective of determining the extent of asymmetry in ALK coverage. A total of 50 samples were analyzed, comprising 13 samples with predicted ALK fusions and 37 samples without predicted ALK fusions. These samples were assessed by targeted sequencing with two NGS panels that were specifically designed to detect fusion transcripts (the TruSight RNA Fusion Panel and the OncoFu Elite panel). RESULTS ALK fusions were confirmed in 11 out of the 13 predicted cases, with an overall accuracy of 96% (sensitivity 100%, specificity 94.9%). Two discordant cases exhibited low ALK coverage depth, which could be addressed algorithmically to enhance the accuracy of the results. It was also important to consider read strand specificity due to the presence of antisense transcripts involving parts of ALK. In a limited patient sample undergoing ALK-targeted therapy, the algorithm successfully predicted treatment efficacy. CONCLUSIONS RNAseq exon coverage analysis can effectively detect ALK rearrangements.
Collapse
Affiliation(s)
- Galina Zakharova
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
| | - Maria Suntsova
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
- Endocrinology Research Center, 117292 Moscow, Russia;
| | - Elizaveta Rabushko
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
| | | | - Alexey Drobyshev
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
| | | | - Elena Poddubskaya
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
- Clinical Center Vitamed, 121309 Moscow, Russia
| | - Alexey Moisseev
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
- Oncobox LLC, 119991 Moscow, Russia;
| | - Anastasia Smirnova
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
- Oncobox LLC, 119991 Moscow, Russia;
| | - Maxim Sorokin
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
- Oncobox LLC, 119991 Moscow, Russia;
| | | | - Alexander Simonov
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
| | - Egor Guguchkin
- Institute for System Programming of RAS, 109004 Moscow, Russia; (E.G.); (E.K.)
| | - Evgeny Karpulevich
- Institute for System Programming of RAS, 109004 Moscow, Russia; (E.G.); (E.K.)
| | - Anton Buzdin
- Institute for Personalized Oncology, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (G.Z.); (M.S.); (E.R.); (A.D.); (E.P.); (A.M.); (A.S.); (M.S.); (A.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
14
|
Parikh K, Dimou A, Leventakos K, Mansfield AS, Shanshal M, Wan Y, Lin HM, Vincent S, Elliott J, Bonta IR. Impact of EML4-ALK Variants and Co-Occurring TP53 Mutations on Duration of First-Line ALK Tyrosine Kinase Inhibitor Treatment and Overall Survival in ALK Fusion-Positive NSCLC: Real-World Outcomes From the GuardantINFORM database. J Thorac Oncol 2024; 19:1539-1549. [PMID: 39019326 DOI: 10.1016/j.jtho.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
INTRODUCTION Tyrosine kinase inhibitors (TKIs) are first-line treatment options for ALK-positive (ALK+) NSCLC. Factors such as variant allele frequencies (VAFs), EML4-ALK fusion variant, and concurrent TP53 mutations (TP53mt) in circulating tumor DNA (ctDNA) may affect treatment outcomes. We evaluated their effects on time to discontinuation (TTD) of first-line treatment with next-generation ALK TKIs in a real-world setting. METHODS Adults with advanced or metastatic NSCLC and ctDNA-detected ALK fusion who received first-line next-generation ALK TKI monotherapy were identified in GuardantINFORM. Effects of ALK fusion VAF, EML4-ALK variants, and TP53mt detection on TTD were evaluated. RESULTS A total of 307 patients with ALK fusion in baseline ctDNA received first-line alectinib (n = 280), brigatinib (n = 15), lorlatinib (n = 9), or ceritinib (n = 3); 150 patients (49%) had ALK-fusion VAF greater than or equal to 1%. Among 232 patients with EML4-ALK fusions (v1, 50%; v3, 36%), TP53mt co-occurred with v1 in 42 (18%) and v3 in 32 (14%). Patients with VAF less than 1% versus greater than or equal to 1% had a median TTD of 32.2 (95% confidence interval [CI]: 20.7-not estimable [NE]) versus 14.7 months (10.4-19.9; hazard ratio [HR] = 1.57 [95% CI: 1.09-2.26]; p = 0.0146). Median TTD was 13.1 (9.5-19.9) versus 27.6 months (17.3-NE) in patients with versus without TP53mt detected (HR = 1.53 [1.07-2.19]; p = 0.0202) and 20.3 (14.4-NE) versus 11.5 months (7.4-31.1) in patients with v1 versus v3 (HR = 1.29 [0.83-2.01]; p = 0.2641). Patients with TP53mt and v3 had a median TTD of 7.4 months (95% CI: 4.2-31.1). CONCLUSION High ctDNA VAF, EML4-ALK v3, and TP53mt were associated with early discontinuation of first-line ALK TKIs.
Collapse
Affiliation(s)
- Kaushal Parikh
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | | | | | | | | | - Yin Wan
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Huamao M Lin
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Sylvie Vincent
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | | | | |
Collapse
|
15
|
Yang Q, Sun K, Gao T, Gao Y, Yang Y, Li Z, Zuo D. SIRT1 silencing promotes EMT and Crizotinib resistance by regulating autophagy through AMPK/mTOR/S6K signaling pathway in EML4-ALK L1196M and EML4-ALK G1202R mutant non-small cell lung cancer cells. Mol Carcinog 2024; 63:2133-2144. [PMID: 39078281 DOI: 10.1002/mc.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
Most EML4-ALK rearrangement non-small cell lung cancer (NSCLC) patients inevitably develop acquired drug resistance after treatment. The main mechanism of drug resistance is the acquired secondary mutation of ALK kinase domain. L1196M and G1202R are classical mutation sites. We urgently need to understand the underlying molecular mechanism of drug resistance to study the therapeutic targets of mutant drug-resistant NSCLC cells. The silent information regulator sirtuin1 (SIRT1) can regulate the normal energy metabolism of cells, but its role in cancer is still unclear. In our report, it was found that the SIRT1 in EML4-ALK G1202R and EML4-ALK L1196M mutant drug-resistant cells was downregulated compared with EML4-ALK NSCLC cells. The high expression of SIRT1 was related to the longer survival time of patients with lung cancer. Activation of SIRT1 induced autophagy and suppressed the invasion and migration of mutant cells. Further experiments indicated that the activation of SIRT1 inhibited the phosphorylation level of mTOR and S6K by upregulating the expression of AMPK, thus activating autophagy. SIRT1 can significantly enhanced the sensitivity of mutant cells to crizotinib, improved its ability to promote apoptosis of mutant cells, and inhibited cell proliferation. In conclusion, SIRT1 is a key regulator of drug resistant in EML4-ALK L1196M and G1202R mutant cells. SIRT1 may be a novel therapeutic target for EML4-ALK drug resistant NSCLC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Keyan Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Tianyu Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Ying Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| |
Collapse
|
16
|
Zheng ZR, Wu JJ, Chiang CJ, Chen TI, Chen KC, Chu CH, Lin SY, Yu SL, Lee WC, Liu TW, Chang GC. Taiwan Nationwide Study of First-Line ALK-TKI Therapy in ALK-Positive Lung Adenocarcinoma. Target Oncol 2024; 19:941-955. [PMID: 39392550 DOI: 10.1007/s11523-024-01104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND The clinical outcomes of patients with anaplastic lymphoma kinase-positive (ALK+) advanced lung adenocarcinoma vary according to real-world data. OBJECTIVE In this study, we aimed to investigate the treatment discontinuation (TTD) and overall survival (OS) of patients with ALK+ advanced lung adenocarcinoma treated with first-line ALK-TKIs in Taiwan. PATIENTS AND METHODS This retrospective study evaluated all advanced lung adenocarcinoma patients registered in the National Taiwan Cancer Registry from 2017 to 2020 who had ALK rearrangement and received ALK-TKI treatment, using data from Taiwan's National Health Insurance Research Database (NHIRD). The TKI treatment sequences were classified into first generation (G1: crizotinib), second generation (G2: ceritinib, alectinib, brigatinib), and third generation (G3: lorlatinib). RESULTS A total of 587 patients were analyzed, with a median age of 60.0 years, 91 (15.5%) aged ≥ 74 years, 293 (49.9%) female, 397 (67.6%) never smoked, and 534 (91.0%) with stage IV disease. Patients who received next-generation ALK-TKIs during the treatment course had longer median time to ALK-TKI TTD and OS. The TTD of the G1, G1+2, G1+2+3, G2, and G2+3 groups was 7.5 (5.4-11.1), 40.6 (29.4-not calculated (NC)), 50.3 (41.3-NC), 34.3 (29.2-43.0), and 36.3 (22.4-NC) months, respectively (p < 0.001). The median OS of the patients in the G1, G1+2, G1+2+3, G2, and G2+3 groups was 10.6 (7.5-14.6), not reached (NR) (NC-NC), NR (NC-NC), 43.0 (36.3-NC), and NR (30.3-NC) months, respectively (p < 0.001). Compared with treatment with crizotinib alone, the multivariate analysis revealed that treatment with next-generation TKIs was independently associated with longer TTD (G1+2 (hazard ratio (HR), 0.24; 95% CI 0.17-0.33; p < 0.001), G1+2+3 or G1+3 (HR, 0.17; 95% confidence interval (CI), 0.10-0.28; p < 0.001), G2 (HR, 0.26; 95% CI 0.19-0.36; p < 0.001), and G2+3 (HR, 0.25; 95% CI 0.14-0.44; p < 0.001)) and median OS (G12 (HR, 0.24; 95% CI 0.17-0.35; p < 0.001), G1+2+3 or G1+3 (HR, 0.09; 95% CI 0.04-0.21; p < 0.001), G2 (HR, 0.22; 95% CI 0.15-0.31; p < 0.001), and G2+3 (HR, 0.20; 95% CI 0.10-0.42; p < 0.001)). CONCLUSIONS For patients with ALK+ NSCLC, treatments including next-generation ALK-TKIs were independently associated with longer survival outcomes.
Collapse
Affiliation(s)
- Zhe-Rong Zheng
- Institute of Medicine, Chung Shan Medical University, No. 110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, No.110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
| | - Jia-Jun Wu
- Institute of Medicine, Chung Shan Medical University, No. 110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, No.110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No.17, Xu-Zhou Road, Taipei, 100, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
| | - Tzu-I Chen
- School of Medicine, College of Medicine, Xinzhuang Dist., Fu-Jen Catholic University, No. 510, Zhongzheng Rd, New Taipei City, 242062, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Kun-Chieh Chen
- Institute of Medicine, Chung Shan Medical University, No. 110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, No.110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
| | - Cheng-Hsiang Chu
- Institute of Medicine, Chung Shan Medical University, No. 110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, No.110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
| | - Sheng-Yi Lin
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, No. 110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1, Changde St., Taipei, 10048, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No.17, Xu-Zhou Road, Taipei, 100, Taiwan
- Taiwan Cancer Registry, Taipei, Taiwan
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsang-Wu Liu
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Gee-Chen Chang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, No.110, Sect. 1, Jianguo N. Road, Taichung, 402, Taiwan.
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
17
|
Bearz A, Schiappacassi M. EML4-ALK Variants and Co-Occurring TP53 Mutations in a Real-World Treatment Setting: Do They Matter? J Thorac Oncol 2024; 19:1489-1491. [PMID: 39510702 DOI: 10.1016/j.jtho.2024.09.1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Alessandra Bearz
- Medical Oncology Department, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy.
| | - Monica Schiappacassi
- Molecular Oncology Unit, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
18
|
Zhu L, Zhao Y, Zhang Y, Liu Z, Ma W, Guo Y, Wang Q, Guo Y, Lv H, Zhao M. Small intestinal metastasis in a lung adenocarcinoma patient with concurrent EML4-ALK V3 and TP53 mutations after distinct responses to tyrosine kinase inhibitors: A case report. Heliyon 2024; 10:e38839. [PMID: 39430483 PMCID: PMC11489313 DOI: 10.1016/j.heliyon.2024.e38839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Background Although anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) have improved the survival rates of lung cancer patients with ALK fusion mutations, their effectiveness varies significantly across different subtypes. We report a case of small intestine metastasis in a lung adenocarcinoma patient with co-occurring echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variant 3 (V3) and tumor protein 53 (TP53) mutations after distinct responses to ALK-TKIs. Case presentation A 45-year-old woman was diagnosed with stage IV lung adenocarcinoma with brain metastasis. Next-generation sequencing revealed EML4-ALK V3 and TP53 co-mutations. After the initial treatment with ensartinib, the patient experienced intracranial disease progression. Radiation therapy (RT) was then administered. Despite good response to RT for the intracranial disease, the primary tumor enlarged. Thus, the patient was treated with oral ensartinib concurrent with chemotherapy, with a partial response in both the primary tumor and intracranial metastases. However, after three cycles of treatment, the patient discontinued chemotherapy because of acute kidney injury. Subsequent thoracic RT resulted in a partial response of the primary tumor; however, new brain and bone metastases were detected, prompting a switch to lorlatinib. The patient developed symptoms of intestinal obstruction 14 months after the initial diagnosis. Surgical intervention revealed a poorly differentiated metastatic lung adenocarcinoma of the upper jejunum. Genetic testing confirmed EML4-ALK V3 and TP53 co-mutations and high expression of programmed cell death-ligand 1. Despite pembrolizumab treatment, the patient's condition deteriorated, and she passed away. Conclusion We reported a rare case of small intestinal metastasis in a lung adenocarcinoma patient with concurrent EML4-ALK V3/TP53 mutations after distinct responses to ALK-TKIs in different lesions. Our findings revealed heterogeneity in ALK mutations and responses to ALK-TKIs, necessitating the close monitoring of genetic subtypes and associated mutations for tailored treatment strategies. Maintaining a heightened awareness of potential intestinal metastasis and vigilance in monitoring intestinal symptoms and abdominal metastases are pivotal for managing advanced lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | - Yongqian Zhang
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhai Liu
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wenhua Ma
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ying Guo
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Qian Wang
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Guo
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hengxu Lv
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Min Zhao
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
19
|
Fu Y, Liu Q, Wang X, Sun L, Han X, Meng X. Clinical difference on the variants and co-mutation in a Chinese cohort with ALK-positive advanced non-small cell lung cancer. Clin Transl Oncol 2024; 26:2513-2521. [PMID: 38637357 DOI: 10.1007/s12094-024-03481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Despite the generally favourable prognoses observed in patients with ALK-positive non-small cell lung cancer (NSCLC), there remains significant variability in clinical outcomes. The objective of this study is to enhance patient stratification by examining both the specific sites of gene fusion and the presence of co-occurring mutations. METHODS We collected retrospective clinical and pathological data on ALK-positive patients with locally advanced or metastatic disease. ALK fusion variants and concomitant mutations were identified through next-generation sequencing technology. We then assessed treatment efficacy via tumor response and survival metrics. RESULTS This study included a total of 59 patients, with 49 harboring echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusions and 10 presenting with rare fusions. The median follow-up period was 33 months. Clinical outcomes between non-EML4-ALK and EML4-ALK patients were comparable. Among the EML4-ALK cohort, patients with longer variants (v1, v2, v8) demonstrated superior progression-free survival (PFS) (median PFS: 34 months vs. 11 months; hazard ratio [HR]: 2.28; P = 0.05) compared to those with shorter variants (v3, v5). Furthermore, patients treated with second-generation ALK inhibitors (ALKi) displayed a progression-free survival advantage (median PFS: not reached [NR] vs. 9 months; HR: 5.37; P = 0.013). Baseline TP53 co-mutation were linked with a substantially shorter OS (median OS,37 months vs. NR; HR 2.74; P = 0.047). CONCLUSIONS In ALK+ NSCLC, longer EML4-ALK variants correlate with improved prognosis and enhanced response to second-generation ALKi, while TP53 co-mutations indicate a negative prognosis.
Collapse
Affiliation(s)
- Ying Fu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Liu
- Department of Oncology, Changqing District People's Hospital, Jinan, Shandong, China
| | - Xiaohan Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liangchao Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
20
|
Zhang H, Zhang Y, Zhu Y, Dong T, Liu Z. Understanding the treatment response and resistance to targeted therapies in non-small cell lung cancer: clinical insights and perspectives. Front Oncol 2024; 14:1387345. [PMID: 39055566 PMCID: PMC11269125 DOI: 10.3389/fonc.2024.1387345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Lung cancer remains the leading cause of mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with a generally poor prognosis. In recent years, advances in targeted therapy and sequencing technology have brought significant improvement in the therapeutic outcomes of patients with advanced NSCLC. Targeted inhibitors directed against specific mutated or rearranged oncogenes, such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1(ROS1) among others, exhibit promising anti-tumor activity. Unfortunately, some patients develop acquired resistance and disease progression soon after initial remission. Despite the continuous development of new drugs and strategies to overcome drug resistance, it is still a major challenge in the treatment of NSCLC. The landscape of targeted therapy for NSCLC is evolving rapidly in response to the pace of scientific research. This study aimed to provide a comprehensive review of tumor target antigens and agents related to targeted therapy in NSCLC.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Dong
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Zheng Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Yokota E, Iwai M, Ishida Y, Yukawa T, Matsubara M, Naomoto Y, Fujiwara H, Monobe Y, Haisa M, Takigawa N, Fukazawa T, Yamatsuji T. Transforming tumoroids derived from ALK-positive pulmonary adenocarcinoma to squamous cell carcinoma in vivo. Hum Cell 2024; 37:1132-1140. [PMID: 38829559 PMCID: PMC11194197 DOI: 10.1007/s13577-024-01085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Approximately 3-5% of non-small cell lung cancers (NSCLC) harbor ALK fusion genes and may be responsive to anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors. There are only a few reports on cell lines with EML4-ALK variant 3 (v3) and tumoroids that can be subject to long-term culture (> 3 months). In this study, we established tumoroids (PDT-LUAD#119) from a patient with lung cancer harboring EML4-ALK that could be cultured for 12 months. Whole-exome sequencing and RNA sequencing analyses revealed TP53 mutations and an EML4-ALK v3 mutation. PDT-LUAD#119 lung tumoroids were sensitive to the ALK tyrosine kinase inhibitors (ALK TKIs) crizotinib, alectinib, entrectinib, and lorlatinib, similar to NCI-H3122 cells harboring EML4-ALK variant 1 (v1). Unexpectedly, clear squamous cell carcinoma and solid adenocarcinoma were observed in xenografts from PDT-LUAD#119 lung tumoroids, indicating adenosquamous carcinoma. Immunostaining revealed that the squamous cell carcinoma was ALK positive, suggesting a squamous transformation of the adenocarcinoma. Besides providing a novel cancer model to support basic research on ALK-positive lung cancer, PDT-LUAD#119 lung tumoroids will help elucidate the pathogenesis of adenosquamous carcinoma.
Collapse
Affiliation(s)
- Etsuko Yokota
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Miki Iwai
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
| | - Yuta Ishida
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Takuro Yukawa
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Masaki Matsubara
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Hideyo Fujiwara
- Department of Pathology, Kawasaki Medical School, Okayama, Japan
| | - Yasumasa Monobe
- Department of Pathology, Kawasaki Medical School, Okayama, Japan
- Okayama Medical Laboratories Co., Ltd., Kurashiki, Japan
| | - Minoru Haisa
- Kawasaki Medical School General Medical Center, Okayama, Japan
- Department of Medical Care Work, Kawasaki College of Health Professions, Okayama, Japan
- Kawasaki Geriatric Medical Center, Okayama, Japan
| | - Nagio Takigawa
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan.
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan.
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, 700-8505, Japan
| |
Collapse
|
22
|
Imyanitov EN, Preobrazhenskaya EV, Orlov SV. Current status of molecular diagnostics for lung cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:742-765. [PMID: 38966170 PMCID: PMC11220319 DOI: 10.37349/etat.2024.00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 07/06/2024] Open
Abstract
The management of lung cancer (LC) requires the analysis of a diverse spectrum of molecular targets, including kinase activating mutations in EGFR, ERBB2 (HER2), BRAF and MET oncogenes, KRAS G12C substitutions, and ALK, ROS1, RET and NTRK1-3 gene fusions. Administration of immune checkpoint inhibitors (ICIs) is based on the immunohistochemical (IHC) analysis of PD-L1 expression and determination of tumor mutation burden (TMB). Clinical characteristics of the patients, particularly age, gender and smoking history, significantly influence the probability of finding the above targets: for example, LC in young patients is characterized by high frequency of kinase gene rearrangements, while heavy smokers often have KRAS G12C mutations and/or high TMB. Proper selection of first-line therapy influences overall treatment outcomes, therefore, the majority of these tests need to be completed within no more than 10 working days. Activating events in MAPK signaling pathway are mutually exclusive, hence, fast single-gene testing remains an option for some laboratories. RNA next-generation sequencing (NGS) is capable of detecting the entire repertoire of druggable gene alterations, therefore it is gradually becoming a dominating technology in LC molecular diagnosis.
Collapse
Affiliation(s)
- Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Clinical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
- I.V. Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia
- Department of Clinical Genetics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Sergey V. Orlov
- I.V. Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
- Department of Oncology, I.P. Pavlov St.-Petersburg State Medical University, 197022 St.-Petersburg, Russia
| |
Collapse
|
23
|
Zhang W, Zhang Y, Zhou L, Tan N, Bai Y, Xing S. Primary lung adenocarcinoma with breast metastasis harboring the EML4‑ALK fusion: A case report. Oncol Lett 2024; 27:276. [PMID: 38690101 PMCID: PMC11058636 DOI: 10.3892/ol.2024.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Pulmonary adenocarcinoma with breast metastasis is rarely encountered in clinical practice. Therefore, precise clinical diagnosis of patients with this disease is crucial when selecting subsequent treatment modalities and for overall prognosis assessment. The present study reported on a case of lung cancer with breast metastasis harboring the EML4-ALK fusion. The patient was initially diagnosed with triple-negative breast cancer with lung metastasis, but comprehensive breast cancer treatment was ineffective. Reevaluation of the patient's condition via lung biopsy revealed primary lung adenocarcinoma. In addition, the results of genetic testing revealed the EML4-ALK fusion protein in both lung and breast tissues. After treatment with ALK inhibitors, the patient's symptoms improved rapidly. This case highlights the prolonged diagnostic journey from presentation with a breast mass to ultimately being diagnosed with lung cancer with breast metastasis, underscoring the critical need for heightened awareness among clinicians regarding the possibility of rare metastatic patterns. Timely identification of lung cancer with breast metastasis, facilitated by comprehensive genetic testing, not only refines treatment decisions but also emphasizes the importance of interdisciplinary collaboration in navigating complex clinical scenarios. Such insight contributes to the ongoing development of personalized cancer care that guides clinicians toward more effective and tailored therapeutic strategies for patients with similar diagnostic challenges.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lei Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Na Tan
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yuju Bai
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shiyun Xing
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
24
|
Zheng J, Wang T, Yang Y, Huang J, Feng J, Zhuang W, Chen J, Zhao J, Zhong W, Zhao Y, Zhang Y, Song Y, Hu Y, Yu Z, Gong Y, Chen Y, Ye F, Zhang S, Cao L, Fan Y, Wu G, Guo Y, Zhou C, Ma K, Fang J, Feng W, Liu Y, Zheng Z, Li G, Wang H, Cang S, Wu N, Song W, Liu X, Zhao S, Ding L, Selvaggi G, Wang Y, Xiao S, Wang Q, Shen Z, Zhou J, Zhou J, Zhang L. Updated overall survival and circulating tumor DNA analysis of ensartinib for crizotinib-refractory ALK-positive NSCLC from a phase II study. Cancer Commun (Lond) 2024; 44:455-468. [PMID: 38421881 PMCID: PMC11024683 DOI: 10.1002/cac2.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/13/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The initial phase II stuty (NCT03215693) demonstrated that ensartinib has shown clinical activity in patients with advanced crizotinib-refractory, anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). Herein, we reported the updated data on overall survival (OS) and molecular profiling from the initial phase II study. METHODS In this study, 180 patients received 225 mg of ensartinib orally once daily until disease progression, death or withdrawal. OS was estimated by Kaplan‒Meier methods with two-sided 95% confidence intervals (CIs). Next-generation sequencing was employed to explore prognostic biomarkers based on plasma samples collected at baseline and after initiating ensartinib. Circulating tumor DNA (ctDNA) was detected to dynamically monitor the genomic alternations during treatment and indicate the existence of molecular residual disease, facilitating improvement of clinical management. RESULTS At the data cut-off date (August 31, 2022), with a median follow-up time of 53.2 months, 97 of 180 (53.9%) patients had died. The median OS was 42.8 months (95% CI: 29.3-53.2 months). A total of 333 plasma samples from 168 patients were included for ctDNA analysis. An inferior OS correlated significantly with baseline ALK or tumor protein 53 (TP53) mutation. In addition, patients with concurrent TP53 mutations had shorter OS than those without concurrent TP53 mutations. High ctDNA levels evaluated by variant allele frequency (VAF) and haploid genome equivalents per milliliter of plasma (hGE/mL) at baseline were associated with poor OS. Additionally, patients with ctDNA clearance at 6 weeks and slow ascent growth had dramatically longer OS than those with ctDNA residual and fast ascent growth, respectively. Furthermore, patients who had a lower tumor burden, as evaluated by the diameter of target lesions, had a longer OS. Multivariate Cox regression analysis further uncovered the independent prognostic values of bone metastases, higher hGE, and elevated ALK mutation abundance at 6 weeks. CONCLUSION Ensartinib led to a favorable OS in patients with advanced, crizotinib-resistant, and ALK-positive NSCLC. Quantification of ctDNA levels also provided valuable prognostic information for risk stratification.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Respiratory DiseaseThoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Provincial Clinical Research Center for Respiratory DiseaseHangzhouZhejiangP. R. China
| | - Tao Wang
- Hangzhou Repugene Technology Co., LtdHangzhouZhejiangP. R. China
| | - Yunpeng Yang
- Department of Medical OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Jie Huang
- Department of Medical OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Jifeng Feng
- Department of Medical OncologyJiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Wu Zhuang
- Department of Thoracic OncologyFujian Provincial Cancer HospitalFujian Medical University Cancer HospitalFuzhouFujianP. R. China
| | - Jianhua Chen
- Department of Medical Oncology‐ChestHunan Cancer HospitalChangshaHunanP. R. China
| | - Jun Zhao
- Department of Thoracic OncologyBeijing Cancer HospitalBeijingP. R. China
| | - Wei Zhong
- Department of Pulmonary MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingP. R. China
| | - Yanqiu Zhao
- Respiratory Department of Internal MedicineHenan Provincial Cancer HospitalAffiliated Cancer Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Yiping Zhang
- Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouZhejiangP. R. China
| | - Yong Song
- Division of Respiratory MedicineJinling HospitalNanjing University School of MedicineNanjingJiangsuP. R. China
| | - Yi Hu
- Department of OncologyChinese People's Liberation Army (PLA) General HospitalBeijingP. R. China
| | - Zhuang Yu
- Department of OncologyThe Affiliated Hospital of Qingdao UniversityQingdaoShandongP. R. China
| | - Youling Gong
- Department of Thoracic OncologyCancer Center, West China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yuan Chen
- Department of OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Feng Ye
- Department of Medical OncologyCancer HospitalThe First Affiliated Hospital of Xiamen UniversitySchool of Medicine, Xiamen University, Teaching Hospital of Fujian Medical UniversityXiamenFujianP. R. China
| | - Shucai Zhang
- Department of Medical OncologyBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingP. R. China
| | - Lejie Cao
- Respiratory MedicineThe First Affiliated Hospital of the University of Science and Technology of ChinaAnhui Provincial HospitalHefeiAnhuiP. R. China
| | - Yun Fan
- Thoracic Medical OncologyZhejiang Cancer HospitalHangzhouZhejiangP. R. China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Yubiao Guo
- Pulmonary & Critical Care Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Chengzhi Zhou
- Respiratory Medicine DepartmentState Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Kewei Ma
- Cancer Center, The First Hospital of Jilin UniversityChangchunJilinP. R. China
| | - Jian Fang
- Department of Thoracic OncologyBeijing Cancer HospitalBeijingP. R. China
| | - Weineng Feng
- Department of Head and Neck and Thoracic Medical OncologyThe First People's Hospital of FoshanFoshanGuangdongP. R. China
| | - Yunpeng Liu
- Oncology MedicineThe First Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhendong Zheng
- Oncology DepartmentGeneral Hospital of Northern Theater CommandShenyangLiaoningP. R. China
| | - Gaofeng Li
- 2nd Department of Thoracic SurgeryYunnan Cancer HospitalKunmingYunnanP. R. China
| | - Huijie Wang
- Medical OncologyFudan University Shanghai Cancer CenterShanghaiShanghaiP. R. China
| | - Shundong Cang
- Medical OncologyHenan Province Peoples HospitalZhengzhouHenanP. R. China
| | - Ning Wu
- PET‐CT Center & Department of Diagnostic RadiologyNational Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingP. R. China
| | - Wei Song
- Department of RadiologyPeking Union Medical College HospitalChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingP. R. China
| | - Xiaoqing Liu
- Department of Pulmonary OncologyThe Fifth Medical Centre Chinese PLA General HospitalBeijingP. R. China
| | - Shijun Zhao
- Department of Diagnostic RadiologyNational Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingP. R. China
| | - Lieming Ding
- Betta Pharmaceuticals Co., LtdHangzhouZhejiangP. R. China
| | | | - Yang Wang
- Betta Pharmaceuticals Co., LtdHangzhouZhejiangP. R. China
| | - Shanshan Xiao
- Hangzhou Repugene Technology Co., LtdHangzhouZhejiangP. R. China
| | - Qian Wang
- Hangzhou Repugene Technology Co., LtdHangzhouZhejiangP. R. China
| | - Zhilin Shen
- Betta Pharmaceuticals Co., LtdHangzhouZhejiangP. R. China
| | - Jianya Zhou
- Department of Respiratory DiseaseThoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Provincial Clinical Research Center for Respiratory DiseaseHangzhouZhejiangP. R. China
| | - Jianying Zhou
- Department of Respiratory DiseaseThoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Provincial Clinical Research Center for Respiratory DiseaseHangzhouZhejiangP. R. China
| | - Li Zhang
- Department of Medical OncologySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdongP. R. China
| |
Collapse
|
25
|
Lee JB, Nagasaka M. Translational Research in ROS1-Positive NSCLC: Are We Moving Out of the Six Blind Men and the Elephant Stage? J Thorac Oncol 2024; 19:525-527. [PMID: 38582542 DOI: 10.1016/j.jtho.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/08/2024]
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Misako Nagasaka
- Division of Hematology-Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, California; Chao Family Comprehensive Cancer Center, Orange, California
| |
Collapse
|
26
|
Nakazawa M, Harada G, Ghanem P, Bubie A, Kiedrowski LA, Murray JC, Marrone KA, Scott SC, Houseknecht S, Falcon CJ, Evans P, Feliciano J, Hann CL, Ettinger DS, Smith KN, Anagnostou V, Forde PM, Brahmer JR, Levy B, Drilon A, Lam VK. Impact of Tumor-intrinsic Molecular Features on Survival and Acquired Tyrosine Kinase Inhibitor Resistance in ALK-positive NSCLC. CANCER RESEARCH COMMUNICATIONS 2024; 4:786-795. [PMID: 38407352 PMCID: PMC10939006 DOI: 10.1158/2767-9764.crc-24-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
While tyrosine kinase inhibitors (TKI) have shown remarkable efficacy in anaplastic lymphoma kinase (ALK) fusion-positive advanced non-small cell lung cancer (NSCLC), clinical outcomes vary and acquired resistance remains a significant challenge. We conducted a retrospective study of patients with ALK-positive NSCLC who had clinico-genomic data independently collected from two academic institutions (n = 309). This was paired with a large-scale genomic cohort of patients with ALK-positive NSCLC who underwent liquid biopsies (n = 1,118). Somatic co-mutations in TP53 and loss-of-function alterations in CDKN2A/B were most commonly identified (24.1% and 22.5%, respectively in the clinical cohort), each of which was independently associated with inferior overall survival (HR: 2.58; 95% confidence interval, CI: 1.62-4.09 and HR: 1.93; 95% CI: 1.17-3.17, respectively). Tumors harboring EML4-ALK variant 3 (v3) were not associated with specific co-alterations but were more likely to develop ALK resistance mutations, particularly G1202R and I1171N (OR: 4.11; P < 0.001 and OR: 2.94; P = 0.026, respectively), and had inferior progression-free survival on first-line TKI (HR: 1.52; 95% CI: 1.03-2.25). Non-v3 tumors were associated with L1196M resistance mutation (OR: 4.63; P < 0.001). EML4-ALK v3 and somatic co-alterations in TP53 and CDKN2A/B are associated with inferior clinical outcomes. v3 status is also associated with specific patterns of clinically important ALK resistance mutations. These tumor-intrinsic features may inform rational selection and optimization of first-line and consolidative therapy. SIGNIFICANCE In a large-scale, contemporary cohort of patients with advanced ALK-positive NSCLC, we evaluated molecular characteristics and their impact on acquired resistance mutations and clinical outcomes. Our findings that certain ALK variants and co-mutations are associated with differential survival and specific TKI-relevant resistance patterns highlight potential molecular underpinnings of the heterogenous response to ALK TKIs and nominate biomarkers that may inform patient selection for first-line and consolidative therapies.
Collapse
Affiliation(s)
- Mari Nakazawa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guilherme Harada
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical Center, New York, New York
| | - Paola Ghanem
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - Joseph C. Murray
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristen A. Marrone
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan C. Scott
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Houseknecht
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina J. Falcon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical Center, New York, New York
| | - Patrick Evans
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical Center, New York, New York
| | - Josephine Feliciano
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine L. Hann
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David S. Ettinger
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kellie N. Smith
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valsamo Anagnostou
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M. Forde
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie R. Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin Levy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Vincent K. Lam
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Lee ATM, Ou SHI. Overcoming Central β-Sheet #6 (Cβ6) ALK Mutation (L1256F), TP53 Mutations and Short Forms of EML4-ALK v3/b and v5a/b Splice Variants are the Unmet Need That a Re-Imagined 5th-Generation (5G) ALK TKI Must Deliver. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:19-27. [PMID: 38433979 PMCID: PMC10908247 DOI: 10.2147/lctt.s446878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Despite the development and approval of seven anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) spanning over three "generations" since the discovery of ALK fusion positive (ALK+) non-small cell lung cancer (NSCLC), there remains intrinsic and acquired resistances to these approved TKIs. Currently, a fourth-generation (4G) ALK TKI, NVL-655, is being developed to attack some of the unmet needs such as compound resistance mutations in cis. However, EML4-ALK variant 3 and TP53 mutations are intrinsic genomic alterations that negatively modulate efficacy of ALK TKIs. Potentially, in the shifting landscape where lorlatinib should be the first-line ALK TKI of choice based on the CROWN trial, the central β-sheet #6 (Cβ6) mutation ALK L1256F will be the potential acquired resistance mutation to lorlatinib which may be resistant to current ALK TKIs. Here we opine on what additional capacities a putative fifth-generation (5G) ALK TKI will need to possess if it can be achieved in one single molecule. We propose randomized trial schemas targeting some of the intrinsic resistance mechanisms that will lead to approval of a prototypic fifth-generation (5G) ALK TKI and actually be beneficial to ALK+ NSCLC patients rather than just design a positive pivotal superiority trial for the sole purpose of drug approval.
Collapse
Affiliation(s)
- Alexandria T M Lee
- University of California Irvine School of Medicine, Department of Medicine, Orange, CA, USA
| | - Sai-Hong Ignatius Ou
- University of California Irvine School of Medicine, Department of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| |
Collapse
|
28
|
Faya Castillo JE, Zapata Dongo RJ, Wong Chero PA, Infante Varillas SF. Mitoxantrone and abacavir: An ALK protein-targeted in silico proposal for the treatment of non-small cell lung cancer. PLoS One 2024; 19:e0295966. [PMID: 38319906 PMCID: PMC10846704 DOI: 10.1371/journal.pone.0295966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a type of lung cancer associated with translocation of the EML4 and ALK genes on the short arm of chromosome 2. This leads to the development of an aberrant protein kinase with a deregulated catalytic domain, the cdALK+. Currently, different ALK inhibitors (iALKs) have been proposed to treat ALK+ NSCLC patients. However, the recent resistance to iALKs stimulates the exploration of new iALKs for NSCLC. Here, we describe an in silico approach to finding FDA-approved drugs that can be used by pharmacological repositioning as iALK. We used homology modelling to obtain a structural model of cdALK+ protein and then performed molecular docking and molecular dynamics of the complex cdALK+-iALKs to generate the pharmacophore model. The pharmacophore was used to identify potential iALKs from FDA-approved drugs library by ligand-based virtual screening. Four pharmacophores with different atomistic characteristics were generated, resulting in six drugs that satisfied the proposed atomistic positions and coupled at the ATP-binding site. Mitoxantrone, riboflavin and abacavir exhibit the best interaction energies with 228.29, 165.40 and 133.48 KJoul/mol respectively. In addition, the special literature proposed these drugs for other types of diseases due to pharmacological repositioning. This study proposes FDA-approved drugs with ALK inhibitory characteristics. Moreover, we identified pharmacophores sites that can be tested with other pharmacological libraries.
Collapse
Affiliation(s)
- Juan Enrique Faya Castillo
- Departamento de Ciencias Básicas, Bioética y la Vida Humana, Facultad de Medicina Humana, Universidad de Piura, Lima, Perú
| | - Richard Junior Zapata Dongo
- Departamento de Ciencias Básicas, Bioética y la Vida Humana, Facultad de Medicina Humana, Universidad de Piura, Lima, Perú
| | - Paolo Alberto Wong Chero
- Departamento de Ciencias de la Medicina, Facultad de Medicina Humana, Universidad de Piura, Lima, Perú
| | | |
Collapse
|
29
|
Guan J, Chuang TP, Vikström A, Palmer RH, Hallberg B. ALK F1174S mutation impairs ALK kinase activity in EML4-ALK variant 1 and sensitizes EML4-ALK variant 3 to crizotinib. Front Oncol 2024; 13:1281510. [PMID: 38264745 PMCID: PMC10803553 DOI: 10.3389/fonc.2023.1281510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Objective To assess the influence of F1174S mutation on kinase activity and drug sensitivity of the echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) fusion (EML4-ALK) variants 1 and 3. Methods We constructed mammalian expression plasmids of both wildtype and F1174 mutant EML4-ALK variants 1 and 3, and then characterized them with cell models by performing immunoblotting, neurite outgrowth assay, focus formation assay as well as protein stability assay. Drug sensitivity to ALK tyrosine kinase inhibitors was also compared between wildtype and F1174 mutant EML4-ALK fusions. In addition, we characterized the effect of different F1174 kinase domain mutations in the context of EML4-ALK fusions. Results In contrast to the oncogenic ALK-F1174S mutation that has been reported to be activating in the context of full-length ALK in neuroblastoma, EML4-ALK (F1174S) variant 1 exhibits impaired kinase activity leading to loss of oncogenicity. Furthermore, unlike the previously reported F1174C/L/V mutations, mutation of F1174 to S sensitizes EML4-ALK variants 3a and 3b to crizotinib. Conclusion These findings highlight the complexity of drug selection when treating patients harboring resistance mutations and suggest that the F1174S mutation in EML4-ALK variant 1 is likely not a potent oncogenic driver. Additional oncogenic driver or other resistance mechanisms should be considered in the case of EML4-ALK variant 1 with F1174S mutation.
Collapse
Affiliation(s)
- Jikui Guan
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Vikström
- Department of Pulmonary Medicine, Linköping University Hospital, Linköping, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Chen L, Chu D, Li W, Zhang H. Non-small cell lung cancer patient with a rare UGP2-ALK fusion protein responded well to alectinib: a case report. Anticancer Drugs 2024; 35:97-100. [PMID: 37450292 PMCID: PMC10720821 DOI: 10.1097/cad.0000000000001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Several rare anaplastic lymphoma kinase (ALK) fusions have been identified in patients with non-small cell lung cancer (NSCLC); however, their treatment is not currently uniform. alectinib has been commonly used to treat rare ALK fusions in patients with NSCLC. This is the first study to report the occurrence of a uridine diphosphate-glucose pyrophosphorylase 2 (UGP2)-ALK fusion in a patient with NSCLC. The patient, who was hospitalized because of shortness of breath lasting 20 days, showed hydrothorax of the left lung under a computerized tomography chest scan. Pathological histology revealed lung adenocarcinoma in the patient. The UGP2-ALK mutation was found by next-generation sequencing. Subsequently, the patient was administered alectinib, and thereafter, the tumor lesion was observed to gradually shrink over the follow-up period. Progression-free survival reached 10 months as of the follow-up date, with no adverse events detected. This case report provides valuable insights into the clinical management of NSCLC patients with UGP2-ALK fusions. Moreover, alectinib is confirmed to be an appropriate therapeutic agent for such patients.
Collapse
Affiliation(s)
- Liulin Chen
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Daifang Chu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Wangping Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Haitao Zhang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
31
|
Su Y, Yi J, Zhang Y, Leng D, Huang X, Shi X, Zhang Y. EML4-ALK fusion protein in Lung cancer cells enhances venous thrombogenicity through the pERK1/2-AP-1-tissue factor axis. J Thromb Thrombolysis 2024; 57:67-81. [PMID: 37940761 PMCID: PMC10830642 DOI: 10.1007/s11239-023-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Accumulating evidence links the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement to venous thromboembolism (VTE) in non-small cell lung cancer (NSCLC) patients. However, the corresponding mechanisms remain unclear. METHOD High-throughput sequencing analysis of H3122 human ALK-positive NSCLC cells treated with ALK inhibitor/ dimethyl sulfoxide (DMSO) was performed to identify coagulation-associated differential genes between EML4-ALK fusion protein inhibited cells and control cells. Sequentially, we confirmed its expression in NSCLC patients' tissues and in the plasma of a subcutaneous xenograft mouse model. An inferior vena cava (IVC) ligation model was used to assess clot formation potential. Additionally, pathways involved in tissue factor (TF) regulation were explored in ALK-positive cell lines H3122 and H2228. Statistical significance was determined by Student t-test and one-way ANOVA using SPSS. RESULTS Sequencing analysis identified a significant downregulation of TF after inhibiting EML4-ALK fusion protein activity in H3122 cells. In clinical NSCLC cases, TF expression was increased especially in ALK-positive NSCLC tissues. Meanwhile, H3122 and H2228 with high TF expression exhibited shorter plasma clotting time and higher TF activity versus ALK-negative H1299 and A549 in cell culture supernatant. Mice bearing H2228 tumor showed a higher concentration of tumor-derived TF and TF activity in plasma and the highest adjusted IVC clot weights. Limiting EML4-ALK protein phosphorylation downregulated extracellular regulated protein kinases 1/2 (ERK1/2)-activating the protein-1(AP-1) signaling pathway and thus attenuated TF expression. CONCLUSION EML4-ALK fusion protein may enhance venous thrombogenicity by regulating coagulation factor TF expression. There was potential involvement of the pERK1/2-AP-1 pathway in this process.
Collapse
Affiliation(s)
- Yanping Su
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiawen Yi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dong Leng
- Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoxi Huang
- Basic Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Yuhui Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
32
|
Ramazi S, Dadzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm (Beijing) 2023; 4:e401. [PMID: 37901797 PMCID: PMC10600507 DOI: 10.1002/mco2.401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Lung cancer is indeed a major cause of cancer-related deaths worldwide. The development of tumors involves a complex interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, and microRNA expression, play a crucial role in this process. Changes in DNAm patterns can lead to the silencing of important genes involved in cellular functions, contributing to the development and progression of lung cancer. MicroRNAs and exosomes have also emerged as reliable biomarkers for lung cancer. They can provide valuable information about early diagnosis and treatment assessment. In particular, abnormal hypermethylation of gene promoters and its effects on tumorigenesis, as well as its roles in the Wnt signaling pathway, have been extensively studied. Epigenetic drugs have shown promise in the treatment of lung cancer. These drugs target the aberrant epigenetic modifications that are involved in the development and progression of the disease. Several factors have been identified as drug targets in non-small cell lung cancer. Recently, combination therapy has been discussed as a successful strategy for overcoming drug resistance. Overall, understanding the role of epigenetic mechanisms and their targeting through drugs is an important area of research in lung cancer treatment.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Sahafnejad
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
33
|
Yang JCH, Liu G, Lu S, He J, Burotto M, Ahn MJ, Kim DW, Liu X, Zhao Y, Vincent S, Yin J, Ma X, Lin HM, Popat S. Brigatinib Versus Alectinib in ALK-Positive NSCLC After Disease Progression on Crizotinib: Results of Phase 3 ALTA-3 Trial. J Thorac Oncol 2023; 18:1743-1755. [PMID: 37574132 DOI: 10.1016/j.jtho.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION This open-label, phase 3 trial (ALTA-3; NCT03596866) compared efficacy and safety of brigatinib versus alectinib for ALK+ NSCLC after disease progression on crizotinib. METHODS Patients with advanced ALK+ NSCLC that progressed on crizotinib were randomized 1:1 to brigatinib 180 mg once daily (7-d lead-in, 90 mg) or alectinib 600 mg twice daily, aiming to test superiority. The primary end point was blinded independent review committee-assessed progression-free survival (PFS). Interim analysis for efficacy and futility was planned at approximately 70% of 164 expected PFS events. RESULTS The population (N = 248; brigatinib, n = 125; alectinib, n = 123) was notable for long median duration of prior crizotinib (16.0-16.8 mo) and low rate of ALK fusion in baseline circulating tumor DNA (ctDNA; 78 of 232 [34%]). Median blinded independent review committee-assessed PFS was 19.3 months with brigatinib and 19.2 months with alectinib (hazard ratio = 0.97 [95% confidence interval: 0.66-1.42], p = 0.8672]). The study met futility criterion. Overall survival was immature (41 events [17%]). Exploratory analyses pooled across the treatment groups revealed median PFS of 11.1 versus 22.5 months in patients with versus without ctDNA-detectable ALK fusion at baseline (hazard ratio: 0.48 [95% confidence interval: 0.32-0.71]). Treatment-related adverse events in more than 30% of patients (brigatinib, alectinib) were elevated levels of blood creatine phosphokinase (70%, 29%), aspartate aminotransferase (53%, 38%), and alanine aminotransferase (40%, 36%). CONCLUSIONS Brigatinib was not superior to alectinib for PFS in crizotinib-pretreated ALK+ NSCLC. Safety was consistent with the well-established and unique profiles of each drug. The low proportion of patients with ctDNA-detectable ALK fusion may account for prolonged PFS with both drugs in ALTA-3.
Collapse
Affiliation(s)
- James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Taiwan
| | - Geoffrey Liu
- Department of Medical Oncology, Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shun Lu
- Shanghai Chest Hospital, Shanghai, People's Republic of China
| | - Jianxing He
- Thoracic Cardio Surgery Department, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | | | - Myung-Ju Ahn
- Section of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, South Korea
| | - XiaoQing Liu
- Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Yanqiu Zhao
- Affiliated Cancer Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Sylvie Vincent
- Oncology Cell Therapy Precision and Translational Medicine, Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Jiani Yin
- Oncology Statistics, Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Xin Ma
- Clinical Science, Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Huamao M Lin
- Global Evidence and Outcomes Oncology, Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Sanjay Popat
- Lung Unit, Royal Marsden Hospital, London, England, United Kingdom.
| |
Collapse
|
34
|
Chen Q, Zhang J, Wang X, Zong W, Sun L, Qin J, Yin Y. Two case reports: EML4-ALK rearrangement large cell neuroendocrine carcinoma and literature review. Front Oncol 2023; 13:1227980. [PMID: 38023218 PMCID: PMC10646488 DOI: 10.3389/fonc.2023.1227980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Anaplastic lymphoma kinase gene (ALK) rearrangement is present in only approximately 5% of non-small cell lung cancers (NSCLCs) and is scarce in LCNEC patients. The conventional first-line treatment options are chemotherapy combined with immunotherapy or chemotherapy followed by palliative radiotherapy. In this report, we present two cases of metastatic LCNEC with EML4-ALK fusion that were treated with ALK-TKI inhibitors and demonstrated a rapid therapeutic response. Both patients were nonsmoking women who declined cytotoxic chemotherapy, underwent Next-Generation Sequencing (NGS), and confirmed EML4-ALK fusion. They were treated with alectinib as first-line therapy, and the tumors showed significant shrinkage after two months, achieving a PR (defined as a more than 30% decrease in the sum of maximal dimensions). The PFS was 22 months and 32 months, respectively, until the last follow-up. A systematic review of all previously reported cases of LCNEC with ALK mutations identified only 21 cases. These cases were characterized by being female (71.4%), nonsmoking (85.7%), diagnosed at a relatively young age (median age 51.1), and stage IV (89.5%), with an overall response rate (ORR) of 90.5%. PFS and OS were significantly longer than those treated with conventional chemotherapy/immunotherapy. Based on the clinical characteristics and the effective therapeutic outcomes with ALK inhibitors in LCNEC patients with ALK fusion, we recommend routine ALK IHC (economical, affordable, and convenient, but with higher false positives) as a screening method in advanced LCNEC patients, particularly nonsmoking females or those who are not candidates for or unwilling to undergo cytotoxic chemotherapy. Further molecular profiling is necessary to confirm these potential beneficiaries. We suggest TKI inhibitors as the first-line treatment for metastatic LCNEC with ALK fusion. Additional studies on larger cohorts are required to assess the prevalence of ALK gene fusions and their sensitivity to various ALK inhibitors.
Collapse
Affiliation(s)
- Qin Chen
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Jingjing Zhang
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Xuan Wang
- Department of Neurosurgery, Tianjin, China
| | - Wenkang Zong
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Leina Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianwen Qin
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yan Yin
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
35
|
Bearz A, Martini JF, Jassem J, Kim SW, Chang GC, Shaw AT, Shepard DA, Dall'O' E, Polli A, Thurm H, Zalcman G, Garcia Campelo MR, Penkov K, Hayashi H, Solomon BJ. Efficacy of Lorlatinib in Treatment-Naive Patients With ALK-Positive Advanced NSCLC in Relation to EML4::ALK Variant Type and ALK With or Without TP53 Mutations. J Thorac Oncol 2023; 18:1581-1593. [PMID: 37541389 DOI: 10.1016/j.jtho.2023.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Lorlatinib, a third-generation ALK tyrosine kinase inhibitor, improved outcomes compared with crizotinib in patients with previously untreated ALK-positive advanced NSCLC in the phase 3 CROWN study. Here, we investigated response correlates using plasma circulating tumor DNA (ctDNA) and tumor tissue profiling. METHODS ALK fusions and ALK with or without TP53 mutations were assessed by next-generation sequencing. End points included objective response rate (ORR), duration of response, and progression-free survival (PFS) by blinded independent central review on the basis of EML4::ALK variants and ALK with or without TP53 or other mutation status. RESULTS ALK fusions were detected in the ctDNA of 62 patients in the lorlatinib arm and 64 patients in the crizotinib arm. ORRs were numerically higher with lorlatinib versus crizotinib for EML4::ALK variant 1 (v1; 80.0% versus 50.0%) and variant 2 (v2; 85.7% versus 50.0%) but were similar between the arms for variant 3 (v3; 72.2% versus 73.9%). Median PFS in the lorlatinib arm was not reached for EML4::ALK v1 and v2 and was 33.3 months for v3; in the crizotinib arm, median PFS was 7.4 months, not reached, and 5.5 months, respectively. ORRs and PFS were improved with lorlatinib versus crizotinib regardless of TP53 mutation status and in patients harboring preexisting bypass pathway resistance alterations. In the lorlatinib arm, PFS was lower in patients who had a co-occurring TP53 mutation. Results from ctDNA analysis were similar to those observed with tumor tissue samples. CONCLUSIONS Patients with untreated ALK-positive advanced NSCLC derived greater clinical benefits, with higher ORRs and potentially longer PFS, when treated with lorlatinib compared with crizotinib, independent of EML4::ALK variant or ALK mutations, TP53 mutations, or bypass resistance alterations.
Collapse
Affiliation(s)
- Alessandra Bearz
- Division of Medical Oncology, CRO National Cancer Institute of Aviano, Aviano, Italy
| | | | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gee-Chen Chang
- School of Medicine and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Alice T Shaw
- Center for Thoracic Cancers, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Elisa Dall'O'
- Oncology Research and Development, Pfizer, Milan, Italy
| | - Anna Polli
- Oncology Research and Development, Pfizer, Milan, Italy
| | - Holger Thurm
- Oncology Research and Development, Pfizer, La Jolla, California
| | - Gerard Zalcman
- Thoracic Oncology, Hospital Bichat-Claude Bernard, Paris, France
| | | | - Konstantin Penkov
- Private Medical Institution, Euromedservice, St. Petersburg, Russian Federation
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Benjamin J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Kiełbowski K, Żychowska J, Becht R. Anaplastic lymphoma kinase inhibitors-a review of anticancer properties, clinical efficacy, and resistance mechanisms. Front Pharmacol 2023; 14:1285374. [PMID: 37954850 PMCID: PMC10634320 DOI: 10.3389/fphar.2023.1285374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Fusions and mutations of anaplastic lymphoma kinase (ALK), a tyrosine kinase receptor, have been identified in several neoplastic diseases. Rearranged ALK is a driver of tumorigenesis, which activates various signaling pathway associated with proliferation and survival. To date, several agents that target and inhibit ALK have been developed. The most studied ALK-positive disease is non-small cell lung cancer, and three generations of ALK tyrosine kinase inhibitors (TKIs) have been approved for the treatment of metastatic disease. Nevertheless, the use of ALK-TKIs is associated with acquired resistance (resistance mutations, bypass signaling), which leads to disease progression and may require a substitution or introduction of other treatment agents. Understanding of the complex nature and network of resistance mutations may allow to introduce sequential and targeted therapies. In this review, we aim to summarize the efficacy and safety profile of ALK inhibitors, describe off-target anticancer effects, and discuss resistance mechanisms in the context of personalized oncology.
Collapse
Affiliation(s)
| | | | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
37
|
Jiang B, Hu L, Dong D, Guo Z, Wei W, Wang C, Shao W, Ma T, Chen Y, Li Q, Hu W. TP53 or CDKN2A/B covariation in ALK/RET/ROS1-rearranged NSCLC is associated with a high TMB, tumor immunosuppressive microenvironment and poor prognosis. J Cancer Res Clin Oncol 2023; 149:10041-10052. [PMID: 37261522 DOI: 10.1007/s00432-023-04924-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION ALK-rearranged lung adenocarcinomas with TP53 mutations have more unstable genomic features, poorer ALK-TKI efficacy and a worse prognosis than ALK-rearranged lung adenocarcinomas with wild-type TP53. Here, we examine the gene variations that co-occur with ALK/RET/ROS1 rearrangements in NSCLC and the corresponding tumor immune microenvironment, as well as their association with prognosis. METHODS A total of 155 patients with ALK/RET/ROS1 fusions were included retrospectively. Tumor genome mutation analysis was performed by next-generation sequencing. PD-L1 expression and tumor-infiltrating lymphocytes were assessed by multiplex immunohistochemistry. The correlations among gene covariation, the tumor immune microenvironment, and clinicopathological characteristics were analyzed. RESULTS Among the 155 patients, concomitant TP53 mutation appeared most frequently (31%), followed by CDKN2A/B copy number loss (15%). The ALK/RET/ROS1 fusion and TP53 or CDKN2A/B covariation group had more males and patients with stage IV disease (p < 0.001, p = 0.0066). Patients with TP53 or CDKN2A/B co-occurrence had higher tumor mutation burdens and more neoantigens (p < 0.001, p = 0.0032). PD-L1 expression was higher in the tumor areas of the TP53 or CDKN2A/B co-occurring group (p = 0.00038). However, the levels of CD8+, CD8+PD1-, and CD8+PD-L1- TILs were lower in the tumor areas of this group (p = 0.043, p = 0.029, p = 0.025). In the TCGA NSCLC cohorts, the top 2 mutated genes were CDKN2A/B (24%) and TP53 (16%). The TP53 or CDKN2A/B co-occurring group had higher tumor mutation burdens and shorter OS (p < 0.001, p < 0.001). CONCLUSIONS Patients with co-occurring TP53/CDKN2A/B variations and ALK/RET/ROS1 rearrangements are associated with high TMB, more neoantigens, an immunosuppressive microenvironment and a worse prognosis.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Cardiothoracic Surgery, Guiqian International General Hospital, Guiyang, 550000, China
| | - Liwen Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Daling Dong
- Department of Cardiothoracic Surgery, Guiqian International General Hospital, Guiyang, 550000, China
| | - Zixin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Guiqian International General Hospital, Guiyang, 550000, China
| | - Chao Wang
- Department of Cardiothoracic Surgery, Guiqian International General Hospital, Guiyang, 550000, China
| | - Weikang Shao
- Genecast Biotechnology Co., Ltd., Wuxi, 214000, China
| | - Ting Ma
- Genecast Biotechnology Co., Ltd., Wuxi, 214000, China
| | - Yanhui Chen
- Genecast Biotechnology Co., Ltd., Wuxi, 214000, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd., Wuxi, 214000, China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
38
|
Yoshida T, Kumagai T, Toyozawa R, Katayama R, Nishio M, Seto T, Goto K, Yamamoto N, Ohe Y, Kudou K, Asato T, Zhang P, Nakagawa K. Brigatinib in Japanese patients with ALK-positive non-small-cell lung cancer: Final results of the phase 2 J-ALTA trial. Cancer Sci 2023; 114:3698-3707. [PMID: 37434391 PMCID: PMC10475780 DOI: 10.1111/cas.15888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 07/13/2023] Open
Abstract
The phase 2, single-arm, multicenter, open-label J-ALTA study evaluated the efficacy and safety of brigatinib in Japanese patients with advanced ALK+ non-small-cell lung cancer (NSCLC). One expansion cohort of J-ALTA enrolled patients previously treated with ALK tyrosine kinase inhibitors (TKIs); the main cohort included patients with prior alectinib ± crizotinib. The second expansion cohort enrolled patients with TKI-naive ALK+ NSCLC. All patients received brigatinib 180 mg once daily (7-day lead-in at 90 mg daily). Among 47 patients in the main cohort, 5 (11%) remained on brigatinib at the study end (median follow-up: 23 months). In this cohort, the independent review committee (IRC)-assessed objective response rate (ORR) was 34% (95% CI, 21%-49%); median duration of response was 14.8 months (95% CI, 5.5-19.4); median IRC-assessed progression-free survival (PFS) was 7.3 months (95% CI, 3.7-12.9). Among 32 patients in the TKI-naive cohort, 25 (78%) remained on brigatinib (median follow-up: 22 months); 2-year IRC-assessed PFS was 73% (90% CI, 55%-85%); IRC-assessed ORR was 97% (95% CI, 84%-100%); the median duration of response was not reached (95% CI, 19.4-not reached); 2-year duration of response was 70%. Grade ≥3 adverse events occurred in 68% and 91% of TKI-pretreated and TKI-naive patients, respectively. Exploratory analyses of baseline circulating tumor DNA in ALK TKI-pretreated NSCLC showed associations between poor PFS and EML4-ALK fusion variant 3 and TP53. Brigatinib is an important treatment option for Japanese patients with ALK+ NSCLC, including patients previously treated with alectinib.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Toru Kumagai
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Ryo Toyozawa
- Department of Thoracic OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Makoto Nishio
- Department of Thoracic Medical OncologyThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Takashi Seto
- Department of Thoracic OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Koichi Goto
- Department of Thoracic OncologyNational Cancer Center Hospital EastKashiwaJapan
| | | | - Yuichiro Ohe
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Kentarou Kudou
- Biostatistics, Japan Development CenterTakeda Pharmaceutical Company LimitedOsakaJapan
| | - Takayuki Asato
- Oncology Clinical Research Department, Oncology Therapeutic Area Unit for Japan and AsiaTakeda Pharmaceutical Company LimitedOsakaJapan
| | - Pingkuan Zhang
- Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Kazuhiko Nakagawa
- Department of Medical OncologyKindai University Faculty of MedicineOsaka‐SayamaJapan
| |
Collapse
|
39
|
Yang Y, Lu B, Hu M, Wang Q, Jiang M, Zhang T, Liu Z. Mutation status analysis of 58 patients with advanced ALK fusion gene positive non small cell lung cancer. BMC Pulm Med 2023; 23:319. [PMID: 37658352 PMCID: PMC10472634 DOI: 10.1186/s12890-023-02618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
PURPOSE To analyze the characteristics and prognostic values of Anaplastic Lymphoma Kinase (ALK) fusion gene partner, gene subtype and abundance in tumor tissues of advanced Non Small Cell Lung Cancer (NSCLC) patients with positive ALK fusion gene and to explore the best treatment mode of ALK-Tyrosine Kinase Inhibitors(TKIs). METHODS Cases of advanced NSCLC patients with ALK positive confirmed by both Next Generation Sequencing (NGS) and immunohistochemistry were retrospectively collected. The relationships of Overall Survival (OS)/Progression Free Survival (PFS) between different mutation subtypes, mutation abundance, clinicopathological features were analyzed. OS/PFS between different treatment mode of ALK inhibitors were compared. RESULTS Fifty-eight patients were enrolled. There were diverse fusion partners. Five subtypes of Echinoderm Microtubule-associated protein-Like 4 gene (EML4)-ALK fusion mutation were detected: V1,V2,V3,V5 and V7. The mutation abundance ranged from 0.13 to 27.77%, with a median of 5.34%. The abundance of V2 and V5 was higher than V1 and V3 respectively. There was no difference in OS between the low abundance group(≤ 5.34%) and the high abundance group(>5.34%) (P = 0.434). PFS of second-generation ALK inhibitors as first-line treatment was longer than that of Crizotinib as first-line (P<0.001). Never smokers had longer OS than current smokers(P = 0.001). CONCLUSIONS There are differences in abundance between different fusion partners and subtypes in advanced NSCLC with positive ALK. OS is not associated with subtypes, mutation abundance and first line treatment option of either generation of ALK inhibitors. Smoking is a poor prognostic factor.
Collapse
Affiliation(s)
- Yuan Yang
- Oncology Department of Beijing Chest Hospital, Capital Medical University, 9 Beiguan Street, Tongzhou District, Beijing, PR China
| | - Baohua Lu
- Oncology Department of Beijing Chest Hospital, Capital Medical University, 9 Beiguan Street, Tongzhou District, Beijing, PR China.
| | - Mingming Hu
- Oncology Department of Beijing Chest Hospital, Capital Medical University, 9 Beiguan Street, Tongzhou District, Beijing, PR China
| | - Qunhui Wang
- Oncology Department of Beijing Chest Hospital, Capital Medical University, 9 Beiguan Street, Tongzhou District, Beijing, PR China
| | - Mei Jiang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 17 Qihelou Street, Dongcheng District, Beijing, PR China
| | - Tongmei Zhang
- Oncology Department of Beijing Chest Hospital, Capital Medical University, 9 Beiguan Street, Tongzhou District, Beijing, PR China
| | - Zhe Liu
- Oncology Department of Beijing Chest Hospital, Capital Medical University, 9 Beiguan Street, Tongzhou District, Beijing, PR China
| |
Collapse
|
40
|
Lee ATM, Ou SI. From ASCEND-5 to ALUR to ALTA-3, an Anti-Climactic End to the Era of Randomized Phase 3 Trials of Next-Generation ALK TKIs in the Crizotinib-Refractory Setting. LUNG CANCER (AUCKLAND, N.Z.) 2023; 14:57-62. [PMID: 37377783 PMCID: PMC10292622 DOI: 10.2147/lctt.s413091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The competing roles of various next-generation ALK TKIs in the first and second line treatment setting of advanced ALK+ NSCLC were based on many phase 3 clinical trials in both the first-line and crizotinib-refractory settings. The approval of all next-generation ALK TKIs was first in the crizotinib-refractory setting, based on a large-scale Phase 2 trial, and was then followed by at least one global randomized phase 3 trial comparing to platinum-based chemotherapy (ASCEND-4) or to crizotinib (ALEX, ALTA-1L, eXalt3, CROWN). In addition, three randomized phase 3 trials in the crizotinib-refractory setting were also conducted by next-generation ALK TKIs that were developed earlier before the superiority of next-generation ALK TKIs was demonstrated in order to secure the approval of these ALK TKIs in the crizotinib-refractory setting. These three crizotinib-refractory randomized trials were: ASCEND-5 (ceritinib), ALUR (alectinib), and ALTA-3 (brigatinib). The outcome of the ATLA-3 trial was recently presented closing out the chapter where next-generation ALK TKIs were investigated in the crizotinib-refractory setting as they have replaced crizotinib as the standard of care first-line treatment of advanced ALK+ NSCLC. This editorial summarizes the results of next-generation ALK TKIs in randomized crizotinib-refractory trials and provides a perspective on how natural history of ALK+ NSCLC may potentially be altered with sequential treatment. ALTA-3 compared brigatinib to alectinib, showing that both achieved near identical blinded independent review committee (BIRC)-assessed progression-free survival (PFS) (19.2-19.3 months). Importantly, 4.8% of brigatinib-treated patients developed interstitial lung disease (ILD) while no alectinib-treated patients developed ILD. Dose reduction and discontinuation due to treatment-related adverse events were 21% and 5%, respectively, for brigatinib-treated patients compared to 11% and 2%, respectively, for alectinib-treated patients. Upon analysis of these findings, we speculate that brigatinib may have a diminishing role in the treatment of advanced ALK+ NSCLC.
Collapse
Affiliation(s)
- Alexandria T M Lee
- University of California Irvine School of Medicine, Department of Medicine, Orange, CA, USA
| | - Saihong Ignatius Ou
- University of California Irvine School of Medicine, Department of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| |
Collapse
|
41
|
Elshatlawy M, Sampson J, Clarke K, Bayliss R. EML4-ALK biology and drug resistance in non-small cell lung cancer: a new phase of discoveries. Mol Oncol 2023; 17:950-963. [PMID: 37149843 PMCID: PMC10257413 DOI: 10.1002/1878-0261.13446] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/08/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) can be driven to oncogenic activity by different types of mutational events such as point-mutations, for example F1174L in neuroblastoma, and gene fusions, for example with echinoderm microtubule-associated protein-like 4 (EML4) in non-small cell lung cancer (NSCLC). EML4-ALK variants result from different breakpoints, generating fusions of different sizes and properties. The most common variants (Variant 1 and Variant 3) form cellular compartments with distinct physical properties. The presence of a partial, probably misfolded beta-propeller domain in variant 1 confers solid-like properties to the compartments it forms, greater dependence on Hsp90 for protein stability and higher cell sensitivity to ALK tyrosine kinase inhibitors (TKIs). These differences translate to the clinic because variant 3, on average, worsens patient prognosis and increases metastatic risk. Latest generation ALK-TKIs are beneficial for most patients with EML4-ALK fusions. However, resistance to ALK inhibitors can occur via point-mutations within the kinase domain of the EML4-ALK fusion, for example G1202R, reducing inhibitor effectiveness. Here, we discuss the biology of EML4-ALK variants, their impact on treatment response, ALK-TKI drug resistance mechanisms and potential combination therapies.
Collapse
Affiliation(s)
- Mariam Elshatlawy
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
| | - Josephina Sampson
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK
| | - Katy Clarke
- Leeds Cancer Center, St.James' University HospitalLeeds Teaching Hospitals NHS TrustUK
| | - Richard Bayliss
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK
| |
Collapse
|
42
|
Ou SHI, Lee ATM, Nagasaka M. From preclinical efficacy to 2022 updated CROWN trial, lorlatinib is the preferred 1 st-line treatment of advanced ALK+ NSCLC. Crit Rev Oncol Hematol 2023; 187:104019. [PMID: 37187318 DOI: 10.1016/j.critrevonc.2023.104019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Six ALK TKIs (crizotinib, ceritinib, alectinib, brigatinib, lorlatinib, ensartinib) have received first-line treatment indication of advanced ALK+ NSCLC in various countries. In Ba/F3 cells, lorlatinib achieved lowest IC50 among these 6 ALK TKIs against EML4-ALK variant 1 or 3. In 2022, 7 abstracts reported updated efficacy and safety data from CROWN. With a median follow-up time of 36.7 months, the 3-year progression-free survival (PFS) rate was 63.5%. The median PFS of lorlatinib still has not been reached. Post-lorlatinib treatment median PFS2 was 74.0% at 3-years. Lorlatinib-treated Asian patients achieved similar 3-year PFS rate as overall lorlatinib-treated patients. Median PFS was 33.3 months among lorlatinib-treated EML4-ALK v3 patients. CNS AE occurred fewer than 1 per patient over the median follow-up time of 36.7 months and most resolved without intervention. Altogether these data affirm our belief that lorlatinib should be the treatment of choice of advanced ALK+ NSCLC.
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- University of California Irvine School of Medicine, Orange, CA92868, USA; Chao Family Comprehensive Cancer Center, Orange, CA92868, USA.
| | - Alexandria T M Lee
- University of California Irvine School of Medicine, Orange, CA92868, USA
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Orange, CA92868, USA; Chao Family Comprehensive Cancer Center, Orange, CA92868, USA
| |
Collapse
|
43
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
44
|
Zhong J, Bai H, Wang Z, Duan J, Zhuang W, Wang D, Wan R, Xu J, Fei K, Ma Z, Zhang X, Wang J. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17:18-42. [PMID: 36848029 DOI: 10.1007/s11684-022-0976-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 03/01/2023]
Abstract
With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations ("target-dependent resistance") and in the parallel and downstream pathways ("target-independent resistance"). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.
Collapse
Affiliation(s)
- Jia Zhong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
45
|
Nagasaka M, Ou SHI. CROWN 2022 Second Interim Updates: When Will Be the Coronation of Lorlatinib? J Thorac Oncol 2023; 18:139-142. [PMID: 36460598 DOI: 10.1016/j.jtho.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/02/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Misako Nagasaka
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, California; Division of Neurology, Department of Internal Medicine, St. Marianna University, Kawasaki, Kanagawa, Japan
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, California.
| |
Collapse
|
46
|
Yi T, Qian J, Ye Y, Zhang H, Jin X, Wang M, Yang Z, Zhang W, Wen L, Zhang Y. Crizotinib Nanomicelles Synergize with Chemotherapy through Inducing Proteasomal Degradation of Mutp53 Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:511-523. [PMID: 36578131 DOI: 10.1021/acsami.2c18020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TP53 missense mutations that express highly stabilized mutant p53 protein (mutp53) driving tumorigenesis have been witnessed in a considerable percentage of human cancers. The attempt to induce degradation of mutp53 has thus been an attractive strategy to realize precise antitumor therapy, but currently, there has been no FDA-approved medication for mutp53 cancer. Herein, we discovered a small molecule compound crizotinib, an FDA-approved antitumor drug, exhibited outstanding mutp53-degrading capability. Crizotinib induced ubiquitination-mediated proteasomal degradation of wide-spectrum mutp53 but not the wild-type p53 protein. Degradation of mutp53 by crizotinib eliminated mutp53-conferred gain-of-function (GOF), leading to reduced cell proliferation, migration, demise, and cell cycle arrest, as well as enhanced sensitivity to doxorubicin-elicited killing in mutp53 cancer. To alleviate the side effects and improve the therapeutic effect, we adopted poly(ethylene glycol)-polylactide-co-glycolide (PEG-PLGA) nanomicelles to deliver the hydrophobic drugs doxorubicin and crizotinib, demonstrating that crizotinib nanomicelles effectively enhanced doxorubicin-elicited anticancer efficacy in a p53Y220C pancreatic cancer in vitro and in vivo via mutp53 degradation induced by crizotinib, manifesting its promising application in clinical practice. Our work therefore revealed that crizotinib exerted significant synergistic chemotherapy with doxorubicin and suggested a novel combination therapeutic strategy for targeting p53 cancer in further clinical application.
Collapse
Affiliation(s)
- Tianxiang Yi
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Jieying Qian
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Yayi Ye
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Hao Zhang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Xin Jin
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Meimei Wang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Zhenyu Yang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Wang Zhang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Longping Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University & School of Medicine, South China University of Technology, Guangzhou 510080, P. R. China
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Science and Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| |
Collapse
|
47
|
Kweon J, Hwang HY, Ryu H, Jang AH, Kim D, Kim Y. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol Ther 2023; 31:249-259. [PMID: 36114670 PMCID: PMC9840113 DOI: 10.1016/j.ymthe.2022.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023] Open
Abstract
A variety of cancers have been found to have chromosomal rearrangements, and the genomic abnormalities often induced expression of fusion oncogenes. To date, a pair of engineered nucleases including ZFNs, TALENs, and CRISPR-Cas9 nucleases have been used to generate chromosomal rearrangement in living cells and organisms for disease modeling. However, these methods induce unwanted indel mutations at the DNA break junctions, resulting in incomplete disease modeling. Here, we developed prime editor nuclease-mediated translocation and inversion (PETI), a method for programmable chromosomal translocation and inversion using prime editor 2 nuclease (PE2 nuclease) and paired pegRNA. Using PETI method, we successfully introduced DNA recombination in episomal fluorescence reporters as well as precise chromosomal translocations in human cells. We applied PETI to create cancer-associated translocations and inversions such as NPM1-ALK and EML4-ALK in human cells. Our findings show that PETI generated chromosomal translocation and inversion in a programmable manner with efficiencies comparable of Cas9. PETI methods, we believe, could be used to create disease models or for gene therapy.
Collapse
Affiliation(s)
- Jiyeon Kweon
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Haesun Ryu
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - An-Hee Jang
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| | - Yongsub Kim
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
48
|
Guan M, Xu J, Shi Q. Molecular determinants of clinical outcomes for anaplastic lymphoma kinase-positive non-small cell lung cancer in Chinese patients: A retrospective study. Cancer Genet 2023; 270-271:32-38. [PMID: 36502690 DOI: 10.1016/j.cancergen.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Gene complexity affects the clinical outcomes of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). Here, we reviewed the medical records of patients with NSCLC between September 2015 and December 2020 in a single institution. We examined the clinical and genomic predictors of these outcomes using multivariate Cox proportional hazards analysis. Overall, 105 patients with ALK-rearranged NSCLC were included. Echinoderm microtubule-associated protein-like 4 (EML4) was the predominant fusion partner (96.2%). Five patients (4.8%) had non-EML4 fusion partners; three had novel partners. EML4::ALK variant 3 (36.5%) was predominant. One patient had the following three subtypes: E13::A20, E6ins33::A20, and E20::A20. Median progression-free survival (PFS), but not overall survival (OS), was significantly different between patients with variants 3 and 1. TP53 was the most common concomitant mutation (21.4%). The presence of TP53 mutations was associated with shorter PFS among patients who received ALK-TKI. Patients with concomitant oncogene mutations presented significantly shorter OS and PFS than those with only ALK rearrangement. In a multivariate Cox regression model, concomitant oncogene mutations and variant 3 carrier status were prognostic factors for PFS, whereas baseline brain metastasis was a prognostic factor for OS.
Collapse
Affiliation(s)
- Maojing Guan
- Department of Oncology, Anhui Chest Hospital, 397 Jixi Road, Hefei 230022, China; Anhui Medical University Clinical College of Chest, 397 Jixi Road, Hefei 230022, China
| | - Jianping Xu
- Department of Pathology, Anhui Chest Hospital, 397 Jixi Road, Hefei 230022, China; Anhui Medical University Clinical College of Chest, 397 Jixi Road, Hefei 230022, China
| | - Qingming Shi
- Department of Oncology, Anhui Chest Hospital, 397 Jixi Road, Hefei 230022, China; Anhui Medical University Clinical College of Chest, 397 Jixi Road, Hefei 230022, China.
| |
Collapse
|
49
|
Qiu YF, Song LH, Jiang GL, Zhang Z, Liu XY, Wang G. Hallmarks of Anaplastic Lymphoma Kinase Inhibitors with Its Quick Emergence of Drug Resistance. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is one of the most popular targets for anticancer therapies. In the past decade, the use of anaplastic lymphoma tyrosine kinase inhibitors (ALK-TKIs), including crizotinib and ceritinib, has been a reliable and standard options for patients with lung cancer, particularly for patients with nonsmall cell lung carcinoma. ALK-targeted therapies initially benefit the patients, yet, resistance eventually occurs. Therefore, resistance mechanisms of ALK-TKIs and the solutions have become a formidable challenge in the development of ALK inhibitors. In this review, based on the knowledge of reported ALK inhibitors, we illustrated the crystal structures of ALK, summarized the resistance mechanisms of ALK-targeted drugs, and proposed potential therapeutic strategies to prevent or overcome the resistance.
Collapse
Affiliation(s)
- Yong-Fu Qiu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lian-Hua Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Gang-Long Jiang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Zhen Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
| | - Xu-Yan Liu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Guan Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
50
|
Wu J, Lin Z. Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. Int J Mol Sci 2022; 23:ijms232315056. [PMID: 36499382 PMCID: PMC9738331 DOI: 10.3390/ijms232315056] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of precision medicine has brought light to the treatment of non-small cell lung cancer (NSCLC), expanding the options for patients with advanced NSCLC by targeting therapy through genetic and epigenetic cues. Tumor driver genes in NSCLC patients have been uncovered one by one, including epidermal growth factor receptor (EGFR), mesenchymal lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) mutants. Antibodies and inhibitors that target the critical gene-mediated signaling pathways that regulate tumor growth and development are anticipated to increase patient survival and quality of life. Targeted drugs continue to emerge, with as many as two dozen approved by the FDA, and chemotherapy and targeted therapy have significantly improved patient prognosis. However, resistance due to cancer drivers' genetic alterations has given rise to significant challenges in treating patients with metastatic NSCLC. Here, we summarized the main targeted therapeutic sites of NSCLC drugs and discussed their resistance mechanisms, aiming to provide new ideas for follow-up research and clues for the improvement of targeted drugs.
Collapse
|