1
|
de Morais Campos G, Dos Santos Renato N, Oliveira VHLD, de Moura Rodrigues PH, Martins MA. Influence of paddlewheel geometry on hydrodynamic performance and energy consumption in microalgae cultivations in open raceway ponds. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03168-8. [PMID: 40268763 DOI: 10.1007/s00449-025-03168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Microalgae cultivation is a field with significant potential across various industries, such as pharmaceuticals, food, cosmetics, and energy. Aiming to optimize the geometric parameters of a paddlewheel agitation system through computational fluid dynamics (CFD) and experimental validation, an investigation was conducted involving different rotation speeds, blade pitch angles, and the number of blades on a paddlewheel within a microalgae cultivation tank. The results revealed paddlewheels with 90° inclined blades exhibited higher average flow velocities. Regarding the vertical mixing index, the 8-blade paddlewheels demonstrated inferior performance compared to systems with four and six blades. A pitch angle of 60° minimized power consumption. The optimal configuration found was a 60°-angled 4-blade paddlewheel, operating at a rotation speed of 19 rpm, yielding the highest mixing performance index value at 46.12 W-1. The straight blades operated at 13 rpm could not sustain microalgae suspension. For 60° inclined blades, all tested rotations achieved a high level of suspension.
Collapse
Affiliation(s)
- Gabriel de Morais Campos
- Department of Agricultural Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
2
|
Yuan X, Zhong M, Huang X, Hussain Z, Ren M, Xie X. Industrial Production of Functional Foods for Human Health and Sustainability. Foods 2024; 13:3546. [PMID: 39593962 PMCID: PMC11593949 DOI: 10.3390/foods13223546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Functional foods significantly affect social stability, human health, and food security. Plants and microorganisms are high-quality chassis for the bioactive ingredients in functional foods. Characterised by precise nutrition and the provision of both nutritive and medicinal value, functional foods serve a as key extension of functional agriculture and offer assurance of food availability for future space exploration efforts. This review summarises the main bioactive ingredients in functional foods and their functions, describes the strategies used for the nutritional fortification and industrial production of functional foods, and provides insights into the challenges and future developments in the applications of plants and microorganisms in functional foods. Our review aims to provide a theoretical basis for the development of functional foods, ensure the successful production of new products, and support the U.N. Sustainable Development Goals, including no poverty, zero hunger, and good health and well-being.
Collapse
Affiliation(s)
- Xinrui Yuan
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Moyu Zhong
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xinxin Huang
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zahid Hussain
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Maozhi Ren
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiulan Xie
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
3
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Maciel F, Berni P, Geada P, Teixeira J, Silva J, Vicente A. Identification and optimization of the key growth parameters involved in carotenoids production of the marine microalga Pavlova gyrans. Sci Rep 2024; 14:17224. [PMID: 39060334 PMCID: PMC11282313 DOI: 10.1038/s41598-024-66986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, a multivariate analysis was carried out, using a Plackett-Burman (PB) design involving seventeen growth parameters, on carotenoids production of Pavlova gyrans (p < 0.10). Each assay was analysed regarding its content (mg g-1) of fucoxanthin (Fx), diatoxanthin, diadinoxanthin, β-carotene (βCar), α-carotene, and the sum of all carotenoids analysed individually (TCar). According to the statistical analysis, modified medium formulations were developed for the particular cases of Fx, βCar, and TCar. The study showed that Fx content was positively affected by nitrogen supplementation and lower light intensities. Higher concentrations of nitrogen and iron increased the final content of βCar as well. Similarly, salinity, light intensity, nitrogen, iron, and cobalt were identified as key factors in TCar production. The PB-based formulations showed significant improvements (p < 0.05) for TCar (11.794 mg g-1) and Fx (6.153 mg g-1) when compared to the control conditions (Walne's medium-2.010 mg g-1). Furthermore, effective control of key variables (e.g., light intensity) throughout P. gyrans growth proved successful (p < 0.05), increasing the productivity of Fx (0.759 mg L-1 d-1) and TCar (1.615 mg L-1 d-1).
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Paulo Berni
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| | - José Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., Lisbon, Portugal
| | - António Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
5
|
Occhipinti PS, Russo N, Foti P, Zingale IM, Pino A, Romeo FV, Randazzo CL, Caggia C. Current challenges of microalgae applications: exploiting the potential of non-conventional microalgae species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3823-3833. [PMID: 37971887 DOI: 10.1002/jsfa.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
The intensified attention to health, the growth of an elderly population, the changing lifestyles, and the medical discoveries have increased demand for natural and nutrient-rich foods, shaping the popularity of microalgae products. Microalgae thanks to their metabolic versatility represent a promising solution for a 'green' economy, exploiting non-arable land, non-potable water, capturing carbon dioxide (CO2) and solar energy. The interest in microalgae is justified by their high content of bioactive molecules, such as amino acids, peptides, proteins, carbohydrates, polysaccharides, polyunsaturated fatty acids (as ω-3 fatty acids), pigments (as β-carotene, astaxanthin, fucoxanthin, phycocyanin, zeaxanthin and lutein), or mineral elements. Such molecules are of interest for human and animal nutrition, cosmetic and biofuel production, for which microalgae are potential renewable sources. Microalgae, also, represent effective biological systems for treating a variety of wastewaters and can be used as a CO2 mitigation approach, helping to combat greenhouse gases and global warming emergencies. Recently a growing interest has focused on extremophilic microalgae species, which are easier to cultivate axenically and represent good candidates for open pond cultivation. In some cases, the cultivation and/or harvesting systems are still immature, but novel techniques appear as promising solutions to overcome such barriers. This review provides an overview on the actual microalgae cultivation systems and the current state of their biotechnological applications to obtain high value compounds or ingredients. Moreover, potential and future research opportunities for environment, human and animal benefits are pointed out. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Irene Maria Zingale
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
| | - Flora Valeria Romeo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Acireale, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna srl, Spin off University of Catania, Catania, Italy
- CERNUT, Interdepartmental Research Center in Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024; 13:733. [PMID: 38472846 DOI: 10.3390/foods13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are receiving increased attention in the food sector as a sustainable ingredient due to their high protein content and nutritional value. They contain up to 70% proteins with the presence of all 20 essential amino acids, thus fulfilling human dietary requirements. Microalgae are considered sustainable and environmentally friendly compared to traditional protein sources as they require less land and a reduced amount of water for cultivation. Although microalgae's potential in nutritional quality and functional properties is well documented, no reviews have considered an in-depth analysis of the pros and cons of their addition to foods. The present work discusses recent findings on microalgae with respect to their protein content and nutritional quality, placing a special focus on formulated food products containing microalgae proteins. Several challenges are encountered in the production, processing, and commercialization of foods containing microalgae proteins. Solutions presented in recent studies highlight the future research and directions necessary to provide solutions for consumer acceptability of microalgae proteins and derived products.
Collapse
Affiliation(s)
- Ornella Kongi Mosibo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Giovanna Ferrentino
- Faculty of Agriculture, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| |
Collapse
|
7
|
Filipčev B, Kojić J, Miljanić J, Šimurina O, Stupar A, Škrobot D, Travičić V, Pojić M. Wild Garlic ( Allium ursinum) Preparations in the Design of Novel Functional Pasta. Foods 2023; 12:4376. [PMID: 38137181 PMCID: PMC10742902 DOI: 10.3390/foods12244376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigated the design of novel pasta enriched with different forms of wild garlic (WG): a powder, an extract and an encapsulated extract applied at three enrichment levels (low/middle/high). The effect of cooking on changes in the content of bioactive compounds, antioxidative activity, cooking behaviour, texture, colour and sensory properties of the cooked pasta was evaluated. WG preparations significantly increased the antioxidant potential (by 185-600%) as well as the content of phenolics (by 26-146%), flavonoids (by 40-360%) and potassium (up to three-fold) in the cooked pasta, depending on WG type and enrichment level. Flavonoids were dominantly present in the free form. Cooking resulted in a significant loss of flavonoids (39-75%) whereas phenolics were liberated from the matrix. The highest increase in total phenolics and antioxidant activity was exerted by the WG powder and extract. Pasta hardness and adhesiveness were increased, but encapsulated WG deteriorated cooking behaviour. The best-scored enriched pasta regarding sensory quality and texture was that enriched with WG powder at the low/moderate level.
Collapse
Affiliation(s)
- Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Jovana Kojić
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Jelena Miljanić
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Olivera Šimurina
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Dubravka Škrobot
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| | - Vanja Travičić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia; (B.F.); (J.M.); (O.Š.); (A.S.); (D.Š.); (M.P.)
| |
Collapse
|
8
|
Wu JY, Tso R, Teo HS, Haldar S. The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Front Nutr 2023; 10:1277343. [PMID: 37904788 PMCID: PMC10613476 DOI: 10.3389/fnut.2023.1277343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
As the global population continues to grow, the demand for dietary protein is rapidly increasing, necessitating the exploration of sustainable and nutritious protein sources. Algae has emerged as a promising food source due to their high value ingredients such as proteins, as well as for their environmental sustainability and abundance. However, knowledge gaps surrounding dietary recommendations and food applications restrict algae's utilization as a viable protein source. This review aims to address these gaps by assessing the suitability of both microalgae and macroalgae as alternative/complementary protein sources and exploring their potential applications in food products. The first section examines the potential suitability of algae as a major food source by analyzing the composition and bioavailability of key components in algal biomass, including proteins, lipids, dietary fiber, and micronutrients. Secondly, the biological effects of algae, particularly their impact on metabolic health are investigated with an emphasis on available clinical evidence. While evidence reveals protective effects of algae on glucose and lipid homeostasis as well as anti-inflammatory properties, further research is required to understand the longer-term impact of consuming algal protein, protein isolates, and concentrates on metabolic health, including protein metabolism. The review then explores the potential of algal proteins in food applications, including ways to overcome their sensory limitations, such as their dark pigmentation, taste, and odor, in order to improve consumer acceptance. To maximize algae's potential as a valuable protein source in the food sector, future research should prioritize the production of more acceptable algal biomass and explore new advances in food sciences and technology for improved consumer acceptance. Overall, this paper supports the potential utility of algae as a sustainable and healthy ingredient source for widespread use in future food production.
Collapse
Affiliation(s)
- Jia Yee Wu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| |
Collapse
|
9
|
Bošković Cabrol M, Glišić M, Baltić M, Jovanović D, Silađi Č, Simunović S, Tomašević I, Raymundo A. White and honey Chlorella vulgaris: Sustainable ingredients with the potential to improve nutritional value of pork frankfurters without compromising quality. Meat Sci 2023; 198:109123. [PMID: 36702067 DOI: 10.1016/j.meatsci.2023.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
This study aimed to evaluate the effect of the chlorophyll-deficient microalgae mutants, honey (yellow) and white Chlorella vulgaris, (3%) on the nutritional, physicochemical, microbiological, and sensory characteristics of frankfurters. The presence of microalgae resulted in increased PUFA content and higher PUFA/SFA ratio, but lower n-6/n-3 ratio and lipid indices (P < 0.05). C. vulgaris inclusion in frankfurters increased (P < 0.05) Na, K, Ca, P, and Zn and improved the Na/K ratio, but lowered Mn, and in the case of white C. vulgaris, Cu content, compared to the control. The higher protein content decreased water release from emulsions elaborated with microalgae. White C. vulgaris inclusion decreased cohesiveness and springiness of the frankfurters. Due to the presence of pigment, microalgae inclusion led to a decrease in redness and an increase in yellowness of frankfurters. The presence of microalgae resulted in lower (P < 0.05) bacterial counts and did not affect TBARs during storage. The addition of microalgae in frankfurters produced acceptable sensory characteristics but resulted in lower scores compared to reference products.
Collapse
Affiliation(s)
- Marija Bošković Cabrol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Milica Glišić
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Baltić
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragoljub Jovanović
- Department of Animal Nutrition, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Čaba Silađi
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia
| | - Stefan Simunović
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040 Belgrade, Serbia
| | - Igor Tomašević
- German Institute of Food Technologies (DIL), Quackenbruck, Germany
| | - Anabela Raymundo
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
10
|
Bhatnagar RS, Lei XG, Miller DD, Padilla-Zakour OI. Iron from Co-Encapsulation of Defatted Nannochloropsis Oceanica with Inulin Is Highly Bioavailable and Does Not Impact Wheat Flour Shelf Life or Sensorial Attributes. Foods 2023; 12:foods12030675. [PMID: 36766203 PMCID: PMC9914652 DOI: 10.3390/foods12030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Defatted green microalgae Nannochloropsis oceanica (DGM) is a rich source of bioavailable iron. However, its use in foods results in unacceptable color and taste development. Therefore, the purpose of this study was to investigate strategies to enhance the use of DGM in foods. DGM and inulin were encapsulated (EC) in an oil-in-water emulsion using high-pressure homogenization. To confirm iron bioavailability, C57BL/6 mice were fed an iron-deficient diet (ID) for 2 weeks. The mice were then fed one of the four diets: ID, ID + DGM (DGM), ID + EC (EC50 or EC100) for 4 weeks. To test the stability of DGM as an iron fortificant at two different fortification rates of 17.5 mg Fe/kg (50%) or 35 mg Fe/kg (100%), whole (DGM50/DGM100), encapsulated (EC50/EC100) and color-masked (CM50/CM100) DGM were added to wheat flour (WF) at two different temperatures: 20 °C and 45 °C and were examined for 30 days. Acceptability studies were conducted to determine sensory differences between rotis (Indian flat bread) prepared from WF/EC50/CM50/EC100. The mice consuming EC50/EC100 diets showed comparable iron status to DGM-fed mice, suggesting that encapsulation did not negatively impact iron bioavailability. Addition of EC to wheat flour resulted in the lowest Fe2+ oxidation and color change amongst treatments, when stored for 30 days. There were no differences in the overall liking and product acceptance of rotis amongst treatments at both day 0 and day 21 samples. Our results suggest that EC50 can be effectively used as an iron fortificant in WF to deliver highly bioavailable iron without experiencing any stability or sensory defects, at least until 30 days of storage.
Collapse
Affiliation(s)
- Rohil S. Bhatnagar
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
- Tata-Cornell Institute for Agriculture and Nutrition, Cornell University, Ithaca, NY 14853, USA
| | - Xin-Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Dennis D. Miller
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Olga I. Padilla-Zakour
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
- Correspondence: ; Tel.: +1-315-787-2259
| |
Collapse
|
11
|
Zingale S, Spina A, Ingrao C, Fallico B, Timpanaro G, Anastasi U, Guarnaccia P. Factors Affecting the Nutritional, Health, and Technological Quality of Durum Wheat for Pasta-Making: A Systematic Literature Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:530. [PMID: 36771615 PMCID: PMC9920027 DOI: 10.3390/plants12030530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is one of the most important food sources in the world, playing a key role in human nutrition, as well as in the economy of the different countries in which its production areas are concentrated. Its grain also represents a staple and highly versatile ingredient in the development of health foods. Nonetheless, the aspects determining durum wheat's health quality and their interactions are many, complex, and not entirely known. Therefore, the present systematic literature review aims at advancing the understanding of the relationships among nutritional, health, and technological properties of durum wheat grain, semolina, and pasta, by evaluating the factors that, either positively or negatively, can affect the quality of the products. Scopus, Science Direct, and Web of Science databases were systematically searched utilising sets of keywords following the PRISMA guidelines, and the relevant results of the definitive 154 eligible studies were presented and discussed. Thus, the review identified the most promising strategies to improve durum wheat quality and highlighted the importance of adopting multidisciplinary approaches for such purposes.
Collapse
Affiliation(s)
- Silvia Zingale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Alfio Spina
- Agricultural Research Council and Economics (CREA)—Research Centre for Cereal and Industrial Crops, Corso Savoia, 190, 95024 Acireale, Italy
| | - Carlo Ingrao
- Department of Economics, Management and Business Law, University of Bari Aldo Moro, Largo Abbazia Santa Scolastica, 53, 70124 Bari, Italy
| | - Biagio Fallico
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Giuseppe Timpanaro
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Umberto Anastasi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| | - Paolo Guarnaccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia n. 100, 95123 Catania, Italy
| |
Collapse
|
12
|
Ferreira AS, Pereira L, Canfora F, Silva TH, Coimbra MA, Nunes C. Stabilization of Natural Pigments in Ethanolic Solutions for Food Applications: The Case Study of Chlorella vulgaris. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010408. [PMID: 36615600 PMCID: PMC9822436 DOI: 10.3390/molecules28010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Chlorella vulgaris is a green microalga with a high chlorophyll content, representing a valuable source of green pigments for food applications. As the application of whole biomass can promote an unpleasant fish-like flavor, the use of chlorophyll extract can overcome this drawback. However, chlorophylls tend to easily degrade when out of the chloroplasts, decreasing their potential as a food ingredient. Thus, to study the suitable conditions for isolated chlorophylls preservation, in this work, the influence of temperature (4 to 60 °C), light (dark or 24 h photoperiod), alkaline conditions (with or without aqueous NaOH addition), and modified atmosphere (air or argon atmosphere) on the stability of the color in ethanolic solutions obtained from C. vulgaris were studied. The loss of green color with temperature followed the first-order kinetics, with an activation energy of 74 kJ/mol. Below 28 °C and dark conditions were suitable to preserve isolated chlorophylls. The addition of NaOH and an inert argon-rich atmosphere did not exhibit a statistically positive effect on color preservation. In the case study, cooked cold rice was colored to be used in sushi. The color remained stable for up to 3 days at 4 °C. Therefore, this work showed that C. vulgaris chlorophylls could be preserved in ethanolic solutions at room or lower temperatures when protected from light, allowing them to obtain a suitable natural food ingredient to color foodstuffs.
Collapse
Affiliation(s)
- Andreia S. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Liliana Pereira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Feliciana Canfora
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark-Parque de Ciência e Tecnologia, 4805-017 Guimarães, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Guimarães, Portugal
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
13
|
Ciarcia R, Longobardi C, Ferrara G, Montagnaro S, Andretta E, Pagnini F, Florio S, Maruccio L, Lauritano C, Damiano S. The Microalga Skeletonema marinoi Induces Apoptosis and DNA Damage in K562 Cell Line by Modulating NADPH Oxidase. Molecules 2022; 27:8270. [PMID: 36500363 PMCID: PMC9739211 DOI: 10.3390/molecules27238270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease that activates multiple signaling pathways, causing cells to produce higher levels of reactive oxygen species (ROS). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major generator of ROS in leukemia, and marine natural products have shown promising activities for the treatment of hematopoietic malignancies. In the present study, we investigated the effect of the marine microalga Skeletonema marinoi (S.M.), a ubiquitous diatom that forms massive blooms in the oceans, on the human leukemia cell line K562. The effects of S.M. extract on cell viability, production of ROS, nitric oxide (NO), and apoptosis were examined. In this preliminary work, S.M. was able to decrease cell viability (p < 0.05) and increase apoptosis levels (p < 0.05) in K562 cells after 48 h of treatment. In addition, the levels of NOX, NO, and malondialdehyde (MDA) were reduced in K562-treated cells (p < 0.05), whereas the levels of SOD, CAT, and GPx increased during treatment (p < 0.05). Finally, analyzing Bax and Bcl-2 expression, we found a significant increase in the proapoptotic protein Bax and a sustained decrease in the antiapoptotic protein Bcl-2 (p < 0.05) in the K562-treated cells.
Collapse
Affiliation(s)
- Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino n.1, 80137 Naples, Italy
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino n.1, 80137 Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino n.1, 80137 Naples, Italy
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino n.1, 80137 Naples, Italy
| | - Francesco Pagnini
- Department of Medicine and Surgery, Unit of Radiology, University of Parma, Via Università n. 12, 43126 Parma, Italy
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino n.1, 80137 Naples, Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino n.1, 80137 Naples, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton n. 55, 80133 Naples, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Delpino n.1, 80137 Naples, Italy
| |
Collapse
|
14
|
Hassanzadeh H, Ghanbarzadeh B, Galali Y, Bagheri H. The physicochemical properties of the spirulina-wheat germ-enriched high-protein functional beverage based on pear-cantaloupe juice. Food Sci Nutr 2022; 10:3651-3661. [PMID: 36348790 PMCID: PMC9632204 DOI: 10.1002/fsn3.2963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
The formulation of a novel functional juice, enriched with wheat germ powder and spirulina algae and based on cantaloupe and pear juice, was optimized by D-optimal combined design. Firstly, sensory evaluation was performed by hedonic test to evaluate the organoleptic properties, and organoleptically desirable samples were screened for further experiments. Various chemical experiments including PH, acidity, formalin index, total phenol, flavonoids, antioxidant capacity, mineral contents (Fe, Zn, Ca, P, K, Mg, and Cu), and fatty acids profile were evaluated. The steady shear flow rheological test also was performed on the screened samples. The results of sensory evaluation showed that the samples containing 1% spirulina and wheat germ had the highest organoleptic score. The results of physicochemical tests on the selected samples showed that the addition of spirulina and wheat germ powder had little effect on pH, acidity, and formalin index but they affected brix, dry matter, and protein content. Also, the addition of spirulina and wheat germ powder, changed the amounts of antioxidant capacity (from 90 to 98%), total phenol (from 4 to 22 mg GAE/g), and flavonoid content (from 5 to 15 mg/L) in the functional beverages. Furthermore, the results of rheological tests showed that the addition of wheat germ powder in the functional fruit juices increased apparent viscosity however; spirulina did not affect important change in rheological properties. The GC-Mass analysis presented fatty acid profiles of the functional beverages and confirmed the presence of polyunsaturated fatty acids (for example decanoic acid and heptadecanoic acid) in the samples.
Collapse
Affiliation(s)
- Hamed Hassanzadeh
- Department of Food Science and Hygiene, Faculty of Para‐VeterinaryIlam UniversityIlamIran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
- Department of Food Engineering, Faculty of EngineeringNear East UniversityMersinTurkey
| | - Yaseen Galali
- Food Technology Department, College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilIraq
- Department of Nutrition and DieteticsCihan University‐ErbilErbilIraq
| | - Hamed Bagheri
- Department of Research and DevelopmentTakdaneh Co.MarandIran
| |
Collapse
|
15
|
Microalgae as a promising structure ingredient in food: Obtained by simple thermal and high-speed shearing homogenization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Drabińska N, Nogueira M, Ciska E, Jeleń H. Effect of Drying and Broccoli Leaves Incorporation on the Nutritional Quality of Durum Wheat Pasta. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/152070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
17
|
Noonim P, Rajasekaran B, Venkatachalam K. Effect of Palm Oil-Carnauba Wax Oleogel That Processed with Ultrasonication on the Physicochemical Properties of Salted Duck Egg White Fortified Instant Noodles. Gels 2022; 8:gels8080487. [PMID: 36005088 PMCID: PMC9407518 DOI: 10.3390/gels8080487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The present study permutes edible palm oil (PO) into oleogel by incorporating carnauba wax (CW) at two different concentrations (5 g/100 g and 10 g/100 g, w/w) and processing using ultrasonication. The prepared oleogels (OG1: PO-CW (5 g/100 g); OG2: PO-CW (10 g/100 g); and OGU1: PO-CW (5 g/100 g) with ultrasonication, and OGU2: PO-CW (10 g/100 g) with ultrasonication) were compared with PO (control) to deep fry salted duck egg white (SDEW) fortified instant noodles. The impact of different frying mediums on the physicochemical properties of SDEW noodles was investigated. SDEW instant noodles that were fried using OGU and OG samples had a higher L* and b* but lower a* values than those that were fried in PO (p < 0.05). Among the oleogel-fried samples, noodles that were fried in OGU2 and OG2 effectively lowered the oil uptake and showed better cooking properties than OGU1- and OG1-fried noodles, respectively (p < 0.05). Textural attributes such as higher hardness, firmness, chewiness, tensile strength and elasticity, and lower stickiness were noticed in the samples that were fried in OGU, followed by OG and PO (p < 0.05). Scanning electron microstructure revealed a uniform and smoother surface of noodles fried in OGU and OG, whereas the PO-fried sample showed an uneven and rough surface with more bulges. Noodles were tested for fatty acid compositions, and the results found that oleogel-fried noodles retained more unsaturated fatty acids than the control (p < 0.05). During storage of the frying medium after frying the noodles, OGU and OG had higher oxidative stability with lower TBARS, PV, p-AnV, and Totox values than PO at room temperature for 12 days. Overall, using oleogel as frying media improved the physicochemical and nutritional properties of SDEW noodles. This finding could be beneficial for food industries to produce healthy fried food products for consumers.
Collapse
Affiliation(s)
- Paramee Noonim
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand
| | - Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand
- Correspondence: or
| |
Collapse
|
18
|
Liu Y, Ren X, Fan C, Wu W, Zhang W, Wang Y. Health Benefits, Food Applications, and Sustainability of Microalgae-Derived N-3 PUFA. Foods 2022; 11:1883. [PMID: 35804698 PMCID: PMC9265382 DOI: 10.3390/foods11131883] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Today's consumers are increasingly aware of the beneficial effects of n-3 PUFA in preventing, delaying, and intervening various diseases, such as coronary artery disease, hypertension, diabetes, inflammatory and autoimmune disorders, neurodegenerative diseases, depression, and many other ailments. The role of n-3 PUFA on aging and cognitive function is also one of the hot topics in basic research, product development, and clinical applications. For decades, n-3 PUFA, especially EPA and DHA, have been supplied by fish oil and seafood. With the continuous increase of global population, awareness about the health benefits of n-3 PUFA, and socioeconomic improvement worldwide, the supply chain is facing increasing challenges of insufficient production. In this regard, microalgae have been well considered as promising sources of n-3 PUFA oil to mitigate the supply shortages. The use of microalgae to produce n-3 PUFA-rich oils has been explored for over two decades and some species have already been used commercially to produce n-3 PUFA, in particular EPA- and/or DHA-rich oils. In addition to n-3 PUFA, microalgae biomass contains many other high value biomolecules, which can be used in food, dietary supplement, pharmaceutical ingredient, and feedstock. The present review covers the health benefits of n-3 PUFA, EPA, and DHA, with particular attention given to the various approaches attempted in the nutritional interventions using EPA and DHA alone or combined with other nutrients and bioactive compounds towards improved health conditions in people with mild cognitive impairment and Alzheimer's disease. It also covers the applications of microalgae n-3 PUFA in food and dietary supplement sectors and the economic and environmental sustainability of using microalgae as a platform for n-3 PUFA-rich oil production.
Collapse
Affiliation(s)
- Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (W.W.)
| | - Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
19
|
Hellwig C, Taherzadeh MJ, Bolton K, Lundin M, Häggblom-Kronlöf G, Rousta K. Aspects that affect tasting studies of emerging food – a review. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2021.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
De Novo Transcriptome of the Flagellate Isochrysis galbana Identifies Genes Involved in the Metabolism of Antiproliferative Metabolites. BIOLOGY 2022; 11:biology11050771. [PMID: 35625500 PMCID: PMC9138222 DOI: 10.3390/biology11050771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Haptophytes are important primary producers in the oceans, and among the phylum Haptophyta, the flagellate Isochrysis galbana has been found to be rich in high-value compounds, such as lipids, carotenoids and highly branched polysaccharides. In the present work, I. galbana was cultured and collected at both stationary and exponential growth phases. A transcriptomic approach was used to analyze the possible activation of metabolic pathways responsible for bioactive compound synthesis at the gene level. Differential expression analysis of samples collected at the exponential versus stationary growth phase allowed the identification of genes involved in the glycerophospholipid metabolic process, the sterol biosynthetic process, ADP-ribose diphosphatase activity and others. I. galbana raw extracts and fractions were tested on specific human cancer cells for possible antiproliferative activity. The most active fractions, without affecting normal cells, were fractions enriched in nucleosides (fraction B) and triglycerides (fraction E) for algae collected in the exponential growth phase and fraction E for stationary phase samples. Overall, transcriptomic and bioactivity data confirmed the activation of metabolic pathways involved in the synthesis of bioactive compounds giving new insights on possible Isochrysis applications in the anticancer sector.
Collapse
|
21
|
Hernández H, Nunes MC, Prista C, Raymundo A. Innovative and Healthier Dairy Products through the Addition of Microalgae: A Review. Foods 2022; 11:755. [PMID: 35267388 PMCID: PMC8909392 DOI: 10.3390/foods11050755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, the development of healthier foods, richer in nutraceutical or functional compounds, has been in great demand. Microalgae are attracting increasing attention, as their incorporation in foods and beverages can be a promising strategy to develop sustainable foods with improved nutritional profiles and a strong positive impacts on health. Despite the increasing market demand in plant-based foods, the popularity of fermented dairy foods has increased in the recent years since they are a source of microorganisms with health-promoting effects. In this context, the incorporation of microalgae in cheeses, fermented milks and other dairy products represents an interesting approach towards the development of innovative and added-value hybrid products based on animal proteins and enriched with vegetable origin ingredients recognized as extremely valuable sources of bioactive compounds. The effect of the addition of microalgal biomass (Chlorella vulgaris, Arthrospira platensis, Pavlova lutheri, and Diacronema vlkianum, among others) and its derivates on the physicochemical composition, colorimetric and antioxidant properties, texture and rheology behavior, sensory profile, and viability of starter cultures and probiotics in yogurt, cheese and ice cream is discussed in the current work. This review of the literature on the incorporation of microalgae in dairy products aims to contribute to a better understanding of the potential use of these unique food ingredients in the development of new sustainable products and of their beneficial effects on health. Considering the importance of commercialization, regulatory issues about the use of microalgae in dairy products are also discussed.
Collapse
Affiliation(s)
| | - Maria Cristiana Nunes
- LEAF (Linking Landscape Environment Agriculture and Food), Research Unit Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (H.H.); (C.P.); (A.R.)
| | | | | |
Collapse
|
22
|
Coleman B, Van Poucke C, Dewitte B, Ruttens A, Moerdijk-Poortvliet T, Latsos C, De Reu K, Blommaert L, Duquenne B, Timmermans K, van Houcke J, Muylaert K, Robbens J. Potential of microalgae as flavoring agents for plant-based seafood alternatives. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Characterizing the single cell protein enriched noodles for nutritional and organoleptic attributes. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
LITAAY C, INDRIATI A, SRIHARTI, MAYASTI NKI, TRIBOWO RI, ANDRIANA Y, ANDRIANSYAH RCE. Physical, chemical, and sensory quality of noodles fortification with anchovy (Stolephorus sp.) flour. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.75421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
| | | | - SRIHARTI
- Research Center for Appropriate Technology, Indonesia
| | | | | | - Yusuf ANDRIANA
- Research Center for Food Technology and Processing, Indonesia
| | | |
Collapse
|
26
|
LITAAY C, INDRIATI A, MAYASTI NKI. Fortification of sago noodles with fish meal skipjack tuna (Katsuwonus pelamis). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.46720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Khemiri S, Nunes MC, Bessa RJB, Alves SP, Smaali I, Raymundo A. Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility. Foods 2021; 10:3159. [PMID: 34945710 PMCID: PMC8701376 DOI: 10.3390/foods10123159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this work was to develop functional couscous in a traditional Tunisian manner (hand rolling), enriched in algae biomass (6% w/w). Four Chlorella vulgaris (C. vulgaris) biomasses and one mixture of C. vulgaris and two macroalgae biomasses (Ulva rigida and Fucus vesiculosus) were used. The C. vulgaris strain was subjected to random mutagenesis and different culture conditions (Allmicroalgae), resulting in different pigmentations and biochemical compositions. Couscous samples were characterized in terms of nutritional properties, oscillatory rheology properties and digestibility. All biomasses provided a significant supplementation of nutrients and excellent acceptance. The enrichment resulted in lower firmness, higher viscoelastic functions (G' and G″) and a significant improvement in the cooking quality. Major differences between couscous samples with different microalgae were observed in protein and mineral contents, fully meeting Regulation (EC) No. 1924/2006 requirements for health claims made on foodstuffs. The amount of digested proteins was also higher in algae-containing samples. The fatty acid profile of the enriched couscous varied in a biomass-specific way, with a marked increase in linolenic acid (18:3 ω3) and a decrease in the ω6/ω3 ratio. Sensory analysis revealed that microalgae-containing products could compete with conventional goods with an added advantage, that is, having an ameliorated nutritional value using algae as a "trendy" and sustainable ingredient.
Collapse
Affiliation(s)
- Sheyma Khemiri
- Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), National Institute of Applied Science and Technology, University of Carthage, BP 676, Tunis 1080, Tunisia; (S.K.); (I.S.)
| | - Maria Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Rui J. B. Bessa
- CIISA, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477 Lisboa, Portugal; (R.J.B.B.); (S.P.A.)
| | - Susana P. Alves
- CIISA, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477 Lisboa, Portugal; (R.J.B.B.); (S.P.A.)
| | - Issam Smaali
- Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), National Institute of Applied Science and Technology, University of Carthage, BP 676, Tunis 1080, Tunisia; (S.K.); (I.S.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| |
Collapse
|
28
|
Francezon N, Tremblay A, Mouget JL, Pasetto P, Beaulieu L. Algae as a Source of Natural Flavors in Innovative Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11753-11772. [PMID: 34597023 DOI: 10.1021/acs.jafc.1c04409] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a result of their nutritive values, algae have been used as a food resource for centuries, and there is a growing interest to use them as enrichment ingredients in food products. However, food product acceptance by consumers is strongly linked to their organoleptic properties, especially the aroma, taste, and a combination of the two, flavor. With regard to edible algae, "fresh seashore", "seafood-like", "cucumber green", and "earthy" are descriptors commonly used to define their aromas. Several families of molecules participate in the diversity and peculiarities of algal aromas: pungent sulfur compounds and marine halogenated components but also herbaceous fatty acid derivatives and fruity-floral terpenoids. In both macroalgae (seaweeds) and microalgae, these compounds are studied from a chemistry point of view (identification and quantification) and a sensorial point of view, involving sensorial evaluation by panelists. As a whole food, a food ingredient, or a feed, algae are valued for their nutritional composition and their health benefits. However, because the acceptance of food by consumers is so strongly linked to its sensorial features, studies have been performed to explore the aromas of algae, their impact on food, their evolution through processing, and their ability to produce selected aromas using biotechnology. This review aims at highlighting algal aromas from seaweed and microalgae as well as their use, their handling, and their processing in the food industry.
Collapse
Affiliation(s)
- Nellie Francezon
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Département des Sciences des Aliments, Université Laval, 2425 Rue de l'Agriculture, Québec City, Québec G1V 0A6, Canada
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE) 42 Rue Georges Morel, 49070 Beaucouzé, France
| | - Ariane Tremblay
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Département des Sciences des Aliments, Université Laval, 2425 Rue de l'Agriculture, Québec City, Québec G1V 0A6, Canada
| | - Jean-Luc Mouget
- Mer-Molécules-Santé (MMS), FR CNRS 3473 IUML, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Pamela Pasetto
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Lucie Beaulieu
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Département des Sciences des Aliments, Université Laval, 2425 Rue de l'Agriculture, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
29
|
Hernández-López I, Benavente Valdés JR, Castellari M, Aguiló-Aguayo I, Morillas-España A, Sánchez-Zurano A, Acién-Fernández FG, Lafarga T. Utilisation of the marine microalgae Nannochloropsis sp. and Tetraselmis sp. as innovative ingredients in the formulation of wheat tortillas. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Koyande AK, Chew KW, Manickam S, Chang JS, Show PL. Emerging algal nanotechnology for high-value compounds: A direction to future food production. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Fernandes AS, Nascimento TC, Pinheiro PN, Vendruscolo RG, Wagner R, de Rosso VV, Jacob-Lopes E, Zepka LQ. Bioaccessibility of microalgae-based carotenoids and their association with the lipid matrix. Food Res Int 2021; 148:110596. [PMID: 34507741 DOI: 10.1016/j.foodres.2021.110596] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
The composition of microalgae can contribute to nutritious and functional diets. Among the functional compounds, carotenoids are in focus since positive effects on human health have been established, which are in turn related to their bioaccessibility. In addition to essential nutrients, our hypothesis was that microalgae biomasses could be used as sources of bioaccessible carotenoids. Thus, this study determined for the first time the bioaccessibility of carotenoids from biomass of Scenedesmus bijuga and Chlorella sorokiniana and their possible relationship with the lipid composition of the matrix. The samples were submitted to in vitro digestion protocol, and carotenoids were determined by HPLC-PDA-MS/MS. Individual bioaccessibility of carotenoids was ≥ 3.25%. In general, compounds in their cis conformation were more bioaccessible than trans; and total carotenes more than total xanthophylls. Twelve compounds were bioaccessible from the biomass of S. bijuga, and eight in C. sorokiniana. In S. bijuga, the bioaccessibility of total carotenoids was 7.30%, and the major bioaccessible carotenoids were 9-cis-β-carotene (43.78%), 9-cis-zeaxanthin (42.30%) followed by 9-cis-lutein (26.73%); while in C. sorokiniana, the total bioaccessibility was 8.03%, and 9-cis-β-carotene (26.18%), all-trans-β-carotene (13.56%), followed by 13-cis-lutein (10.71%) were the major compounds. Overall, the total content of lipids does not influence the bioaccessibility of total carotenoids. Still, the lipid composition, including structural characteristics such as degree of saturation and chain length of the fatty acid, impacts the promotion of individual bioaccessibility of carotenes and xanthophylls of microalgae. Finally, the results of this study can assist the development of microalgae-based functional food ingredients and products.
Collapse
Affiliation(s)
- Andrêssa S Fernandes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Tatiele C Nascimento
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Pricila N Pinheiro
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Raquel G Vendruscolo
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Veridiana V de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Leila Q Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| |
Collapse
|
32
|
Kratzer R, Murkovic M. Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production. Foods 2021; 10:1626. [PMID: 34359496 PMCID: PMC8307005 DOI: 10.3390/foods10071626] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Microalgal products are an emerging class of food, feed, and nutraceuticals. They include dewatered or dried biomass, isolated pigments, and extracted fat. The oil, protein, and antioxidant-rich microalgal biomass is used as a feed and food supplement formulated as pastes, powders, tablets, capsules, or flakes designed for daily use. Pigments such as astaxanthin (red), lutein (yellow), chlorophyll (green), or phycocyanin (bright blue) are natural food dyes used as isolated pigments or pigment-rich biomass. Algal fat extracted from certain marine microalgae represents a vegetarian source of n-3-fatty acids (eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (GLA)). Gaining an overview of the production of microalgal products is a time-consuming task. Here, requirements and options of microalgae cultivation are summarized in a concise manner, including light and nutrient requirements, growth conditions, and cultivation systems. The rentability of microalgal products remains the major obstacle in industrial application. Key challenges are the high costs of commercial-scale cultivation, harvesting (and dewatering), and product quality assurance (toxin analysis). High-value food ingredients are commonly regarded as profitable despite significant capital expenditures and energy inputs. Improvements in capital and operational costs shall enable economic production of low-value food products going down to fishmeal replacement in the future economy.
Collapse
Affiliation(s)
- Regina Kratzer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 10-12/I, 8010 Graz, Austria;
| | - Michael Murkovic
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Petersgasse 10-12/II, 8010 Graz, Austria
| |
Collapse
|
33
|
Matos J, Afonso C, Cardoso C, Serralheiro ML, Bandarra NM. Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food. Foods 2021; 10:1458. [PMID: 34202539 PMCID: PMC8306745 DOI: 10.3390/foods10071458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
Microalgae are a valuable and innovative emerging source of natural nutrients and bioactive compounds that can be used as functional ingredients in order to increase the nutritional value of foods to improve human health and to prevent disease. The marine microalga Isochrysis galbana has great potential for the food industry as a functional ingredient, given its richness in ω3 long chain-polyunsaturated fatty acids (LC-PUFAs), with high contents of oleic, linoleic, alpha-linolenic acid (ALA), stearidonic, and docosahexaenoic (DHA) acids. This study focuses on the formulation of a functional food by the incorporation of 2% (w/w) of I. galbana freeze-dried biomass and 2% (w/w) of I. galbana ethyl acetate lipidic extract in solid natural yogurts preparation. In the functional yogurt enriched with microalgal biomass, the ω3 LC-PUFA's content increased (to 60 mg/100 g w/w), specifically the DHA content (9.6 mg/100 g ww), and the ω3/ω6 ratio (augmented to 0.8). The in vitro digestion study showed a poor bioaccessibility of essential ω3 LC-PUFAs, wherein linoleic acid (18:2 ω6) presented a bioaccessibility inferior to 10% and no DHA or eicosapentaenoic acid (EPA) was detected in the bioaccessible fraction of the functional yogurts, thus indicating a low accessibility of lipids during digestion. Notwithstanding, when compared to the original yogurt, an added value novel functional yogurt with DHA and a higher ω3 LC-PUFAs content was obtained. The functional yogurt enriched with I. galbana can be considered important from a nutritional point of view and a suitable source of essential FAs in the human diet. However, this needs further confirmation, entailing additional investigation into bioavailability through in vivo assays.
Collapse
Affiliation(s)
- Joana Matos
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Maria L. Serralheiro
- Faculty of Sciences, BioISI—Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal;
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (C.A.); (C.C.); (N.M.B.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
34
|
Kusmayadi A, Leong YK, Yen HW, Huang CY, Chang JS. Microalgae as sustainable food and feed sources for animals and humans - Biotechnological and environmental aspects. CHEMOSPHERE 2021; 271:129800. [PMID: 33736224 DOI: 10.1016/j.chemosphere.2021.129800] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Offering a potential solution for global food security and mitigating environmental issues caused by the expansion of land-based food production, the carbon-hunger and nutrient-rich microalgae emerged as a sustainable food source for both humans and animals. Other than as an alternative source for protein, microalgae offer its most valuable nutrients, omega-3 and 6 long-chain polyunsaturated fatty acids where the content can compete with that of marine fish with lower chemicals contamination and higher purity. Furthermore, the colorful pigments of microalgae can act as antioxidants together with many other health-improving properties as well as a natural colorant. In addition, the supplementation of algae as animal feed provides plentiful benefits, such as improved growth and body weight, reduced feed intake, enhanced immune response and durability towards illness, antibacterial and antiviral action as well as enrichment of livestock products with bioactive compounds. The significant breakthrough in algal biotechnology has made algae a powerful "cell factory" for food production and lead to the rapid growth of the algal bioeconomy in the food and feed industry. The first overview of this review was to present the general of microalgae and its potential capability. Subsequently, the nutritional compositions of microalgae were discussed together with its applications in human foods and animal feeds, followed by the exploration of their economic feasibility and sustainability as well as market trends. Lastly, both challenges and future perspectives were also discussed.
Collapse
Affiliation(s)
- Adi Kusmayadi
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Yoong Kit Leong
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
35
|
Rees TAV, Raven JA. The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. THE NEW PHYTOLOGIST 2021; 230:601-611. [PMID: 33449358 PMCID: PMC8048539 DOI: 10.1111/nph.17190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 05/12/2023]
Abstract
The (maximum) growth rate (µmax ) hypothesis predicts that cellular and tissue phosphorus (P) concentrations should increase with increasing growth rate, and RNA should also increase as most of the P is required to make ribosomes. Using published data, we show that though there is a strong positive relationship between the µmax of all photosynthetic organisms and their P content (% dry weight), leading to a relatively constant P productivity, the relationship with RNA content is more complex. In eukaryotes there is a strong positive relationship between µmax and RNA content expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In prokaryotes the rRNA operon copy number is the important determinant of the amount of RNA present in the cell. The amount of phospholipid expressed as % dry weight increases with increasing µmax in microalgae. The relative proportions of each of the five major P-containing constituents is remarkably constant, except that the proportion of RNA is greater and phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of temperature differences between studies was minor. The evidence for and against P-containing constituents other than RNA being involved with ribosome synthesis and functioning is discussed.
Collapse
Affiliation(s)
- T. A. V. Rees
- Leigh Marine LaboratoryInstitute of Marine ScienceUniversity of AucklandAuckland1142New Zealand
| | - John A. Raven
- Division of Plant ScienceUniversity of Dundee at the James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- Climate Change ClusterFaculty of ScienceUniversity of TechnologySydney, UltimoNSW2007Australia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
36
|
Lafarga T, Rodríguez-Bermúdez R, Morillas-España A, Villaró S, García-Vaquero M, Morán L, Sánchez-Zurano A, González-López CV, Acién-Fernández FG. Consumer knowledge and attitudes towards microalgae as food: The case of Spain. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102174] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Barros de Medeiros VP, da Costa WKA, da Silva RT, Pimentel TC, Magnani M. Microalgae as source of functional ingredients in new-generation foods: challenges, technological effects, biological activity, and regulatory issues. Crit Rev Food Sci Nutr 2021; 62:4929-4950. [PMID: 33544001 DOI: 10.1080/10408398.2021.1879729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae feasibility as food ingredients or source of nutrients and/or bioactive compounds and their health effects have been widely studied. This review aims to provide an overview of the use of microalgae biomass in food products, the technological effects of its incorporation, and their use as a source of health-promoting bioactive compounds. In addition, it presents the regulatory aspects of commercialization and consumption, and the main trends and market challenges Microalgae have stood out as sources of nutritional compounds (polysaccharides, proteins, lipids, vitamins, minerals, and dietary fiber) and biologically active compounds (asthaxanthin, β-carotene, omega-3 fatty acids). The consumption of microalgae biomass proved to have several health effects, such as hypoglycemic activity, gastroprotective and anti-steatotic properties, improvements in neurobehavioral and cognitive dysfunction, and hypolipidemic properties. Its addition to food products can improve the nutritional value, aroma profile, and technological properties, with important alterations on the syneresis of yogurts, meltability in cheeses, overrun values and melting point in ice creams, physical properties and mechanical characteristics in crisps, and texture, cooking and color characteristics in pastas. However, more studies are needed to prove the health effects in humans, expand the market size, reduce the cost of production, and tighter constraints related to regulations.
Collapse
Affiliation(s)
- Viviane Priscila Barros de Medeiros
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
38
|
Şahin OI. Functional and sensorial properties of cookies enriched with SPIRULINA and DUNALIELLA biomass. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3639-3646. [PMID: 32903966 PMCID: PMC7447705 DOI: 10.1007/s13197-020-04396-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022]
Abstract
The effects of Spirulina platensis and Dunaliella salina biomass (1% and 2%) on formulated cookies were studied. Colour, hardness, moisture content, ash content, protein content, lipid content, total phenolic content and total antioxidant activity by CUPRAC were assessed, and a sensory evaluation of the cookies was performed. The results show that the cookies baked with added Spirulina were significantly harder and darker than the controls, and the Dunaliella addition did not affect the protein content as much as the Spirulina addition, but the effect on moisture content was significantly positive. Additionally, higher total phenolic content and CUPRAC values were found for the Dunaliella-enriched cookies. After the sensory evaluation, the Dunaliella-enriched cookies were more acceptable to consumers.
Collapse
Affiliation(s)
- Oya Irmak Şahin
- Department of Chemical and Process Engineering, Faculty of Engineering, Yalova University, Yalova, Turkey
| |
Collapse
|
39
|
Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101998] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Supplemental Microalgal Iron Helps Replete Blood Hemoglobin in Moderately Anemic Mice Fed a Rice-Based Diet. Nutrients 2020; 12:nu12082239. [PMID: 32727043 PMCID: PMC7468699 DOI: 10.3390/nu12082239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Iron deficiency anemia affects 1.2 billion people globally. Our objectives were to determine if (1) supplemental iron extracted from defatted microalgae (Nannochloropsis oceanica, DGM) and (2) a combination of minute amount of plant phytase and inulin could help replete hemoglobin in anemic mice. Mice (7 weeks old) were fed a control diet (6 mg Fe/kg). After 10 weeks, the mice were assigned to three treatments: control, control + DGM iron (Fe-DGM, 39 mg Fe/kg), or control + 1% inulin + 250 units of phytase/kg (INU−PHY, 6 mg Fe/kg). The mice had free access to diets and water for 6 weeks. The Fe-DGM group had elevated blood hemoglobin (p < 0.01) and a two-fold greater (p < 0.0001) liver non-heme iron over the control. Strikingly, the INU-PHY group had 34% greater non-heme iron than the control, despite the same concentrations of iron in their diets. Fe-DGM group had altered (p < 0.05) mRNA levels of hepcidin, divalent metal transporter 1, transferrin and transferrin receptor 1. Iron extracted from defatted microalgae seemed to be effective in alleviating moderate anemia, and INU-PHY enhanced utilization of intrinsic iron present in the rice diet. Our findings may lead to a novel formulation of these ingredients to develop safer and bioavailable iron supplements for iron-deficient populations.
Collapse
|
41
|
Abstract
Agribusiness could be the most promising sector for algae biomass exploitation and popularization. In this paper we summarize the scope of interests in agribusiness which can be fulfilled with algae exploitation. A high growth rate, a high ability to bind carbon dioxide and the potential to accumulate biogenic elements and light metals mean that algae can be used as a raw material for production of biofertilizers, biopesticides, feeds and feed additives. The use of the means of agricultural production based on algae can take place both in organic and conventional agriculture. The development of innovative and low-cost technologies of algae production, including the possibilities of their use in rural areas, provide a basis for changes, improvements and modifications to the existing solutions in the scope of production and use of industrial means of agricultural production. We also show that although there are quite diverse methods of production, and various micro and macro species diversified in chemical content, the economic viability of algae-based agribusiness is still in its infancy. The wide utilization of algae for food product manufacturing opens alternative ways for food acquisition, protecting both the food supply and the planet’s resources. The sustainability aspects of mass algae production implementation seem to be indisputable regarding possible benefits resulting from such technology. The versatility of algae application in food products, along with the very high nutritive and bioactive profile of this ingredient, make this resource of high importance in a low-emission economy.
Collapse
|
42
|
Improving the nutritional performance of gluten-free pasta with potato peel autohydrolysis extract. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Characterization of single cell protein from Saccharomyces cerevisiae for nutritional, functional and antioxidant properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00498-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Lafarga T, Fernández-Sevilla JM, González-López C, Acién-Fernández FG. Spirulina for the food and functional food industries. Food Res Int 2020; 137:109356. [PMID: 33233059 DOI: 10.1016/j.foodres.2020.109356] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Humans are no strangers to the consumption of microalgae as already in the sixteenth century Spirulina was harvested from Lake Texcoco and consumed in markets in Tenochtitlan (today Mexico City). Nowadays, microalgae are being incorporated into many food formulations. Most of these use microalgae as a marketing strategy or as a colouring agent. However, Spirulina (and compounds derived thereof) show potential for being used as ingredients in the development of novel functional foods, which are one of the top trends in the food industry. Several human intervention studies demonstrated the potential of Spirulina for being used in the prevention or treatment of disorders related to metabolic syndrome. The aim of the current paper was to review current and potential applications of this microalga in the food and functional food industries. Health benefits associated with consuming Spirulina and/or some of the most important compounds derived from Spirulina were also discussed.
Collapse
Affiliation(s)
- Tomas Lafarga
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain.
| | | | | | | |
Collapse
|
45
|
Mahmud A, Girmatsion M, Abraha B, Mohammed JK, Yang F, Xia W. Fatty acid and amino acid profiles and digestible indispensable amino acid score of grass carp (Ctenopharyngodon idella) protein concentrate supplemented noodles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00484-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Nunes MC, Fernandes I, Vasco I, Sousa I, Raymundo A. Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioactivity. Foods 2020; 9:E579. [PMID: 32375425 PMCID: PMC7278787 DOI: 10.3390/foods9050579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
The objective of this work is to increase the nutritional quality of gluten-free (GF) bread by addition of Tetraselmis chuii microalgal biomass, a sustainable source of protein and bioactive compounds. The impact of different levels of T. chuii (0%-Control, 1%, 2% and 4% w/w) on the GF doughs and breads' structure was studied. Microdough-Lab mixing tests and oscillatory rheology were conducted to evaluate the dough´s structure. Physical properties of the loaves, total phenolic content (Folin-Ciocalteu) and antioxidant capacity (DPPH and FRAP) of the bread extracts were assessed. For the low additions of T. chuii (1% and 2%), a destabilising effect is noticed, expressed by lower dough viscoelastic functions (G' and G'') and poor baking results. At the higher level (4%) of microalgal addition, there was a structure recovery with bread volume increase and a decrease in crumb firmness. Moreover, 4% T. chuii bread presented higher total phenolic content and antioxidant capacity when compared to control. Bread with 4% T. chuii seems particularly interesting since a significant increase in the bioactivity and an innovative green appearance was achieved, with a low impact on technological performance, but with lower sensory scores.
Collapse
Affiliation(s)
- Maria Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa; Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.F.); (I.V.); (I.S.); (A.R.)
| | | | | | | | | |
Collapse
|
47
|
Durmaz Y, Kilicli M, Toker OS, Konar N, Palabiyik I, Tamtürk F. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. BIORESOURCE TECHNOLOGY 2020; 304:122997. [PMID: 32094007 DOI: 10.1016/j.biortech.2020.122997] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 05/11/2023]
Abstract
Microalgae are autotroph organisms that utilise light energy to synthesize various high-value bioactive compounds such as polysaccharides, proteins and lipids. Due to its fast growth rate and capability to survive in harsh environment, microalgae nowadays are applied in various industrial areas. The process of obtaining microalgae-based biomolecules starts with the selection of suitable microalgae strain, cultivation, followed by downstream processing of the biomass (i.e., pre-treatment, harvesting, extraction and purification). The end products of the processes are biofuels and other valuable bioproducts. Nevertheless, low production yield and high-cost downstream processes are the emerging bottlenecks which need to be addressed in the upscaling of extracted compounds from microalgae biomass. To conclude, tremendous efforts are required to overcome these challenges to revolutionize microalgae into a novel and green factory of different bioactive compounds for industrial necessities to satisfy and fulfil global demands.
Collapse
Affiliation(s)
- Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
49
|
|
50
|
Fradinho P, Niccolai A, Soares R, Rodolfi L, Biondi N, Tredici MR, Sousa I, Raymundo A. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101743] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|