1
|
Mavai S, Bains A, Kumar A, Goksen G, Dhull SB, Ali N, Shazly GA, Chawla P. Optimized microwave-assisted extraction and characterization of spray dried Luffa aegyptiaca nanomucilage: Physicochemical properties, biological activities, and anticancer efficacy against MCF-7 human breast cancer cells. Int J Biol Macromol 2025; 299:139756. [PMID: 39798751 DOI: 10.1016/j.ijbiomac.2025.139756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Microwave-assisted extraction conditions were optimized using response surface methodology to evaluate the effects of extraction parameters on the yield and carbohydrate content of Luffa aegyptiaca mucilage. The optimal extraction parameters were determined at 540 W for 2 min with a 1:20 (g/mL) ratio, yielding a maximum of 5.90 % (w/w) and comprising 63 % carbohydrate content, which includes glucose, galactose, maltose, mannose, and galacturonic acid, characterized by β (1 → 4) and β (1 → 6) glycosidic bonds. The nanomucilage exhibited a monomodal particle size distribution of 145.3 ± 4.60 nm, high thermal stability (-1363.08 J/g), oil and water retention capacity, emulsifying ability (93.06 ± 0.48 %), emulsifying stability (75.02 ± 0.96 %), solubility (95.36 ± 0.89 %), and foaming ability (93.06 ± 0.48 %). Mucilage demonstrated potential in vitro anti-oxidant activity (2.05 ± 0.10 %) against Caco-2 cells, anti-inflammatory activity during membrane stabilization (30.47 ± 0.42 % to 70.46 ± 0.31 %,) and protein denaturation (20.47 ± 0.42 % to 78.39 ± 0.40 %) assays and anticancer activity against human breast cancer cells (MCF-7), with growth inhibition of 100.5 ± 12.45 %. Hence, this evaluation of Luffa aegyptiaca nanomucilage highlights its potential as a multifunctional biomaterial with significant applications in the healthcare industry.
Collapse
Affiliation(s)
- Sayani Mavai
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Ankur Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O.Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| |
Collapse
|
2
|
Zhu N, Bi D, Huang J, Yao L, Wu Y, Jiang Z, Hu Z, Zhu B, Li S, Xu X. Genipin crosslinked sodium caseinate-chitosan oligosaccharide nanoparticles for optimizing β-carotene stability and bioavailability. Int J Biol Macromol 2025; 297:139626. [PMID: 39788249 DOI: 10.1016/j.ijbiomac.2025.139626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP). GSCCNP significantly augmented the encapsulation efficacy and photostability of β-carotene. β-Carotene encapsulated within GSCCNP (βC-GSCCNP) exhibited remarkable in vitro sustained release characteristics and heightened bioavailability. In addition, βC-GSCCNP showed significant in vitro anti-inflammatory activity. These findings indicated that genipin crosslinking COS-modified SC could construct a nano-delivery system to enhance the stability and bioavailability of insoluble nutritional factors, thereby presenting promising applications for hydrophobic nutrients in the development of functional foods and beverages.
Collapse
Affiliation(s)
- Nanting Zhu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Beiwei Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Gao Y, Luo D, Li X, Xue B, Xie J, Sun T. Preparation and characterization of bovine serum albumin/chitosan composite nanoparticles for delivery of Antarctic krill peptide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:162-170. [PMID: 39152639 DOI: 10.1002/jsfa.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Antarctic krill peptide (AKP) has gained considerable interest because of its multiple biological functions. However, its application may be limited by its poor stability and susceptibility to degradation. Encapsulation of AKP using a nanoparticle delivery system is an effective way to overcome these problems. In the present study, bovine serum albumin (BSA) and chitosan (CS) were used as delivery vehicles to encapsulate AKP. RESULTS The results revealed that the particle size (83.3 ± 4.4-222.4 ± 32.7 nm) and zeta-potential (35.1 ± 0.7-45.0 ± 2.7 mV) of nanoparticles (NPs) increased with the increasing content of BSA, but the polydispersity index decreased (1.000 ± 0.002 to 0.306 ± 0.011). Hydrogen bonding, hydrophobic and electrostatic interactions were the main forces to form BSA/CS-AKP NPs. X-ray diffraction revealed that AKP was encapsulated by BSA/CS. Scanning electron microscopy images exhibited that the NPs were spherical in shape, uniform in size and tightly bound. BSA/CS-AKP NPs exhibited excellent stability in the pH range (2-5) and after 15 days of storage, and could hinder the release of AKP in simulated gastric environment and promote the release of AKP in simulated intestinal environment. After simulated digestion, the hypoglycemic activity of encapsulated AKP was better than that of unencapsulated AKP. CONCLUSION Our results revealed that the BSA/CS showed great potential for protecting and delivering AKP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingying Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dandan Luo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Lu Y, Wang Y, Liu Y, Wang Y, Guo S, Sun K, Qi H. The influence of drying methods on extract content, tyrosinase activity inhibition, and mechanism in Ascophyllum nodosum: A combined microstructural and kinetic study. Food Chem 2024; 458:140230. [PMID: 38954954 DOI: 10.1016/j.foodchem.2024.140230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
This study evaluates vacuum drying (VD), microwave drying (MD), hot air drying (HAD), and freeze drying (FD), on the color and microstructure changes of Ascophyllum nodosum (A. nodosum), which affect the extraction of polyphenols and flavonoids. During drying, VD and FD show slight color change and looser structure, aiding in active compound preservation and extraction. Polyphenols extracted from A. nodosum (PEAn) using these methods show higher anti-tyrosinase activity, with VD treatment exhibiting the strongest inhibition. Kinetic studies demonstrate competitive inhibition between PEAn and tyrosinase. The binding constant (Ki) values indicate that PEAn treated with VD exhibits the most effective inhibition on tyrosinase, and the Zeta potential suggests the formation of the most stable complex. Circular dichroism (CD) spectroscopy shows significant enzyme rearrangement with VD-treated PEAn. Molecular docking confirms strong binding affinity. This study aims to enhance the utility of A. nodosum and develop novel uses for tyrosinase inhibitors in food.
Collapse
Affiliation(s)
- Yujing Lu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuze Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sainan Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kailing Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China..
| |
Collapse
|
5
|
Bai Y, Jiang S, Wang Y, Huang X, Wang Y, Feng D, Dong X, Qi H. Phycocyanin-phlorotannin complexes improve the structure and functional properties of yogurt. Int J Biol Macromol 2024; 274:133327. [PMID: 38908620 DOI: 10.1016/j.ijbiomac.2024.133327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Adding natural bioactive ingredients to yogurt can improve the nutritional and physiological benefits. In this study, we used ultrasonic-assisted phlorotannin from Ascophyllum nodosum (A. nodosum) modified phycocyanin (PC) to form a complex (UPP) to produce a fortified fermented yogurt. The effects of PC and UPP on the structure, stability, and function of fermented yogurt within 7 days were assessed using physicochemical properties, texture analysis, rheological testing, 16S rDNA sequencing analysis, and lipidomics analysis. Molecular docking indicated that PC might bind to phlorotannin via ARG-77, ARG-84, LEU-120, ALA-81, CYS-82, and ASP-85 sites.When the mass ratio of the complex is 1:1, the ability of UPP1:1 to remove DPPH· scavenging ability in an acid environment increased by about 50 %. UPP1:1 with more acid stability changed the microstructure of the yogurt, enhanced the stability of the yogurt, improved the antioxidant properties, and inhibited the growth of harmful bacteria within 7 days. This work encouraged the extraction and use of phlorotannin from edible brown algae and offered a straightforward method for making yogurt supplemented with PC.
Collapse
Affiliation(s)
- Ying Bai
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Jiang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yujiao Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Huang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuze Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dingding Feng
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Cheng Y, Gao X, Li S, Wang L, Li W, Cao X. Formation and non-covalent interactions of binary and ternary complexes based on β-casein, Lentinus edodes mycelia polysaccharide, and taxifolin. Int J Biol Macromol 2024; 269:132212. [PMID: 38729495 DOI: 10.1016/j.ijbiomac.2024.132212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Polyphenols, polysaccharides, and proteins are essential nutrients and functional substances present in food, and when present together these components often interact with each other to influence their structure and function. Proteins and polysaccharides are also excellent carrier materials for polyphenols. In this context, this study investigated the non-covalent interactions between taxifolin (TAX), Lentinus edodes mycelia polysaccharide (LMP), and β-casein (β-CN). β-CN and LMP spontaneously formed nanocomplexes by hydrogen bonds and van der Waals forces. The quenching constant and binding constant were (1.94 ± 0.02) × 1013 L mol-1 s-1 and (3.22 ± 0.17) × 105 L mol-1 at 298 K, respectively. The altered conformation of β-CN, resulting from the binding to LMP, affected the interaction with TAX. LMP significantly enhanced the binding affinity of TAX and β-CN, but did not change the static quenching binding mode. The binding constant for β-CN-TAX was (3.96 ± 0.09) × 1013 L mol-1, and that for the interaction between TAX and β-CN-LMP was (32.06 ± 0.05) × 1013 L mol-1. In summary, β-CN-LMP nanocomplexes have great potential as a nanocarrier for polyphenols, and this study provides a theoretical foundation for the rational design of non-covalent complexes involving LMP and β-CN, both in binary and ternary configurations.
Collapse
Affiliation(s)
- Ye Cheng
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Xue Gao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Siqi Li
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Le Wang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Wenkai Li
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning, PR China.
| |
Collapse
|
7
|
Shi S, Wu X, Wang Y, Li W, Zhang H, Lou X, Xia X, Liang W. Sodium-alginate-based indicator film containing a hydrophobic nanosilica layer for monitoring fish freshness. Int J Biol Macromol 2024; 265:130714. [PMID: 38462116 DOI: 10.1016/j.ijbiomac.2024.130714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
In this study, hydrophobic sodium alginate/anthocyanin/cellulose nanocrystal indicator films were fabricated by incorporating nanosilica (NS) as a waterproofing layer. The concentrations and formation methods (spraying (S), coating (C), and impregnation (I)) of the NS layer (denoted as NSS, NSC, NSI, respectively) were optimized. The results indicated that the optimum concentration of the NS layer was 5 % at a water contact angle (WCA) 110.5°. Further, Fourier transform infrared spectra showed the presence of SiOSi and SiCH3 groups in the NSS, NSC, and NSI films, and X-ray diffraction spectra indicated that original structures of these films were disordered. Moreover, the surface morphology, mechanical properties, and light transmission were affected by the NS layer, and the optimal layer was found to be NSI. After 10 days of storage at 100 % humidity, the NSI film exhibited low water vapor adsorption (37.22 g) and permeability (0.1484 g/m·s·Pa·10-11) and a high WCA (110.2°). In addition, the NSI film exhibited a visible color shift with an increasing pH of the buffer solution. A monitoring test of fish freshness showed that the NSI film displayed a distinctive color change corresponding to fish spoilage during 14 days of storage. This indicates that NSI has high potential in indicator film applications.
Collapse
Affiliation(s)
- Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Wenxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinjiang Lou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Weiwei Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Engineering, Harbin University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
8
|
Duan X, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. Improving potential strategies for biological activities of phlorotannins derived from seaweeds. Crit Rev Food Sci Nutr 2023; 65:833-855. [PMID: 39889780 DOI: 10.1080/10408398.2023.2282669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Seaweeds have garnered considerable attention due to their capacity to serve as exceptional reservoirs of numerous bioactive metabolites possessing substantial chemical and biological significance. .Phlorotannins constitute a significant class of natural polyphenols originating from brown seaweeds, featuring a broad spectrum of bioactive attributes and demonstrating potential applicability across various sectors. The potential health advantages associated with phlorotannins, particularly concerning the prevention of conditions linked to oxidative stress, such as inflammation, diabetes, and allergies, have generated substantial interest within the food and pharmaceutical industries. Nevertheless, current research remains insufficient in providing a comprehensive understanding of their absorption, as comparisons drawn with their terrestrial counterparts remain speculative. It is commonly presumed that phenolic compounds, including phlorotannins, face challenges due to their limited solubility, instability, and extensive metabolism, all of which restrict their bioavailability. In order to circumvent these limitations and amplify their utility as components of medicinal formulations or healthcare products, researchers have explored various strategies, including the encapsulation or integration of phlorotannins into nano-/micro-particles or advanced drug delivery systems. This review offers a thorough exploration of the structural and biological attributes of phlorotannins and furnishes insights into potential strategies showing promise for their effective utilization in preclinical and clinical applications.
Collapse
Affiliation(s)
- Xinyu Duan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| |
Collapse
|
9
|
Belesov AV, Lvova DA, Falev DI, Pikovskoi II, Faleva AV, Ul’yanovskii NV, Ladesov AV, Kosyakov DS. Fractionation of Arctic Brown Algae ( Fucus vesiculosus) Biomass Using 1-Butyl-3-methylimidazolium-Based Ionic Liquids. Molecules 2023; 28:7596. [PMID: 38005319 PMCID: PMC10673400 DOI: 10.3390/molecules28227596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Arctic brown algae are considered a promising industrial-scale source of bioactive sub-stances as polysaccharides, polyphenols, and low-molecular secondary metabolites. Conventional technologies for their processing are focused mainly on the isolation of polysaccharides and involve the use of hazardous solvents. In the present study a "green" approach to the fractionation of brown algae biomass based on the dissolution in ionic liquids (ILs) with 1-butil-3-methylimidazolium (bmim) cation with further sequential precipitation of polysaccharides and polyphenols with acetone and water, respectively, is proposed. The effects of IL cation nature, temperature, and treatment duration on the dissolution of bladderwrack (Fucus vesiculosus), yields of the fractions, and their chemical composition were studied involving FTIR and NMR spectroscopy, as well as size-exclusion chromatography and monosaccharide analysis. It was shown that the use of bmim acetate ensures almost complete dissolution of plant material after 24 h treatment at 150 °C and separate isolation of the polysaccharide mixture (alginates, cellulose, and fucoidan) and polyphenols (phlorotannins) with the yields of ~40 and ~10%, respectively. The near-quantitative extraction of polyphenolic fraction with the weight-average molecular mass of 10-20 kDa can be achieved even under mild conditions (80-100 °C). Efficient isolation of polysaccharides requires harsh conditions. Higher temperatures contribute to an increase in fucoidan content in the polysaccharide fraction.
Collapse
Affiliation(s)
- Artyom V. Belesov
- Laboratory of Natural Compound Chemistry and Bioanalytics, Core Facility Center ‘Arktika’, Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia; (D.A.L.); (I.I.P.); (A.V.F.); (N.V.U.)
| | | | | | | | | | | | | | - Dmitry S. Kosyakov
- Laboratory of Natural Compound Chemistry and Bioanalytics, Core Facility Center ‘Arktika’, Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia; (D.A.L.); (I.I.P.); (A.V.F.); (N.V.U.)
| |
Collapse
|
10
|
Ma RH, Wang W, Hou CP, Man YF, Ni ZJ, Thakur K, Zhang JG, Wei ZJ. Structural characterization and stability of glycated bovine serum albumin-kaempferol nanocomplexes. Food Chem 2023; 415:135778. [PMID: 36854244 DOI: 10.1016/j.foodchem.2023.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Kaempferol (Kae), a flavonoid is endowed with various functions. However, due to its poor water solubility and stability, its application in the food and pharmaceutical fields remains elusive. Emerging reports have emphasized the importance of bovine serum albumin (BSA), and glycosylated BSA (GBSA) prepared in the nature deep eutectic solvent system as drug delivery system carriers. In our study, ultraviolet and fluorescence spectra revealed the higher interactions of BSA and GBSA with Kae. Through analysis of Z-average diameter, zeta-potential, polydispersity index (PDI), encapsulation efficiency (EE), loading capacity (LC) of BSA-Kae nanocomplexes (NPs) and GBSA-Kae NPs, GBSA-Kae NPs showed a higher absolute value of zeta-potential and lower PDI, while its EE and LC were also higher. Structural characterization and stability analysis revealed that GBSA-Kae NPs had more stable properties. This study laid the theoretical foundation for improving the solubility and stability of Kae during its delivery and transport.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Wei Wang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Cai-Ping Hou
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Yi-Fei Man
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
11
|
Wang C, Bai Y, Yin W, Qiu B, Jiang P, Dong X, Qi H. Nanoencapsulation Motivates the High Inhibitive Ability of Fucoxanthin on H 2O 2-Induced Human Hepatocyte Cell Line (L02) Apoptosis via Regulating Lipid Metabolism Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37026562 DOI: 10.1021/acs.jafc.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study reports an encapsulation system for fucoxanthin (FX) through simple affinity binding with gelatin (GE) and then coating with chitosan oligosaccharides (COS). The effects of FX before and after encapsulation on the human hepatocyte cell line (L02) were investigated. FX-GE and FX-GE-COS nanocomplexes exhibited a spherical shape with diameters of 209 ± 6 to 210 ± 8 nm. FX-GE-COS nanocomplexes were found to perform the best with the highest encapsulation efficiency (EE, 83.88 ± 4.39%), improved FX stability, and enhanced cellular uptake on the nanoscale. The cytotoxicity and cell mitochondrial damage of H2O2 exposure to L02 cells decreased with the increase of free-FX and FX-GE-COS nanocomplexes. FX-GE-COS nanocomplexes' intervention decreased the intracellular ROS and inhibited the apoptosis of L02 cells that was induced by H2O2 exposure in a concentration-dependent manner. Lipidomic analysis revealed that FX-GE-COS nanocomplexes could regulate the lipid metabolism disturbed by H2O2 and protected the mitochondrial function of L02 cells. These results suggested that nanoencapsulation enhanced the antioxidant activity of FX to L02 cells, and the constructed FX-GE-COS nanocomplexes have the potential to be an antioxidant nutritional dietary supplement.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Ying Bai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Wei Yin
- Dalian Gaishi Food Co., Ltd., Dalian 116047, People's Republic of China
| | - Bixiang Qiu
- Fujian Yida Food Co., Ltd., Fuzhou 350500, People's Republic of China
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China
| |
Collapse
|
12
|
Bai Y, Li X, Xie Y, Wang Y, Dong X, Qi H. Ultrasound treatment enhanced the functional properties of phycocyanin with phlorotannin from Ascophyllum nodosum. Front Nutr 2023; 10:1181262. [PMID: 37090776 PMCID: PMC10115965 DOI: 10.3389/fnut.2023.1181262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionPhycocyanin offers advantageous biological effects, including immune-regulatory, anticancer, antioxidant, and anti-inflammation capabilities. While PC, as a natural pigment molecule, is different from synthetic pigment, it can be easily degradable under high temperature and light conditions.MethodsIn this work, the impact of ultrasound treatment on the complex of PC and phlorotannin structural and functional characteristics was carefully investigated. The interaction between PC and phlorotannin after ultrasound treatment was studied by UV–Vis, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, fourier transform infrared (FTIR) spectroscopy. Additionally, the antioxidant potential and in vitro digestibility of the complexes were assessed.ResultsThe result was manifested as the UV–Vis spectrum reduction effect, fluorescence quenching effect and weak conformational change of the CD spectrum of PC. PC was identified as amorphous based on the X-ray diffraction (XRD) data and that phlorotannin was embedded into the PC matrix. The differential scanning calorimetry (DSC) results showed that ultrasound treatment and the addition of phlorotannin could improve the denaturation peak temperatures (Td) of PC to 78.7°C. In vitro digestion and free radical scavenging experiments showed that appropriate ultrasound treatment and the addition of phlorotannin were more resistant to simulated gastrointestinal conditions and could improve DPPH and ABTS+ free radical scavenging performance.DiscussionUltrasound treatment and the addition of phlorotannin changed the structural and functional properties of PC. These results demonstrated the feasibility of ultrasound-assisted phlorotannin from A. nodosum in improving the functional properties of PC and provided a possibility for the application of PC-polyphenol complexes as functional food ingredients or as bioactive materials.
Collapse
Affiliation(s)
- Ying Bai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
| | - Xueting Li
- Haide College, Ocean University of China, Qingdao, China
| | - Yuqianqian Xie
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
| | - Yingzhen Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
| | - Xiuping Dong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
| | - Hang Qi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hang Qi,
| |
Collapse
|
13
|
Luna-Pérez Y, Ríos-López LG, Otero-Tejada EL, Mejía-Giraldo JC, Puertas-Mejía MÁ. Sargassum filipendula, a Source of Bioactive Compounds with Antioxidant and Matrix Metalloproteinases Inhibition Activities In Vitro with Potential Dermocosmetic Application. Antioxidants (Basel) 2023; 12:antiox12040876. [PMID: 37107251 PMCID: PMC10135785 DOI: 10.3390/antiox12040876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
The antioxidant and the potential inhibitory capacity of matrix metalloproteinases of the phlorotannin-type polyphenolic and fucoidan-type polysaccharides extracts obtained from the macroalga S. filipendula were evaluated. Through chromatographic and spectroscopic techniques, the corresponding chemical structure of compounds present in the extracts was determined. Antioxidant capacity was evaluated using the methyl linoleate model for the inhibition of lipid peroxidation, and the free radical scavenging capacity was assessed using DPPH, ABTS, •OH, O2•− methods. The matrix metalloproteinase inhibition potential was measured by collagenase and elastase inhibition tests, using epigallocatechin gallate as a positive control. The extracts exhibited a high scavenging capacity of radical species evaluated and inhibition of diene conjugate formation and thiobarbituric acid reactive substances. The results showed that the crude extracts presented dose-dependent collagenase and elastase inhibition, with IC50 values between 0.04 and 1.61 mg/mL. The structure of the residues of the polysaccharide was identified mainly as (1→3)-sulfated (1→3) α-l-fucopyranose at carbon 4 and residues of β-d-glucopyranose, α-d-Mannopyranose, and β-d-Galactopyranose, while in the polyphenol extract the presence of phloroglucinol was identified and the presence of eckol, bifuhalol, and trifuhalol was suggested. Our results allow us to infer that S. filipendula is a potential source of bioactive ingredients with antioxidant and anti-aging activity.
Collapse
Affiliation(s)
- Yonadys Luna-Pérez
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
- Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Lady Giselle Ríos-López
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Elver Luis Otero-Tejada
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Juan Camilo Mejía-Giraldo
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
- Grupo de Estabilidad de Medicamentos, Cosméticos y Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Miguel Ángel Puertas-Mejía
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| |
Collapse
|
14
|
Shi S, Xu X, Feng J, Ren Y, Bai X, Xia X. Preparation of NH3- and H2S-sensitive intelligent pH indicator film from sodium alginate/black soybean seed coat anthocyanins and its use in monitoring meat freshness. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
15
|
Liao Y, Sun Y, Wang Z, Zhong M, Li R, Yan S, Qi B, Li Y. Structure, rheology, and functionality of emulsion-filled gels: Effect of various oil body concentrations and interfacial compositions. Food Chem X 2022; 16:100509. [DOI: 10.1016/j.fochx.2022.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
|
16
|
Separation and Structural Characterization of a Novel Exopolysaccharide from Rhizopus nigricans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227756. [PMID: 36431857 PMCID: PMC9696503 DOI: 10.3390/molecules27227756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The present study aims to analyze the structural characterization and antioxidant activity of a novel exopolysaccharide from Rhizopus nigricans (EPS2-1). For this purpose, EPS2-1 was purified through DEAE-52, Sephadex G-100, and Sephadex G-75 chromatography. The structural characterization of EPS2-1 was analyzed using high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), methylation analysis, nuclear magnetic resonance (NMR) spectra, transmission electron microscope (TEM), and atomic force microscope (AFM). The results revealed that EPS2-1 is composed of mannose (Man), galactose (Gal), glucose (Glc), arabinose (Ara), and Fucose (Fuc), and possesses a molecular weight of 32.803 kDa. The backbone of EPS2-1 comprised →2)-α-D-Manp-(1→ and →3)-β-D-Galp-(1→, linked with the O-6 position of (→2,6)-α-D-Manp-(1→) of the main chain is branch α-D-Manp-(1→6)-α-D-Manp-(1→, linked with the O-6 positions of (→3)-β-D-Galp-(1→) of the main chain are branches →4)-β-D-Glcp-(1→ and →3)-β-D-Galp-(1→, respectively. Finally, we demonstrated that EPS2-1 also shows free radical scavenging activity and iron ion reducing ability. At the same time, EPS2-1 could inhibit the proliferation of MFC cells and increase the cell viability of RAW264.7 cells. Our results suggested that EPS2-1 is a novel polysaccharide, and EPS2-1 has antioxidant activity. In addition, EPS2-1 may possess potential immunomodulatory and antitumor activities. This study promoted the application of EPS2-1 as the functional ingredients in the pharmaceutical and food industries.
Collapse
|
17
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
18
|
Advanced Coatings with Antioxidant and Antibacterial Activity for Kumquat Preservation. Foods 2022; 11:foods11152363. [PMID: 35954129 PMCID: PMC9367912 DOI: 10.3390/foods11152363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
An active coating is one of the best ways to maintain the good quality and sensory properties of fruits. A new active coating was prepared by incorporating curcumin and phloretin into the konjac glucomannan matrix (KGM-Cur-Phl). The fourier infrared spectroscopy, rheology and differential scanning calorimetry confirmed the successful fabrication of this coating. This coating showed excellent antioxidant activity revealed by the 95.03% of ABTS radicals scavenging ratio and 99.67% of DPPH radicals scavenging ratio. The result of bacteria growth curves showed that it could effectively inhibit the growth of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Salmonella typhimurium. The results of firmness, titratable acid and pH showed that it effectively prolonged the shelf life of kumquat. A novel konjac glucomannan-based active coating was provided.
Collapse
|
19
|
Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4817-4838. [PMID: 35418233 DOI: 10.1021/acs.jafc.2c00532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phloroglucinol (PG) is a natural product isolated from plants, algae, and microorganisms. Aside from that, the number of PG derivatives has expanded due to the discovery of their potential biological roles. Aside from its diverse biological activities, PG and its derivatives have been widely utilized to treat microbial infections caused by bacteria, fungus, and viruses. The rapid emergence of antimicrobial-resistant microbial infections necessitates the chemical synthesis of numerous PG derivatives in order to meet the growing demand for drugs. This review focuses on the use of PG and its derivatives to control microbial infection and the underlying mechanism of action. Furthermore, as future perspectives, some of the various alternative strategies, such as the use of PG and its derivatives in conjugation, nanoformulation, antibiotic combination, and encapsulation, have been thoroughly discussed. This review will enable the researcher to investigate the possible antibacterial properties of PG and its derivatives, either free or in the form of various formulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
20
|
Kumar LRG, Paul PT, Anas KK, Tejpal CS, Chatterjee NS, Anupama TK, Mathew S, Ravishankar CN. Phlorotannins-bioactivity and extraction perspectives. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:2173-2185. [PMID: 35601997 PMCID: PMC9112266 DOI: 10.1007/s10811-022-02749-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
Phlorotannins, a seaweed based class of polyphenolic compounds, have proven to possess potential bioactivities such as antioxidant, antimicrobial, anti-allergic, anti-diabetic, anti-inflammatory, anti-cancerous, neuroprotection etc. These bioactivities have further increased demand globally and sustainable techniques such as supercritical fluid extraction, microwave assisted extraction, enzyme assisted extraction, extraction using deep eutectic solvents etc. are being explored currently for production of phlorotannin-rich extracts. In spite of such well documented bioactivities, very few phlorotannin-based nutraceuticals are available commercially which highlights the significance of generating consumer awareness about their physiological benefits. However, for industry level commercialization accurate quantification of phlorotannins with respect to the different classes is vital requiring sophisticated analytical techniques such as mass spectrometry, 1H-NMR spectroscopy etc. owing to the wide structural diversity. This review summarizes the extraction and bioactivities of phlorotannins based on the findings of in vivo and in vitro studies.
Collapse
Affiliation(s)
- Lekshmi R. G. Kumar
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - Preethy Treesa Paul
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - K. K. Anas
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - C. S. Tejpal
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - N. S. Chatterjee
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - T. K. Anupama
- ICAR-Central Institute of Fisheries Technology (CIFT), Veraval Research Centre, Veraval, India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| | - C. N. Ravishankar
- ICAR-Central Institute of Fisheries Technology (CIFT), Cochin-29, Cochin, India
| |
Collapse
|