1
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Anderle S, Bonnar O, Henderson J, Shaw K, Chagas AM, McMullan L, Webber A, McGowan K, King SL, Hall CN. APOE4 and sedentary lifestyle synergistically impair neurovascular function in the visual cortex of awake mice. Commun Biol 2025; 8:144. [PMID: 39880935 PMCID: PMC11779976 DOI: 10.1038/s42003-025-07585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE. Energy supply and demand are mismatched in APOE4 mice, with smaller increases in cerebral blood flow, blood volume and blood oxygenation occurring during neuronal activation as blood vessels frequently fail to dilate. Exercise dose-dependently overall improves neurovascular function, with an increased impact of exercise apparent after longer exposure times. Several haemodynamic measures show a larger beneficial effect of exercise in APOE4 vs. APOE3 mice. Thus, APOE4 genotype in conjunction with sedentary behaviour produces the worst neurovascular function. Promotion of physical activity may therefore be particularly important to improve cerebrovascular function and reduce dementia risk in APOE4 carriers.
Collapse
Affiliation(s)
- Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Orla Bonnar
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Joseph Henderson
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kira Shaw
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Andre M Chagas
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Alexandra Webber
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Kirsty McGowan
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Sarah L King
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Catherine N Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
| |
Collapse
|
3
|
Chen G, Zhang Y, Li R, Jin L, Hao K, Rong J, Duan H, Du Y, Yao L, Xiang D, Liu Z. Environmental enrichment attenuates depressive-like behavior in maternal rats by inhibiting neuroinflammation and apoptosis and promoting neuroplasticity. Neurobiol Stress 2024; 30:100624. [PMID: 38524250 PMCID: PMC10958482 DOI: 10.1016/j.ynstr.2024.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Gestational stress can exacerbate postpartum depression (PPD), for which treatment options remain limited. Environmental enrichment (EE) may be a therapeutic intervention for neuropsychiatric disorders, including depression, but the specific mechanisms by which EE might impact PPD remain unknown. Here we examined the behavioral, molecular, and cellular impact of EE in a stable PPD model in rats developed through maternal separation (MS). Maternal rats subjected to MS developed depression-like behavior and cognitive dysfunction together with evidence of significant neuroinflammation including microglia activation, neuronal apoptosis, and impaired synaptic plasticity. Expanding the duration of EE to throughout pregnancy and lactation, we observed an EE-associated reversal of MS-induced depressive phenotypes, inhibition of neuroinflammation and neuronal apoptosis, and improvement in synaptic plasticity in maternal rats. Thus, EE effectively alleviates neuroinflammation, neuronal apoptosis, damage to synaptic plasticity, and consequent depression-like behavior in mother rats experiencing MS-induced PPD, paving the way for new preventive and therapeutic strategies for PPD.
Collapse
Affiliation(s)
- Guopeng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liuyin Jin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingtong Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
4
|
Li Y, Lu J, Zhang J, Gui W, Xie W. Molecular insights into enriched environments and behavioral improvements in autism: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1328240. [PMID: 38362032 PMCID: PMC10867156 DOI: 10.3389/fpsyt.2024.1328240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Aims Autism is a multifaceted developmental disorder of the nervous system, that necessitates novel therapeutic approaches beyond traditional medications and psychosomatic therapy, such as appropriate sensory integration training. This systematic mapping review aims to synthesize existing knowledge on enriching environmental interventions as an alternative avenue for improving autism, guiding future research and practice. Method A comprehensive search using the terms ASD and Enriched Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and OVID databases. Most of the literature included in this review was derived from animal model experiments, with a particular focus on assessing the effect of EE on autism-like behavior, along with related pathways and molecular mechanisms. Following extensive group discussion and screening, a total of 19 studies were included for analysis. Results Enriched environmental interventions exhibited the potential to induce both behavioral and biochemical changes, ameliorating autism-like behaviors in animal models. These improvements were attributed to the targeting of BDNF-related pathways, enhanced neurogenesis, and the regulation of glial inflammation. Conclusion This paper underscores the positive impact of enriched environmental interventions on autism through a review of existing literature. The findings contribute to a deeper understanding of the underlying brain mechanisms associated with this intervention.
Collapse
Affiliation(s)
- Yutong Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenxin Gui
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Weijie Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Bhalla M, Lee CJ. Long-term inhibition of ODC1 in APP/PS1 mice rescues amyloid pathology and switches astrocytes from a reactive to active state. Mol Brain 2024; 17:3. [PMID: 38216963 PMCID: PMC10785549 DOI: 10.1186/s13041-024-01076-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the loss of memory due to aggregation of misphosphorylated tau and amyloid beta (Aβ) plaques in the brain, elevated release of inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and reactive oxygen species from astrocytes, and subsequent neurodegeneration. Recently, it was found that enzyme Ornithine Decarboxylase 1 (ODC1) acts as a bridge between the astrocytic urea cycle and the putrescine-to-GABA conversion pathway in the brain of AD mouse models as well as human patients. In this study, we show that the long-term knockdown of astrocytic Odc1 in APP/PS1 animals was sufficient to completely clear Aβ plaques in the hippocampus while simultaneously switching the astrocytes from a detrimental reactive state to a regenerative active state, characterized by proBDNF expression. Our experiments also reveal an effect of astrocytic ODC1 inhibition on the expression of genes involved in synapse pruning and organization, histone modification, apoptotic signaling and protein processing. These genes are previously known to be associated with astrocytic activation and together create a neuroregeneration-supportive environment in the brain. By inhibiting ODC1 for a long period of 3 months in AD mice, we demonstrate that the beneficial amyloid-clearing process of astrocytes can be completely segregated from the systemically harmful astrocytic response to insult. Our study reports an almost complete clearance of Aβ plaques by controlling an endogenous degradation process, which also modifies the astrocytic state to create a regeneration-supportive environment in the brain. These findings present the potential of modulating astrocytic clearance of Aβ as a powerful therapeutic strategy against AD.
Collapse
Affiliation(s)
- Mridula Bhalla
- Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), 55, Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), 55, Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Chun H, An H, Lim J, Woo J, Lee J, Ryu H, Lee CJ. Astrocytic proBDNF and Tonic GABA Distinguish Active versus Reactive Astrocytes in Hippocampus. Exp Neurobiol 2018; 27:155-170. [PMID: 30022867 PMCID: PMC6050417 DOI: 10.5607/en.2018.27.3.155] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 01/18/2023] Open
Abstract
Astrocytes are the most abundant cell type in the brain and they make close contacts with neurons and blood vessels. They respond dynamically to various environmental stimuli and change their morphological and functional properties. Both physiological and pathological stimuli can induce versatile changes in astrocytes, as this phenomenon is referred to as ‘astrocytic plasticity’. However, the molecular and cellular mechanisms of astrocytic plasticity in response to various stimuli remain elusive, except for the presence of hypertrophy, a conspicuous structural change which is frequently observed in activated or reactive astrocytes. Here, we investigated differential characteristics of astrocytic plasticity in a stimulus-dependent manner. Strikingly, a stab wound brain injury lead to hypertrophy of astrocytes accompanied by increased GABA expression and tonic GABA release in mouse CA1 hippocampus. In contrast, the mice experiencing enriched environment exhibited astrocytic hypertrophy with enhanced proBDNF immunoreactivity but without GABA signal. Based on the results, we define proBDNF-positive/GABA-negative hypertrophic astrocytes as ‘active’ astrocytes and GABA-positive hypertrophic astrocytes as ‘reactive’ astrocytes, respectively. We propose for the first time that astrocytic proBDNF can be a bona fide molecular marker of the active astrocytes, which are distinct from the reactive astrocytes which show hypertrophy but with aberrant GABA.
Collapse
Affiliation(s)
- Heejung Chun
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Heeyoung An
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul 02792, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Jiwoon Lim
- Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul 02792, Korea
| | - Junsung Woo
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jaekwang Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hoon Ryu
- Center for Neuromedicine, Brain Science Institute, KIST, Seoul 02792, Korea.,Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Brain Science Institute, KIST, Seoul 02792, Korea.,Division of Bio-Medical Science & Technology, KIST School, KIST, Seoul 02792, Korea
| |
Collapse
|
7
|
Increased GSNOR Expression during Aging Impairs Cognitive Function and Decreases S-Nitrosation of CaMKIIα. J Neurosci 2017; 37:9741-9758. [PMID: 28883020 DOI: 10.1523/jneurosci.0681-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022] Open
Abstract
As the population ages, an increasing number of people suffer from age-related cognitive impairment. However, the mechanisms underlying this process remain unclear. Here, we found that S-nitrosoglutathione reductase (GSNOR), the key enzyme that metabolizes intracellular nitric oxide (NO) and regulates S-nitrosation, was significantly increased in the hippocampus of both aging humans and mice. Transgenic mice overexpressing GSNOR exclusively in neurons showed cognitive impairment in behavioral tests, including the Morris water maze, fear conditioning, and the Y-maze test. We also found that GSNOR transgenic mice have LTP defects and lower dendrite spine density, whereas GSNOR knock-out mice rescued the age-related cognitive impairment. Analysis of S-nitrosation showed significantly decreased hippocampal CaMKIIα S-nitrosation in naturally aged mice and GSNOR transgenic mice. Consistent with the change in CaMKIIα S-nitrosation, the accumulation of CaMKIIα in the hippocampal synaptosomal fraction, as well as its downstream signaling targets p(S831)-GLUR1, was also significantly decreased. All these effects could be rescued in the GSNOR knock-out mice. We further verified that the S-nitrosation of CaMKIIα was responsible for the CaMKIIα synaptosomal accumulation by mutating CaMKIIα S-nitrosated sites (C280/C289). Upregulation of the NO signaling pathway rescued the cognitive impairment in GSNOR transgenic mice. In summary, our research demonstrates that GSNOR impairs cognitive function in aging and it could serve as a new potential target for the treatment of age-related cognitive impairment. In contrast to the free radical theory of aging, NO signaling deficiency may be the main mediator of age-related cognitive impairment.SIGNIFICANCE STATEMENT This study indicated that S-nitrosoglutathione reductase (GSNOR), a key protein S-nitrosation metabolic enzyme, is a new potential target in age-related cognitive impairment; and in contrast to the free radical theory of aging, NO signaling deficiency may be the main cause of this process. In addition, increased GSNOR expression during aging decreases S-nitrosation of CaMKIIα and reduces CaMKIIα synaptosomal accumulation. To our knowledge, it is for the first time to show the cellular function regulation of CaMKIIα by GSNOR-dependent S-nitrosation as a new post-translational modification after its phosphorylation was explored. These findings elucidate a novel mechanism of age-related cognitive impairment and may provide a new potential target and strategy for slowing down this process.
Collapse
|
8
|
Effects of environmental enrichment in aged mice on anxiety-like behaviors and neuronal nitric oxide synthase expression in the brain. Biochem Biophys Res Commun 2016; 476:635-640. [DOI: 10.1016/j.bbrc.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022]
|
9
|
Li XB, Zhang X, Ju J, Li Y, Yin L, Pu Y. Alterations in neurobehaviors and inflammation in hippocampus of rats induced by oral administration of microcystin-LR. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12419-12425. [PMID: 24938810 DOI: 10.1007/s11356-014-3151-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Microcystin-LR (MC-LR) is a widely studied toxic peptide secreted by certain water blooms of cyanobacteria that exhibit hepatotoxicity and neural toxicity. This study aimed to observe the neurotoxic effects of low-dose MC-LR exposure by oral administration. Male Sprague-Dawley (SD) rats were administered orally every 2 days for 8 weeks with pure water and 0.2, 1.0, and 5.0 μg/kg MC-LR. The Morris water maze test was used to assess the spatial learning and memory capability of rats. The activation of astrocytes and nitric oxide synthase (NOS) was evaluated by immunohistochemistry, and concentrations of nitric oxide (NO) in rat hippocampus were analyzed. Slight liver dysfunction was observed in the 5.0 μg/kg MC-LR-treated rats. Impairment of spatial learning and memory was also observed in the 5.0 μg/kg MC-LR-treated rats. Astrocytes in the hippocampus of the 5.0 μg/kg MC-LR-treated rats showed enhanced activation and cell density; the inflammatory indicators, NOS and NO, increased in accordance with astrocyte activation. This study showed that oral exposure of MC-LR had adverse affects on neurobehaviors, and induced inflammation in memory-related brain regions.
Collapse
Affiliation(s)
- Xiao-Bo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China,
| | | | | | | | | | | |
Collapse
|
10
|
Promoting our understanding of neural plasticity by exploring developmental plasticity in early and adult life. Brain Res Bull 2014; 107:31-6. [PMID: 24942566 DOI: 10.1016/j.brainresbull.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
Developmental plasticity (DP) is widely considered to be a property of early life stages, but evidence suggests it can be reactivated in mature brains. For example, recent developments on animal models suggest that experience in enriched environments (EE) can induce DP and enable adult recovery from amblyopia; even when the typical critical period for that recovery has closed. An interesting body of evidence suggests that extrapolation of the rejuvenatory power of that paradigm in mature human brains is feasible. These studies show that exposure to EE throughout life is associated with a delay, or even prevention, of age-related cognitive deficits. Consequently, it can be concluded that DP might underlie the neuroprotective effects against a neurocognitive breakdown that have been observed, and that EE exposure later in life might induce DP in a similar way to early EE exposure. Thus, the DP might exert its influence beyond the typical developing age ranges: childhood and adolescence. Although further research is still required, the observation of EE related neuroprotective effects are a breakthrough in the study of DP in humans and new advances in our understanding of neural plasticity have thus been reached.
Collapse
|
11
|
Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover. Alcohol 2012; 46:473-9. [PMID: 22608205 DOI: 10.1016/j.alcohol.2011.09.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 10/28/2022]
Abstract
Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism.
Collapse
|
12
|
Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 2011; 100:25-32. [DOI: 10.1016/j.pbb.2011.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/23/2022]
|
13
|
Lores-Arnaiz S, Bustamante J. Age-related alterations in mitochondrial physiological parameters and nitric oxide production in synaptic and non-synaptic brain cortex mitochondria. Neuroscience 2011; 188:117-24. [PMID: 21600964 DOI: 10.1016/j.neuroscience.2011.04.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Brain aging has been associated with mitochondrial dysfunction and changes in nitric oxide levels. The aim of this study was to evaluate the susceptibility of synaptic and non-synaptic mitochondria to aging-dependent dysfunction. State 3 respiratory rate and respiratory control were 43% and 33% decreased, respectively in brain cortex synaptosomes from 14-month-old animals, as compared with synaptosomes from 3-month-old mice. Respiratory rates were not significantly affected by aging in non-synaptic mitochondrial fractions. Mitochondrial dysfunction was associated with increases of 84% and 38% in H₂O₂ production rates in brain cortex synaptosomes and non-synaptic mitochondria, respectively, from 14-month-old mice, as compared with young animals. Synaptic mitochondria seem to be more susceptible to calcium insult in 14-month-old mice, as compared with non-synaptic mitochondria, as measured by response of both types of fractions to calcium-induced depolarization. With aging, nitric oxide (NO) production was 44% and 27% decreased both in synaptosomal and non-synaptic mitochondrial fractions, respectively. The results of this study suggest that with aging, mitochondrial function at the nerve terminals would be more susceptible to suffer alterations by the constant calcium changes occurring as a consequence of synaptic activity. Non-synaptic mitochondria would be more resistant to age-related dysfunction and oxidative damage.
Collapse
Affiliation(s)
- S Lores-Arnaiz
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | | |
Collapse
|
14
|
Noschang CG, Krolow R, Fontella FU, Arcego DM, Diehl LA, Weis SN, Arteni NS, Dalmaz C. Neonatal handling impairs spatial memory and leads to altered nitric oxide production and DNA breaks in a sex specific manner. Neurochem Res 2010; 35:1083-91. [PMID: 20369293 DOI: 10.1007/s11064-010-0158-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2010] [Indexed: 01/24/2023]
Abstract
Early life events lead to behavioral and neurochemical changes in adulthood. The aim of this study is to verify the effects of neonatal handling on spatial memory, nitric oxide (NO) production, antioxidant enzymatic activities and DNA breaks in the hippocampus of male and female adult rats. Litters of rats were non-handled or handled (10 min/day, days 1-10 after birth). In adulthood they were subjected to a Morris water maze or used for biochemical evaluations. Female handled rats showed impairment in spatial learning. They also showed decreased NO production, while no effects were observed in these parameters in male rats. No effects were observed on the number of hippocampal NADPH diaphorase positive cells. In the Comet Assay, male handled rats showed increased DNA breaks index when compared to non-handled ones. We conclude that neonatal handling impairs learning performance in a sex-specific manner, what may be related to NO decreased levels.
Collapse
Affiliation(s)
- Cristie Grazziotin Noschang
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, ICBS, UFRGS (Saúde), Ramiro Barcellos, 2600, anexo, Porto Alegre, RS, 90035-003, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mitochondrial function and nitric oxide production in hippocampus and cerebral cortex of rats exposed to enriched environment. Brain Res 2010; 1319:44-53. [DOI: 10.1016/j.brainres.2010.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/20/2022]
|
16
|
Ali AK, Banks WA, Kumar VB, Shah GN, Lynch JL, Farr SA, Fleegal-DeMotta MA, Morley JE. Nitric oxide activity and isoenzyme expression in the senescence-accelerated mouse p8 model of Alzheimer's disease: effects of anti-amyloid antibody and antisense treatments. J Gerontol A Biol Sci Med Sci 2009; 64:1025-30. [PMID: 19531769 DOI: 10.1093/gerona/glp074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Amyloid beta protein (Abeta) in Alzheimer's disease induces oxidative stress through several mechanisms, including stimulation of nitric oxide synthase (NOS) activity. We examined NOS activity and expression in the senescence-accelerated mouse P8 (SAMP8) line. The SAMP8 strain develops with aging cognitive impairments, increases in Abeta, and oxidative stress, all reversed by amyloid precursor protein antisense or Abeta antibody treatment. We found here that hippocampal NOS activity in 12-month-old SAMP8 mice was nearly double that of 2-month-old SAMP8 or CD-1 mice, but with no change in NOS isoenzyme mRNA and protein levels. Antisense or antibody treatment further increased NOS activity in aged SAMP8 mice. Antisense treatment increased inducible NOS (iNOS) mRNA levels, decreased neuronal NOS mRNA and protein levels, but did not affect endothelial NOS (eNOS) or iNOS protein or eNOS mRNA levels. These results suggest a complex relation between Abeta and NOS in the SAMP8 that is largely mediated through posttranslational mechanisms.
Collapse
Affiliation(s)
- Abbas K Ali
- Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center-St Louis, MO 63106, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bustamante J, Czerniczyniec A, Cymeryng C, Lores-Arnaiz S. Age Related Changes from Youth to Adulthood in Rat Brain Cortex: Nitric Oxide Synthase and Mitochondrial Respiratory Function. Neurochem Res 2008; 33:1216-23. [DOI: 10.1007/s11064-007-9570-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
|
18
|
Lores-Arnaiz S, Bustamante J, Czernizyniec A, Galeano P, González Gervasoni M, Rodil Martínez A, Paglia N, Cores V, Lores-Arnaiz MR. Exposure to enriched environments increases brain nitric oxide synthase and improves cognitive performance in prepubertal but not in young rats. Behav Brain Res 2007; 184:117-23. [PMID: 17675170 DOI: 10.1016/j.bbr.2007.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/23/2007] [Accepted: 06/29/2007] [Indexed: 12/26/2022]
Abstract
Rats were randomly assigned to enriched (EE) or standard environments (SE) at 21 or 73 days of age, for 17 days. Half of the rats of each rearing condition were trained in a radial maze (RM). At 38 days (pre-pubertal) or 90 days (young), rats were sacrificed and brain cytosolic and mitochondrial nitric oxide synthase (mtNOS) activity was assayed. Western blot analysis of brain mtNOS was conducted. In the pre-pubertal group, EE rats improved their performance in the RM while SE rats did not. In the young group, SE and EE rats showed a random performance in the RM. In SE pre-pubertal rats, training increased brain cytosolic NOS and mtNOS activity by 68% and 82%. In EE non-trained pre-pubertal rats, brain cytosolic NOS and mtNOS activity increased by 80% and 60%, as compared with SE non-trained pre-pubertal rats. In EE pre-pubertal rats that were trained, brain cytosolic NOS and mtNOS activity increased by 70% and 90%, as compared with SE pre-pubertal rats that were not trained. A higher protein expression of brain mtNOS was found in EE rats, as compared with SE animals. Mitochondrial complex I activity was higher in EE than in SE rats. Training had no effect on complex I activity neither in SE nor in EE rats. In young rats, no significant differences in enzyme activities were found between EE and SE rats. These results support the hypothesis that brief exposure to EE and training produce effects on behavioral performance and on biochemical parameters in an age-dependent manner.
Collapse
Affiliation(s)
- S Lores-Arnaiz
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Brennan AR, Yuan P, Dickstein DL, Rocher AB, Hof PR, Manji H, Arnsten AFT. Protein kinase C activity is associated with prefrontal cortical decline in aging. Neurobiol Aging 2007; 30:782-92. [PMID: 17919783 DOI: 10.1016/j.neurobiolaging.2007.08.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/16/2007] [Accepted: 08/22/2007] [Indexed: 11/17/2022]
Abstract
Aging is associated with deficiencies in the prefrontal cortex, including working memory impairment and compromised integrity of neuronal dendrites. Although protein kinase C (PKC) is implicated in structural plasticity, and overactivation of PKC results in working memory impairments in young animals, the role of PKC in prefrontal cortical impairments in the aged has not been examined. This study provides the first evidence that PKC activity is associated with prefrontal cortical dysfunction in aging. Pharmacological inhibition of PKC with chelerythrine rescued working memory impairments in aged rats and enhanced working memory in aged rhesus monkeys. Improvement correlated with age, with older monkeys demonstrating a greater degree of improvement following PKC inhibition. Furthermore, PKC activity within the prefrontal cortex was inversely correlated with the length of basal dendrites of prefrontal cortical neurons, as well as with working memory performance in aged rats. Together these findings indicate that PKC is dysregulated in aged animals and that PKC inhibitors may be useful in the treatment of cognitive deficits in the elderly.
Collapse
Affiliation(s)
- Avis R Brennan
- Yale University School of Medicine, Department of Neurobiology, 333 Cedar Street, New Haven, CT 06511, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Czerniczyniec A, Bustamante J, Lores-Arnaiz S. Dopamine enhances mtNOS activity: Implications in mitochondrial function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1118-25. [PMID: 17706939 DOI: 10.1016/j.bbabio.2007.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/20/2007] [Accepted: 07/06/2007] [Indexed: 10/23/2022]
Abstract
Dopamine and nitric oxide systems can interact in different processes in the central nervous system. Dopamine and oxidation products have been related to mitochondrial dysfunction. In the present study, intact mitochondria and submitochondrial membranes were incubated with different DA concentrations for 5 min. Dopamine (1 mM) increased nitric oxide production in submitochondrial membranes and this effect was partially prevented in the presence of both DA and NOS inhibitor N(omega)-nitro-L-arginine (L-NNA). A 46% decrease in state 3 oxygen uptake (active respiration state) was found after 15 mM dopamine incubation. When mitochondria were incubated with 15 mM dopamine in the presence of L-NNA, state 3 respiratory rate was decreased by only 17% showing the involvement of NO. As shown for O(2) consumption, the inhibition of cytochrome oxidase by 1 mM DA was mediated by NO. Hydrogen peroxide production significantly increased after 15 mM DA incubation, being mainly due to its metabolism by MAO. Also, DA-induced depolarization was prevented by the addition of L-NNA showing the involvement of nitric oxide in this process too. This work provides evidence that in the studied conditions, dopamine modifies mitochondrial function by a nitric oxide-dependent pathway.
Collapse
Affiliation(s)
- Analía Czerniczyniec
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | |
Collapse
|
21
|
DeBruin LS, Haines JD, Bienzle D, Harauz G. Partitioning of myelin basic protein into membrane microdomains in a spontaneously demyelinating mouse model for multiple sclerosisThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:993-1005. [PMID: 17215885 DOI: 10.1139/o06-180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have characterized the lipid rafts in myelin from a spontaneously demyelinating mouse line (ND4), and from control mice (CD1 background), as a function of age and severity of disease. Myelin was isolated from the brains of CD1 and ND4 mice at various ages, and cold lysed with 1.5% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulphonate). The lysate was separated by low-speed centrifugation into supernatant and pellet fractions, which were characterized by Western blotting for myelin basic protein (MBP) isoforms and their post-translationally modified variants. We found that, with maturation and with disease progression, there was a specific redistribution of the 14–21.5 kDa MBP isoforms (classic exon-II-containing vs exon-II-lacking) and phosphorylated forms into the supernatant and pellet. Further fractionation of the supernatant to yield detergent-resistant membranes (DRMs), representing coalesced lipid rafts, showed these to be highly enriched in exon-II-lacking MBP isoforms, and deficient in methylated MBP variants, in mice of both genotypes. The DRMs from the ND4 mice appeared to be enriched in MBP phosphorylated by MAP kinase at Thr95 (murine 18.5 kDa numbering). These studies indicate that different splice isoforms and post-translationally modified charge variants of MBP are targeted to different microdomains in the myelin membrane, implying multifunctionality of this protein family in myelin maintenance.
Collapse
Affiliation(s)
- Lillian S DeBruin
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
22
|
Niewiadomska G, Baksalerska-Pazera M, Gasiorowska A, Mietelska A. Nerve Growth Factor Differentially Affects Spatial and Recognition Memory in Aged Rats. Neurochem Res 2006; 31:1481-90. [PMID: 17111224 DOI: 10.1007/s11064-006-9209-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
In rats, object discrimination depends on the integrity of the cholinergic system, thus it could be expected that nerve growth factor (NGF) can improve the behavior in aged subjects. The interactive effect of age and cholinergic improvement was assessed behaviorally in young and aged rats. Animals were injected by infusion of NGF into the lateral ventricles and they were tested in two behavioral tasks: an object-location and an object-recognition task. Spatial and recognition memory were assessed in an open field containing five different objects. Rats were submitted to six consecutive sessions. Both age-groups showed comparable habituation of exploratory response in Session 1-4. Discrimination index (DI) was calculated to assess responses to spatial change in Session 5 and object change in Session 6. Control young and aged rats were able to discriminate between familiar and novel object, however DI was lower in aged rats. Treatment with NGF induced decline of object discrimination in both age-groups. Different results were obtained in spatial displacement test. NGF was able to improve spatial memory in aged rats, but had no effect in young controls. These data confer on NGF potential role in improving spatial but not episodic memory in aged rats.
Collapse
Affiliation(s)
- G Niewiadomska
- Department of Neurophysiology, Nencki Institute for Experimental Biology, 02-093, Warsaw, Poland.
| | | | | | | |
Collapse
|
23
|
Oriá RB, Patrick PD, Blackman JA, Lima AAM, Guerrant RL. Role of apolipoprotein E4 in protecting children against early childhood diarrhea outcomes and implications for later development. Med Hypotheses 2006; 68:1099-107. [PMID: 17098371 PMCID: PMC3993898 DOI: 10.1016/j.mehy.2006.09.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
Our group and others have reported a series of studies showing that heavy burdens of diarrheal diseases in the formative first two years of life in children in urban shantytowns have profound consequences of impaired physical and cognitive development lasting into later childhood and schooling. Based on these previous studies showing that apolipoprotein E4 (APOE4) is relatively common in favela children, we review recent data suggesting a protective role for the APOE4 allele in the cognitive and physical development of children with heavy burdens of diarrhea in early childhood. Despite being a marker for cognitive decline with Alzheimer's and cardiovascular diseases later in life, APOE4 appears to be important for cognitive development under the stress of heavy diarrhea. The reviewed findings provide a potential explanation for the survival advantage in evolution of the thrifty APOE4 allele and raise questions about its implications for human development under life-style changes and environmental challenges.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- Center for Global Health, School of Medicine, University of Virginia, United States.
| | | | | | | | | |
Collapse
|
24
|
Czerniczyniec A, Bustamante J, Lores-Arnaiz S. Improvement of mouse brain mitochondrial function after deprenyl treatment. Neuroscience 2006; 144:685-93. [PMID: 17084986 DOI: 10.1016/j.neuroscience.2006.09.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/27/2022]
Abstract
Deprenyl is a selective monoamine oxidase (MAO) B inhibitor, widely used for treatment of Parkinson's disease. The present study shows that deprenyl treatment was able to improve mitochondrial function. Fourteen month old mice were injected i.p. with deprenyl (20 mg/kg) and killed 1.5 h after the administration. Different brain subcellular fractions were isolated from control and deprenyl-treated animals to evaluate the effect of deprenyl on nitric oxide synthase (NOS) activity. Oxygen consumption, hydrogen peroxide (H(2)O(2)) production, mitochondrial membrane potential and calcium-induced permeability transition (MPT) were studied in intact mitochondria. In addition, the effect of deprenyl on respiratory complexes and MAO activities were evaluated in submitochondrial particles (SMP). Monoamine oxidase activity was found to be decreased by 55% in mitochondria from deprenyl-treated animals and as a consequence, H(2)O(2) production was significantly decreased. Deprenyl inhibited NOS activity in cytosolic fractions and SMP by 40% and 55%, respectively. In similar conditions, SMP from deprenyl-treated animals showed increased cytochrome oxidase activity. A 51% increase in the oxygen uptake in state 3 (active respiration state) was found after deprenyl treatment, but no significant changes were observed in state 4 (resting respiration state). Deprenyl treatment protected against calcium-induced depolarization and was able to inhibit calcium-induced MPT. This work provides evidence that deprenyl treatment exerts an improvement of brain mitochondrial function, through a reduction of free radical production, prevention of calcium-induced MPT and maintaining a mitochondrial transmembrane potential.
Collapse
Affiliation(s)
- A Czerniczyniec
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | |
Collapse
|
25
|
Unno K, Takabayashi F, Yoshida H, Choba D, Fukutomi R, Kikunaga N, Kishido T, Oku N, Hoshino M. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 2006; 8:89-95. [PMID: 16957869 DOI: 10.1007/s10522-006-9036-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/29/2006] [Indexed: 11/26/2022]
Abstract
Almost all elderly people show brain atrophy and cognitive dysfunction, even if they are saved from illness, such as cardiac disease, malignancy and diabetes. Prevention or delay of brain senescence would therefore enhance the quality of life for older persons. Because oxidative stress has been implicated in brain senescence, we investigated the effects of green tea catechin (GT-catechin), a potential antioxidant, in senescence-accelerated (SAMP10) mice. The mouse is a model of brain senescence with short life span, cerebral atrophy and cognitive dysfunction. Mice were fed water containing 0.02% GT-catechin from 1- to 15-month-old. The mean dose was about 35 mg/kg/day. We found that daily consumption of GT-catechin prevented memory regression and DNA oxidative damage in these mice. GT-catechin did not prolong the lifetime of SAMP10 mice, but it did delay brain senescence. These findings suggest that continued intake of GT-catechin might promote healthy ageing of the brain in older persons.
Collapse
Affiliation(s)
- Keiko Unno
- Laboratory of Bioorganic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Torres JB, Assunção J, Farias JA, Kahwage R, Lins N, Passos A, Quintairos A, Trévia N, Diniz CWP. NADPH-diaphorase histochemical changes in the hippocampus, cerebellum and striatum are correlated with different modalities of exercise and watermaze performances. Exp Brain Res 2006; 175:292-304. [PMID: 16763833 DOI: 10.1007/s00221-006-0549-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 05/05/2006] [Indexed: 02/08/2023]
Abstract
Nitric oxide is involved in memory and motor learning. We investigated possible influences of exercise on spatial memory and NADPH-diaphorase (NADPH-d) histochemical activity in the hippocampus, striatum and cerebellum. Fifteen albino Swiss mice between the 22nd and 55th post-natal days were exercised in the following modalities: voluntary (V), acrobatic (A), acrobatic/voluntary (AV) and forced (F) and compared to inactive group (I). After the exercise period, all subjects were tested in the water maze for 3 days. Animal brains were processed for NADPH-d histochemistry. Densitometry of the neuropil of the hippocampus, striatum and cerebellum and morphometric analysis of NADPHd+ type I neurons of the striatum were done. Exercise groups presented higher levels of NADPH-d activity in the molecular and polymorphic layers of dentate gyrus and lacunosum molecular layer of CA1. The A group presented higher NADPH-d activity in the cerebellar granular layer than all other groups. Branching points and dendritic segment densities of NADPH-d type I neurons were higher in V, A and AV than in F and I groups. Exercise groups revealed best performances on water maze tests. Thus, different modalities of exercise increases in different proportions for the nitrergic activity in the hippocampus, striatum and cerebellum, and these changes seem to be beneficial to spatial memory.
Collapse
|
27
|
Caamaño-Isorna F, Corral M, Montes-Martínez A, Takkouche B. Education and dementia: a meta-analytic study. Neuroepidemiology 2006; 26:226-32. [PMID: 16707907 DOI: 10.1159/000093378] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Considerable controversy exists about the role of education in the risk of dementia. Individual studies have not been conclusive so far. To examine the hypothesis that lower education is associated with a higher risk of dementia, we carried out a meta-analysis. Observational studies published as of October 2005 that examined the association between education and risk of dementia were systematically reviewed. Relative risks (RRs) and odds ratios were extracted from cohort and case-control studies. We first compared the risk of dementia in subjects with high level of education with the risk of dementia in those with low educational level. In a subsequent analysis, we compared the risk of persons with high education with the risk of subjects with education level other than high (medium, low). We weighted log RRs for cohort studies or odds ratios by the inverse of their variances. Nineteen studies were included in our meta-analysis (13 cohort and 6 case-control studies). RRs for low versus high education level were: Alzheimer's disease (AD) 1.80 (95% CI: 1.43-2.27); non-AD dementias, 1.32 (95% CI: 0.92-1.88), and all dementias 1.59 (95% CI: 1.26-2.01). For low and medium versus high education level, the RRs were: AD 1.44 (95% CI: 1.24-1.67); non-AD 1.23 (95% CI: 0.94-1.61), and all dementias 1.33 (95% CI: 1.15-1.54). These results confirm that low education may be a risk factor for dementia, especially for AD.
Collapse
|
28
|
Walf AA, Rhodes ME, Frye CA. Ovarian steroids enhance object recognition in naturally cycling and ovariectomized, hormone-primed rats. Neurobiol Learn Mem 2006; 86:35-46. [PMID: 16529958 PMCID: PMC3625951 DOI: 10.1016/j.nlm.2006.01.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 11/20/2022]
Abstract
Learning and memory processes may be influenced by fluctuations in steroid hormones, such as estrogens and progestins. In this study, we have used an animal model to investigate the effects of endogenous fluctuations in ovarian steroids in intact female rats and effects of administration of ovarian steroids to ovariectomized rats for non-spatial, working memory using the object recognition task. Performance in this task relies on cortical and hippocampal function. As such, serum, cortical, and hippocampal concentrations of estradiol (E2), progesterone (P4), and P4's metabolite, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), were measured by radioimmunoassay. Experiment 1: Rats in behavioral estrus, compared to those in diestrus or estrus, spent a greater percentage of time exploring a novel object concomitant with increases in serum E2, P4, and 3alpha,5alpha-THP levels. Regression analyses revealed that there was a significant positive relationship between E2 levels in the hippocampus and 3alpha,5alpha-THP levels in the hippocampus and cortex and performance in this task. Experiment 2: Administration of E2 and/or P4 immediately post-training increased the percentage of time spent exploring the novel object and produced levels of E2, P4, and 3alpha,5alpha-THP akin to that of rats in behavioral estrus. Experiment 3: Post-training administration of selective estrogen receptor modulators, including 17beta-E2, propyl pyrazole triol, and diarylpropionitrile increased the percentage of time spent exploring the novel object compared to vehicle-administration. Experiment 4: Post-training P4 or 3alpha,5alpha-THP administration, compared to vehicle, increased the percentage of time spent exploring the novel object and produced P4 and/or 3alpha,5alpha-THP levels within the physiological range typically observed for rats in behavioral estrus. Experiment 5: If post-training administration of E2 and/or P4 was delayed one hour, no enhancement in object recognition was observed. Together, these results suggest that E2 and progestins can have mnemonic effects through actions in the cortex and/or hippocampus.
Collapse
Affiliation(s)
- Alicia A. Walf
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
| | - Madeline E. Rhodes
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
| | - Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA
- Department of Biological Sciences, The University at Albany-SUNY, Albany, NY, USA
- Center for Neuroscience, The University at Albany-SUNY, Albany, NY, USA
- Center for Life Science Research, The University at Albany-SUNY, Albany, NY, USA
- Corresponding author. Fax: +1 518 591 8848. (C.A. Frye)
| |
Collapse
|
29
|
Lores-Arnaiz S, Bustamante J, Arismendi M, Vilas S, Paglia N, Basso N, Capani F, Coirini H, Costa JJL, Arnaiz MRL. Extensive enriched environments protect old rats from the aging dependent impairment of spatial cognition, synaptic plasticity and nitric oxide production. Behav Brain Res 2006; 169:294-302. [PMID: 16513188 DOI: 10.1016/j.bbr.2006.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
In aged rodents, neuronal plasticity decreases while spatial learning and working memory (WM) deficits increase. As it is well known, rats reared in enriched environments (EE) show better cognitive performances and an increased neuronal plasticity than rats reared in standard environments (SE). We hypothesized that EE could preserve the aged animals from cognitive impairment through NO dependent mechanisms of neuronal plasticity. WM performance and plasticity were measured in 27-month-old rats from EE and SE. EE animals showed a better spatial WM performance (66% increase) than SE ones. Cytosolic NOS activity was 128 and 155% higher in EE male and female rats, respectively. Mitochondrial NOS activity and expression were also significantly higher in EE male and female rats. Mitochondrial NOS protein expression was higher in brain submitochondrial membranes from EE reared rats. Complex I activity was 70-80% increased in EE as compared to SE rats. A significant increase in the area of NADPH-d reactive neurons was observed in the parietotemporal cortex and CA1 hippocampal region of EE animals.
Collapse
Affiliation(s)
- S Lores-Arnaiz
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Czerniczyniec A, Bustamante J, Lores-Arnaiz S. Modulation of brain mitochondrial function by deprenyl. Neurochem Int 2006; 48:235-41. [PMID: 16289465 DOI: 10.1016/j.neuint.2005.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/07/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
The present study shows that deprenyl, a known inhibitor of monoamine oxidase B (MAO B), may generate changes in mitochondrial function. Brain submitochondrial membranes (SMP), synaptosomes and cytosolic fractions were incubated with different deprenyl concentrations and nitric oxide synthase (NOS) activity was measured. The effect of deprenyl on oxygen consumption, calcium-induced permeability transition and hydrogen peroxide (H(2)O(2)) production rates was studied in intact mitochondria. Respiratory complexes and monoamine oxidase activities were also measured in submitochondrial membranes. Incubation of brain submitochondrial membranes with deprenyl 10, 25 and 50 microM inhibited nitric oxide synthase activity in a concentration-dependent manner. The same effect was observed in cytosolic fractions and synaptosomes. Monoamine oxidase activity was inhibited at lower deprenyl concentrations (from 0.5 microM). Cytochrome oxidase (complex IV) activity was found 42% increased in the presence of 25 microM deprenyl in a condition of maximal nitric oxide synthase activity. Incubation of brain mitochondria with deprenyl 25 microM produced a 60% increase in oxygen uptake in state 3, but no significant changes were observed in state 4. Pre-incubation of brain mitochondria with deprenyl 0.5 and 1 microM inhibited calcium-induced mitochondrial permeability transition and decreased hydrogen peroxide production rates. Our results suggest that in vitro effects of deprenyl on mitochondrial function can occur through two different mechanisms, involving nitric oxide synthase inhibition and decreased hydrogen peroxide production.
Collapse
Affiliation(s)
- Analía Czerniczyniec
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | | | | |
Collapse
|
31
|
Devan BD, Bowker JL, Duffy KB, Bharati IS, Jimenez M, Sierra-Mercado D, Nelson CM, Spangler EL, Ingram DK. Phosphodiesterase inhibition by sildenafil citrate attenuates a maze learning impairment in rats induced by nitric oxide synthase inhibition. Psychopharmacology (Berl) 2006; 183:439-45. [PMID: 16320087 DOI: 10.1007/s00213-005-0232-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 10/09/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signal transduction pathway has been implicated in some forms of learning and memory. Recent findings suggest that inhibition of phosphodiesterase (PDE) enzymes that degrade cGMP may have memory-enhancing effects. OBJECTIVES We examined whether treatment with sildenafil citrate, a PDE type 5 inhibitor, would attenuate a learning impairment induced by inhibition of NO synthase [60 mg/kg N(omega)-nitro-L-arginine methyl ester (L-NAME), i.p.]. METHODS Rats were pretrained in a one-way active avoidance of foot shock in a straight runway and, on the next day, received 15 training trials in a 14-unit T-maze, a task that has been shown to be sensitive to aging and impairment of central NO signaling systems. Combined treatments of L-NAME or saline and sildenafil (1.0, 1.5, 3.0, or 4.5 mg/kg, i.p.) or vehicle were given 30 and 15 min before training, respectively. Behavioral measures of performance included entries into incorrect maze sections (errors), run time from start to goal (latency), shock frequency, and shock duration. RESULTS Statistical analysis revealed that L-NAME impaired maze performance and that sildenafil (1.5 mg/kg) significantly attenuated this impairment. Control experiments revealed that administration of L-NAME alone did not significantly increase latencies in a one-way active avoidance test and that different doses of sildenafil alone did not significantly alter complex maze performance. CONCLUSIONS The results indicate that sildenafil may improve learning by modulating NO-cGMP signal transduction, a pathway implicated in age-related cognitive decline and neurodegenerative disease.
Collapse
Affiliation(s)
- Bryan D Devan
- Behavioral Neuroscience Section, Laboratory of Experimental Gerontology, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Navarro A, Gómez C, Sánchez-Pino MJ, González H, Bández MJ, Boveris AD, Boveris A. Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1392-9. [PMID: 16020519 DOI: 10.1152/ajpregu.00834.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Male mice receiving vitamin E (5.0 g α-tocopherol acetate/kg of food) from 28 wk of age showed a 40% increased median life span, from 61 ± 4 wk to 85 ± 4 wk, and 17% increased maximal life span, whereas female mice equally supplemented exhibited only 14% increased median life span. The α-tocopherol content of brain and liver was 2.5-times and 7-times increased in male mice, respectively. Vitamin E-supplemented male mice showed a better performance in the tightrope (neuromuscular function) and the T-maze (exploratory activity) tests with improvements of 9–24% at 52 wk and of 28–45% at 78 wk. The rates of electron transfer in brain mitochondria, determined as state 3 oxygen uptake and as NADH-cytochrome c reductase and cytochrome oxidase activities, were 16–25% and 35–38% diminished at 52–78 wk. These losses of mitochondrial function were ameliorated by vitamin E supplementation by 37–56% and by 60–66% at the two time points considered. The activities of mitochondrial nitric oxide synthase and Mn-SOD decreased 28–67% upon aging and these effects were partially (41–68%) prevented by vitamin E treatment. Liver mitochondrial activities showed similar effects of aging and of vitamin E supplementation, although less marked. Brain mitochondrial enzymatic activities correlated negatively with the mitochondrial content of protein and lipid oxidation products ( r2= 0.58–0.99, P < 0.01), and the rates of respiration and of complex I and IV activities correlated positively ( r2= 0.74–0.80, P < 0.01) with success in the behavioral tests and with maximal life span.
Collapse
Affiliation(s)
- Ana Navarro
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Cádiz, Spain.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lores-Arnaiz S, Perazzo JC, Prestifilippo JP, Lago N, D'Amico G, Czerniczyniec A, Bustamante J, Boveris A, Lemberg A. Hippocampal mitochondrial dysfunction with decreased mtNOS activity in prehepatic portal hypertensive rats. Neurochem Int 2005; 47:362-368. [PMID: 16005112 DOI: 10.1016/j.neuint.2005.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Indexed: 12/11/2022]
Abstract
Portal hypertension is a major complication of human cirrhosis that frequently leads to central nervous system dysfunction. In our study, rats with prehepatic portal hypertension developed hippocampal mitochondrial dysfunction as indicated by decreased respiratory rates, respiratory control and mitochondrial nitric oxide synthase (mtNOS) activity in mitochondria isolated from the whole hippocampus. Succinate-dependent respiratory rates decreased by 29% in controlled state 4 and by 42% in active state 3, and respiratory control diminished by 20%. Portal hypertensive rats showed a decreased mtNOS activity of 46%. Hippocampal mitochondrial dysfunction was associated with ultrastructural damage in the mitochondria of hippocampal astrocytes and endothelial cells. Swollen mitochondria, loss of cristae and rupture of outer and inner membrane was observed in astrocytes and endothelial cells of the blood-brain barrier in parallel with the ammonia gradient. It is concluded that the moderate increase in plasma ammonia that followed portal hypertension was the potential primary cause of the observed alterations.
Collapse
Affiliation(s)
- Silvia Lores-Arnaiz
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Marchetti B, Abbracchio MP. To be or not to be (inflamed) – is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 2005; 26:517-25. [PMID: 16126283 DOI: 10.1016/j.tips.2005.08.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 07/14/2005] [Accepted: 08/12/2005] [Indexed: 12/21/2022]
Abstract
A sustained inflammatory reaction is present in acute (e.g. stroke) and chronic (e.g. Alzheimer's disease, Parkinson's disease and multiple sclerosis) neurodegenerative disorders. Inflammation, which is fostered by both residential glial cells and blood-circulating cells that infiltrate the diseased brain, probably starts as a time- and site-specific defense mechanism that could later evolve into a destructive and uncontrolled reaction. In this article, we review the crucial dichotomy of brain inflammation, where failure to resolve an acute beneficial response could lead to a vicious and anarchic state of chronic activation. The possible use of non-steroidal anti-inflammatory drugs for the management of neurodegenerative diseases is discussed in light of recent data demonstrating a neuroprotective role of local innate and adaptive immune responses. Novel therapeutic approaches must rely on potentiation of endogenous anti-inflammatory pathways, identification of early markers of neuronal deterioration and a combination treatment involving immune modulation and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Pharmacology, University of Sassari Medical School, Sassari, Sardinia, Italy.
| | | |
Collapse
|
35
|
Cassel JC, Schweizer T, Lazaris A, Knörle R, Birthelmer A, Gödtel-Armbrust U, Förstermann U, Jackisch R. Cognitive deficits in aged rats correlate with levels of L-arginine, not with nNOS expression or 3,4-DAP-evoked transmitter release in the frontoparietal cortex. Eur Neuropsychopharmacol 2005; 15:163-75. [PMID: 15695061 DOI: 10.1016/j.euroneuro.2004.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 08/28/2004] [Accepted: 09/05/2004] [Indexed: 01/26/2023]
Abstract
Aging is associated with altered neurotransmitter function in the brain. In this study, we measured release parameters for acetylcholine (ACh), norepinephrine and serotonin in the frontoparietal cortex of young and aged rats. We also determined cortical amino acid concentrations and nitric oxide (NO) synthase function. Prior to sacrifice, the rats had been tested for Morris water-maze performance. In aged, compared with young rats, we observed a reduction in both uptake of choline and acetylcholine release. Serotonin release and L-arginine concentrations (a precursor of NO) showed an aging-related increase; however, L-citrulline/L-arginine ratios were decreased in aged rats. Moreover, while most age-related changes in transmitter release or neurochemical markers were not related to the learning performance, L-arginine concentrations were positively correlated to cognitive deficits. NO synthase concentrations were not affected by aging. It is suggested that events related to L-arginine-to-L-citrulline/NO metabolism in the frontoparietal cortex may take part in age-related cognitive deficits.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Neuropharmakologisches Labor, Hansastrasse 9A, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Coolen LM. Involvement of nitric oxide in sexual learning via action in the medial preoptic area: theoretical comment on Lagoda et al. (2004). Behav Neurosci 2005; 118:1473-5. [PMID: 15598160 DOI: 10.1037/0735-7044.118.6.1473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repeated exposure to female-related stimuli causes functional alterations in the neural circuitry mediating male rat sexual behavior. In a study published in the current issue of this journal, G. M. Lagoda, J. W. Muschamp, A. Vigdorchik, and E. M. Hull (2004) provide interesting new evidence as to the mechanisms responsible for this effect, namely via activity of nitric oxide (NO) in the medial preoptic area. Given the history of NO in mediating neural plasticity in other systems, the results point to common mechanisms of plasticity between the processes underlying acquisition of sexual experience and those involved in learning and memory.
Collapse
Affiliation(s)
- Lique M Coolen
- Department of Cell Biology, Neurobiology & Anatomy, University of Cincinnati College of Medicine, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521, USA.
| |
Collapse
|
37
|
Abstract
The decrease of neurological performance in normal aging is directly related to brain oxidative stress and inversely related to lifespan. Male mice lifespan was increased by 8-10% (median and maximal lifespan, respectively) in mice with high spontaneous neurological activity, by 21-15% after moderate exercise; and by 25-20% after supplementation with vitamin E. Oxidative stress markers, TBARS and protein carbonyl content, were found increased on aging; a higher content of oxidation products is considered an effective aging factor, specially in the brain, with a majority of postmitotic cells. Mitochondrial enzyme activities, mitochondrial nitric oxide synthase (mtNOS), NADH dehydrogenase and cytochrome oxidase, behaved as markers of brain aging. The decrease in enzyme activities was directly related to the content of oxidation products and to the loss of neurological function in aged mice, this latter was determined in the tighrope and the T-maze tests. The above mentioned conditions that increased mice lifespan were effective to decrease the level of oxidative stress markers, and to retard the decreases in mitochondrial enzyme activities and neurological function associated to aging. The activities of mtNOS, NADH dehydrogenase and cytochrome oxidase may be used as indicators of the effectiveness of antiaging treatments.
Collapse
Affiliation(s)
- Ana Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cádiz, 11003 Cádiz, Spain.
| |
Collapse
|