1
|
Chen B, Bao R, Pan J, Zhu Z, Chen Q, Wang D, Wu Y, Yu H, Zhang Y, Wang T. Taurine alleviates dysfunction of cholesterol metabolism under hyperuricemia by inhibiting A2AR-SREBP-2/CREB/HMGCR axis. J Lipid Res 2025; 66:100746. [PMID: 39848583 PMCID: PMC11875148 DOI: 10.1016/j.jlr.2025.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
Dysfunctional cholesterol metabolism is highly prevalent in patients with hyperuricemia. Both uric acid and cholesterol are independent risk factors for atherosclerosis, contributing to an increased incidence of cardiovascular disease in hyperuricemia. Investigating the pathological mechanisms underlying cholesterol metabolism dysfunction in hyperuricemia is essential. This study identified adenosine and inosine, two major purine metabolites, as key regulators of cholesterol biosynthesis. These metabolites upregulate 3-hydroxy-3-methylglutaryl-CoA. Further mechanistic studies revealed that adenosine/inosine up-regulated the expression of 3-hydroxy-3-methylglutaryl-CoA by activating adenosine A2A receptor via the Srebp-2/Creb axis in hyperuricemia. Additionally, we found that taurine deficiency contributes to cholesterol metabolism dysfunction in hyperuricemia. Taurine administration in hyperuricemia mice significantly reduced cholesterol elevation by inhibiting adenosine A2A receptor. This study provides a promising strategy for treating comorbid hypercholesterolemia and hyperuricemia.
Collapse
Affiliation(s)
- Beibei Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruixia Bao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jujie Pan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zicheng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Ma N, Liu P, Li N, Hu Y, Kang L. Exploring the pharmacological mechanisms for alleviating OSA: Adenosine A2A receptor downregulation of the PI3K/Akt/HIF‑1 pathway (Review). Biomed Rep 2025; 22:21. [PMID: 39720297 PMCID: PMC11668141 DOI: 10.3892/br.2024.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is the most common type of sleep apnea, which leads to episodes of intermittent hypoxia due to obstruction of the upper airway. A key feature of OSA is the upregulation and stabilization of hypoxia-inducible factor 1 (HIF-1), a crucial metabolic regulator that facilitates rapid adaptation to changes in oxygen availability. Adenosine A2A receptor (A2AR), a major adenosine receptor, regulates HIF-1 under hypoxic conditions, exerting anti-inflammatory properties and affecting lipid metabolism. The present study explored the roles of A2AR in OSA regulation, specifically focusing on its effects via the PI3K/Akt/HIF-1 pathway. The findings enhance our understanding the pharmacological potential of A2AR in OSA management and suggest future research directions in exploring its clinical applications.
Collapse
Affiliation(s)
- Nini Ma
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Peijie Liu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Ning Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Yushi Hu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Liang Kang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| |
Collapse
|
3
|
Shuai R, He Y, Yang D, Zhang Y, Zhang L. Association between the atherogenic index of plasma and non-alcoholic fatty liver disease in Korean pregnant women: secondary analysis of a prospective cohort study. Front Nutr 2025; 12:1511952. [PMID: 39957769 PMCID: PMC11825326 DOI: 10.3389/fnut.2025.1511952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Background Recent studies have shown an association between atherogenic index of plasma (AIP) and nonalcoholic fatty liver disease (NAFLD), but the association in a population of pregnant women remains unclear. Objectives Our study aimed to examine the association between AIP and NAFLD in pregnant Korean women. Methods Our study used publicly available data from Korea, which recruited singleton pregnant women between November 2014 and September 2016 who were at 10-14 weeks of gestation. The presence of NAFLD was diagnosed by liver ultrasound. AIP was calculated as log10 (TG/HDL). Participants were grouped according to AIP tertile: T1 (< 0.16, n = 195), T2 (0.16-0.32, n = 195), and T3 (>0.32, n = 196). Logistic regression models were used to estimate the relationship between AIP and NAFLD. Subgroup and sensitivity analyses were conducted to explore the stability of this relationship. Restricted cubic spline (RCS) curve fitting was employed to investigate potential non-linear associations. Results After excluding data on missing variables, 586 singleton pregnant women were finally included. The subjects included in the study had an average AIP of 0.22 (0.11, 0.37), and NAFLD occurred in 110 (18.8%) pregnant women. We observed a positive linear association between AIP and NAFLD (OR = 1.33, 95% CI: 1.19-1.48), which persisted after adjusting for potential confounders (OR = 1.2, 95% CI: 1.06-1.37). When AIP was used as a categorical variable, after adjusting for covariates, the NAFLD risk was significantly higher in the highest tertile of AIP than in the lowest group (OR = 2.02, 95% CI: 1.11-3.68). Their correlations were stable across subgroups and sensitivity analyses. Conclusion In this secondary analysis of a prospective cohort study of pregnant Korean women, AIP was found to be positively associated with NAFLD. These outcomes might be used to screen for NAFLD in pregnant women.
Collapse
Affiliation(s)
- Rong Shuai
- Department of Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Yuxing He
- Department of Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Dongqian Yang
- Department of Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| | - Yingying Zhang
- Department of Laboratory Medicine, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, China
| | - Li Zhang
- Department of Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, China
| |
Collapse
|
4
|
Barrantes FJ. The pleomorphic cholesterol sensing motifs of transmembrane proteins. Chem Phys Lipids 2025; 266:105460. [PMID: 39615777 DOI: 10.1016/j.chemphyslip.2024.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Millions of years of phylogenetic evolution have shaped the crosstalk between sterols and membrane-embedded proteins. This lengthy process, which began before the appearance of eukaryotic cells, has sculpted the two types of molecules to cover a wide spectrum of structural interconnectedness, ranging from rapid touch-and-go hits of low-affinity between surfaces to stronger lock-and-key type structural contacts. The former usually involve relatively loose contacts between linear amino acid sequences on the membrane-exposed transmembrane domains of the protein, readily accessible to the sterols as they briefly visit clefts between adjacent transmembrane segments while in rapid exchange with the bulk lipid bilayer. This operational mode is probably the most ancestral one, since it was already present in primitive bacteria interacting with hopanoid lipids. At the other end of this spectrum are more complex cholesterol binding sites that have required the acquisition of complex 3D non-sequential segments of the membrane protein to establish stereochemically elaborate 3D designs complementary to the rough and smooth surfaces of the eukaryotic neutral lipid, cholesterol. This short review explores cholesterol-membrane protein interactions using membrane protein paradigms having in common their participation in intercellular communications neurotransmission, hormone signalling, amino acid/neurotransmitter transport- and in cancer.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Buenos Aires C1107AAF, Argentina.
| |
Collapse
|
5
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 PMCID: PMC12021433 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
6
|
Zhang J, Suo Y, Wang L, Liu D, Jia Y, Fu Y, Fan W, Jiang Y. Association between atherogenic index of plasma and gestational diabetes mellitus: a prospective cohort study based on the Korean population. Cardiovasc Diabetol 2024; 23:237. [PMID: 38970008 PMCID: PMC11227226 DOI: 10.1186/s12933-024-02341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Atherogenic index of plasma (AIP) is a non-traditional lipid parameter that can reflect the burden of atherosclerosis. A lipid profile resembling atherosclerosis emerged during pregnancy. Although lipid metabolism is pivotal in diabetes pathogenesis, there is no evidence linking AIP to gestational diabetes mellitus (GDM). Therefore, our objective was to explore the relationship between AIP and GDM and assess AIP's predictive capability for GDM. METHODS This was a secondary analysis based on data from a prospective cohort study in Korea involving 585 single pregnant women. AIP was calculated as log10 (TG/HDL). We examined the relationship between AIP and GDM using logistic regression models, curve fitting, sensitivity analyses, and subgroup analyses. Receiver operating characteristic (ROC) analysis was also used to determine the ability of AIP to predict GDM. RESULTS The average age of the participants was 32.06 ± 3.76 years. The AIP was 0.24 ± 0.20 on average. The GDM incidence was 6.15%. After adjustment for potentially confounding variables, AIP showed a positive linear relationship with GDM (P for non-linearity: 0.801, OR 1.58, 95% CI 1.27-1.97). The robustness of the connection between AIP and GDM was demonstrated by sensitivity analyses and subgroup analyses. An area under the ROC curve of 0.7879 (95% CI 0.7087-0.8671) indicates that AIP is an excellent predictor of GDM. With a specificity of 75.41% and sensitivity of 72.22%, the ideal AIP cut-off value for identifying GDM was 0.3557. CONCLUSIONS This study revealed that the AIP at 10-14 weeks of gestation was independently and positively correlated with GDM risk. AIP could serve as an early screening and monitoring tool for pregnant women at high risk of GDM, thereby optimizing GDM prevention strategies. TRIAL REGISTRATION ClinicalTrials.gov registration no. NCT02276144.
Collapse
Affiliation(s)
- Juan Zhang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
| | - Yaoyu Suo
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
| | - Li Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dong Liu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
| | - Yue Jia
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
| | - Yajuan Fu
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China.
| | - Weining Fan
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
- General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Yideng Jiang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
7
|
dos Santos PMF, Díaz Acosta CC, Rosa TLSA, Ishiba MH, Dias AA, Pereira AMR, Gutierres LD, Pereira MP, da Silva Rocha M, Rosa PS, Bertoluci DFF, Meyer-Fernandes JR, da Mota Ramalho Costa F, Marques MAM, Belisle JT, Pinheiro RO, Rodrigues LS, Pessolani MCV, Berrêdo-Pinho M. Adenosine A 2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage. Front Pharmacol 2024; 15:1399363. [PMID: 39005937 PMCID: PMC11239521 DOI: 10.3389/fphar.2024.1399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.
Collapse
Affiliation(s)
| | - Chyntia Carolina Díaz Acosta
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Michelle Harumi Ishiba
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Luísa Domingos Gutierres
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Melissa Pontes Pereira
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matheus da Silva Rocha
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daniele F. F. Bertoluci
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, São Paulo, Brazil
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Angela M. Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Lei Q, Zhen S, Zhang L, Zhao Q, Yang L, Zhang Y. A2AR-mediated CXCL5 upregulation on macrophages promotes NSCLC progression via NETosis. Cancer Immunol Immunother 2024; 73:108. [PMID: 38642131 PMCID: PMC11032303 DOI: 10.1007/s00262-024-03689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.
Collapse
Affiliation(s)
- Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Shanshan Zhen
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Lei Zhang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.
| |
Collapse
|
9
|
Liu Y, Wang T, Ding L, Li Z, Zhang Y, Dai M, Wu H. Extract of Gualou-Xiebai Herb Pair Improves Lipid Metabolism Disorders by Enhancing the Reverse Cholesterol Transport in Atherosclerosis Mice. Curr Neurovasc Res 2024; 21:214-227. [PMID: 38629368 DOI: 10.2174/0115672026308438240405055719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Gualou is derived from the fruit of Trichosanthes kirilowii Maxim, while Xiebai from the bulbs of Allium macrostemon Bunge. Gualou and Xiebai herb pair (2:1) is widely used in clinical practice to treat atherosclerotic cardiovascular diseases. However, the mechanism underlying its potential activity on atherosclerosis (AS) has not been fully elucidated. METHODS The extract of Gualou-Xiebai herb pair (GXE) was prepared from Gualou (80 g) and Xiebai (40 g) by continuous refluxing with 50% ethanol for 2 h at 80°C. In vivo, ApoE-/- mice were fed a high-fat diet (HFD) for 10 weeks to induce an AS model, and then the mice were treated with GXE (3, 6, 12 g/kg) or atorvastatin (10 mg/kg) via oral gavage. Besides, RAW264.7 macrophages were stimulated by ox-LDL to establish a foam cell model in vitro. RESULTS GXE suppressed plaque formation, regulated plasma lipids, and promoted liver lipid clearance in AS mice. In addition, 0.5, 1, and 2 mg/mL GXE significantly reduced the TC and FC levels in ox-LDL (50 μg/mL)-stimulated foam cells. GXE increased cholesterol efflux from the foam cells to ApoA-1 and HDL, and enhanced the protein expressions of ABCA1, ABCG1, and SR-BI, which were reversed by the PPARγ inhibitor. Meanwhile, GXE increased the LCAT levels, decreased the lipid levels and increased the TBA levels in the liver of AS mice. Molecular docking indicated that some compounds in GXE showed favorable binding energy with PPARγ, LCAT and CYP7A1 proteins, especially apigenin-7-O-β-D-glucoside and quercetin. CONCLUSION In summary, our results suggested that GXE improved lipid metabolism disorders by enhancing RCT, providing a scientific basis for the clinical use of GXE in AS treatment.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Tian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Lidan Ding
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Zhenglong Li
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Yexiang Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Hefei, 230012, China
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, No. 350 Longzihu Road, Hefei, 230012, China
| |
Collapse
|
10
|
Akash MSH, Noureen S, Rehman K, Nadeem A, Khan MA. Investigating the biochemical association of gestational diabetes mellitus with dyslipidemia and hemoglobin. Front Med (Lausanne) 2023; 10:1242939. [PMID: 37964879 PMCID: PMC10641375 DOI: 10.3389/fmed.2023.1242939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Aims To investigate the biochemical correlation of hemoglobin (Hb), dyslipidemia, and HbA1c with gestational diabetes mellitus (GDM). Background GDM is a condition that develops during pregnancy and is characterized by high blood sugar levels. Biochemical parameters such as hemoglobin (Hb), dyslipidemia, and HbA1c have been implicated in the development of GDM. Understanding the correlation between these biochemical parameters and GDM can provide insights into the underlying mechanisms and potential diagnostic markers for the condition. Objective The objective of this study was to evaluate the correlation of various biochemical parameters, including Hb, dyslipidemia, and HbA1c, in pregnant women with and without GDM. Method A cross-sectional study design was used. Pregnant females attending a tertiary care hospital in Faisalabad between September 1st, 2021, and June 25th, 2022, were included in the study. The participants were divided into two groups: those with GDM (GDM group) and those without GDM (non-GDM group). Blood glucose, Hb, and lipid levels were compared between the two groups using statistical tests, including chi-square, independent sample t-test, and Pearson's correlation. Result Out of the 500 participants, 261 were in the 2nd trimester and 239 in the 3rd trimester. Maternal age showed a significant difference between the GDM and non-GDM groups. The levels of Hb, TC, HDL, LDL, and HbA1c significantly differed (p < 0.05) between the two groups. TC (r = 0.397), TG (r = 0.290), and LDL (r = 0.509) showed a statistically significant and moderately positive correlation with GDM. HDL (r = -0.394) and Hb (r = -0.294) showed a moderate negative correlation with GDM. Conclusion Increased levels of HbA1c, TC, and LDL, along with decreased levels of HDL and Hb, were identified as contributing factors to GDM. The levels of TC, TG, and LDL were positively correlated with GDM, while HDL and Hb were negatively correlated. The findings of this study suggest that monitoring and managing hemoglobin, dyslipidemia, and HbA1c levels during pregnancy may be important in identifying and potentially preventing or managing GDM. Further research is needed to explore the underlying mechanisms and potential interventions targeting these biochemical parameters in relation to GDM.
Collapse
Affiliation(s)
| | - Sibgha Noureen
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
- Department of Pharmacy, University of Chenab, Gujrat, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Abbas Khan
- School of Cancer and Pharmaceutical Science, Faculty of Life Science and Medicine, King's College London, London, United Kingdom
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
11
|
Arroyave-Ospina JC, Buist-Homan M, Schmidt M, Moshage H. Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling. Biomed Pharmacother 2023; 165:114884. [PMID: 37423170 DOI: 10.1016/j.biopha.2023.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffeine is known to modulate adenosine receptor signaling via the antagonism of adenosine receptors. The involvement of these receptors in the prevention of hepatic lipotoxicity has not yet been explored. The aim of this study was to explore whether caffeine protects against palmitate-induced lipotoxicity by modulating adenosine receptor signaling. METHODS Primary hepatocytes were isolated from male rats. Hepatocytes were treated with palmitate with or without caffeine or 1,7DMX. Lipotoxicity was verified using Sytox viability staining and mitochondrial JC-10 staining. PKA activation was verified by Western blotting. Selective (ant)agonists of A1AR (DPCPX and CPA, respectively) and A2AR (istradefyline and regadenoson, respectively), the AMPK inhibitor compound C, and the Protein Kinase A (PKA) inhibitor Rp8CTP were used. Lipid accumulation was verified by ORO and BODIPY 453/50 staining. RESULTS Caffeine and its metabolite 1,7DMX prevented palmitate-induced toxicity in hepatocytes. The A1AR antagonist DPCPX also prevented lipotoxicity, whereas both the inhibition of PKA and the A1AR agonist CPA (partially) abolished the protective effect. Caffeine and DPCPX increased lipid droplet formation only in palmitate-treated hepatocytes and decreased mitochondrial ROS production. CONCLUSIONS The protective effect of caffeine against palmitate lipotoxicity was shown to be dependent on A1AR receptor and PKA activation. Antagonism of A1AR also protects against lipotoxicity. Targeting A1AR receptor may be a potential therapeutic intervention with which to treat MAFLD.
Collapse
Affiliation(s)
- Johanna C Arroyave-Ospina
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Manon Buist-Homan
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martina Schmidt
- Department Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
You Y, Hu H, Cao C, Han Y, Tang J, Zhao W. Association between the triglyceride to high-density lipoprotein cholesterol ratio and the risk of gestational diabetes mellitus: a second analysis based on data from a prospective cohort study. Front Endocrinol (Lausanne) 2023; 14:1153072. [PMID: 37576966 PMCID: PMC10415043 DOI: 10.3389/fendo.2023.1153072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Although there is strong evidence linking triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to insulin resistance and diabetes mellitus, its clinical importance in pregnant women has not been well determined. This study sought to determine the connection between the TG/HDL-C ratio in the first trimester and the eventual onset of gestational diabetes mellitus (GDM). METHODS We performed a secondary analysis of open-access data from a prospective cohort study. This present study included 590 singleton pregnant women at 10-14 weeks who visited the outpatient clinics for prenatal checks and were recorded at Incheon Seoul Women's Hospital and Seoul Metropolitan Government Seoul National University Boramae Medical Center in Korea. A binary logistic regression model, a series of sensitivity analyses, and subgroup analysis were used to examine the relationship between TG/HDL-C ratio and incident GDM. A receiver operating characteristic (ROC) analysis was also conducted to assess the ability of the TG/HDL-C ratio to predict GDM. RESULTS The mean age of the included individuals was 32.06 ± 3.80 years old. The mean TG/HDL-C ratio was 1.96 ± 1.09. The incidence rate of GDM was 6.27%. After adjustment for potentially confounding variables, TG/HDL-C ratio was positively associated with incident GDM (OR=1.77, 95%CI: 1.32-2.38, P=0.0001). Sensitivity analyses and subgroup analysis demonstrated the validity of the relationship between the TG/HDL-C ratio and GDM. The TG/HDL-C ratio was a good predictor of GDM, with an area under the ROC curve of 0.7863 (95% CI: 0.7090-0.8637). The optimal TG/HDL-C ratio cut-off value for detecting GDM was 2.2684, with a sensitivity of 72.97% and specificity of 75.05%. CONCLUSION Our results demonstrate that the elevated TG/HDL-C ratio is related to incident GDM. The TG/HDL-C ratio at 10-14 weeks could help identify pregnant women at risk for GDM and may make it possible for them to receive early and effective treatment to improve their prognosis.
Collapse
Affiliation(s)
- Yun You
- Department of Obstetrics, Shantou University Medical College, Shantou, Guangdong, China
- Department of Obstetrics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Changchun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, Shenzhen, Guangdong, China
| | - Yong Han
- Department of Emergency, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Jie Tang
- Department of Obstetrics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Weihua Zhao
- Department of Obstetrics, Shantou University Medical College, Shantou, Guangdong, China
- Department of Obstetrics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Effendi WI, Nagano T. A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. Int J Mol Sci 2023; 24:4428. [PMID: 36901855 PMCID: PMC10002355 DOI: 10.3390/ijms24054428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Purine nucleotides and nucleosides are involved in various human physiological and pathological mechanisms. The pathological deregulation of purinergic signaling contributes to various chronic respiratory diseases. Among the adenosine receptors, A2B has the lowest affinity such that it was long considered to have little pathophysiological significance. Many studies suggest that A2BAR plays protective roles during the early stage of acute inflammation. However, increased adenosine levels during chronic epithelial injury and inflammation might activate A2BAR, resulting in cellular effects relevant to the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga (UNAIR), Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Pulmonology and Respiratory Medicine of UNAIR (PaRU) Research Center, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
14
|
Franco R, Lillo A, Navarro G, Reyes-Resina I. The adenosine A 2A receptor is a therapeutic target in neurological, heart and oncogenic diseases. Expert Opin Ther Targets 2022; 26:791-800. [DOI: 10.1080/14728222.2022.2136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Abdel-Hamid TA, AbdelLatif D, Ahmed E, Abdel-Rasheed M, A-Mageed A. Relation between Maternal and Neonatal Serum Lipid Profile and Their Impact on Birth Weight. Am J Perinatol 2022; 39:1112-1116. [PMID: 33321526 DOI: 10.1055/s-0040-1721690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Maternal malnutrition with disturbed lipid metabolism during pregnancy may affect the fetal lipid profile. We aimed to detect the relation between maternal and neonatal serum lipid profile, as well as to detect the serum lipid profile difference between small for gestational age (SGA) infants and appropriate for gestational age (AGA) infants to disclose the impact of maternal malnutrition on birth weight. STUDY DESIGN A cross-sectional study was conducted on 150 pregnant women coming to the labor room. Before delivery, maternal serum levels of high-density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides (TGs), and total cholesterol were assessed, then after delivery, cord blood samples were taken for assessment of the neonatal lipid profile. Birth weights were measured, then the neonates were divided into SGA and AGA groups. RESULTS Serum levels of LDL, TGs, and total cholesterol in the SGA infants were lower than that in the AGA infants. A positive correlation between maternal and neonatal serum TGs levels was found. Besides, there was a positive correlation between birth weight and maternal serum levels of LDL, TGs, and total cholesterol. CONCLUSION Maternal serum lipid profile could be an indicator of the neonatal serum lipid profile and birth weight. KEY POINTS · SGA neonates have lower levels of serum lipids compared to AGA neonates.. · There is a positive correlation between maternal and neonatal triglycerides.. · There is a positive correlation between birth weight and maternal serum lipids..
Collapse
Affiliation(s)
| | - Dalia AbdelLatif
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Ahmed
- Pediatrics Department, Alhayat Hospital, Alhayat, Egypt
| | | | - Ahmed A-Mageed
- Obstetrics and Gynecology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Sun C, Wang B, Hao S. Adenosine-A2A Receptor Pathway in Cancer Immunotherapy. Front Immunol 2022; 13:837230. [PMID: 35386701 PMCID: PMC8977492 DOI: 10.3389/fimmu.2022.837230] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
A2A receptors (A2AR), a typical GPCR with a high affinity for adenosine, was expressed in many immune cells, such as regulatory T cells, cytotoxic T cells, macrophages, etc. Adenosine binding to the A2AR receptor activates the typical G protein and triggers the cAMP/PKA/CREB pathway. The adenosine-A2AR pathway plays an important role in protecting normal organs and tissues from the autoimmune response of immune cells. However, many solid tumors hijack the adenosine-A2AR pathway by promoting adenosine accumulation. The activation of the A2AR pathway inhibited the immune response of immune cells and then promotes the immune escape of tumor cells in the tumor microenvironment. Recently, both animal experiments and clinical trials indicated that blocking the adenosine pathway can inhibit the progression of a variety of solid tumors. In addition, it is encouraging that A2AR blockade combined with CAR T cells therapy showed better anti-tumor efficacy. Therefore, this review will discuss the role of the adenosine-A2AR pathway in the tumor microenvironment and summarize recent advances of A2AR-cancer related studies.
Collapse
Affiliation(s)
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
17
|
Kotulová J, Hajdúch M, Džubák P. Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose? Int J Mol Sci 2021; 22:12569. [PMID: 34830449 PMCID: PMC8617980 DOI: 10.3390/ijms222212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
Collapse
Affiliation(s)
| | | | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.K.); (M.H.)
| |
Collapse
|
18
|
Im H, Park JH, Im S, Han J, Kim K, Lee YH. Regulatory roles of G-protein coupled receptors in adipose tissue metabolism and their therapeutic potential. Arch Pharm Res 2021; 44:133-145. [PMID: 33550564 PMCID: PMC7907040 DOI: 10.1007/s12272-021-01314-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
The high incidence of obesity has increased the need to discover new therapeutic targets to combat obesity and obesity-related metabolic diseases. Obesity is defined as an abnormal accumulation of adipose tissue, which is one of the major metabolic organs that regulate energy homeostasis. However, there are currently no approved anti-obesity therapeutics that directly target adipose tissue metabolism. With recent advances in the understanding of adipose tissue biology, molecular mechanisms involved in brown adipose tissue expansion and metabolic activation have been investigated as potential therapeutic targets to increase energy expenditure. This review focuses on G-protein coupled receptors (GPCRs) as they are the most successful class of druggable targets in human diseases and have an important role in regulating adipose tissue metabolism. We summarize recent findings on the major GPCR classes that regulate thermogenesis and mitochondrial metabolism in adipose tissue. Improved understanding of GPCR signaling pathways that regulate these processes could facilitate the development of novel pharmacological approaches to treat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Hyeonyeong Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seowoo Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juhyeong Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyungmin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University; Bio-MAX Institute, Seoul National University, 29-Room # 311, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
19
|
Vairo D, Giacobbe C, Guiol C, Chaptal MC, Di Taranto MD, Bruzzese L, Ruf J, Guieu R, Fortunato G, Fenouillet E, Mottola G. Correlation between low adenosine A 2A receptor expression and hypercholesterolemia: A new component of the cardiovascular risk? Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158850. [PMID: 33161070 DOI: 10.1016/j.bbalip.2020.158850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Donato Vairo
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy; CEINGE S.C.a r.l, Biotecnologie Avanzate, Naples, Italy
| | - Claire Guiol
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | | | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy; CEINGE S.C.a r.l, Biotecnologie Avanzate, Naples, Italy
| | - Laurie Bruzzese
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Jean Ruf
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Régis Guieu
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France; Laboratory of Biochemistry, Hôpital de La Timone, Marseille, France
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy; CEINGE S.C.a r.l, Biotecnologie Avanzate, Naples, Italy
| | - Emmanuel Fenouillet
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France; INSB, CNRS, Paris, France
| | - Giovanna Mottola
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France; Laboratory of Biochemistry, Hôpital de La Timone, Marseille, France.
| |
Collapse
|
20
|
Kutryb-Zajac B, Mierzejewska P, Slominska EM, Smolenski RT. Therapeutic Perspectives of Adenosine Deaminase Inhibition in Cardiovascular Diseases. Molecules 2020; 25:molecules25204652. [PMID: 33053898 PMCID: PMC7587364 DOI: 10.3390/molecules25204652] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminase (ADA) is an enzyme of purine metabolism that irreversibly converts adenosine to inosine or 2'deoxyadenosine to 2'deoxyinosine. ADA is active both inside the cell and on the cell surface where it was found to interact with membrane proteins, such as CD26 and adenosine receptors, forming ecto-ADA (eADA). In addition to adenosine uptake, the activity of eADA is an essential mechanism that terminates adenosine signaling. This is particularly important in cardiovascular system, where adenosine protects against endothelial dysfunction, vascular inflammation, or thrombosis. Besides enzymatic function, ADA protein mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. Furthermore, alteration in ADA activity was demonstrated in many cardiovascular pathologies such as atherosclerosis, myocardial ischemia-reperfusion injury, hypertension, thrombosis, or diabetes. Modulation of ADA activity could be an important therapeutic target. This work provides a systematic review of ADA activity and anchoring inhibitors as well as summarizes the perspectives of their therapeutic use in cardiovascular pathologies associated with increased activity of ADA.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Correspondence: (B.K.-Z); (R.T.S.); Tel.: +48-58-349-14-64 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | | | | | - Ryszard T. Smolenski
- Correspondence: (B.K.-Z); (R.T.S.); Tel.: +48-58-349-14-64 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
21
|
Ludwig N, Azambuja JH, Rao A, Gillespie DG, Jackson EK, Whiteside TL. Adenosine receptors regulate exosome production. Purinergic Signal 2020; 16:231-240. [PMID: 32440820 PMCID: PMC7367962 DOI: 10.1007/s11302-020-09700-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/22/2020] [Indexed: 02/03/2023] Open
Abstract
Exosomes, small-sized extracellular vesicles, carry components of the purinergic pathway. The production by cells of exosomes carrying this pathway remains poorly understood. Here, we asked whether type 1, 2A, or 2B adenosine receptors (A1Rs, A2ARs, and A2BRs, respectively) expressed by producer cells are involved in regulating exosome production. Preglomerular vascular smooth muscle cells (PGVSMCs) were isolated from wildtype, A1R-/-, A2AR-/-, and A2BR-/- rats, and exosome production was quantified under normal or metabolic stress conditions. Exosome production was also measured in various cancer cells treated with pharmacologic agonists/antagonists of A1Rs, A2ARs, and A2BRs in the presence or absence of metabolic stress or cisplatin. Functional activity of exosomes was determined in Jurkat cell apoptosis assays. In PGVSMCs, A1R and A2AR constrained exosome production under normal conditions (p = 0.0297; p = 0.0409, respectively), and A1R, A2AR, and A2BR constrained exosome production under metabolic stress conditions. Exosome production from cancer cells was reduced (p = 0.0028) by the selective A2AR agonist CGS 21680. These exosomes induced higher levels of Jurkat apoptosis than exosomes from untreated cells or cells treated with A1R and A2BR agonists (p = 0.0474). The selective A2AR antagonist SCH 442416 stimulated exosome production under metabolic stress or cisplatin treatment, whereas the selective A2BR antagonist MRS 1754 reduced exosome production. Our findings indicate that A2ARs suppress exosome release in all cell types examined, whereas effects of A1Rs and A2BRs are dependent on cell type and conditions. Pharmacologic targeting of cancer with A2AR antagonists may inadvertently increase exosome production from tumor cells.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Juliana H Azambuja
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Aparna Rao
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
23
|
Effects of Coffee Intake on Dyslipidemia Risk According to Genetic Variants in the ADORA Gene Family among Korean Adults. Nutrients 2020; 12:nu12020493. [PMID: 32075205 PMCID: PMC7071304 DOI: 10.3390/nu12020493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Current evidence on the effects of coffee intake on cardiovascular diseases is not consistent, in part contributed by the genetic variability of the study subjects. While adenosine receptors (ADORAs) are involved in caffeine signaling, it remains unknown how genetic variations at the ADORA loci correlate the coffee intake with cardiovascular diseases. The present study examined the associations of coffee intake with dyslipidemia risk depending on genetic variants in the ADORA gene family. The study involved a population-based cohort of 4898 Korean subjects. Consumption of more than or equal to a cup of coffee per day was associated with lower dyslipidemia risk in females carrying the ADORA2B minor allele rs2779212 (OR: 0.645, 95% CI: 0.506-0.823), but not in those with the major allele. At the ADORA2A locus, male subjects with the minor allele of rs5760423 showed instead an increased risk of dyslipidemia when consuming more than or equal to a cup of coffee per day (OR: 1.352, 95% CI: 1.014-1.802). The effect of coffee intake on dyslipidemia risk differs depending on genetic variants at the ADORA loci in a sex-specific manner. Our study suggests that a dietary guideline for coffee intake in the prevention and management of dyslipidemia ought to consider ADORA-related biomarkers carefully.
Collapse
|
24
|
Soslau G. Extracellular adenine compounds within the cardiovascular system: Their source, metabolism and function. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2020.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Adenosine and Adenosine A 2AReceptors as Targets for the Treatment of Niemann Pick Type C Disease. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Ruchel JB, Bernardes VM, Braun JBS, Manzoni AG, Passos DF, Castilhos LG, Abdalla FH, de Oliveira JS, de Andrade CM, Casali EA, da Cruz IBM, Leal DBR. Lipotoxicity-associated inflammation is prevented by guarana ( Paullinia cupana) in a model of hyperlipidemia. Drug Chem Toxicol 2019; 44:524-532. [PMID: 31195840 DOI: 10.1080/01480545.2019.1624767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperlipidemia causes lipotoxicity which prompts an inflammatory response linked to the development of cardiovascular diseases. Natural compounds have been receiving special attention for its potential to treat diseases, inexpensiveness, and safety. Guarana (Paullinia cupana) has demonstrated notable anti-inflammatory and antioxidant effects, which may prevent chronic diseases caused by changes in lipid profile. Thus, this study aims to evaluate the effect of guarana powder (Paullinia cupana) in the purine metabolism and inflammatory profile in lymphocytes and serum of rats with Poloxamer-407-induced hyperlipidemia. Pretreatment with guarana 12.5, 25, and 50 mg/kg/day or caffeine (0.2 mg/kg/day) by gavage was applied to adult male Wistar rats for a period of 30 days. As a comparative standard, we used simvastatin (0.04 mg/kg) post-induction. Hyperlipidemia was acutely induced with intraperitoneally injection of Poloxamer-407 (500 mg/kg). Guarana powder and caffeine increased the activity of the E-NTPDase (ecto-apyrase), and all pretreatments decreased the E-ADA (ecto-adenosine deaminase) activity, reducing the inflammatory process caused by lipotoxicity. In hyperlipidemic rats, ATP levels were increased while adenosine levels were decreased, guarana and caffeine reverted these changes. Guarana powder, caffeine, and simvastatin also prevented the increase in INF-γ and potentiated the increase in IL-4 levels, promoting an anti-inflammatory profile. Guarana promoted a more robust effect than caffeine. Our results show that guarana powder and caffeine have an anti-inflammatory as seen by the shift from a proinflammatory to an anti-inflammatory profile. The effects of guarana were more pronounced, suggesting that guarana powder may be used as a complementary therapy to improve the lipotoxicity-associated inflammation.
Collapse
Affiliation(s)
- Jader B Ruchel
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Viviane M Bernardes
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Josiane B S Braun
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Alessandra G Manzoni
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela F Passos
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lívia G Castilhos
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fátima H Abdalla
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juliana S de Oliveira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cinthia M de Andrade
- Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emerson A Casali
- Departamento de Ciências Morfológicas, Laboratório de Estudos Sobre as Alterações Celulares e Teciduais, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ivana B M da Cruz
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela B R Leal
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
27
|
Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia. Blood Cells Mol Dis 2019; 76:13-21. [DOI: 10.1016/j.bcmd.2018.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
28
|
Abstract
To determine the longitude lipid profiles in women with and without gestational diabetes mellitus (GDM), and to investigate the relationship between lipid disturbances in the 1st trimester and GDM.Blood samples were collected from 1283 normal pregnant women and 300 women with GDM. Serum lipids which include total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured and the TG/HDL-C ratio was calculated in the 1st, 2nd, and 3rd trimesters of pregnancy and then we got the longitudinal lipid profiles. We compared the differences of lipid profiles between patients with GDM and normal pregnant women using 2-way repeated measures analysis of variance. Also additional propensity-based subgroup analyses were performed. The logistic regression analysis was used to determine the relationship between the lipid disturbances in the 1st trimester and GDM.TG, TC, LDL-C concentrations, and TG/HDL-C ratio increased progressively throughout pregnancy; while HDL-C amounts increased from the 1st to the 2nd trimester with a slight decrease in the 3rd trimester. The GDM group showed higher TG concentrations, higher TG/HDL-C ratio, and lower HDL-C concentrations throughout pregnancy. There were no significant differences in TC and LDL-C concentrations in the 1st, 2nd, and 3rd trimesters (P > .05), between the GDM group and the control group. Logistic regression analysis showed that maternal age, prepregnancy body mass index (BMI), and TG/HDL ratio in the 1st trimester were associated with an increased risk of GDM.The lipid profile alters significantly in patients with GDM, and maternal age, prepregnancy BMI, and TG/HDL ratio in the 1st trimester were associated with an increased risk of GDM.
Collapse
|
29
|
Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in Intestinal and Hepatic Inflammation. Front Immunol 2019; 10:507. [PMID: 30941139 PMCID: PMC6433995 DOI: 10.3389/fimmu.2019.00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Park JG, Jeong SJ, Yu J, Kim G, Jeong LS, Oh GT. LJ-1888, a selective antagonist for the A3 adenosine receptor, ameliorates the development of atherosclerosis and hypercholesterolemia in apolipoprotein E knock-out mice. BMB Rep 2019. [PMID: 29936931 PMCID: PMC6235094 DOI: 10.5483/bmbrep.2018.51.10.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases arising from atherosclerosis are the leading causes of mortality and morbidity worldwide. Lipid-lowering agents have been developed in order to treat hypercholesterolemia, a major risk factor for atherosclerosis. However, the prevalence of cardiovascular diseases is increasing, indicating a need to identify novel therapeutic targets and develop new treatment agents. Adenosine receptors (ARs) are emerging as therapeutic targets in asthma, rheumatoid arthritis, cancer, ischemia, and inflammatory diseases. This study assessed whether LJ-1888, a selective antagonist for A3 AR, can inhibit the development of atherosclerosis in apolipoprotein E knock-out (ApoE−/−) mice who are fed a western diet. Plaque formation was significantly lower in ApoE−/− mice administered LJ-1888 than in mice not administered LJ-1888, without any associated liver damage. LJ-1888 treatment of ApoE−/− mice prevented western diet-induced hypercholesterolemia by markedly reducing low-density lipoprotein cholesterol levels and significantly increasing high-density lipoprotein cholesterol concentrations. Reduced hypercholesterolemia in ApoE−/− mice administered LJ-1888 was associated with the enhanced expression of genes involved in bile acid biosynthesis. These findings indicate that LJ-1888, a selective antagonist for A3 AR, may be a novel candidate for the treatment of atherosclerosis and hypercholesterolemia.
Collapse
Affiliation(s)
- Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinha Yu
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Gyudong Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Contreras-Duarte S, Carvajal L, Fuenzalida B, Cantin C, Sobrevia L, Leiva A. Maternal Dyslipidaemia in Pregnancy with Gestational Diabetes Mellitus: Possible Impact on Foetoplacental Vascular Function and Lipoproteins in the Neonatal Circulation. Curr Vasc Pharmacol 2018; 17:52-71. [DOI: 10.2174/1570161115666171116154247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/06/2023]
Abstract
Dyslipidaemia occurs in pregnancy to secure foetal development. The mother shows a physiological
increase in plasma total cholesterol and Triglycerides (TG) as pregnancy progresses (i.e. maternal
physiological dyslipidaemia in pregnancy). However, in some women pregnancy-associated dyslipidaemia
exceeds this physiological adaptation. The consequences of this condition on the developing
fetus include endothelial dysfunction of the foetoplacental vasculature and development of foetal aortic
atherosclerosis. Gestational Diabetes Mellitus (GDM) associates with abnormal function of the foetoplacental
vasculature due to foetal hyperglycaemia and hyperinsulinaemia, and associates with development
of cardiovascular disease in adulthood. Supraphysiological dyslipidaemia is also detected in
GDM pregnancies. Although there are several studies showing the alteration in the maternal and neonatal
lipid profile in GDM pregnancies, there are no studies addressing the effect of dyslipidaemia in the
maternal and foetal vasculature. The literature reviewed suggests that dyslipidaemia in GDM pregnancy
should be an additional factor contributing to worsen GDM-associated endothelial dysfunction by altering
signalling pathways involving nitric oxide bioavailability and neonatal lipoproteins.
Collapse
Affiliation(s)
- Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Lorena Carvajal
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Claudette Cantin
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| |
Collapse
|
32
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
33
|
Moreno E, Canet J, Gracia E, Lluís C, Mallol J, Canela EI, Cortés A, Casadó V. Molecular Evidence of Adenosine Deaminase Linking Adenosine A 2A Receptor and CD26 Proteins. Front Pharmacol 2018; 9:106. [PMID: 29497379 PMCID: PMC5818423 DOI: 10.3389/fphar.2018.00106] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A2AR). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Júlia Canet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Eduard Gracia
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Carme Lluís
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Josefa Mallol
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Enric I. Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
34
|
Franco R, Navarro G. Adenosine A 2A Receptor Antagonists in Neurodegenerative Diseases: Huge Potential and Huge Challenges. Front Psychiatry 2018; 9:68. [PMID: 29593579 PMCID: PMC5857539 DOI: 10.3389/fpsyt.2018.00068] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universidad de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universidad de Barcelona, Barcelona, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Ferrante A, Pezzola A, Matteucci A, Di Biase A, Attorri L, Armida M, Martire A, Chern Y, Popoli P. The adenosine A 2A receptor agonist T1-11 ameliorates neurovisceral symptoms and extends the lifespan of a mouse model of Niemann-Pick type C disease. Neurobiol Dis 2017; 110:1-11. [PMID: 29079454 DOI: 10.1016/j.nbd.2017.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/29/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick C is a fatal neurovisceral disorder caused, in 95% of cases, by mutation of NPC1 gene. Therapeutic options are extremely limited and new "druggable" targets are highly warranted. We previously demonstrated that the stimulation of the adenosine A2A receptor (A2AR) normalized the pathological phenotype of cellular models of NPC1. Since the validation of A2ARs as a therapeutic target for NPC1 can be obtained only conducting studies in in vivo models of the disease, in the present paper, the effects of two agonists of A2ARs were evaluated in the mouse model Balb/c Npc1nih, hereafter indicated as NPC1-/-. The agonists CGS21680 (2.5 and 5mg/kg/day by intraperitoneal injection) and T1-11 (50mg/kg/day in drinking water) were administered at a presymptomatic stage of the disease of NPC1-/- mice (PN28 and PN30, respectively); the experimental groups were the following: vehicle-treated WT mice (N=16 for both CGS and T1-11 treatments); vehicle-treated NPC1-/- mice (N=14 for CGS and 12 for T1-11 treatment); CGS-treated NPC1-/- mice (N=7) and T1-11-treated NPC1-/- mice (N=11). The efficacy of the treatments was evaluated by comparing vehicle-treated and CGS or T1-11-treated NPC1-/- mice for their motor deficits (analyzed by both rotarod and footprint tests), hippocampal cognitive impairment (by Novel Object Recognition (NOR) test), cerebellar neurodegeneration (Purkinje neurons counting), and cholesterol and sphingomyelin accumulation in spleen and liver. Finally, the effect of both agonists on survival was evaluated by applying a humane late endpoint (weight loss >30% of peak weight, punched posture and reduced activity in the cage). The results demonstrated that, while CGS21680 only slightly attenuated cognitive deficits, T1-11 ameliorated motor coordination, significantly improved cognitive impairments, increased the survival of Purkinje neurons and reduced sphingomyelin accumulation in the liver. More importantly, it significantly prolonged the lifespan of NPC1-/- mice. In vitro experiments conducted in a neuronal model of NPC1 demonstrated that the ability of T1-11 to normalize cell phenotype was mediated by the selective activation of A2ARs and modulation of intracellular calcium levels. In conclusion, our results fully confirm the validity of A2ARs as a new target for NPC1 treatment. As soon as new ligands with improved pharmacokinetic characteristics (i.e. orally active, with brain bioavailability and metabolic stability) will be obtained, A2AR agonists could represent a breakthrough in the treatment of NPC.
Collapse
Affiliation(s)
- Antonella Ferrante
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Antonella Pezzola
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Andrea Matteucci
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Di Biase
- Dept. Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Lucilla Attorri
- Dept. Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Monica Armida
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alberto Martire
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Yijuang Chern
- Institute of Biomedical Sciences N333, Academia Sinica, Taipei 11529, Taiwan
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
36
|
Geldenhuys WJ, Hanif A, Yun J, Nayeem MA. Exploring Adenosine Receptor Ligands: Potential Role in the Treatment of Cardiovascular Diseases. Molecules 2017; 22:molecules22060917. [PMID: 28587166 PMCID: PMC5568125 DOI: 10.3390/molecules22060917] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases remain the number one diseases affecting patients’ morbidity and mortality. The adenosine receptors are G-protein coupled receptors which have been of interest for drugs target for the treatment of multiple diseases ranging from cardiovascular to neurological. Adenosine receptors have been connected to several biological pathways affecting the physiology and pathology of the cardiovascular system. In this review, we will cover the different adenosine receptor ligands that have been identified to interact with adenosine receptors and affect the vascular system. These ligands will be evaluated from clinical as well as medicinal chemistry perspectives with more emphasis on how structural changes in structure translate into ligand potency and efficacy. Adenosine receptors represent a novel therapeutic target for development of treatment options treating a wide variety of diseases, including vascular disease and obesity.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV 26506, USA.
| | - Ahmad Hanif
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV 26506, USA.
| | - June Yun
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, USA.
| | - Mohammed A Nayeem
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV 26506, USA.
| |
Collapse
|
37
|
|