1
|
Leite CBG, Fricke HP, Tavares LP, Nshimiyimana R, Mekhail J, Kilgallen E, Killick F, Whalen JD, Lehoczky JA, Serhan CN, Charles JF, Lattermann C. Maresin 1-LGR6 axis mitigates inflammation and posttraumatic osteoarthritis after transection of the anterior cruciate ligament in mice. Osteoarthritis Cartilage 2025:S1063-4584(25)00869-6. [PMID: 40139646 DOI: 10.1016/j.joca.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) tears frequently cause chronic inflammation and posttraumatic osteoarthritis (PTOA), with therapies failing to resolve persistent post-injury inflammation. Specialized pro-resolving mediators (SPMs), including Maresin1 (MaR1), show promise in resolving inflammation and promoting tissue repair. However, their role in PTOA remains underexplored. This study investigated inflammatory markers and MaR1 dynamics post-ACL injury, the role of the MaR1 receptor Leucine-rich Repeat-containing G protein-coupled receptor 6 (LGR6) in PTOA, and MaR1's therapeutic potential in a mouse ACL transection (ACLT) model. DESIGN Eight-week-old C57BL6/J male mice underwent ACLT, and synovial fluid, periarticular tissue, and tibiofemoral joints were collected at various time points post-surgery for analysis. LGR6-deficient mice were utilized to investigate the role of MaR1 signaling in inflammation resolution. Additionally, the effect of intraarticular MaR1 administration on PTOA progression was assessed. RESULTS ACLT induced joint inflammation with leukocyte infiltration and elevated pro-inflammatory cytokines. MaR1 levels peaked early post-injury and were associated with a six-fold increase in LGR6 expression. LGR6 deficiency worsened inflammation and PTOA severity with higher histological Osteoarthritis Research Society International (OARSI) scores (mean difference 5.6[95%CI: 2.5-8.6], p<0.001) and microCT OA severity scores (mean difference 4.3[95%CI: 0.7-7.9], p=0.018). Intraarticular MaR1 treatment reduced leukocyte recruitment, suppressed pro-inflammatory gene expression, and ameliorated PTOA development, improving histological OARSI scores (mean difference -3.9[95%CI: -6.9 to -1.0], p=0.012) and microCT scores (mean difference -6.7[95%CI: -10.3 to -3.0], p=0.012). CONCLUSION This study suggests a critical role of MaR1 in resolving inflammation post-ACL injury and mitigating PTOA in mice. Targeting SPM pathways, particularly MaR1 and/or MaR1 mimetics, offers a promising strategy to prevent chronic joint inflammation and degeneration after ACL injury.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hannah P Fricke
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Luciana P Tavares
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julie Mekhail
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Elliott Kilgallen
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Felix Killick
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Janey D Whalen
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
3
|
Everett JB, Menarim BC, Barrett SH, Bogers SH, Byron CR, Pleasant RS, Werre SR, Dahlgren LA. Intra-articular bone marrow mononuclear cell therapy improves lameness from naturally occurring equine osteoarthritis. Front Vet Sci 2023; 10:1256284. [PMID: 37876630 PMCID: PMC10591079 DOI: 10.3389/fvets.2023.1256284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Osteoarthritis (OA) can be debilitating and is related to impaired resolution of synovial inflammation. Current treatments offer temporary relief of clinical signs, but have potentially deleterious side effects. Bone marrow mononuclear cells (BMNC) are a rich source of macrophage progenitors that have the ability to reduce OA symptoms in people and inflammation in experimentally-induced synovitis in horses. The objective of this study was to evaluate the ability of intra-articular BMNC therapy to improve clinical signs of naturally occurring equine OA. Horses presenting with clinical and radiographic evidence of moderate OA in a single joint were randomly assigned to 1 of 3 treatment groups: saline (negative control), triamcinolone (positive control), or BMNC (treatment group). Lameness was evaluated subjectively and objectively, joint circumference measured, and synovial fluid collected for cytology and growth factor/cytokine quantification at 0, 7, and 21 days post-injection. Data were analyzed using General Estimating Equations with significance set at p < 0.05. There were no adverse effects noted in any treatment group. There was a significant increase in synovial fluid total nucleated cell count in the BMNC-treated group on day 7 (median 440; range 20-1920 cells/uL) compared to day 0. Mononuclear cells were the predominant cell type across treatments at all time points. Joint circumference decreased significantly in the BMNC-treated group from days 7 to 21 and was significantly lower at day 21 in the BMNC-treated group compared to the saline-treated group. Median objective lameness improved significantly in the BMNC group between days 7 and 21. GM-CSF, IL-1ra, IGF-1, and TNF-α were below detectable limits and IL-6, IL-1β, FGF-2 were detectable in a limited number of synovial fluid samples. Inconsistent and limited differences were detected over time and between treatment groups for synovial fluid PGE2, SDF-1, MCP-1 and IL-10. Decreased lameness and joint circumference, coupled with a lack of adverse effects following BMNC treatment, support a larger clinical trial using BMNC therapy to treat OA in horses.
Collapse
Affiliation(s)
- J. Blake Everett
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Bruno C. Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Sarah H. Barrett
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christopher R. Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - R. Scott Pleasant
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Chi J, Cheng J, Wang S, Li C, Chen M. Promising Anti-Inflammatory Tools: Biomedical Efficacy of Lipoxins and Their Synthetic Pathways. Int J Mol Sci 2023; 24:13282. [PMID: 37686088 PMCID: PMC10487465 DOI: 10.3390/ijms241713282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Lipoxins (LXs) have attracted widespread attention as a class of anti-inflammatory lipid mediators that are produced endogenously by the organism. LXs are arachidonic acid (ARA) derivatives that include four different structures: lipoxin A4 (LXA4), lipoxin B4 (LXB4), and the aspirin-induced differential isomers 15-epi-LXA4 and 15-epi-LXB4. Because of their unique biological activity of reducing inflammation in the body, LXs have great potential for neuroprotection, anti-inflammatory treatment of COVID-19, and other related diseases. The synthesis of LXs in vivo is achieved through the action of lipoxygenase (LO). As a kind of important enzyme, LO plays a major role in the physiological processes of living organisms in mammals and functions in some bacteria and fungi. This suggests new options for the synthesis of LXs in vitro. Meanwhile, there are other chemical and biochemical methods to synthesize LXs. In this review, the recent progress on physiological activity and synthetic pathways of LXs is summarized, and new insights into the synthesis of LXs in vitro are provided.
Collapse
Affiliation(s)
| | | | | | | | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Speckmann B, Kleinbölting J, Börner F, Jordan PM, Werz O, Pelzer S, tom Dieck H, Wagner T, Schön C. Synbiotic Compositions of Bacillus megaterium and Polyunsaturated Fatty Acid Salt Enable Self-Sufficient Production of Specialized Pro-Resolving Mediators. Nutrients 2022; 14:nu14112265. [PMID: 35684065 PMCID: PMC9182845 DOI: 10.3390/nu14112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Specialized pro-resolving mediators (SPM) have emerged as crucial lipid mediators that confer the inflammation-resolving effects of omega-3 polyunsaturated fatty acids (n-3 PUFA). Importantly, SPM biosynthesis is dysfunctional in various conditions, which may explain the inconclusive efficacy data from n-3 PUFA interventions. To overcome the limitations of conventional n-3 PUFA supplementation strategies, we devised a composition enabling the self-sufficient production of SPM in vivo. Bacillus megaterium strains were fed highly bioavailable n-3 PUFA, followed by metabololipidomics analysis and bioinformatic assessment of the microbial genomes. All 48 tested Bacillus megaterium strains fed with the n-3 PUFA formulation produced a broad range of SPM and precursors thereof in a strain-specific manner, which may be explained by the CYP102A1 gene polymorphisms that we detected. A pilot study was performed to test if a synbiotic Bacillus megaterium/n-3 PUFA formulation increases SPM levels in vivo. Supplementation with a synbiotic capsule product led to significantly increased plasma levels of hydroxy-eicosapentaenoic acids (5-HEPE, 15-HEPE, 18-HEPE) and hydroxy-docosahexaenoic acids (4-HDHA, 7-HDHA) as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in healthy humans. To the best of our knowledge, we report here for the first time the development and in vivo application of a self-sufficient SPM-producing formulation. Further investigations are warranted to confirm and expand these findings, which may create a new class of n-3 PUFA interventions targeting inflammation resolution.
Collapse
Affiliation(s)
- Bodo Speckmann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Jessica Kleinbölting
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Stefan Pelzer
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Heike tom Dieck
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Tanja Wagner
- BioTeSys GmbH, Schelztorstraße 54-56, 73728 Esslingen, Germany;
| | - Christiane Schön
- BioTeSys GmbH, Schelztorstraße 54-56, 73728 Esslingen, Germany;
- Correspondence:
| |
Collapse
|
6
|
Artru F, McPhail MJW, Triantafyllou E, Trovato FM. Lipids in Liver Failure Syndromes: A Focus on Eicosanoids, Specialized Pro-Resolving Lipid Mediators and Lysophospholipids. Front Immunol 2022; 13:867261. [PMID: 35432367 PMCID: PMC9008479 DOI: 10.3389/fimmu.2022.867261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | |
Collapse
|
7
|
Jia D, Zhang R, Shao J, Zhang W, Cai L, Sun W. Exposure to trace levels of metals and fluoroquinolones increases inflammation and tumorigenesis risk of zebrafish embryos. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100162. [PMID: 36159734 PMCID: PMC9488011 DOI: 10.1016/j.ese.2022.100162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/04/2023]
Abstract
Exposure to trace-level heavy metals and antibiotics may elicit metabolic disorder, alter protein expression, and then induce pathological changes in zebrafish embryos, despite negligible physiological and developmental toxicity. This study investigated the single and combined developmental toxicity of fluoroquinolones (enrofloxacin [ENR] and ciprofloxacin [CIP]) (≤0.5 μM) and heavy metals (Cu and Cd) (≤0.5 μM) to zebrafish embryos, and molecular responses of zebrafish larvae upon exposure to the single pollutant (0.2 μM) or a binary metal-fluoroquinolone mixture (0.2 μM). In all single and mixture exposure groups, no developmental toxicity was observed, but oxidative stress, inflammation, and lipid depletion were found in zebrafish embryos, which was more severe in the mixture exposure groups than in the single exposure groups, probably due to increased metal bioaccumulation in the presence of ENR or CIP. Metabolomics analysis revealed the up-regulation of amino acids and down-regulation of fatty acids, corresponding to an active response to oxidative stress and the occurrence of inflammation. The up-regulation of antioxidase and immune proteins revealed by proteomics analysis further confirmed the occurrence of oxidative stress and inflammation. Furthermore, the KEGG pathway enrichment analysis showed a significant disturbance of pathways related to immunity and tumor, indicating the potential risk of tumorigenesis in zebrafish larvae. The findings provide molecular-level insights into the adverse effects of heavy metals and antibiotics (especially in chemical mixtures) on zebrafish embryos, and highlight the potential ecotoxicological risks of trace-level heavy metals and antibiotics in the environment.
Collapse
Affiliation(s)
- Dantong Jia
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Jian Shao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Environmental Science and Policy Program, Michigan State University, East Lansing, MI, 48824, United States
| | - Leilei Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
- Corresponding author. Peking University. China.
| |
Collapse
|
8
|
Cecconello C, Clària Ribas P, Norling LV. Resolving acute inflammation; what happens when inflammation goes haywire? How can it get back in line? DIET, INFLAMMATION, AND HEALTH 2022:113-162. [DOI: 10.1016/b978-0-12-822130-3.00018-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Herrera Vielma F, Valenzuela R, Videla LA, Zúñiga-Hernández J. N-3 Polyunsaturated Fatty Acids and Their Lipid Mediators as A Potential Immune-Nutritional Intervention: A Molecular and Clinical View in Hepatic Disease and Other Non-Communicable Illnesses. Nutrients 2021; 13:3384. [PMID: 34684386 PMCID: PMC8539469 DOI: 10.3390/nu13103384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the beneficial effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) intake on human health has been widely accepted in the field of immunonutrition. Today, we find a diversity of supplements based on n-3 PUFAs and/or minerals, vitamins and other substances. The main objective of this review is to discuss the importance of n-3 PUFAs and their derivatives on immunity and inflammatory status related to liver disease and other non-communicable illnesses. Based on the burden of liver diseases in 2019, more than two million people die from liver pathologies per year worldwide, because it is the organ most exposed to agents such as viruses, toxins and medications. Consequently, research conducted on n-3 PUFAs for liver disease has been gaining prominence with encouraging results, given that these fatty acids have anti-inflammatory and cytoprotective effects. In addition, it has been described that n-3 PUFAs are converted into a novel species of lipid intermediaries, specialized pro-resolving mediators (SPMs). At specific levels, SPMs improve the termination of inflammation as well as the repairing and regeneration of tissues, but they are deregulated in liver disease. Since evidence is still insufficient to carry out pharmacological trials to benefit the resolution of acute inflammation in non-communicable diseases, there remains a call for continuing preclinical and clinical research to better understand SPM actions and outcomes.
Collapse
Affiliation(s)
- Francisca Herrera Vielma
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | - Jessica Zúñiga-Hernández
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile;
| |
Collapse
|
10
|
Abshirini M, Ilesanmi-Oyelere BL, Kruger MC. Potential modulatory mechanisms of action by long-chain polyunsaturated fatty acids on bone cell and chondrocyte metabolism. Prog Lipid Res 2021; 83:101113. [PMID: 34217732 DOI: 10.1016/j.plipres.2021.101113] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022]
Abstract
Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are considered essential factors to support bone and joint health. The n-6 PUFAs suppress the osteoblasts differentiation via increasing peroxisome proliferator-activated receptor gamma (PPARγ) expression and promoting adipogenesis while n-3 PUFAs promote osteoblastogenesis by down-regulating PPARγ and enhancing osteoblastic activity. Arachidonic acid (AA) and its metabolite prostaglandin E2 (PGE2) are key regulators of osteoclast differentiation via induction of the receptor activator of nuclear factor kappa-Β ligand (RANKL) pathway. Marine-derived n-3 LCPUFAs have been shown to inhibit osteoclastogenesis by decreasing the osteoprotegerin (OPG)/RANKL signalling pathway mediated by a reduction of pro-inflammatory PGE2 derived from AA. Omega-3 PUFAs reduce the expression of cartilage degrading enzyme matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloprotease with thrombospondin motifs-5 (ADAMTS-5) protein, oxidative stress and thereby apoptosis via nuclear factor kappa-betta (NF-kβ) and inducible nitric oxide synthase (iNOS) pathways. In this review, a diverse range of important effects of LCPUFAs on bone cells and chondrocyte was highlighted through different mechanisms of action established by cell cultures and animal studies. This review allows a better understanding of the possible role of LCPUFAs in bone and chondrocyte metabolism as potential therapeutics in combating the pathological complications such as osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Maryam Abshirini
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand
| | | | - Marlena C Kruger
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
11
|
Torres W, Chávez-Castillo M, Peréz-Vicuña JL, Carrasquero R, Díaz MP, Gomez Y, Ramírez P, Cano C, Rojas-Quintero J, Chacín M, Velasco M, de Sanctis JB, Bermudez V. Potential role of bioactive lipids in rheumatoid arthritis. Curr Pharm Des 2021; 27:4434-4451. [PMID: 34036919 DOI: 10.2174/1381612827666210525164734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which involves a pathological inflammatory response against articular cartilage in multiple joints throughout the body. It is a complex disorder associated with comorbidities such as depression, lymphoma, osteoporosis and cardiovascular disease (CVD), which significantly deteriorate patients' quality of life and prognosis. This has ignited a large initiative to elucidate the physiopathology of RA, aiming to identify new therapeutic targets and approaches in its multidisciplinary management. Recently, various lipid bioactive products have been proposed to have an essential role in this process; including eicosanoids, specialized pro-resolving mediators, phospholipids/sphingolipids, and endocannabinoids. Dietary interventions using omega-3 polyunsaturated fatty acids or treatment with synthetic endocannabinoids agonists have been shown to significantly ameliorate RA symptoms. Indeed, the modulation of lipid metabolism may be crucial in the pathophysiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - José L Peréz-Vicuña
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Yosselin Gomez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston. 0
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas. Venezuela
| | - Juan Bautista de Sanctis
- Institute of Molecular and Translational Medicine. Faculty of Medicine and Dentistry. Palacky University. Czech Republic
| | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| |
Collapse
|
12
|
Anti-inflammatory celastrol promotes a switch from leukotriene biosynthesis to formation of specialized pro-resolving lipid mediators. Pharmacol Res 2021; 167:105556. [PMID: 33812006 DOI: 10.1016/j.phrs.2021.105556] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
The pentacyclic triterpenoid quinone methide celastrol (CS) from Tripterygium wilfordii Hook. F. effectively ameliorates inflammation with potential as therapeutics for inflammatory diseases. However, the molecular mechanisms underlying the anti-inflammatory and inflammation-resolving features of CS are incompletely understood. Here we demonstrate that CS potently inhibits the activity of human 5-lipoxygenase (5-LOX), the key enzyme in pro-inflammatory leukotriene (LT) formation, in cell-free assays with IC50 = 0.19-0.49 µM. Employing metabololipidomics using ultra-performance liquid chromatography coupled to tandem mass spectrometry in activated human polymorphonuclear leukocytes or M1 macrophages we found that CS (1 µM) potently suppresses 5-LOX-derived products without impairing the formation of lipid mediators (LM) formed by 12-/15-LOXs as well as fatty acid substrate release. Intriguingly, CS induced the generation of 12-/15-LOX-derived LM including the specialized pro-resolving mediator (SPM) resolvin D5 in human M2 macrophages. Finally, intraperitoneal pre-treatment of mice with 10 mg/kg CS strongly impaired zymosan-induced LT formation and simultaneously elevated the levels of SPM and related 12-/15-LOX-derived LM in peritoneal exudates, spleen and plasma in vivo. Conclusively, CS promotes a switch from LT biosynthesis to formation of SPM which may underlie the anti-inflammatory and inflammation-resolving effects of CS, representing an interesting pharmacological strategy for intervention with inflammatory disorders.
Collapse
|
13
|
Recchiuti A, Patruno S, Mattoscio D, Isopi E, Pomilio A, Lamolinara A, Iezzi M, Pecce R, Romano M. Resolvin D1 and D2 reduce SARS-CoV-2-induced inflammatory responses in cystic fibrosis macrophages. FASEB J 2021; 35:e21441. [PMID: 33749902 PMCID: PMC8250053 DOI: 10.1096/fj.202001952r] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
An excessive, non‐resolving inflammatory response underlies severe COVID‐19 that may have fatal outcomes. Therefore, the investigation of endogenous pathways leading to resolution of inflammation is of interest to uncover strategies for mitigating inflammation in people with SARS‐CoV‐2 infection. This becomes particularly urgent in individuals with preexisting pathologies characterized by chronic respiratory inflammation and prone to bacterial infection, such as cystic fibrosis (CF). Here, we analyzed the immune responses to SARS‐CoV‐2 virion spike 1 glycoprotein (S1) of macrophages (MΦ) from volunteers with and without CF and tested the efficacy of resolvins (Rv) D1 and D2 in regulating the inflammatory and antimicrobial functions of MΦ exposed to S1. S1 significantly increased chemokine release, including interleukin (IL)‐8, in CF and non‐CF MΦ, while it enhanced IL‐6 and tumor necrosis factor (TNF)‐α in non‐CF MΦ, but not in CF cells. S1 also triggered the biosynthesis of RvD1 and modulated microRNAs miR‐16, miR‐29a, and miR‐103, known to control the inflammatory responses. RvD1 and RvD2 treatment abated S1‐induced inflammatory responses in CF and non‐CF MΦ, significantly reducing the release of select chemokines and cytokines including IL‐8 and TNF‐α. RvD1 and RvD2 both restored the expression of miR‐16 and miR‐29a, while selectively increasing miR‐223 and miR‐125a, which are involved in NF‐κB activation and MΦ inflammatory polarization. During Pseudomonas aeruginosa infection, S1 stimulated the MΦ phagocytic activity that was further enhanced by RvD1 and RvD2. These results provide a map of molecular responses to SARS‐CoV‐2 in MΦ, key determinants of COVID‐19‐related inflammation, unveiling some peculiarity in the response of cells from individuals with CF. They also demonstrate beneficial, regulatory actions of RvD1 and RvD2 on SARS‐CoV‐2‐induced inflammation.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Sara Patruno
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Elisa Isopi
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Antonella Pomilio
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Department of Neurosciences, Imaging and Clinical Sciences, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Department of Neurosciences, Imaging and Clinical Sciences, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Romina Pecce
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| | - Mario Romano
- Department of Medical, Oral, and Biotechnology Science, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.,Center for Advanced Studies and Technology, Università "G. d'Annunzio" Chieti - Pescara, Chieti, Italy
| |
Collapse
|
14
|
Polinski KJ, Bemis EA, Yang F, Crume T, Demoruelle MK, Feser M, Seifert J, O'Dell JR, Mikuls TR, Weisman MH, Gregersen PK, Keating RM, Buckner J, Reisdorph N, Deane KD, Clare-Salzler M, Holers VM, Norris JM. Association of Lipid Mediators With Development of Future Incident Inflammatory Arthritis in an Anti-Citrullinated Protein Antibody-Positive Population. Arthritis Rheumatol 2021; 73:955-962. [PMID: 33381911 DOI: 10.1002/art.41631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine the association of polyunsaturated fatty acid (PUFA)-derived lipid mediators with progression from rheumatoid arthritis (RA)-related autoimmunity to inflammatory arthritis (IA). METHODS We conducted a prospective cohort study using data from the Studies of the Etiology of Rheumatoid Arthritis (SERA). SERA enrolled first-degree relatives (FDRs) of individuals with RA (FDR cohort) and individuals who screened positive for RA-related autoantibodies at health fairs (screened cohort). We followed up 133 anti-cyclic citrullinated peptide 3.1 (anti-CCP3.1)-positive participants, 29 of whom developed IA. Lipid mediators selected a priori were quantified from stored plasma samples using liquid chromatography tandem mass spectrometry. We fit multivariable Cox proportional hazards models for each lipid mediator as a time-varying variable. For lipid mediators found to be significantly associated with IA, we then examined interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor (TNF) as potential statistical mediators. RESULTS For every 1 natural log pg/ml increase in the circulating plasma levels of proinflammatory 5-HETE, the risk of developing IA increased by 241% (hazard ratio 2.41 [95% confidence interval 1.43-4.07]) after adjusting for age at baseline, cohort (FDR or screened), and shared epitope status. The models examining 15-HETE and 17-HDHA had the same trend but did not reach significance. We did not find evidence that the association between 5-HETE and IA risk was influenced by the proinflammatory cytokines tested. CONCLUSION In a prospective cohort of anti-CCP-positive individuals, higher levels of 5-HETE, an important precursor to proinflammatory leukotrienes, is associated with subsequent IA. Our findings highlight the potential significance of these PUFA metabolites in pre-RA populations.
Collapse
Affiliation(s)
| | | | - Fan Yang
- Colorado School of Public Health, Aurora
| | | | | | - Marie Feser
- University of Colorado School of Medicine, Aurora
| | | | | | | | | | | | | | - Jane Buckner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Nichole Reisdorph
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora
| | | | | | | | | |
Collapse
|
15
|
Özgül Özdemir RB, Soysal Gündüz Ö, Özdemir AT, Akgül Ö. Low levels of pro-resolving lipid mediators lipoxin-A4, resolvin-D1 and resolvin-E1 in patients with rheumatoid arthritis. Immunol Lett 2020; 227:34-40. [PMID: 32818598 DOI: 10.1016/j.imlet.2020.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
Rheumatoid arthritis (RA) is a disease in which joint inflammation is at the forefront but the whole body is affected, and prevention of inflammation is the main treatment approach. Lipoxins (LXs) and resolvins (Rvs) are critical molecules in the resolution of inflammation. In this study, we aimed to investigate the role of LXs and Rvs in the RA pathogenesis. To this end, we measured the LXA 4, RvD 1, RvE 1 levels, and inflammatory cytokines and chemokines IL-6, IL-8, IL-10, IL-17a, IL-22 and MCP-1 in patients with RA and healthy individuals. We found that the LXA4, RvD1, RvE1 levels of the active RA cases were significantly lower than in remission RA and healthy individuals, but the levels of inflammatory cytokines and chemokines were significantly higher. The decreases in LXs and Rvs were independent of disease activity, suggesting that there might be an impairment of LX and Rvs synthesis or catabolism in patients with RA.
Collapse
Affiliation(s)
| | - Özgül Soysal Gündüz
- Manisa Celal Bayar University, Medical School, Department of Internal Medicine, Division of Rheumatology, Manisa, Turkey.
| | - Alper Tunga Özdemir
- Manisa Merkezefendi State Hospital, Medical Biochemistry Laboratory, Manisa, Turkey.
| | - Özgür Akgül
- Manisa Celal Bayar University, Medical School, Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Manisa, Turkey.
| |
Collapse
|
16
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
17
|
Zahoor I, Giri S. Specialized Pro-Resolving Lipid Mediators: Emerging Therapeutic Candidates for Multiple Sclerosis. Clin Rev Allergy Immunol 2020; 60:147-163. [PMID: 32495237 DOI: 10.1007/s12016-020-08796-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease in which unresolved and uncontrolled inflammation disrupts normal cellular homeostasis and leads to a pathological disease state. It has long been recognized that endogenously derived metabolic by-products of omega fatty acids, known as specialized pro-resolving lipid mediators (SPMs), are instrumental in resolving the pathologic inflammation. However, there is minimal data available on the functional status of SPMs in MS, despite the fact that MS presents a classical model of chronic inflammation. Studies to date indicate that dysfunction of the SPM biosynthetic pathway is responsible for their altered levels in patient-derived biofluids, which contributes to heightened inflammation and disease severity. Collectively, current findings suggest the contentious role of SPMs in MS due to variable outcomes in biological matrices across studies conducted so far, which could, in part, also be attributed to differences in population characteristics. It seems that SPMs have neuroprotective action on MS by exerting proresolving effects on brain microglia in its preclinical model; however, there are no reports demonstrating the direct effect of SPMs on oligodendrocytes or neurons. This reveals that "one size does not fit all" notion holds significance for MS in terms of the status of SPMs in other inflammatory conditions. The lack of clarity served as the impetus for this review, which is the first of its kind to summarize the relevant data regarding the role of SPMs in MS and the potential to target them for biomarker development and future alternative therapies for this disease. Understanding the mechanisms behind biological actions of SPMs as resolution mediators may prevent or even cure MS and other neurodegenerative pathologies.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Research Division, Education & Research Building, Henry Ford Hospital, Room 4023, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| | - Shailendra Giri
- Department of Neurology, Research Division, Education & Research Building, Henry Ford Hospital, Room 4051, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
18
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
19
|
Kooij G, Troletti CD, Leuti A, Norris PC, Riley I, Albanese M, Ruggieri S, Libreros S, van der Pol SMA, van Het Hof B, Schell Y, Guerrera G, Buttari F, Mercuri NB, Centonze D, Gasperini C, Battistini L, de Vries HE, Serhan CN, Chiurchiù V. Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica 2019; 105:2056-2070. [PMID: 31780628 PMCID: PMC7395264 DOI: 10.3324/haematol.2019.219519] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is a key pathological hallmark of multiple sclerosis (MS) and suggests that resolution of inflammation, orchestrated by specialized pro-resolving lipid mediators (LM), is impaired. Here, through targeted-metabololipidomics in peripheral blood of patients with MS, we revealed that each disease form was associated with distinct LM profiles that significantly correlated with disease severity. In particular, relapsing and progressive MS patients were associated with high eicosanoids levels, whereas the majority of pro-resolving LM were significantly reduced or below limits of detection and correlated with disease progression. Furthermore, we found impaired expression of several pro-resolving LM biosynthetic enzymes and receptors in blood-derived leukocytes of MS patients. Mechanistically, differentially expressed mediators like LXA4, LXB4, RvD1 and PD1 reduced MS-derived monocyte activation and cytokine production, and inhibited inflammation-induced blood-brain barrier dysfunction and monocyte transendothelial migration. Altogether, these findings reveal peripheral defects in the resolution pathway in MS, suggesting pro-resolving LM as novel diagnostic biomarkers and potentially safe therapeutics.
Collapse
Affiliation(s)
- Gijs Kooij
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudio Derada Troletti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian Riley
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Albanese
- Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy
| | | | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Susanne M A van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yoëlle Schell
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Gisella Guerrera
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy
| | - Nicola Biagio Mercuri
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.,Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy
| | - Diego Centonze
- Neurology Unit, Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology and Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, IS, Italy
| | | | - Luca Battistini
- European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Helga E de Vries
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerio Chiurchiù
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy .,European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
20
|
Novel benzoxanthene lignans that favorably modulate lipid mediator biosynthesis: A promising pharmacological strategy for anti-inflammatory therapy. Biochem Pharmacol 2019; 165:263-274. [PMID: 30836057 DOI: 10.1016/j.bcp.2019.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/01/2019] [Indexed: 02/08/2023]
Abstract
Lipid mediators (LM) encompass pro-inflammatory prostaglandins (PG) and leukotrienes (LT) but also specialized pro-resolving mediators (SPM) which display pivotal bioactivities in health and disease. Pharmacological intervention with inflammatory disorders such as osteoarthritis and rheumatoid arthritis commonly employs anti-inflammatory drugs that can suppress PG and LT formation, which however, possess limited effectiveness and side effects. Here, we report on the discovery and characterization of the two novel benzoxanthene lignans 1 and 2 that modulate select LM biosynthetic enzymes enabling the switch from pro-inflammatory LT to SPM biosynthesis as potential pharmacological strategy to intervene with inflammation. In cell-free assays, compound 1 and 2 inhibit microsomal prostaglandin E2 synthase-1 and leukotriene C4 synthase (IC50 ∼ 0.6-3.4 µM) and potently interfere with 5-lipoxygenase (5-LOX), the key enzyme in LT biosynthesis (IC50 = 0.04 and 0.09 µM). In human neutrophils, monocytes and M1 and M2 macrophages, compound 1 and 2 efficiently suppress LT biosynthesis (IC50 < 1 µM), accompanied by elevation of 15-LOX-derived LM including SPM. In zymosan-induced murine peritonitis, compound 1 and 2 ameliorated self-limited inflammation along with suppression of early LT formation and elevation of subsequent SPM biosynthesis in vivo. Together, these novel benzoxanthene lignans promote the LM class switch from pro-inflammatory towards pro-resolving LM to terminate inflammation, suggesting their suitability as novel leads for pharmacotherapy of arthritis and related inflammatory disorders.
Collapse
|
21
|
Videla LA, Vargas R, Valenzuela R, Muñoz P, Corbari A, Hernandez-Rodas MC. Combined administration of docosahexaenoic acid and thyroid hormone synergistically enhances rat liver levels of resolvins RvD1 and RvD2. Prostaglandins Leukot Essent Fatty Acids 2019; 140:42-46. [PMID: 30553402 DOI: 10.1016/j.plefa.2018.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/16/2023]
Abstract
Supplementation with omega-3 fatty acids or thyroid hormone (T3) exhibit negative effects on inflammatory reactions in experimental animals. The aim of this work was to assess the hypothesis that docosahexaenoic acid (DHA) plus T3 co-administration enhances liver resolvin (Rv) levels as inflammation resolution mediators. Combined DHA (daily doses of 300 mg/kg for 3 consecutive days)-T3 (0.05 mg/kg at the fourth day) administration significantly increased the content of hepatic RvD1 and RvD2, without changes in that of RvE1 and RvE2, an effect that exhibits synergy when compared to the separate DHA and T3 treatments. Under these conditions, liver DHA levels increased by DHA administration were diminished when combined with T3 (p < 0.05), suggesting enhancement in resolvin D biosynthesis in extrahepatic tissues. It is concluded that co-administration of DHA and T3 rises the capacity of the liver for inflammation resolution by augmenting RvD1(2) availability, which represents an important protocol in hepatoprotection in the clinical setting.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricio Muñoz
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alicia Corbari
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | | |
Collapse
|
22
|
Novel n-3 Docosapentaneoic Acid-Derived Pro-resolving Mediators Are Vasculoprotective and Mediate the Actions of Statins in Controlling Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:65-75. [DOI: 10.1007/978-3-030-21735-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol 2018; 9:586. [PMID: 29686666 PMCID: PMC5900450 DOI: 10.3389/fimmu.2018.00586] [Citation(s) in RCA: 805] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called "inflamm-aging." Despite research there is no clear understanding about the causes of "inflamm-aging" that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer's disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with "inflammageing" or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
- Care of Elderly Medicine, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - David S. Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Susan E. McNerlan
- Regional Genetics Service, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - H. Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Chiurchiù V, Leuti A, Maccarrone M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front Immunol 2018; 9:38. [PMID: 29434586 PMCID: PMC5797284 DOI: 10.3389/fimmu.2018.00038] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids—namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids—in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| |
Collapse
|