1
|
Duan S, Zhang H, Liu Z, Li J, Gao L, Jiang H, Wang J. Photoelectrochemical and fluorescent dual-mode sensitive detection of circulating tumor cells based on aptamer DNA-linked CdTe QDs/Bi 2MoO 6/CdS "double Z-scheme" system. Talanta 2025; 292:127922. [PMID: 40086317 DOI: 10.1016/j.talanta.2025.127922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Herein, a novel dual-mode biosensor integrating photoelectrochemical (PEC) and fluorescence (FL) sensing detection was developed for circulating tumor cells (CTCs) based on aptamer DNA-linked CdTe QDs (Apt-CdTe QDs)/Bi2MoO6/CdS "dual Z-scheme" sensing system. Apt-CdTe QDs were assembled on FTO/CdS/Bi2MoO6/cDNA electrode through hybridization with cDNA, resulting in the formation of a double Z-scheme CdS/Bi2MoO6/CdTe heterostructure that significantly enhanced the separation of photo-generated charge carriers, thereby improving photocatalytic efficiency. Upon the presence of MCF-7 cells, Apt-QDs were captured and subsequently released from the captured electrode, leading to a decrease in photocurrent and an increase in fluorescence intensity, thus enabling effective PEC-FL dual-mode detection. The detection of CTCs exhibited a linear relationship within the concentration range from 50 to 100000 cells mL-1 with limit of detection of 1 cell mL-1 in both PEC and FL modes. This approach effectively corrected systematic errors, improved detection accuracy and sensitivity, and held great potential in the clinical detection of CTCs.
Collapse
Affiliation(s)
- Shihao Duan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Haipeng Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Zhaopeng Liu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Jian Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
| | - Liming Gao
- The First Hospital in Qinhuangdao, Qinhuangdao, 066004, China
| | - Hong Jiang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China.
| | - Jidong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
2
|
Li C, Wang Z, Ding P, Zhou Z, Chen R, Hu Y, Zhao K, Peng W, Yang X, Sun N, Pei R. A Digital Score Based on Circulating-Tumor-Cells-Derived mRNA Quantification and Machine Learning for Early Colorectal Cancer Detection. ACS NANO 2025. [PMID: 40335073 DOI: 10.1021/acsnano.4c15056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Circulating tumor cells (CTCs) serve as valuable biomarkers in tumor circulation, carrying essential primary tumor information. The purification of CTCs from peripheral blood samples and the analysis of their characteristic molecules enable the detection of tumors at an early stage. The noninvasive, continuous, real-time dynamic monitoring provides a promising solution for the timely diagnosis of colorectal cancer (CRC). In this study, we developed a minimally invasive method for CRC early detection to enable accurate screening in a friendly manner for individuals who generally require colonoscopy. The dual-antibody (i.e., anti-EpCAM and anti-EGFR) modified antifouling hydrogel-coated magnetic nanoparticles (pSBMA-MNPs) were prepared for efficient and specific CTC purification. Then, the quantification of 6 RNA transcripts in purified CRC CTCs was performed via droplet digital PCR (ddPCR), and a CRC score was calculated using an extreme gradient boosting model to distinguish CRC from colon polyps and adenomas. A pilot study was conducted to evaluate the clinical potential of the CRC CTC RNA assay in a training cohort (n = 101) and an independent test cohort (n = 65), achieving a diagnostic accuracy of 91.0% in the whole cohort, significantly outperforming serum CEA, CA125, and CA199. Subgroup analysis across CRC stage, age, and tumor location of patients was also performed, and the CRC score exhibited robust performance, demonstrating commendable diagnostic efficacy for CRC detection and promising application in friendly screening individuals that really require colonoscopy.
Collapse
Affiliation(s)
- Cheng Li
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zeyang Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ruidong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yunyun Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Kui Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wei Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Cancer Institute, Suzhou Medical College, Soochow University, Suzhou 215004, China
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou 215123, China
| | - Na Sun
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
de Matos MDLG, Pinto M, Gonçalves A, Canberk S, Bugalho MJM, Soares P. Insights in biomarkers complexity and routine clinical practice for the diagnosis of thyroid nodules and cancer. PeerJ 2025; 13:e18801. [PMID: 39850836 PMCID: PMC11756370 DOI: 10.7717/peerj.18801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Background The differential diagnosis between benign and malignant thyroid nodules continues to be a major challenge in clinical practice. The rising incidence of thyroid neoplasm and the low incidence of aggressive thyroid carcinoma, urges the exploration of strategies to improve the diagnostic accuracy in a pre-surgical phase, particularly for indeterminate nodules, and to prevent unnecessary surgeries. Only in 2022, the 5th WHO Classification of Endocrine and Neuroendocrine Tumors, and in 2023, the 3rd Bethesda System for Reporting Thyroid Cytopathology and the European Thyroid Association included biomarkers in their guidelines. In this review, we discuss the integration of biomarkers within the routine clinical practice for diagnosis of thyroid nodules and cancer. Methodology The literature search for this review was performed through Pub Med, Science Direct, and Google Scholar. We selected 156 publications with significant contributions to this topic, with the majority (86, or 55.1%) published between January 2019 and March 2024, including some publications from our group during those periods. The inclusion criteria were based on articles published in recognized scientific journals with high contributions to the proposed topic. We excluded articles not emphasizing molecular biomarkers in refine the pre-surgical diagnosis of thyroid nodules. Results We explored genetic biomarkers, considering the division of thyroid neoplasm into BRAF-like tumor and RAS-like tumor. The specificity of BRAF mutation in the diagnosis of papillary thyroid carcinoma (PTC) is nearly 100% but its sensitivity is below 35%. RAS mutations are found in a broad spectrum of thyroid neoplasm, from benign to malignant follicular-patterned tumors, but do not increase the ability to distinguish benign from malignant lesions. The overexpression of miRNAs is correlated with tumor aggressiveness, high tumor node metastasis (TMN) stage, and recurrence, representing a real signature of thyroid cancer, particularly PTC. In addition, associations between the expression levels of selected miRNAs and the presence of specific genetic mutations have been related with aggressiveness and worse prognosis. Conclusions The knowledge of genetic and molecular biomarkers has achieved a high level of complexity, and the difficulties related to its applicability determine that their implementation in clinical practice is not yet a reality. More studies with larger series are needed to optimize their use in routine practice. Additionally, the improvement of new techniques, such as liquid biopsy and/or artificial intelligence, may be the future for a better understanding of molecular biomarkers in thyroid nodular disease.
Collapse
Affiliation(s)
- Maria de Lurdes Godinho de Matos
- Department of Endocrinology, Diabetes and Metabolism, Hospital Curry Cabral, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, Lisbon, Portugal
| | - Mafalda Pinto
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
| | - Ana Gonçalves
- Department of Pathology, Unidade Local de Saúde São João, Porto, Portugal
| | - Sule Canberk
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
| | - Maria João Martins Bugalho
- Department of Endocrinology, Hospital de Santa Maria, Unidade Local de Saúde Santa Maria; Medical Faculty, University of Lisbon, Lisbon, Portugal
| | - Paula Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), i3S—Institute for Research & Innovation in Health, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Bellmunt J, Russell BM, Szabados B, Valderrama BP, Nadal R. Current and Future Role of Circulating DNA in the Diagnosis and Management of Urothelial Carcinoma. Am Soc Clin Oncol Educ Book 2025; 45:e471912. [PMID: 39883890 DOI: 10.1200/edbk-25-471912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The growing sophistication of tumor molecular profiling has helped to slowly transition oncologic care toward a more personalized approach in different tumor types, including in bladder cancer. The National Comprehensive Cancer Network recommends that all patients with stage IVA and stage IVB urothelial carcinoma have molecular analysis that integrates at least FGFR3 testing to help facilitate the selection of future therapeutic options. Sequencing of tumor-derived tissue is the mainstay to obtain this genomic testing, but as in other cancers, there has been extensive research into the integration of liquid biopsies in longitudinal management. Liquid biopsies broadly refer to the isolation of both cellular and noncellular tumor components including proteins and nucleic acids such as mRNA and circulating free DNA within a liquid sample. Although protein-based testing and testing of circulating tumor cells are options, the bulk of promising research in bladder cancer is investigating the role of plasma-based circulating tumor DNA (ctDNA). Currently, a universal consensus on optimal preanalytic and analytic approaches has not been fully defined, and the exact role that liquid biopsies should have in screening, diagnosis, prognostication, treatment selection, and monitoring is not yet known. Still, it can be expected that ctDNA testing will be a part of appropriate management of muscle-invasive bladder cancer and metastatic bladder cancer in the near future. In this review, the goal is to provide a practical overview of the current and future role of ctDNA in bladder cancer including ongoing trials.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Brian M Russell
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Begoña P Valderrama
- Hospital Virgen del Rocio, University Hospital Virgen del Rocío, Seville, Spain
| | - Rosa Nadal
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
5
|
Wang Y, Li J, Song Y, Wei H, Yan Z, Chen S, Zhang Z. Investigation on clinical risk factors of bladder lesion by machine learning based interpretable model. Sci Rep 2024; 14:24299. [PMID: 39414893 PMCID: PMC11484899 DOI: 10.1038/s41598-024-75104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Bladder lesion commonly occurs in patients with benign prostatic hyperplasia (BPH), and the routine screening of bladder lesion is vital for its timely detection and treatment, in which the risk of bladder lesion progression can be effectively alleviated. However, current clinical methods are inconvenient for routine screening. In this study, we proposed a convenient routine screening method to diagnose bladder lesions based on several clinical risk factors, which can be obtained through non-invasive, easy-to-operate, and low-cost examinations. The contribution of each clinical risk factor was further quantitatively analyzed to understand their impact on diagnostic decision-making. Based on a cohort study of 253 BPH patients with or without bladder lesions, the proposed diagnostic model achieved high accuracy using these clinical risk factors. Bladder compliance, maximum flow rate (Qmax), prostate specific antigen (PSA), and postvoid residual (PVR) were identified as the four most important clinical risk factors. To the best of our knowledge, this is the innovative research to predict bladder lesions based on the risk factors and quantitatively reveal their contributions to diagnostic decision-making. The proposed model has the potential to serve as an effective routine screening tool for bladder lesions in BPH patients, enabling early intervention to prevent lesion progression and improve the quality of life.
Collapse
Affiliation(s)
- Yunxin Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Jiachuang Li
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yunfeng Song
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Hongguo Wei
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Zejun Yan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, 110169, China.
| | - Zhe Zhang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
6
|
Maqueda JJ, De Feo A, Scotlandi K. Evaluating Circulating Biomarkers for Diagnosis, Prognosis, and Tumor Monitoring in Pediatric Sarcomas: Recent Advances and Future Directions. Biomolecules 2024; 14:1306. [PMID: 39456239 PMCID: PMC11506719 DOI: 10.3390/biom14101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Pediatric sarcomas present a significant challenge in oncology. There is an urgent need for improved therapeutic strategies for high-risk patients and better management of long-term side effects for those who survive the disease. Liquid biopsy is emerging as a promising tool to optimize treatment in these patients by offering non-invasive, repeatable assessments of disease status. Circulating biomarkers can provide valuable insights into tumor genetics and treatment response, potentially facilitating early diagnosis and dynamic disease monitoring. This review examines the potential of liquid biopsies, focusing on circulating biomarkers in the most common pediatric sarcomas, i.e., osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma. We also highlight the current research efforts and the necessary advancements required before these technologies can be widely adopted in clinical practice.
Collapse
Affiliation(s)
- Joaquín J. Maqueda
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (K.S.)
| | | | | |
Collapse
|
7
|
Northrop-Albrecht EJ, Wu CW, Berger CK, Taylor WR, Foote PH, Doering KA, Gonser AM, Bhagwate A, Sun Z, Mahoney DW, Burger KN, Boardman LA, Kisiel JB. An investigation of plasma cell-free RNA for the detection of colorectal cancer: From transcriptome marker selection to targeted validation. PLoS One 2024; 19:e0308711. [PMID: 39146279 PMCID: PMC11326608 DOI: 10.1371/journal.pone.0308711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Regular screening for colorectal cancer (CRC) is critical for early detection and long-term survival. Despite the current screening options available and advancements in therapies there will be around 53,000 CRC related deaths this year. There is great interest in non-invasive alternatives such as plasma cell-free RNA (cfRNA) for diagnostic, prognostic, and predictive applications. In the current study, our aim was to identify and validate potential cfRNA candidates to improve early CRC diagnosis. In phase 1 (n = 49; 25 controls, 24 cancers), discovery total RNA sequencing was performed. Select exons underwent validation in phase 2 (n = 73; 35 controls, 29 cancers, 9 adenomas) using targeted capture sequencing (n = 10,371 probes). In phase 3 (n = 57; 30 controls, 27 cancers), RT-qPCR was performed on previously identified candidates (n = 99). There were 895 exons that were differentially expressed (325 upregulated, 570 downregulated) among cancers versus controls. In phases 2 and 3, fewer markers were validated than expected in independent sets of patients, most of which were from previously published literature (FGA, FGB, GPR107, CDH3, and RP23AP7). In summary, we optimized laboratory processes and data analysis strategies which can serve as methodological framework for future plasma RNA studies beyond just the scope of CRC detection. Additionally, further exploration is needed in order to determine if the few cfRNA candidates identified in this study have clinical utility for early CRC detection. Over time, advancements in technologies, data analysis, and RNA preservation methods at time of collection may improve the biological and technical reproducibility of cfRNA biomarkers and enhance the feasibility of RNA-based liquid biopsies.
Collapse
Affiliation(s)
| | - Chung Wah Wu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Calise K Berger
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - William R Taylor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Patrick H Foote
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Karen A Doering
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anna M Gonser
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aditya Bhagwate
- Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Zhifu Sun
- Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Douglas W Mahoney
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kelli N Burger
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
8
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
9
|
Jiang S, Lu F, Chen J, Jiao Y, Qiu Q, Nian X, Qu M, Wang Y, Li M, Liu F, Gao X. UPCARE: Urinary Extracellular Vesicles-Derived Prostate Cancer Assessment for Risk Evaluation. J Extracell Vesicles 2024; 13:e12491. [PMID: 39175282 PMCID: PMC11341834 DOI: 10.1002/jev2.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
In the quest for efficient tumor diagnosis via liquid biopsy, extracellular vesicles (EVs) have shown promise as a source of potential biomarkers. This study addresses the gap in biomarker efficacy for predicting clinically significant prostate cancer (csPCa) between the Western and Chinese populations. We developed a urinary extracellular vesicles-based prostate score (EPS) model, utilizing the EXODUS technique for EV isolation from 598 patients and incorporating gene expressions of FOXA1, PCA3, and KLK3. Our findings reveal that the EPS model surpasses prostate-specific antigen (PSA) testing in diagnostic accuracy within a training cohort of 234 patients, achieving an area under the curve (AUC) of 0.730 compared to 0.659 for PSA (p = 0.018). Similarly, in a validation cohort of 101 men, the EPS model achieved an AUC of 0.749, which was significantly better than PSA's 0.577 (p < 0.001). Our model has demonstrated a potential reduction in unnecessary prostate biopsies by 26%, with only a 3% miss rate for csPCa cases, indicating its effectiveness in the Chinese population.
Collapse
Affiliation(s)
- Shaoqin Jiang
- Department of UrologyFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Feiting Lu
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Jiadi Chen
- Department of Clinical LaboratoryFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Yingzhen Jiao
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Qingqing Qiu
- Shenzhen Huixin Lifetechnologies Co., Ltd.Longhua, ShenzhenGuangdongChina
| | - Xinwen Nian
- Department of UrologyChanghai HospitalShanghaiChina
| | - Min Qu
- Department of UrologyChanghai HospitalShanghaiChina
| | - Yan Wang
- Department of UrologyChanghai HospitalShanghaiChina
| | - Mengqiang Li
- Department of UrologyFujian Union Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Fei Liu
- Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Xu Gao
- Department of UrologyChanghai HospitalShanghaiChina
| |
Collapse
|
10
|
Ntzifa A, Marras T, Georgoulias V, Lianidou E. Liquid biopsy for the management of NSCLC patients under osimertinib treatment. Crit Rev Clin Lab Sci 2024; 61:347-369. [PMID: 38305080 DOI: 10.1080/10408363.2024.2302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Therapeutic management of NSCLC patients is quite challenging as they are mainly diagnosed at a late stage of disease, and they present a high heterogeneous molecular profile. Osimertinib changed the paradigm shift in treatment of EGFR mutant NSCLC patients achieving significantly better clinical outcomes. To date, osimertinib is successfully administered not only as first- or second-line treatment, but also as adjuvant treatment while its efficacy is currently investigated during neoadjuvant treatment or in stage III, unresectable EGFR mutant NSCLC patients. However, resistance to osimertinib may occur due to clonal evolution, under the pressure of the targeted therapy. The utilization of liquid biopsy as a minimally invasive tool provides insight into molecular heterogeneity of tumor clonal evolution and potent resistance mechanisms which may help to develop more suitable therapeutic approaches. Longitudinal monitoring of NSCLC patients through ctDNA or CTC analysis could reveal valuable information about clinical outcomes during osimertinib treatment. Therefore, several guidelines suggest that liquid biopsy in addition to tissue biopsy should be considered as a standard of care in the advanced NSCLC setting. This practice could significantly increase the number of NSCLC patients that will eventually benefit from targeted therapies, such as EGFR TKIs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Shetti D, Mallela VR, Ye W, Sharif M, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Emerging role of circulating cell-free RNA as a non-invasive biomarker for hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 200:104391. [PMID: 38795877 DOI: 10.1016/j.critrevonc.2024.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe neoplastic disease associated with high morbidity and mortality rates. HCC is often detected at advanced stages leading to ineffective curative treatments. Recently, liquid biopsy has emerged as a non-invasive method to identify highly specific HCC biomarkers in bodily fluids such as blood, serum, urine, and saliva. Circulating cell-free nucleic acids (cfNAs), particularly cell-free DNA (cfDNA) and cell-free RNA (cfRNA), have become promising candidates for biomarkers in liquid biopsy applications. While cfDNA presented significant challenges, researchers have turned their attention to cfRNA, which can be efficiently identified through various methods and is considered a potential biomarker for cancer diagnosis and prognosis. This review primarily focuses on studies related to detecting various cfRNA in body fluids as biomarkers. The aim is to provide a summary of available information to assist researchers in their investigations and the development of new diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Dattatrya Shetti
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic.
| | - Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Wenjing Ye
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Mahyar Sharif
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University,Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic; Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen 323 00, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic; Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| |
Collapse
|
12
|
Bi X, Wang J, Xue B, He C, Liu F, Chen H, Lin LL, Dong B, Li B, Jin C, Pan J, Xue W, Ye J. SERSomes for metabolic phenotyping and prostate cancer diagnosis. Cell Rep Med 2024; 5:101579. [PMID: 38776910 PMCID: PMC11228451 DOI: 10.1016/j.xcrm.2024.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Molecular phenotypic variations in metabolites offer the promise of rapid profiling of physiological and pathological states for diagnosis, monitoring, and prognosis. Since present methods are expensive, time-consuming, and still not sensitive enough, there is an urgent need for approaches that can interrogate complex biological fluids at a system-wide level. Here, we introduce hyperspectral surface-enhanced Raman spectroscopy (SERS) to profile microliters of biofluidic metabolite extraction in 15 min with a spectral set, SERSome, that can be used to describe the structures and functions of various molecules produced in the biofluid at a specific time via SERS characteristics. The metabolite differences of various biofluids, including cell culture medium and human serum, are successfully profiled, showing a diagnosis accuracy of 80.8% on the internal test set and 73% on the external validation set for prostate cancer, discovering potential biomarkers, and predicting the tissue-level pathological aggressiveness. SERSomes offer a promising methodology for metabolic phenotyping.
Collapse
Affiliation(s)
- Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiayi Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Bingsen Xue
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China; Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Chang He
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Fugang Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Haoran Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Linley Li Lin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Baijun Dong
- Department of Urology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Science, Shanghai, P.R. China
| | - Butang Li
- Department of Urology, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, P.R. China
| | - Cheng Jin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China; Shanghai Artificial Intelligence Laboratory, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jiahua Pan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, P.R. China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
13
|
Tong Z, Yang D, Shen C, Li C, Xu X, Li Q, Wu Z, Ma H, Chen F, Mao H. Rapid automated extracellular vesicle isolation and miRNA preparation on a cost-effective digital microfluidic platform. Anal Chim Acta 2024; 1296:342337. [PMID: 38401929 DOI: 10.1016/j.aca.2024.342337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
As a prerequisite for extracellular vesicle (EV) -based studies and diagnosis, effective isolation, enrichment and retrieval of EV biomarkers are crucial to subsequent analyses, such as miRNA-based liquid biopsy for non-small-cell lung cancer (NSCLC). However, most conventional approaches for EV isolation suffer from lengthy procedure, high cost, and intense labor. Herein, we introduce the digital microfluidic (DMF) technology to EV pretreatment protocols and demonstrate a rapid and fully automated sample preparation platform for clinical tumor liquid biopsy. Combining a reusable DMF chip technique with a low-cost EV isolation and miRNA preparation protocol, the platform completes automated sample processing in 20-30 min, supporting immediate RT-qPCR analyses on EV-derived miRNAs (EV-miRNAs). The utility and reliability of the platform was validated via clinical sample processing for EV-miRNA detection. With 23 tumor and 20 non-tumor clinical plasma samples, we concluded that EV-miR-486-5p and miR-21-5p are effective biomarkers for NSCLC with a small sample volumn (20-40 μL). The result was consistent to that of a commercial exosome miRNA extraction kit. These results demonstrate the effectiveness of DMF in EV pretreatment for miRNA detection, providing a facile solution to EV isolation for liquid biopsy.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Alberca-del Arco F, Prieto-Cuadra D, Santos-Perez de la Blanca R, Sáez-Barranquero F, Matas-Rico E, Herrera-Imbroda B. New Perspectives on the Role of Liquid Biopsy in Bladder Cancer: Applicability to Precision Medicine. Cancers (Basel) 2024; 16:803. [PMID: 38398192 PMCID: PMC10886494 DOI: 10.3390/cancers16040803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Bladder cancer (BC) is one of the most common tumors in the world. Cystoscopy and tissue biopsy are the standard methods in screening and early diagnosis of suspicious bladder lesions. However, they are invasive procedures that may cause pain and infectious complications. Considering the limitations of both procedures, and the recurrence and resistance to BC treatment, it is necessary to develop a new non-invasive methodology for early diagnosis and multiple evaluations in patients under follow-up for bladder cancer. In recent years, liquid biopsy has proven to be a very useful diagnostic tool for the detection of tumor biomarkers. This non-invasive technique makes it possible to analyze single tumor components released into the peripheral circulation and to monitor tumor progression. Numerous biomarkers are being studied and interesting clinical applications for these in BC are being presented, with promising results in early diagnosis, detection of microscopic disease, and prediction of recurrence and response to treatment.
Collapse
Affiliation(s)
- Fernardo Alberca-del Arco
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
| | - Daniel Prieto-Cuadra
- Departamento de Anatomía Patológica, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain;
- Unidad de Gestion Clinica de Anatomia Patologica, IBIMA, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- SYNLAB Pathology, 29007 Málaga, Spain
| | - Rocio Santos-Perez de la Blanca
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
| | - Felipe Sáez-Barranquero
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
| | - Elisa Matas-Rico
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga (UMA), 29071 Málaga, Spain
| | - Bernardo Herrera-Imbroda
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga (UMA), 29071 Málaga, Spain
| |
Collapse
|
15
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
16
|
Van Dorpe S, Tummers P, Denys H, Hendrix A. Towards the Clinical Implementation of Extracellular Vesicle-Based Biomarker Assays for Cancer. Clin Chem 2024; 70:165-178. [PMID: 38175582 DOI: 10.1093/clinchem/hvad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Substantial research has been devoted to elucidating the role of extracellular vesicles (EVs) in the different hallmarks of cancer. Consequently, EVs are increasingly explored as a source of cancer biomarkers in body fluids. However, the heterogeneity in EVs, the complexity of body fluids, and the diversity in methods available for EV analysis, challenge the development and translation of EV-based biomarker assays. CONTENT Essential steps in EV-associated biomarker development are emphasized covering biobanking, biomarker discovery, verification and validation, and clinical implementation. A meticulous study design is essential and ideally results from close interactions between clinicians and EV researchers. A plethora of different EV preparation protocols exists which warrants quality control and transparency to ensure reproducibility and thus enable verification of EV-associated biomarker candidates identified in the discovery phase in subsequent independent cohorts. The development of an EV-associated biomarker assay requires thorough analytical and clinical validation. Finally, regulatory affairs must be considered for clinical implementation of EV-based biomarker assays. SUMMARY In this review, the current challenges that prevent us from exploiting the full potential of EV-based biomarker assays are identified. Guidelines and tools to overcome these hurdles are highlighted and are crucial to advance EV-based biomarker assays into clinical use.
Collapse
Affiliation(s)
- Sofie Van Dorpe
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Philippe Tummers
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
17
|
van der Leest P, Schuuring E. Critical Factors in the Analytical Work Flow of Circulating Tumor DNA-Based Molecular Profiling. Clin Chem 2024; 70:220-233. [PMID: 38175597 DOI: 10.1093/clinchem/hvad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Liquid biopsy testing, especially molecular tumor profiling of circulating tumor DNA (ctDNA) in cell-free plasma, has received increasing interest in recent years as it serves as a reliable alternative for the detection of tumor-specific aberrations to guide treatment decision-making in oncology. Many (commercially available) applications have been developed, however, broad divergences in (pre)analytical work flows and lack of universally applied guidelines impede routine clinical implementation. In this review, critical factors in the blood-based ctDNA liquid biopsy work flow are evaluated. CONTENT In the preanalytical phase, several aspects (e.g., blood collection tubes [BCTs], plasma processing, and extraction method) affect the quantity and quality of the circulating cell-free DNA (ccfDNA) applicable for subsequent molecular analyses and should meet certain standards to be applied in diagnostic work flows. Analytical considerations, such as analytical input and choice of assay, might vary based on the clinical application (i.e., screening, primary diagnosis, minimal residual disease [MRD], response monitoring, and resistance identification). In addition to practical procedures, variant interpretation and reporting ctDNA results should be harmonized. Collaborative efforts in (inter)national consortia and societies are essential for the establishment of standard operating procedures (SOPs) in attempts to standardize the plasma-based ctDNA analysis work flow. SUMMARY Development of universally applicable guidelines regarding the critical factors in liquid biopsy testing are necessary to pave the way to clinical implementation for routine diagnostics.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Guo ZY, Tang Y, Cheng YC. Exosomes as Targeted Delivery Drug System: Advances in Exosome Loading, Surface Functionalization and Potential for Clinical Application. Curr Drug Deliv 2024; 21:473-487. [PMID: 35702803 DOI: 10.2174/1567201819666220613150814] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Exosomes are subtypes of vesicles secreted by almost all cells and can play an important role in intercellular communication. They contain various proteins, lipids, nucleic acids and other natural substances from their metrocytes. Exosomes are expected to be a new generation of drug delivery systems due to their low immunogenicity, high potential to transfer bioactive substances and biocompatibility. However, exosomes themselves are not highly targeted, it is necessary to develop new surface modification techniques and targeted drug delivery strategies, which are the focus of drug delivery research. In this review, we introduced the biogenesis of exosomes and their role in intercellular communication. We listed various advanced exosome drug-loading techniques. Emphatically, we summarized different exosome surface modification techniques and targeted drug delivery strategies. In addition, we discussed the application of exosomes in vaccines and briefly introduced milk exosomes. Finally, we clarified the clinical application prospects and shortcomings of exosomes.
Collapse
Affiliation(s)
- Zun Y Guo
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| | - Yi C Cheng
- Department of Pharmacy, China Pharmaceutical University, No.639, Longmian Avenue, Nanjing 211198, P.R. China
| |
Collapse
|
19
|
Basso M, Gori A, Nardella C, Palviainen M, Holcar M, Sotiropoulos I, Bobis‐Wozowicz S, D'Agostino VG, Casarotto E, Ciani Y, Suetsugu S, Gualerzi A, Martin‐Jaular L, Boselli D, Kashkanova A, Parisse P, Lippens L, Pagliuca M, Blessing M, Frigerio R, Fourniols T, Meliciano A, Fietta A, Fioretti PV, Soroczyńska K, Picciolini S, Salviano‐Silva A, Bergese P, Zocco D, Chiari M, Jenster G, Waldron L, Milosavljevic A, Nolan J, Monopoli MP, Witwer KW, Bussolati B, Di Vizio D, Falcon Perez J, Lenassi M, Cretich M, Demichelis F. International Society for Extracellular Vesicles Workshop. QuantitatEVs: multiscale analyses, from bulk to single extracellular vesicle. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e137. [PMID: 38405579 PMCID: PMC10883470 DOI: 10.1002/jex2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 02/27/2024]
Abstract
The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.
Collapse
Affiliation(s)
- Manuela Basso
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessandro Gori
- National Research Council of ItalyIstituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | - Caterina Nardella
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Ioannis Sotiropoulos
- Institute of Biosciences & ApplicationsNational Center for Scientific Research (NCSR) DemokritosParaskeviGreece
| | - Sylwia Bobis‐Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell BiologyJagiellonian UniversityKrakowPoland
| | - Vito G. D'Agostino
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Dipartimento di EccellenzaUniversità degli Studi di MilanoMilanItaly
| | - Yari Ciani
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Shiro Suetsugu
- Division of Biological ScienceGraduate School of Science and Technology, Nara Institute of Science and TechnologyIkomaJapan
| | | | | | - Daniela Boselli
- FRACTAL (Flow Cytometry Resource, Advanced Cytometry Technical Applications Laboratory)San Raffaele Scientific InstituteMilanItaly
| | - Anna Kashkanova
- Max Planck Institute for the Science of LightErlangenGermany
| | - Pietro Parisse
- National Research Council of Italy, Istituto Officina dei Materiali (IOM‐CNR)TriesteItaly
| | - Lien Lippens
- Department of Human Structure and Repair, Laboratory of Experimental Cancer ResearchGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Martina Pagliuca
- Molecular Predictors and New Targets in OncologyGustave RoussyVillejuifFrance
- Clinical and Translational OncologyScuola Superiore MeridionaleNaplesItaly
| | - Martin Blessing
- Max Planck Institute for the Science of LightErlangenGermany
| | - Roberto Frigerio
- National Research Council of ItalyIstituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | | | - Ana Meliciano
- iBET‐Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Anna Fietta
- Department of Biomedical Sciences (DSB)University of PaduaPaduaItaly
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP)PaduaItaly
| | - Paolo Vincenzo Fioretti
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | | | | | | | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversità degli Studi di BresciaBresciaItaly
- IRIB ‐ Institute for Research and Biomedical Innovation of CNRPalermoItaly
| | | | - Marcella Chiari
- National Research Council of ItalyIstituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer InstituteErasmus University Medical CenterRotterdamThe Netherlands
| | - Levi Waldron
- Graduate School of Public Health and Health PolicyCity University of New YorkNew YorkNew YorkUSA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Dan L Duncan Comprehensive Cancer Center, and Program in Quantitative and Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - John Nolan
- Scintillon InstituteSan DiegoCaliforniaUSA
| | | | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Juan Falcon Perez
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), Exosomes LaboratoryDerioSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)MadridSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Marina Cretich
- National Research Council of ItalyIstituto di Scienze e Tecnologie Chimiche (SCITEC‐CNR)MilanItaly
| | - Francesca Demichelis
- Department of Cellular, Computational, and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
20
|
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review. J Pharm Anal 2023; 13:1429-1451. [PMID: 38223444 PMCID: PMC10785256 DOI: 10.1016/j.jpha.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
Collapse
Affiliation(s)
- Changhong Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
21
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
22
|
Ntzifa A, Lianidou E. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis. Crit Rev Clin Lab Sci 2023; 60:573-594. [PMID: 37518938 DOI: 10.1080/10408363.2023.2230290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Over the last decade, great advancements have been made in the field of liquid biopsy through extensive research and the development of new technologies that facilitate the use of liquid biopsy for cancer patients. This is shown by the numerous liquid biopsy tests that gained clearance by the US Food and Drug Administration (FDA) in recent years. Liquid biopsy has significantly altered cancer treatment by providing clinicians with powerful and immediate information about therapeutic decisions. However, the clinical integration of liquid biopsy is still challenging and there are many critical factors to consider prior to its implementation into routine clinical practice. Lack of standardization due to technical challenges and the definition of the clinical utility of specific assays further complicates the establishment of Standard Operating Procedures (SOPs) in liquid biopsy. Harmonization of laboratories to established guidelines is of major importance to overcome inter-lab variabilities observed. Quality control assessment in diagnostic laboratories that offer liquid biopsy testing will ensure that clinicians can base their therapeutic decisions on robust results. The regular participation of laboratories in external quality assessment schemes for liquid biopsy testing aims to promptly pinpoint deficiencies and efficiently educate laboratories to improve their quality of services. Accreditation of liquid biopsy diagnostic laboratories based on the ISO15189 standard in Europe or by CLIA/CAP accreditation procedures in the US is the best way to achieve the adaptation of liquid biopsy into the clinical setting by assuring reliable results for the clinicians and their cancer patients. Nowadays, various organizations from academia, industry, and regulatory agencies collaborate to set a framework that will include all procedures from the pre-analytical phase and the analytical process to the final interpretation of results. In this review, we underline several challenges in the analysis of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) concerning standardization of protocols, quality control assessment, harmonization of laboratories, and compliance to specific guidelines that need to be thoroughly considered before liquid biopsy enters the clinic.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Seger C, Kessler A, Taibon J. Establishing metrological traceability for small molecule measurands in laboratory medicine. Clin Chem Lab Med 2023; 61:1890-1901. [PMID: 36622091 DOI: 10.1515/cclm-2022-0995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
For molecules that can be well described metrologically in the sense of the definition of measurands, and which can also be recorded analytically as individual substances, reference measurement service traceability to a metrologically sound foundation is a necessity. The establishment of traceability chains must be initiated by National Metrology Institutes (NMIs) according to applicable standards; they are at the top and leading position in this concept. If NMIs are not in the position to take up this task, alternative approaches must be sought. Traceability initiatives established by in vitro device industry or academia must meet the quality standards of NMIs. Adherence to International Organization for Standardization (ISO) procedure 15193 must be a matter of course for the establishment of reference measurement procedures (RMPs). Certified reference material (CRM) characterization must be thorough, e.g., by the application of quantitative nuclear magnetic resonance measurements and by adherence to ISO 15194. Both for RMPs and CRMs Joint Committee for Traceability in Laboratory Medicine (JCTLM) listing must be the ultimate goal. Results must be shared in a transparent manner to allow other stakeholders including NMIs to reproduce and disseminate the reference measurement procedures.
Collapse
Affiliation(s)
- Christoph Seger
- Labordiagnostic St. Gallen West AG, St. Gallen, Switzerland
- Institute of Pharmacy, CCB - Centrum of Chemistry and Biomedicine, CMBI - Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Anja Kessler
- Stiftung für Pathobiochemie und Molekulare Diagnostik, Bonn, Germany
| | | |
Collapse
|
24
|
Chen H, Li Y, Li Z, Shi Y, Zhu H. Diagnostic biomarkers and aortic dissection: a systematic review and meta-analysis. BMC Cardiovasc Disord 2023; 23:497. [PMID: 37817089 PMCID: PMC10563263 DOI: 10.1186/s12872-023-03448-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/14/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Aortic dissection (AD) is a serious and fatal vascular disease. The earlier the condition of AD patients can be assessed precisely, the more scientifically controlled the patient's condition will be. Therefore, timely and accurate diagnosis is significant for AD. Blood biomarker testing as a method of liquid biopsy can improve the diagnostic efficiency of AD. This study conducted a systematic review of the current blood diagnostic biomarkers of AD. METHODS The PubMed, Cochrane Library, Web of Science, and Embase electronic databases were systematically searched from inception to January 1, 2023, using the terms "aortic dissection", "serum", "plasma" and "diagnosis". Stata 12.0 software was used to perform Random effects meta-analysis was performed using Stata 12.0 software to determine the effect sizes and corresponding 95% confidence intervals. Then, a summary receiver operator characteristic (SROC) curve was drawn, and the area under the ROC curve (AUC) was calculated. RESULTS D-dimer had the best sensitivity and AUC for AD, with values of 0.96 (95% CI: 0.93-0.98) and 0.95 (95% CI: 0.93-0.97), respectively. The sensitivity and AUC values for D-dimer with a cut-off value of 500 ng/mL were 0.97 (95% CI: 0.95-0.99) and 0.94 (95% CI: 0.92-0.96), respectively. In contrast, microRNA had a better specificity value for AD, at 0.79 (95% CI: 0.73-0.83). CONCLUSIONS D-dimer and microRNA have good accuracy in the diagnosis of AD, but the specificity of D-dimer is worse, and studies of microRNA are insufficient. The combination of different biomarkers can improve the diagnostic accuracy. Other blood biomarkers are related to the pathological progression of AD and can be selected according to pathological progress.
Collapse
Affiliation(s)
- Hongjian Chen
- Department of Infection Disease, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunjie Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheqian Li
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanli Shi
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Haobo Zhu
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
Ridolfi A, Conti L, Brucale M, Frigerio R, Cardellini J, Musicò A, Romano M, Zendrini A, Polito L, Bergamaschi G, Gori A, Montis C, Panella S, Barile L, Berti D, Radeghieri A, Bergese P, Cretich M, Valle F. Particle profiling of EV-lipoprotein mixtures by AFM nanomechanical imaging. J Extracell Vesicles 2023; 12:e12349. [PMID: 37855042 PMCID: PMC10585431 DOI: 10.1002/jev2.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/08/2023] [Indexed: 10/20/2023] Open
Abstract
The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours. The obtained diameters are in quantitative accord with those measured via cryo-electron microscopy (cryo-EM); the assignment of specific nanomechanical readout to each object enables the simultaneous discrimination of co-isolated EVs and LPs even if they have overlapping size distributions. EVs and all classes of LPs are shown to be characterised by specific combinations of diameter and stiffness, thus making it possible to estimate their relative abundance in EV/LP mixed samples in terms of stoichiometric ratio, surface area and volume. As a side finding, we show how the mechanical behaviour of specific LP classes is correlated to distinctive structural features revealed by cryo-EM. The described approach is label-free, single-step and relatively quick to perform. Importantly, it can be used to analyse samples which prove very challenging to assess with several established techniques due to ensemble-averaging, low sensibility to small particles, or both, thus providing a very useful tool for quickly assessing the purity of EV/LP isolates including plasma- and serum-derived preparations.
Collapse
Affiliation(s)
- Andrea Ridolfi
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
| | - Laura Conti
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
| | - Marco Brucale
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
| | - Roberto Frigerio
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Jacopo Cardellini
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Angelo Musicò
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Miriam Romano
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Andrea Zendrini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Laura Polito
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Greta Bergamaschi
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Alessandro Gori
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Costanza Montis
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Stefano Panella
- Istituto Cardiocentro TicinoEnte Ospedaliero CantonaleLuganoSwitzerland
| | - Lucio Barile
- Istituto Cardiocentro TicinoEnte Ospedaliero CantonaleLuganoSwitzerland
| | - Debora Berti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
| | - Annalisa Radeghieri
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaBresciaItaly
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'innovazione BiomedicaPalermoItaly
| | - Marina Cretich
- Consiglio Nazionale delle RicercheIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”MilanItaly
| | - Francesco Valle
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFirenzeItaly
| |
Collapse
|
26
|
Yaghoubi Naei V, Bordhan P, Mirakhorli F, Khorrami M, Shrestha J, Nazari H, Kulasinghe A, Ebrahimi Warkiani M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther Adv Med Oncol 2023; 15:17588359231192401. [PMID: 37692363 PMCID: PMC10486235 DOI: 10.1177/17588359231192401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Over the past decade, the detection and analysis of liquid biopsy biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have advanced significantly. They have received recognition for their clinical usefulness in detecting cancer at an early stage, monitoring disease, and evaluating treatment response. The emergence of liquid biopsy has been a helpful development, as it offers a minimally invasive, rapid, real-time monitoring, and possible alternative to traditional tissue biopsies. In resource-limited settings, the ideal platform for liquid biopsy should not only extract more CTCs or ctDNA from a minimal sample volume but also accurately represent the molecular heterogeneity of the patient's disease. This review covers novel strategies and advancements in CTC and ctDNA-based liquid biopsy platforms, including microfluidic applications and comprehensive analysis of molecular complexity. We discuss these systems' operational principles and performance efficiencies, as well as future opportunities and challenges for their implementation in clinical settings. In addition, we emphasize the importance of integrated platforms that incorporate machine learning and artificial intelligence in accurate liquid biopsy detection systems, which can greatly improve cancer management and enable precision diagnostics.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Science, Institute for Biomedical Materials & Devices, University of Technology Sydney, Australia
| | - Fatemeh Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 1, Broadway, Ultimo New South Wales 2007, Australia
| |
Collapse
|
27
|
Wang W, Zheng Z, Lei J. CTC, ctDNA, and Exosome in Thyroid Cancers: A Review. Int J Mol Sci 2023; 24:13767. [PMID: 37762070 PMCID: PMC10530859 DOI: 10.3390/ijms241813767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thyroid cancer has become more common in recent years all around the world. Many issues still need to be urgently addressed in the diagnosis, treatment, and prognosis of thyroid cancer. Liquid biopsy (mainly circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating exosomes) may provide a novel and ideal approach to solve these issues, allows us to assess the features of diseases more comprehensively, and has a function in a variety of malignancies. Recently, liquid biopsy has been shown to be critical in thyroid cancer diagnosis, treatment, and prognosis in numerous previous studies. In this review, by testing CTCs, ctDNA, and exosomes, we focus on the possible clinical role of liquid biopsy in thyroid cancer, including diagnostic and prognostic biomarkers and response to therapy. We briefly review how liquid biopsy components have progressed in thyroid cancer by consulting the existing public information. We also discuss the clinical potential of liquid biopsy in thyroid cancer and provide a reference for liquid biopsy research. Liquid biopsy has the potential to be a useful tool in the early detection, monitoring, or prediction of response to therapies and prognosis in thyroid cancer, with promising clinical applications.
Collapse
Affiliation(s)
- Wenwen Wang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao Zheng
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Mugoni V, Ciani Y, Quaini O, Tomasini S, Notarangelo M, Vannuccini F, Marinelli A, Leonardi E, Pontalti S, Martinelli A, Rossetto D, Pesce I, Mansy SS, Barbareschi M, Ferro A, Caffo O, Attard G, Di Vizio D, D'Agostino VG, Nardella C, Demichelis F. Integrating extracellular vesicle and circulating cell-free DNA analysis using a single plasma aliquot improves the detection of HER2 positivity in breast cancer patients. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e108. [PMID: 38046436 PMCID: PMC10688391 DOI: 10.1002/jex2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 12/05/2023]
Abstract
Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (One Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on n = 64 healthy donors (HD) and non-metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports ONCE as a valuable tool for multi-analytes liquid biopsies' clinical implementation.
Collapse
Affiliation(s)
- Vera Mugoni
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Yari Ciani
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Orsetta Quaini
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Simone Tomasini
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Michela Notarangelo
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Federico Vannuccini
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Alessia Marinelli
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Elena Leonardi
- Unit of Surgical Pathology, Santa Chiara Hospital, APSSTrentoItaly
| | - Stefano Pontalti
- Department of Medical OncologySanta Chiara Hospital, APSSTrentoItaly
| | - Angela Martinelli
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Isabella Pesce
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Sheref S. Mansy
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | | | - Antonella Ferro
- Department of Medical OncologySanta Chiara Hospital, APSSTrentoItaly
| | - Orazio Caffo
- Department of Medical OncologySanta Chiara Hospital, APSSTrentoItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | - Caterina Nardella
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| |
Collapse
|
29
|
Santini D, Botticelli A, Galvano A, Iuliani M, Incorvaia L, Gristina V, Taffon C, Foderaro S, Paccagnella E, Simonetti S, Fazio F, Scagnoli S, Pomati G, Pantano F, Perrone G, De Falco E, Russo A, Spinelli GP. Network approach in liquidomics landscape. J Exp Clin Cancer Res 2023; 42:193. [PMID: 37542343 PMCID: PMC10401883 DOI: 10.1186/s13046-023-02743-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/06/2023] Open
Abstract
Tissue-based biopsy is the present main tool to explore the molecular landscape of cancer, but it also has many limits to be frequently executed, being too invasive with the risk of side effects. These limits and the ability of cancer to constantly evolve its genomic profile, have recently led to the need of a less invasive and more accurate alternative, such as liquid biopsy. By searching Circulating Tumor Cells and residues of their nucleic acids or other tumor products in body fluids, especially in blood, but also in urine, stools and saliva, liquid biopsy is becoming the future of clinical oncology. Despite the current lack of a standardization for its workflows, that makes it hard to be reproduced, liquid biopsy has already obtained promising results for cancer screening, diagnosis, prognosis, and risk of recurrence.Through a more accessible molecular profiling of tumors, it could become easier to identify biomarkers predictive of response to treatment, such as EGFR mutations in non-small cell lung cancer and KRAS mutations in colorectal cancer, or Microsatellite Instability and Mismatch Repair as predictive markers of pembrolizumab response.By monitoring circulating tumor DNA in longitudinal repeated sampling of blood we could also predict Minimal Residual Disease and the risk of recurrence in already radically resected patients.In this review we will discuss about the current knowledge of limitations and strengths of the different forms of liquid biopsies for its inclusion in normal cancer management, with a brief nod to their newest biomarkers and its future implications.
Collapse
Affiliation(s)
- Daniele Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Andrea Botticelli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Antonio Galvano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Lorena Incorvaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Chiara Taffon
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Simone Foderaro
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Elisa Paccagnella
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
| | - Sonia Simonetti
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Federico Fazio
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy.
| | - Simone Scagnoli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | | | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Giuseppe Perrone
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, 80122, Naples, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy
| |
Collapse
|
30
|
Schreier S, Budchart P, Borwornpinyo S, Arpornwirat W, Lertsithichai P, Chirappapha P, Triampo W. New inflammatory indicators for cell-based liquid biopsy: association of the circulating CD44+/CD24- non-hematopoietic rare cell phenotype with breast cancer residual disease. J Cancer Res Clin Oncol 2023; 149:4347-4358. [PMID: 36100762 PMCID: PMC9470072 DOI: 10.1007/s00432-022-04330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Breast cancer residual disease assessment in early-stage patients has been challenging and lacks routine identification of adjuvant therapy benefit and objective measure of therapy success. Liquid biopsy assays targeting tumor-derived entities are investigated for minimal residual disease detection, yet perform low in clinical sensitivity. We propose the detection of CD44-related systemic inflammation for the assessment of residual cancer. METHODS Circulating CD44+/CD45- rare cells from healthy, noncancer- and cancer-afflicted donors were enriched by CD45 depletion and analyzed by immuno-fluorescence microscopy. CD44+ rare cell subtyping was based on cytological feature analysis and referred to as morphological index. AUC analysis was employed for identification of the most cancer-specific CD44+ subtype. RESULTS The EpCam-/CD44+/CD24-/CD71-/CD45-/DNA+ phenotype alludes to a distinct cell type and was found frequently at concentrations below 5 cells per 5 mL in healthy donors. Marker elevation by at least 5 × on average was observed in all afflicted cohorts. The positive predicted value for the prediction of malignancy-associated systemic inflammation of a CD44+ rare cell subtype with a higher morphological index was 87%. An outlook for the frequency of sustained inflammation in residual cancer may be given to measure 78%. CONCLUSION The CD44+ rare cell and subtype denotes improvement in detection of residual cancer disease and may provide an objective and alternative measure of disease burden in early-stage breast cancer.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand.
- Premise Biosystems Co. Ltd, Bangkok, 10540, Thailand.
| | | | - Suparerk Borwornpinyo
- Premise Biosystems Co. Ltd, Bangkok, 10540, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Wichit Arpornwirat
- Department of Oncology, Bangkok Hospital, 2 Soi Soonvijai 7, New Petchburi Rd, Huaykwang, Bangkok, 10310, Thailand
| | - Panuwat Lertsithichai
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Prakasit Chirappapha
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Wannapong Triampo
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok, 10400, Thailand
- Department of Physics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
31
|
Bettin B, van der Pol E, Nieuwland R. Plasma extracellular vesicle test sample to standardize flow cytometry measurements. Res Pract Thromb Haemost 2023; 7:100181. [PMID: 37538497 PMCID: PMC10394550 DOI: 10.1016/j.rpth.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 08/05/2023] Open
Abstract
Background Extracellular vesicles (EVs) in body fluids are explored as disease biomarkers, but EV concentrations measured by flow cytometers (FCMs) are incomparable. Objectives To improve data comparability, new reference materials with physical properties resembling EVs and reference procedures are being developed. The validation of new reference materials and procedures requires biological test samples. We developed a human plasma EV test sample (PEVTES) that i) resembles subcellular particles in plasma, ii) is ready-to-use, iii) is flow cytometry-compatible, and iv) is stable. Methods The PEVTES was prepared from human plasma of 3 fasting donors. EVs were immunofluorescently stained with antibodies against platelet-specific (CD61) and erythrocyte-specific (CD235a) antigens or lactadherin. To reduce the concentration of soluble proteins, lipoproteins, and unbound reagents, stained EVs were isolated from plasma by size-exclusion chromatography. After isolation, the PEVTES was filtered to remove remnant platelets. PEVTESs were diluted in cryopreservation agents, dimethyl sulfoxide, glycerol, or trehalose and stored at -80 °C for 12 months. After thawing, stained EV concentrations were measured with a calibrated FCM (Apogee A60-Micro). Results We demonstrate that the developed PEVTES resembles subcellular particles in human plasma when measured using FCM and that the concentrations of prestained platelet-derived, erythrocyte-derived, and lactadherin+ EVs in the PEVTES are stable during storage at -80 °C for 12 months when stored in trehalose. Conclusion The PEVTES i) resembles subcellular particles in plasma, ii) is ready-to-use, iii) is flow cytometry-compatible, and iv) is stable. Therefore, the developed PEVTES is an ideal candidate to validate newly developed reference materials and procedures.
Collapse
Affiliation(s)
- Britta Bettin
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Vesicle Center, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Vesicle Center, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Vesicle Center, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Li S, Xin K, Pan S, Wang Y, Zheng J, Li Z, Liu X, Liu B, Xu Z, Chen X. Blood-based liquid biopsy: insights into early detection, prediction, and treatment monitoring of bladder cancer. Cell Mol Biol Lett 2023; 28:28. [PMID: 37016296 PMCID: PMC10074703 DOI: 10.1186/s11658-023-00442-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Bladder cancer (BC) is a clinical challenge worldwide with late clinical presentation, poor prognosis, and low survival rates. Traditional cystoscopy and tissue biopsy are routine methods for the diagnosis, prognosis, and monitoring of BC. However, due to the heterogeneity and limitations of tumors, such as aggressiveness, high cost, and limited applicability of longitudinal surveillance, the identification of tumor markers has attracted significant attention in BC. Over the past decade, liquid biopsies (e.g., blood) have proven to be highly efficient methods for the discovery of BC biomarkers. This noninvasive sampling method is used to analyze unique tumor components released into the peripheral circulation and allows serial sampling and longitudinal monitoring of tumor progression. Several liquid biopsy biomarkers are being extensively studied and have shown promising results in clinical applications of BC, including early detection, detection of microscopic residual disease, prediction of recurrence, and response to therapy. Therefore, in this review, we aim to provide an update on various novel blood-based liquid biopsy markers and review the advantages and current limitations of liquid biopsy in BC therapy. The role of blood-based circulating tumor cells, circulating tumor DNA, cell-free RNA, exosomes, metabolomics, and proteomics in diagnosis, prognosis, and treatment monitoring, and their applicability to the personalized management of BC, are highlighted.
Collapse
Affiliation(s)
- Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Bitian Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
33
|
López‐Guerrero JA, Valés‐Gómez M, Borrás FE, Falcón‐Pérez JM, Vicent MJ, Yáñez‐Mó M. Standardising the preanalytical reporting of biospecimens to improve reproducibility in extracellular vesicle research - A GEIVEX study. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e76. [PMID: 38939690 PMCID: PMC11080825 DOI: 10.1002/jex2.76] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/29/2024]
Abstract
The standardization of clinical studies using extracellular vesicles (EVs) has mainly focused on the procedures employed for their isolation and characterization; however, preanalytical aspects of sample collection, handling and storage also significantly impact the reproducibility of results. We conducted an online survey based on SPREC (Standard PREanalytical Code) among members of GEIVEX (Grupo Español de Investigación en Vesiculas Extracelulares) to explore how different laboratories handled fluid biospecimens destined for EV analyses. We received 70 surveys from forty-three different laboratories: 44% focused on plasma, 9% on serum and 16% on urine. The survey indicated that variability in preanalytical approaches reaches 94%. Moreover, in some cases, researchers had no access to all relevant preanalytical details of samples, with some sample aspects with potential impact on EV isolation/characterisation not coded within the current version of SPREC. Our study highlights the importance of working with common standard operating procedures (SOP) to control preanalytical conditions. The application of SPREC represents a suitable approach to codify and register preanalytical conditions. Integrating SPREC into the SOPs of laboratories/biobanks will provide a valuable source of information and constitute an advance for EV research by improving reproducibility and credibility.
Collapse
Affiliation(s)
- José A. López‐Guerrero
- Laboratory of Molecular BiologyFundación Instituto Valenciano de OncologíaValenciaSpain
- IVO‐CIPF Joint Research Unit of CancerPríncipe Felipe Research Center (CIPF)ValenciaSpain
- Department of PathologySchool of MedicineCatholic University of Valencia ‘San Vicente Martir’ValenciaSpain
| | - Mar Valés‐Gómez
- Department of Immunology and Oncology, National Centre for BiotechnologySpanish National Research CouncilMadridSpain
| | - Francesc E. Borrás
- REMAR‐IVECAT Group, Germans Trias i Pujol Research Institute (IGTP) & Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP)Can Ruti CampusBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat de Barcelona (UB)BarcelonaSpain
| | - Juan Manuel Falcón‐Pérez
- Exosomes Laboratory and Metabolomics PlatformCIC bioGUNE‐BRTADerioSpain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd)MadridSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - María J. Vicent
- Polymer Therapeutics Lab.Centro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - María Yáñez‐Mó
- Department of Molecular Biology, University Institute of Molecular Biology (IUBM), Autonomous University of Madrid (UAM), Severo Ochoa Center for Molecular BiologyLa Princesa Health Research Institute (IIS‐IP)MadridSpain
| |
Collapse
|
34
|
Ren XD, Su N, Sun XG, Li WM, Li J, Li BW, Li RX, Lv J, Xu QY, Kong WL, Huang Q. Advances in liquid biopsy-based markers in NSCLC. Adv Clin Chem 2023; 114:109-150. [PMID: 37268331 DOI: 10.1016/bs.acc.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer is the second most-frequently occurring cancer and the leading cause of cancer-associated deaths worldwide. Non-small cell lung cancer (NSCLC), the most common type of lung cancer is often diagnosed in middle or advanced stages and have poor prognosis. Diagnosis of disease at an early stage is a key factor for improving prognosis and reducing mortality, whereas, the currently used diagnostic tools are not sufficiently sensitive for early-stage NSCLC. The emergence of liquid biopsy has ushered in a new era of diagnosis and management of cancers, including NSCLC, since analysis of circulating tumor-derived components, such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), cell-free RNAs (cfRNAs), exosomes, tumor-educated platelets (TEPs), proteins, and metabolites in blood or other biofluids can enable early cancer detection, treatment selection, therapy monitoring and prognosis assessment. There have been great advances in liquid biopsy of NSCLC in the past few years. Hence, this chapter introduces the latest advances on the clinical application of cfDNA, CTCs, cfRNAs and exosomes, with a particular focus on their application as early markers in the diagnosis, treatment and prognosis of NSCLC.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jing Lv
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qian-Ying Xu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei-Long Kong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
35
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Zihnioglu F, Beduk T, Goksel T, Turhan K, Timur S. Design of Polymeric Surfaces as Platforms for Streamlined Cancer Diagnostics in Liquid Biopsies. BIOSENSORS 2023; 13:400. [PMID: 36979612 PMCID: PMC10046689 DOI: 10.3390/bios13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Minimally invasive approaches for cancer diagnosis are an integral step in the quest to improve cancer survival. Liquid biopsies such as blood samples are matrices explored to extract valuable information about the tumor and its state through various indicators, such as proteins, peptides, tumor DNA, or circulating tumor cells. Although these markers are scarce, making their isolation and detection in complex matrices challenging, the development in polymer chemistry producing interesting structures, including molecularly imprinted polymers, branched polymers, nanopolymer composites, and hybrids, allowed the development of enhanced platforms with impressive performance for liquid biopsies analysis. This review describes the latest advances and developments in polymer synthesis and their application for minimally invasive cancer diagnosis. The polymer structures improve the operational performances of biosensors through various processes, such as increased affinity for enhanced sensitivity, improved binding, and avoidance of non-specific interactions for enhanced specificity. Furthermore, polymer-based materials can be a tremendous help in signal amplification of usually low-concentrated targets in the sample. The pros and cons of these materials, how the synthesis process affects their performance, and the device applications for liquid biopsies diagnosis will be critically reviewed to show the essentiality of this technology in oncology and clinical biomedicine.
Collapse
Affiliation(s)
- Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, 9524 Villach, Austria
| | - Tuncay Goksel
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Türkiye
- EGESAM-Ege University Translational Pulmonary Research Center, Bornova, 35100 Izmir, Türkiye
| | - Kutsal Turhan
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
36
|
Bamankar S, Londhe VY. The Rise of Extracellular Vesicles as New Age Biomarkers in Cancer Diagnosis: Promises and Pitfalls. Technol Cancer Res Treat 2023; 22:15330338221149266. [PMID: 36604966 PMCID: PMC9830000 DOI: 10.1177/15330338221149266] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell-to-cell interactions in the intricate microenvironment of tissue have a significant impact on the progression of cancer at every stage. Both cancer cells and stromal cells are responsible for the secretion of soluble chemical compounds as well as membrane-encased components, which both influence and govern the cell-to-cell interactions within the micro-environment of tumor cells. These membrane structures are identified as extracellular vesicles (EVs), which include exosomes and microvesicles. These nanosized vesicles are made up of bilayered proteolipids and have dimensions ranging from 50 to 1000 nm. It has been speculated that extracellular vesicles that originate from cancer cells perform a variety of functions in the development and progression of cancer which may involve the transport of regulatory materials, such as oncogenic proteins between nearby cells and to distant biological locations. In addition, their level in the serum of cancer patients is noticeably higher than those of healthy controls. The release of extracellular vesicles into the extracellular space is a continual process in both healthy and diseased cells. These extracellular vesicles hold molecular signatures that are defining features of health as well as disease. And hence, the EVs present in biological fluids provide unparalleled and noninvasive access to the necessary molecular details about the health status of the cells. Recent discoveries about these complex extracellular organelles have accelerated the discovery of cancer-specific biological markers as well as the development of unique diagnostic tools based on extracellular vesicles. In this mini-review, we aim to highlight the hopes and hypes associated with the applications of extracellular vesicles as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Suraj Bamankar
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology
Management, SVKM's NMIMS, Mumbai,
Maharashtra, India
| | - Vaishali Yogesh Londhe
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology
Management, SVKM's NMIMS, Mumbai,
Maharashtra, India,Vaishali Yogesh Londhe, Shobhaben
Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS
University, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
37
|
Wu X, Shi M, Lian Y, Zhang H. Exosomal circRNAs as promising liquid biopsy biomarkers for glioma. Front Immunol 2023; 14:1039084. [PMID: 37122733 PMCID: PMC10140329 DOI: 10.3389/fimmu.2023.1039084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Liquid biopsy strategies enable the noninvasive detection of changes in the levels of circulating biomarkers in body fluid samples, providing an opportunity to diagnose, dynamically monitor, and treat a range of diseases, including cancers. Glioma is among the most common forms of intracranial malignancy, and affected patients exhibit poor prognostic outcomes. As such, diagnosing and treating this disease in its early stages is critical for optimal patient outcomes. Exosomal circular RNAs (circRNAs) are involved in both the onset and progression of glioma. Both the roles of exosomes and methods for their detection have received much attention in recent years and the detection of exosomal circRNAs by liquid biopsy has significant potential for monitoring dynamic changes in glioma. The present review provides an overview of the circulating liquid biopsy biomarkers associated with this cancer type and the potential application of exosomal circRNAs as tools to guide the diagnosis, treatment, and prognostic evaluation of glioma patients during disease progression.
Collapse
Affiliation(s)
- Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Shi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| |
Collapse
|
38
|
Chaddha M, Rai H, Gupta R, Thakral D. Integrated analysis of circulating cell free nucleic acids for cancer genotyping and immune phenotyping of tumor microenvironment. Front Genet 2023; 14:1138625. [PMID: 37091783 PMCID: PMC10117686 DOI: 10.3389/fgene.2023.1138625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) consist of a heterogenous cocktail of both single (ssNA) and double-stranded (dsNA) nucleic acids. These ccfNAs are secreted into the blood circulation by both healthy and malignant cells via various mechanisms including apoptosis, necrosis, and active secretion. The major source of ccfNAs are the cells of hematopoietic system under healthy conditions. These ccfNAs include fragmented circulating cell free DNA (ccfDNA), coding or messenger RNA (mRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and mitochondrial DNA/RNA (mtDNA and mtRNA), that serve as prospective biomarkers in assessment of various clinical conditions. For, e.g., free fetal DNA and RNA migrate into the maternal plasma, whereas circulating tumor DNA (ctDNA) has clinical relevance in diagnostic, prognostic, therapeutic targeting, and disease progression monitoring to improve precision medicine in cancer. The epigenetic modifications of ccfDNA as well as circulating cell-free RNA (ccfRNA) such as miRNA and lncRNA show disease-related variations and hold potential as epigenetic biomarkers. The messenger RNA present in the circulation or the circulating cell free mRNA (ccf-mRNA) and long non-coding RNA (ccf-lncRNA) have gradually become substantial in liquid biopsy by acting as effective biomarkers to assess various aspects of disease diagnosis and prognosis. Conversely, the simultaneous characterization of coding and non-coding RNAs in human biofluids still poses a significant hurdle. Moreover, a comprehensive assessment of ccfRNA that may reflect the tumor microenvironment is being explored. In this review, we focus on the novel approaches for exploring ccfDNA and ccfRNAs, specifically ccf-mRNA as biomarkers in clinical diagnosis and prognosis of cancer. Integrating the detection of circulating tumor DNA (ctDNA) for cancer genotyping in conjunction with ccfRNA both quantitatively and qualitatively, may potentially hold immense promise towards precision medicine. The current challenges and future directions in deciphering the complexity of cancer networks based on the dynamic state of ccfNAs will be discussed.
Collapse
Affiliation(s)
| | | | - Ritu Gupta
- *Correspondence: Deepshi Thakral, ; Ritu Gupta,
| | | |
Collapse
|
39
|
Rackles E, Lopez PH, Falcon-Perez JM. Extracellular vesicles as source for the identification of minimally invasive molecular signatures in glioblastoma. Semin Cancer Biol 2022; 87:148-159. [PMID: 36375777 DOI: 10.1016/j.semcancer.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The analysis of extracellular vesicles (EVs) as a source of cancer biomarkers is an emerging field since low-invasive biomarkers are highly demanded. EVs constitute a heterogeneous population of small membrane-contained vesicles that are present in most of body fluids. They are released by all cell types, including cancer cells and their cargo consists of nucleic acids, proteins and metabolites and varies depending on the biological-pathological state of the secretory cell. Therefore, EVs are considered as a potential source of reliable biomarkers for cancer. EV biomarkers in liquid biopsy can be a valuable tool to complement current medical technologies for cancer diagnosis, as their sampling is minimally invasive and can be repeated over time to monitor disease progression. In this review, we highlight the advances in EV biomarker research for cancer diagnosis, prognosis, and therapy monitoring. We especially focus on EV derived biomarkers for glioblastoma. The diagnosis and monitoring of glioblastoma still relies on imaging techniques, which are not sufficient to reflect the highly heterogenous and invasive nature of glioblastoma. Therefore, we discuss how the use of EV biomarkers could overcome the challenges faced in diagnosis and monitoring of glioblastoma.
Collapse
Affiliation(s)
- Elisabeth Rackles
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Patricia Hernández Lopez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Metabolomics Platform, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
40
|
Marotta V, Cennamo M, La Civita E, Vitale M, Terracciano D. Cell-Free DNA Analysis within the Challenges of Thyroid Cancer Management. Cancers (Basel) 2022; 14:cancers14215370. [PMID: 36358788 PMCID: PMC9654679 DOI: 10.3390/cancers14215370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Liquid biopsy is a minimally invasive method that emerged as a new promising tool for improving diagnosis, risk stratification, follow-up, and treatment of cancer patients. To date, the majority of the research in the area of liquid biopsy has focused on plasma-based cell-free DNA as a potential surrogate for tumor DNA obtained from a tissue biopsy. In the last decades, breakthrough advancements have been performed in the knowledge of thyroid cancer genetics, and the role of molecular characterization in clinical decision-making is continuously rising, from diagnosis completion to the personalization of treatment approach. Hence, it is expectable for cell-free DNA to be applicable in thyroid cancer management. This review aims to investigate the cell-free DNA utility for thyroid cancer patients’ care. Abstract Thyroid cancer is the most frequent endocrine malignancy with an increasing incidence trend during the past forty years and a concomitant rise in cancer-related mortality. The circulating cell-free DNA (cfDNA) analysis is a patient’s friendly and repeatable procedure allowing to obtain surrogate information about the genetics and epigenetics of the tumor. The aim of the present review was to address the suitability of cfDNA testing in different forms of thyroid cancer, and the potential clinical applications, as referred to the clinical weaknesses. Despite being limited by the absence of standardization and by reproducibility and validity issues, cfDNA assessment has great potential for the improvement of thyroid cancer management. cfDNA may support the pre-surgical definition of thyroid nodules by complementing invasive thyroid fine needle aspiration cytology. In addition, it may empower risk stratification and could be used as a biomarker for monitoring the post-surgical disease status, both during active surveillance and in the case of anti-tumor treatment.
Collapse
Affiliation(s)
- Vincenzo Marotta
- UOC Clinica Endocrinologica e Diabetologica, AOU San Giovanni di Dio e Ruggi d’Aragona, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-333-852-1005
| | - Michele Cennamo
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Mario Vitale
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università di Salerno, 84081 Baronissi, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| |
Collapse
|
41
|
Aynekin B, Akalin H, Muderris II, Acmaz G, Akgun H, Şahin IO, Gokce NC, Alzaidi Z, Erturk Zararsiz G, Ozkul Y, Dundar M, Saatci Ç. Biomarker potential of the GRP78 cell-free RNA in endometrial cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Circulating tumor cells represent an opportunity for the assessment of early recurrent disease or for real-time tracing of cancer. Glucose Regulated Protein 78 (GRP78) is known in the literature as a stress factor in endometrial cancer. We aimed to investigate the importance of the gene by targeting tumor traces circulating in the cell fluids of patients with Type 1 endometrial cancer, examining cell-free RNAs in patients’ samples and performing ROC analysis.
Methodology
In this study, 32 endometrial cancer patients and 20 controls were included. This in vitro study evaluated, the GRP78 cell-free mRNA expression levels in endometrial cancer patients, by quantitative real-time polymerase chain reaction qRT–PCR Light Cycler. Receiver operating characteristic (ROC) analysis is a tool used to identify the precision of a diagnostic test or prediction model. In our study, we investigated whether the expression levels of cell-free GRP78 mRNA could be used as a diagnostic criterion.
Results
The ROC curve results for endometrial cancer diagnostic criterion of cfRNA GRP78 mRNA indicated quite a significant value (p < 0.001).
Conclusion
Current findings show that cell-free mRNA GRP78 is now a criterion that can be used together with smear mRNA GRP78 without the need for invasive methods in endometrial cancer studies.
Collapse
|
42
|
The clinical value of circulating free tumor DNA in testicular germ cell tumor patients. Urol Oncol 2022; 40:412.e15-412.e24. [DOI: 10.1016/j.urolonc.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 04/30/2022] [Indexed: 11/15/2022]
|
43
|
Safrastyan A, Wollny D. Network analysis of hepatocellular carcinoma liquid biopsies augmented by single-cell sequencing data. Front Genet 2022; 13:921195. [PMID: 36092896 PMCID: PMC9452847 DOI: 10.3389/fgene.2022.921195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid biopsy, the analysis of body fluids, represents a promising approach for disease diagnosis and prognosis with minimal intervention. Sequencing cell-free RNA derived from liquid biopsies has been very promising for the diagnosis of several diseases. Cancer research, in particular, has emerged as a prominent candidate since early diagnosis has been shown to be a critical determinant of disease prognosis. Although high-throughput analysis of liquid biopsies has uncovered many differentially expressed genes in the context of cancer, the functional connection between these genes is not investigated in depth. An important approach to remedy this issue is the construction of gene networks which describes the correlation patterns between different genes, thereby allowing to infer their functional organization. In this study, we aimed at characterizing extracellular transcriptome gene networks of hepatocellular carcinoma patients compared to healthy controls. Our analysis revealed a number of genes previously associated with hepatocellular carcinoma and uncovered their association network in the blood. Our study thus demonstrates the feasibility of performing gene co-expression network analysis from cell-free RNA data and its utility in studying hepatocellular carcinoma. Furthermore, we augmented cell-free RNA network analysis with single-cell RNA sequencing data which enables the contextualization of the identified network modules with cell-type specific transcriptomes from the liver.
Collapse
Affiliation(s)
- Aram Safrastyan
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Damian Wollny
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- *Correspondence: Damian Wollny,
| |
Collapse
|
44
|
Sun J, Yang X, Wang T, Xing Y, Chen H, Zhu S, Zeng J, Zhou Q, Chen F, Zhang X, Wang WJ. Evaluating the Effects of Storage Conditions on Multiple Cell-Free RNAs in Plasma by High-Throughput Sequencing. Biopreserv Biobank 2022. [PMID: 36006659 DOI: 10.1089/bio.2022.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Plasma cell-free RNAs (cfRNAs) can serve as noninvasive biomarkers for the diagnosis and monitoring of diseases. However, the delay in blood processing may lead to unreliable results. Therefore, an unbiased evaluation based on the whole transcriptome under different storage conditions is needed. Methods: Here, blood samples were collected in ethylenediaminetetraacetic acid tubes and processed immediately (0 hour), or stored at room temperature (RT) or 4°C for different time intervals (2, 6, and 24 hours) before plasma separation. High-throughput sequencing was applied to assess the effects of storage conditions on the transcript profiles and fragment characteristics of plasma cell-free mRNA, long noncoding RNA (lncRNA), and small RNAs. Results: More genes changed their expression levels with time when blood was stored at RT compared with those at 4°C. Cell-free mRNA and lncRNA were relatively stable in blood preserved at 4°C for 6 hours, while cell-free microRNA (miRNA) and piwi-interacting RNA (piRNA) remained stable at 4°C for 24 hours. After 24 hours, more contamination of the leukocyte-derived RNAs occurred at RT, possibly due to apoptosis. Meanwhile, significant changes were also observed regarding the characteristics of the RNA fragments, including fragment size, the proportion of intron, and the pyrimidine frequency of the fragmented 3' end. Fifteen tissue-enriched genes were detected in the plasma but not expressed in leukocytes. The expression level and fragment length of these genes gradually decreased during storage, suggesting the degradation of the cfRNA and the dilution of leukocyte-derived RNA with other tissue-derived cfRNA. Conclusions: Our results suggest that the contamination of leukocyte-derived RNA and the degradation of original cfRNA contribute to the changes in the cfRNA expression profiles and the fragment characteristics during short-term storage. The storage of blood at 4°C for 6 hours allows plasma cfRNA to remain relatively stable, which will be useful for further studies or clinical applications where adequate quantification or the fragment signature of cfRNA is required.
Collapse
Affiliation(s)
- Jinghua Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China
| | - Xi Yang
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Sujun Zhu
- Obstetrics Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Juan Zeng
- Obstetrics Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | | | | | | | - Wen-Jing Wang
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory for Birth Defects Screening, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
45
|
Cabús L, Lagarde J, Curado J, Lizano E, Pérez-Boza J. Current challenges and best practices for cell-free long RNA biomarker discovery. Biomark Res 2022; 10:62. [PMID: 35978416 PMCID: PMC9385245 DOI: 10.1186/s40364-022-00409-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
The analysis of biomarkers in biological fluids, also known as liquid biopsies, is seen with great potential to diagnose complex diseases such as cancer with a high sensitivity and minimal invasiveness. Although it can target any biomolecule, most liquid biopsy studies have focused on circulating nucleic acids. Historically, studies have aimed at the detection of specific mutations on cell-free DNA (cfDNA), but recently, the study of cell-free RNA (cfRNA) has gained traction. Since 2020, a handful of cfDNA tests have been approved for therapy selection by the FDA, however, no cfRNA tests are approved to date. One of the main drawbacks in the field of RNA-based liquid biopsies is the low reproducibility of the results, often caused by technical and biological variability, a lack of standardized protocols and insufficient cohorts. In this review, we will identify the main challenges and biases introduced during the different stages of biomarker discovery in liquid biopsies with cfRNA and propose solutions to minimize them.
Collapse
Affiliation(s)
- Lluc Cabús
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
- Flomics Biotech, Barcelona, Spain
| | | | | | - Esther Lizano
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
46
|
Chen X, Deng Y, Niu R, Sun Z, Batool A, Wang L, Zhang C, Ma N, Yang Q, Liu G, Yang J, Luo Y. Cancer-Derived Small Extracellular Vesicles PICKER. Anal Chem 2022; 94:13019-13027. [PMID: 35980378 DOI: 10.1021/acs.analchem.2c01683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer-derived small extracellular vesicles (csEVs) play critical roles in the genesis and development of various cancers. However, accurate detection of low-abundance csEVs remains particularly challenging due to the complex clinical sample composition. In the present study, we constructed a Programmable Isothermal Cascade Keen Enzyme-free Reporter (PICKER) for the reliable detection and acquisition of the relative abundance of csEVs in total sEVs (tsEVs) by integrating dual-aptamer recognition (cancer-specific protein EpCAM and tetraspanin protein CD63) with a catalytic hairpin assembly (CHA) amplification. By employing this strategy, we were able to achieve a detection limit of 420 particles/μL csEVs. Particularly, we proposed a novel particle ratio index of csEV against tsEV (PRcsEV/tsEV) to greatly eliminate errors from inconsistent centrifugation, which was calculated from the fluorescence ratio produced by csEVs and tsEVs. The PICKER showed a 1/10,000 discrimination capability by successfully picking out 1.0 × 103 csEV from 1.0 × 107 tsEV per microliter. We also found that the PRcsEV/tsEV value increased proportional to the stages of breast cancer by analyzing EVs from clinical patients' plasma. Taken together, we established a PICKER strategy capable of accurately discriminating csEVs, and the proposed PRcsEV/tsEV had been proven a potential indicator of breast cancer staging, paving the way toward facilitating cancer diagnosis and precision therapeutics.
Collapse
Affiliation(s)
- Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yun Deng
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Ruyan Niu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China
| | - Alya Batool
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China
| | - Chong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China
| | - Ningyu Ma
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China
| | - Qingtang Yang
- Department of Clinical Laboratory, Chongqing University Cancer Hospital, Chongqing 400030, P. R. China
| | - Guoxiang Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P. R. China.,Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, Chongqing 402260, P. R. China.,Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 408099, P. R. China
| |
Collapse
|
47
|
Paulson V, Konnick EQ, Lockwood CH. When Tissue Is the Issue. Clin Lab Med 2022; 42:485-496. [DOI: 10.1016/j.cll.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Liu Z, Kong Y, Dang Q, Weng S, Zheng Y, Ren Y, Lv J, Li N, Han Y, Han X. Liquid Biopsy in Pre-Metastatic Niche: From Molecular Mechanism to Clinical Application. Front Immunol 2022; 13:958360. [PMID: 35911705 PMCID: PMC9334814 DOI: 10.3389/fimmu.2022.958360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic dissemination represents a hallmark of cancer that is responsible for the high mortality rate. Recently, emerging evidence demonstrates a time-series event—pre-metastatic niche (PMN) has a profound impact on cancer metastasis. Exosomes, cell-free DNA (cfDNA), circulating tumor cells (CTC), and tumor microenvironment components, as critical components in PMN establishment, could be monitored by liquid biopsy. Intensive studies based on the molecular profile of liquid biopsy have made it a viable alternative to tissue biopsy. Meanwhile, the complex molecular mechanism and intercellular interaction are great challenges for applying liquid biopsy in clinical practice. This article reviews the cellular and molecular components involved in the establishment of the PMN and the promotion of metastasis, as well as the mechanisms of their interactions. Better knowledge of the characteristics of the PMN may facilitate the application of liquid biopsy for clinical diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxiang Lv
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han,
| |
Collapse
|
49
|
Burke D, Pinheiro L, Glover ES, Moon F, Deans Z, Corner A. Between Laboratory Reproducibility of DNA Extraction from Human Blood and Fresh Frozen Tissue. J Mol Diagn 2022; 24:1041-1049. [PMID: 35835375 DOI: 10.1016/j.jmoldx.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Standardization of molecular diagnostics is fundamental for effective application of genetic analyses in personalized medicine. The amount of DNA extracted from a specimen can have a significant impact on diagnostic accuracy, especially in cases where the diagnostic variant has a low concentration such as cancer. Blood and tissue samples were supplied to genetic laboratories to assess the reproducibility of extraction methodologies; DNA was extracted using participants' routine procedures and returned to the external quality assessment provider. The amount of DNA was measured by two independent analytical techniques, fluorescence intensity of intercalating dye and digital PCR; DNA quality was evaluated by DNA integrity number scores. The amount of DNA extracted varied widely between and within participants and for different blood volumes, indicating that consistent diagnostic quality is challenging even within a single test center. The median digital PCR-measured amount of DNA was on average six times higher than the intercalating dye measurements obtained in this study, indicating the possibility that the latter quantitative method may significantly underestimate the amount of DNA, thus making it not fit for purpose. Standardization of genetic diagnostic tests will require a significant improvement in the reproducibility of DNA extraction; this could be achieved if suppliers and users of DNA extraction kits validate their extraction methodology using reliable quantitative measurements or reference materials.
Collapse
Affiliation(s)
- Daniel Burke
- National Measurement Institute, Australia (NMIA), Lindfield, New South Wales, Australia.
| | - Leonardo Pinheiro
- National Measurement Institute, Australia (NMIA), Lindfield, New South Wales, Australia
| | | | - Fiona Moon
- Genomics Quality Assessment, the Department of Laboratory Medicine, The Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Zandra Deans
- Genomics Quality Assessment, the Department of Laboratory Medicine, The Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Adam Corner
- Bio-Rad Laboratories Ltd., Digital Biology Group, Pleasanton, California
| |
Collapse
|
50
|
Crocetto F, Russo G, Di Zazzo E, Pisapia P, Mirto BF, Palmieri A, Pepe F, Bellevicine C, Russo A, La Civita E, Terracciano D, Malapelle U, Troncone G, Barone B. Liquid Biopsy in Prostate Cancer Management—Current Challenges and Future Perspectives. Cancers (Basel) 2022; 14:cancers14133272. [PMID: 35805043 PMCID: PMC9265840 DOI: 10.3390/cancers14133272] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Prostate cancer (PCa) is a widespread malignancy, representing the second leading cause of cancer-related death in men. In the last years, liquid biopsy has emerged as an attractive and promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis, follow-up and treatment response. Liquid biopsy is employed to assess several body fluids biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and RNA (ctRNA). This review dissects recent advancements and future perspectives of liquid biopsy, highlighting its strength and weaknesses in PCa management. Abstract Although appreciable attempts in screening and diagnostic approaches have been achieved, prostate cancer (PCa) remains a widespread malignancy, representing the second leading cause of cancer-related death in men. Drugs currently used in PCa therapy initially show a potent anti-tumor effect, but frequently induce resistance and PCa progresses toward metastatic castration-resistant forms (mCRPC), virtually incurable. Liquid biopsy has emerged as an attractive and promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis and treatment. Liquid biopsy shows the ability to represent the tumor microenvironment, allow comprehensive information and follow-up the progression of the tumor, enabling the development of different treatment strategies as well as permitting the monitoring of therapy response. Liquid biopsy, indeed, is endowed with a significant potential to modify PCa management. Several blood biomarkers could be analyzed for diagnostic, prognostic and predictive purposes, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and RNA (ctRNA). In addition, several other body fluids may be adopted (i.e., urine, sperm, etc.) beyond blood. This review dissects recent advancements and future perspectives of liquid biopsies, highlighting their strength and weaknesses in PCa management.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence:
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Benito Fabio Mirto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Alessandro Palmieri
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | | | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| |
Collapse
|