1
|
Razak MR, Wee SY, Yusoff FM, Yusof ZNB, Aris AZ. Zooplankton-based adverse outcome pathways: A tool for assessing endocrine disrupting compounds in aquatic environments. ENVIRONMENTAL RESEARCH 2024; 252:119045. [PMID: 38704014 DOI: 10.1016/j.envres.2024.119045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
2
|
Dong C, Zheng G, Peng J, Guo M, Wu H, Tan Z. Integrative Inducer Intervention and Transcriptomic Analyses Reveal the Metabolism of Paralytic Shellfish Toxins in Azumapecten farreri. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6519-6531. [PMID: 38578272 DOI: 10.1021/acs.est.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 μg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.
Collapse
Affiliation(s)
- Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Mikula P, Hollerova A, Hodkovicova N, Doubkova V, Marsalek P, Franc A, Sedlackova L, Hesova R, Modra H, Svobodova Z, Blahova J. Long-term dietary exposure to the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen can affect the physiology of common carp (Cyprinus carpio) on multiple levels, even at "environmentally relevant" concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170296. [PMID: 38301789 DOI: 10.1016/j.scitotenv.2024.170296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
The aim of the study was to evaluate the effects of emerging environmental contaminants, the non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and ibuprofen (IBP), on physiological functions in juvenile common carp (Cyprinus carpio). Fish were exposed for 6 weeks, and for the first time, NSAIDs were administered through diet. Either substance was tested at two concentrations, 20 or 2000 μg/kg, resulting in four different treatments (DCF 20, DCF 2000, IBP 20, IBP 2000). The effects on haematological and biochemical profiles, the biomarkers of oxidative stress, and endocrine disruption were studied, and changes in RNA transcription were also monitored to obtain a comprehensive picture of toxicity. Fish exposure to high concentrations of NSAIDs (DCF 2000, IBP 2000) elicited numerous statistically significant changes (p < 0.05) in the endpoints investigated, with DCF being almost always more efficient than IBP. Compared to control fish, a decrease in total leukocyte count attributed to relative lymphopenia was observed. Plasma concentrations of total proteins, ammonia, and thyroxine, and enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase, and alkaline phosphatase (ALP) were significantly elevated in either group, as were the activities of certain hepatic antioxidant enzymes (superoxide dismutase, glutathione-S-transferase) in the DCF 2000 group. The transcriptomic profile of selected genes in the tissues of exposed fish was affected as well. Significant changes in plasma total proteins, ammonia, ALT, and ALP, as well as in the transcription of genes related to thyroid function and the antioxidant defense of the organism, were found even in fish exposed to the lower DCF concentration (DCF 20). As it was chosen to match DCF concentrations commonly detected in aquatic invertebrates (i.e., the potential feed source of fish), it can be considered "environmentally relevant". Future research is necessary to shed more light on the dietary NSAID toxicity to fish.
Collapse
Affiliation(s)
- Premysl Mikula
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Aneta Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Lucie Sedlackova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Renata Hesova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Helena Modra
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic; Department of Environmentalistics and Natural Resources, Faculty of Regional Development and International Studies, Mendel University in Brno, tr. Generala Piky 7, 613 00 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic.
| |
Collapse
|
4
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
5
|
Erni-Cassola G, Ebner JN, Blattner LA, Burkhardt-Holm P. Microplastics in river sediment: Chronic exposure of the amphipod Gammarus fossarum to polyethylene terephthalate in a microcosm. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132874. [PMID: 39491984 DOI: 10.1016/j.jhazmat.2023.132874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Microplastics constitute a form of particulate matter in aquatic environments, where they are a widespread pollutant. The broad range of particle sizes facilitates interactions with diverse species assemblages. Exposure to microplastics can negatively impact organisms, but similar effects also arise from exposure to naturally occurring particles, such as increased oxidative stress. It therefore remains uncertain, what effects are specific to microplastic particles, and how these effects manifest as a consequence of chronic exposure. Here we show in microcosm experiments that long-term exposure (111 days) to irregularly shaped polyethylene terephthalate (PET) fragments (10-400 µm) added to riverine sediments did not negatively impact the amphipod Gammarus fossarum's group size, and oxygen consumption, and minimally affected proteome composition. We found that these results were consistent for male and female specimens when exposed to an environmentally relevant concentration (0.004% of sediment dry weight; dw) and an environmentally less realistic one (4% dw). In female specimens' whole proteomes, we identified two highly differentially abundant proteins, which have been associated with an organism's response to xenobiotics. We conclude that in this sentinel species exposure to PET microplastic fragments mixed into the sediment does not elicit significant stress, even at concentrations exceeding current exposure levels in the environment.
Collapse
Affiliation(s)
- Gabriel Erni-Cassola
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| | - Joshua Niklas Ebner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, CH-4056 Basel, Switzerland
| | - Lucas André Blattner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, CH-4056 Basel, Switzerland
| | - Patricia Burkhardt-Holm
- Man-Society-Environment (Programme MGU), Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| |
Collapse
|
6
|
Bahramian Nasab S, Homaei A, Fernandez-Lafuente R, Del Arco J, Fernández-Lucas J. A Novel, Highly Potent NADPH-Dependent Cytochrome P450 Reductase from Waste Liza klunzingeri Liver. Mar Drugs 2023; 21:md21020099. [PMID: 36827140 PMCID: PMC9964268 DOI: 10.3390/md21020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The use of marine enzymes as catalysts for biotechnological applications is a topical subject. Marine enzymes usually display better operational properties than their animal, plant or bacterial counterparts, enlarging the range of possible biotechnological applications. Due to the fact that cytochrome P450 enzymes can degrade many different toxic environmental compounds, these enzymes have emerged as valuable tools in bioremediation processes. The present work describes the isolation, purification and biochemical characterization of a liver NADPH-dependent cytochrome P450 reductase (CPR) from the marine fish Liza klunzingeri (LkCPR). Experimental results revealed that LkCPR is a monomer of approximately 75 kDa that is active in a wide range of pH values (6-9) and temperatures (40-60 °C), showing the highest catalytic activity at pH 8 and 50 °C. The activation energy of the enzyme reaction was 16.3 kcal mol-1 K-1. The KM values for cytochrome C and NADPH were 8.83 μM and 7.26 μM, and the kcat values were 206.79 s-1 and 202.93 s-1, respectively. LkCPR displayed a specific activity versus cytochrome C of 402.07 µmol min-1 mg1, the highest activity value described for a CPR up to date (3.2-4.7 times higher than the most active reported CPRs) and showed the highest thermostability described for a CPR. Taking into account all these remarkable catalytic features, LkCPR offers great potential to be used as a suitable biocatalyst.
Collapse
Affiliation(s)
- Soudeh Bahramian Nasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas P.O. Box 3995, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas P.O. Box 3995, Iran
- Correspondence:
| | | | - Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid Urbanización El Bosque, E-28670 Villaviciosa de Odón, 28670 Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid Urbanización El Bosque, E-28670 Villaviciosa de Odón, 28670 Madrid, Spain
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla 080002, Colombia
| |
Collapse
|
7
|
Yang Y, Yu Q, Zhang C, Wang X, He L, Huang Y, Li E, Qin J, Chen L. Acute thiamethoxam exposure induces hepatotoxicity and neurotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114399. [PMID: 36508784 DOI: 10.1016/j.ecoenv.2022.114399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The similar nervous system structure between crustaceans and insects and the high-water solubility of thiamethoxam can lead to the more severe toxicity of thiamethoxam to crustaceans. However, the effects of thiamethoxam on crustaceans are unclear. Therefore, a 96-h acute toxicity test was performed to explore the hepatotoxicity and neurotoxicity effects of thiamethoxam on Chinese mitten crab (Eriocheir sinensis) at concentrations 0 µg/L, 150 µg/L and 300 µg/L. The antioxidant and detoxification systems (including phases I and II) were significantly activated after exposure of juvenile crabs to thiamethoxam for 24 h in 300 µg/L group, whereas the toxic activation effect in 150 μg/L group was delayed. Moreover, a similar pattern was observed for the transcription levels of immune-related genes. Further analysis of inflammatory signaling pathway-related genes showed that thiamethoxam exposure with 300 µg/L for 24 h may induce a pro-inflammatory response through the NF-κB pathway. In contrast, the gene expression levels in 150 µg/L group were significantly upregulated compared with 0 µg/L group after 96 h. In addition, although the acute exposure of 150 μg/L thiamethoxam did not seem to induce significant neurotoxicity, the acetylcholinesterase activity was significantly decreased in 300 μg/L group after thiamethoxam exposure for 96 h. Correspondingly, thiamethoxam exposure with 300 µg/L for 24 h resulted in significantly downregulated transcriptional levels of synaptic transmission-related genes (e.g. dopamine-, gamma-aminobutyric acid- and serotonin-related receptors). Therefore, thiamethoxam may be harmful and cause potential toxic threats such as neurotoxicity and metabolic damage to crustaceans.
Collapse
Affiliation(s)
- Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Long He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
8
|
Park JJC, Kim DH, Kim MS, Sayed AEDH, Hagiwara A, Hwang UK, Park HG, Lee JS. Comparative genome analysis of the monogonont marine rotifer Brachionus manjavacas Australian strain: Potential application for ecotoxicology and environmental genomics. MARINE POLLUTION BULLETIN 2022; 180:113752. [PMID: 35617743 DOI: 10.1016/j.marpolbul.2022.113752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
This is the first study to analyze the whole-genome sequence of B. manjavacas Australian (Aus.) strain through combination of Oxford Nanopore long-read seq, resulting in a total length of 108.1 Mb and 75 contigs. Genome-wide detoxification related gene families in B. manjavacas Aus. strain were comparatively analyzed with those previously identified in other Brachionus spp., including B. manjavacas German (Ger.) strain. Most of the subfamilies in detoxification related families (CYPs, GSTs, and ABCs) were highly conserved and confirmed orthologous relationship with Brachionus spp., and with accumulation of genome data, clear differences between genomic repertoires were demonstrated the marine and the freshwater species. Furthermore, strain-specific genetic variations were present between the Aus. and Ger. strains of B. manjavacas. This whole-genome analysis provides in-depth review on the genomic structural differences for detoxification-related gene families and further provides useful information for comparative ecotoxicological studies and evolution of detoxification mechanisms in Brachionus spp.
Collapse
Affiliation(s)
- Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut 71516, Egypt
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Un-Ki Hwang
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
He Y, Lin W, Shi C, Li R, Mu C, Wang C, Ye Y. Accumulation, detoxification, and toxicity of dibutyl phthalate in the swimming crab. CHEMOSPHERE 2022; 289:133183. [PMID: 34883125 DOI: 10.1016/j.chemosphere.2021.133183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most commonly used and toxic phthalate esters and has a variety of harmful effects on aquatic animals. However, there is still a lack of knowledge on the accumulation, detoxification, and toxicity of DBP in aquatic animals. In this study, we chose the swimming crab Portunus trituberculatus, an ecologically and economically important species, as the model and investigated the metabolism of DBP and its effects on the detoxification, antioxidation, survival and growth of the crab juveniles to better understand DBP-triggered molecular response over different time courses. As a result, DBP could be accumulated in the swimming crab in a concentration-dependent manner and metabolized to monobutyl phthalate (MBP) and phthalic acid (PA) through de-esterification. DBP exposure induced the different responses of three cytochrome P450 members and antioxidant enzyme genes, enhanced gene transcript and protein levels of glutathione-S-transferase and two heat stress proteins and malondialdehyde accumulation, decreased glutathione level, and inhibited antioxidant enzyme activities. Further, no significant effect of DBP was observed in crab survival, size, and weight but there was molting retardation. Therefore, DBP induced strong detoxification and antioxidative defense mechanisms to overcome detrimental effects of DBP on the swimming crab juveniles despite a molting retardation as a trade-off in fitness costs. The prevalent coexistence of DBP with MBP and PA during the whole exposure period is raising concerns on the combined action and ecological risk to aquatic animals.
Collapse
Affiliation(s)
- Yimin He
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Weichuan Lin
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China.
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, 315832, China.
| |
Collapse
|
10
|
Barrick A, Laroche O, Boundy M, Pearman JK, Wiles T, Butler J, Pochon X, Smith KF, Tremblay LA. First transcriptome of the copepod Gladioferens pectinatus subjected to chronic contaminant exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106069. [PMID: 34968986 DOI: 10.1016/j.aquatox.2021.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Contaminants are often at low concentrations in ecosystems and their effects on exposed organisms can occur over long periods of time and across multiple generations. Alterations to subcellular mechanistic pathways in response to exposure to contaminants can provide insights into mechanisms of toxicity that methods measuring higher levels of biological may miss. Analysis of the whole transcriptome can identify novel mechanisms of action leading to impacts in exposed biota. The aim of this study was to characterise how exposures to copper, benzophenone and diclofenac across multiple generations altered molecular expression pathways in the marine copepod Gladioferens pectinatus. Results of the study demonstrated differential gene expression was observed in cultures exposure to diclofenac (569), copper (449) and benzophenone (59). Pathways linked to stress, growth, cellular and metabolic processes were altered by exposure to all three contaminants with genes associated with oxidative stress and xenobiotic regulation also impacted. Protein kinase functioning, cytochrome P450, transcription, skeletal muscle contraction/relaxation, mitochondrial phosphate translocator, protein synthesis and mitochondrial methylation were all differentially expressed with all three chemicals. The results of the study also suggested that using dimethyl sulfoxide as a dispersant influenced the transcriptome and future research may want to investigate it's use in molecular studies. Data generated in this study provides a first look at transcriptomic response of G. pectinatus exposed to contaminants across multiple generations, future research is needed to validate the identified biomarkers and link these results to apical responses such as population growth to demonstrate the predictive capacity of molecular tools.
Collapse
Affiliation(s)
- Andrew Barrick
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand.
| | - Olivier Laroche
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Boundy
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - John K Pearman
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Tanja Wiles
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Juliette Butler
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Xavier Pochon
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Louis A Tremblay
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Capanni F, Greco S, Tomasi N, Giulianini PG, Manfrin C. Orally administered nano-polystyrene caused vitellogenin alteration and oxidative stress in the red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:147984. [PMID: 34118657 DOI: 10.1016/j.scitotenv.2021.147984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nanoplastics (≤100 nm) represent the smallest fraction of plastic litter and may result in the aquatic environment as degradation products of larger plastic material. To date, few studies focused on the interactions of micro- and nanoplastics with freshwater Decapoda. The red swamp crayfish (Procambarus clarkii, Girard, 1852) is an invasive species able to tolerate highly perturbed environments. As a benthic opportunistic feeder, this species may be susceptible to plastic ingestion. In this study, adult P. clarkii, at intermolt stage, were exposed to 100 μg of 100 nm carboxylated polystyrene nanoparticles (PS NPs) through diet in a 72 h acute toxicity test. An integrated approach was conceived to assess the biological effects of PS NPs, by analyzing both transcriptomic and physiological responses. Total hemocyte counts, basal and total phenoloxidase activities, glycemia and total protein concentration were investigated in crayfish hemolymph at 0 h, 24 h, 48 h and 72 h from PS NPs administration to evaluate general stress response over time. Differentially expressed genes (DEGs) in the hemocytes and hepatopancreas were analyzed to ascertain the response of crayfish to PS NP challenge after 72 h. At a physiological level, crayfish were able to compensate for the induced stress, not exceeding generic stress thresholds. The RNA-Sequencing analysis revealed the altered expression of few genes involved in immune response, oxidative stress, gene transcription and translation, protein degradation, lipid metabolism, oxygen demand, and reproduction after PS NPs exposure. This study suggests that a low concentration of PS NPs may induce mild stress in crayfish, and sheds light on molecular pathways possibly involved in nanoplastic toxicity.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Samuele Greco
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Noemi Tomasi
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Piero G Giulianini
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Chiara Manfrin
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
12
|
Measuring the Sustainable Entrepreneurial Performance of Textile-Based Small–Medium Enterprises: A Mediation–Moderation Model. SUSTAINABILITY 2021. [DOI: 10.3390/su131911050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This research aimed to examine the role of knowledge management practices in sustainable entrepreneurship performance. This study also investigated the relationships between six concepts: knowledge sharing behavior, innovative capacity, absorptive capacity, dynamic capability, opportunity recognition, and sustainable entrepreneurship. A self-administered questionnaire was used for data collection from 486 entrepreneurs randomly selected from textile-based SMEs in the Democratic Republic of the Congo (DRC). The findings show that knowledge management practices positively and significantly impact sustainable entrepreneurship performance and SMEs’ dynamic capabilities. Moreover, opportunity recognition strengthens the relationship between SMEs’ dynamic capabilities and sustainable entrepreneurship performance. This study offers valuable insights and directions for researchers and practitioners interested in the field of entrepreneurship.
Collapse
|
13
|
Cong Y, Wang Y, Zhang M, Jin F, Mu J, Li Z, Wang J. Lethal, behavioral, growth and developmental toxicities of alkyl-PAHs and non-alkyl PAHs to early-life stage of brine shrimp, Artemia parthenogenetica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112302. [PMID: 34015631 DOI: 10.1016/j.ecoenv.2021.112302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Alkyl-PAHs are the predominant form of PAHs in crude oils which are supposed to demonstrate different toxicities compared to non-alkyl PAHs. Little information is available about the toxicity of alkyl-PAHs on marine Artemia. This study addressed and compared the lethal, behavioral, growth and developmental toxicities of three alkyl-PAHs, namely 3-methyl phenanthrene (3-mPhe), retene (Ret) and 2-methyl anthracene (2-mAnt), to their non-alkyl forms, phenanthrene (Phe) and anthracene (Ant) using Artemia parthenogenetica (nauplii, <24 h) as test organism following a 48 h and a 7 d of exposure, respectively. Benzo-a-pyrene (Bap) was selected as a reference toxicant for the comparison with the above alkyl-PAHs and non-alkyl PAHs. Results showed that for all tested endpoints, A. parthenogenetica nauplii had the highest sensitivity to Bap while Ant had no significant effect on nauplii survival or development within given concentrations. Considering the aqueous freely dissolved PAH concentrations, the 48 h-LC50 (survival), 48 h-EC50 (immobility) and 7 d-LC10 (survival) of Bap were calculated as 0.321, 0.285 and 0.027 μg/L, respectively, which were twofold to fivefold lower than those of Phe, 3-mPhe, Ret, Ant and 2-mAnt. A higher acute toxicity of alkyl-PAHs (3-mPhe and 2-mAnt) than their non-alkyl forms (Phe and Ant) was observed. Not limited to Phe, the common non-polar narcotic mode of action was also observed for Bap, 3-mPhe, Ret and 2-mAnt, which was evident by the inhibited mobility of nauplii. The decreased body lengths were found for all PAH treatments compared to the solvent control, whereas instar retardations were only found in nauplii exposed to Bap, Phe and Ret. Our findings emphasized the sensitivity differences of A. parthenogenetica nauplii to selected alkyl PAHs and non-alkyl PAHs and confirmed the application of lethal, behavioral and growth indicators in the toxicity evaluation of selected PAHs other than Ant. However, the distinct toxicities of these PAHs suggested other toxic modes of action may play more important roles apart from narcotic mode of action and need to be elucidated in future studies. In addition, a strong correlation between the body length and the instar of A. parthenogenetica nauplii was observed for each PAH exposure, suggesting that body length can be representative for both growth and developmental indicators during biological monitoring of PAH pollution in marine environment.
Collapse
Affiliation(s)
- Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China; Marine Debris and Microplastic Research Center, Dalian 116023, China
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China; Marine Debris and Microplastic Research Center, Dalian 116023, China
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China; Marine Debris and Microplastic Research Center, Dalian 116023, China
| | - Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China; Marine Debris and Microplastic Research Center, Dalian 116023, China
| | - Jingli Mu
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China; Marine Debris and Microplastic Research Center, Dalian 116023, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China; Marine Debris and Microplastic Research Center, Dalian 116023, China.
| |
Collapse
|
14
|
Choi BS, Kim DH, Kim MS, Park JC, Lee YH, Kim HJ, Jeong CB, Hagiwara A, Souissi S, Lee JS. The genome of the European estuarine calanoid copepod Eurytemora affinis: Potential use in molecular ecotoxicology. MARINE POLLUTION BULLETIN 2021; 166:112190. [PMID: 33711609 DOI: 10.1016/j.marpolbul.2021.112190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, we sequenced and assembled the genome of a European estuarine calanoid copepod using Oxford Nanopore PromethION and Illumina HiSeq 2500 platforms. The length of the assembled genome was 776.1 Mb with N50 = 474.9 kb (BUSCO 85.9%), and the genome consisted of 2473 contigs. A total of 18,014 genes were annotated and orthologous gene clusters were analyzed in comparison to other copepods. In addition, genome-wide identification of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette transporters in E. affinis was performed to determine gene repertoire of these detoxification-related gene families. Results revealed the presence of species-specific gene inventories, indicating that these gene families have evolved through species-specific gene loss/expansion processes, possibly due to adaptation to different environmental stressors. Our study provides a new inventory of the European estuarine calanoid copepod E. affinis genome with emphasis on phase I, II, and III detoxification systems.
Collapse
Affiliation(s)
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Chang-Bum Jeong
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sami Souissi
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Bartling MT, Thümecke S, Russert JH, Vilcinskas A, Lee KZ. Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees. Sci Rep 2021; 11:6819. [PMID: 33767272 PMCID: PMC7994568 DOI: 10.1038/s41598-021-86293-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/12/2021] [Indexed: 01/28/2023] Open
Abstract
Honeybees are essential pollinators of many agricultural crops and wild plants. However, the number of managed bee colonies has declined in some regions of the world over the last few decades, probably caused by a combination of factors including parasites, pathogens and pesticides. Exposure to these diverse biotic and abiotic stressors is likely to trigger immune responses and stress pathways that affect the health of individual honeybees and hence their contribution to colony survival. We therefore investigated the effects of an orally administered bacterial pathogen (Pseudomonas entomophila) and low-dose xenobiotic pesticides on honeybee survival and intestinal immune responses. We observed stressor-dependent effects on the mean lifespan, along with the induction of genes encoding the antimicrobial peptide abaecin and the detoxification factor cytochrome P450 monooxygenase CYP9E2. The pesticides also triggered the immediate induction of a nitric oxide synthase gene followed by the delayed upregulation of catalase, which was not observed in response to the pathogen. Honeybees therefore appear to produce nitric oxide as a specific defense response when exposed to xenobiotic stimuli. The immunity-related and stress-response genes we tested may provide useful stressor-dependent markers for ecotoxicological assessment in honeybee colonies.
Collapse
Affiliation(s)
- Merle T Bartling
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich Buff Ring 26-32, 35392, Giessen, Germany
| | - Susanne Thümecke
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich Buff Ring 26-32, 35392, Giessen, Germany
| | - José Herrera Russert
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich Buff Ring 26-32, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich Buff Ring 26-32, 35392, Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35394, Giessen, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35394, Giessen, Germany.
| |
Collapse
|
16
|
Han J, Park JS, Park Y, Lee J, Shin HH, Lee KW. Effects of paralytic shellfish poisoning toxin-producing dinoflagellate Gymnodinium catenatum on the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2021; 163:111937. [PMID: 33341583 DOI: 10.1016/j.marpolbul.2020.111937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
To understand how the marine copepod Tigriopus japonicus responds to the toxic marine dinoflagellate Gymnodinium catenatum, we assessed acute toxicity and investigated swimming behavior parameters (e.g., swimming speed, swimming path trajectory, and swimming distance) in response to G. catenatum exposure. In addition, the mRNA expression levels of detoxification-related genes (e.g., phase I cytochrome P450 [CYP] and phase II glutathione-S transferase [GST]) were measured in G. catenatum-exposed copepods. No significant change in survival was observed in response to G. catenatum, but swimming speed was significantly decreased (P < 0.05) at a high concentration of G. catenatum (600 cells/mL). Furthermore, the swimming distance was significantly decreased (P < 0.05) compared to that of the control at 600 cells/mL G. catenatum, while no significant change in swimming path trajectory was observed, suggesting that G. catenatum potentially has adverse effects on the swimming behavior of T. japonicus. In addition, the transcriptional regulation of T. japonicus CYPs and -GSTs were significantly upregulated and downregulated (P < 0.05), respectively, in response to G. catenatum. In particular, certain genes (e.g., CYPs [CYP307E1, CYP3041A1, and CYP3024A2] and GSTs [GST-kappa, GST-mu5, and GST-omega]) were significantly induced (P < 0.05) by G. catenatum, suggesting that these genes likely play a critical role in detoxification mechanisms and might be useful as potential molecular biomarkers in response to G. catenatum exposure. Overall, these results elucidate the potential impacts of the dinoflagellate G. catenatum on the swimming behavior and detoxification system of the marine copepod T. japonicus.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Yeun Park
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jihoon Lee
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Hyun Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kyun-Woo Lee
- Department of Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea.
| |
Collapse
|
17
|
Kim DH, Choi BS, Kang HM, Park JC, Kim MS, Hagiwara A, Lee JS. The genome of the marine water flea Diaphanosoma celebensis: Identification of phase I, II, and III detoxification genes and potential applications in marine molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100787. [PMID: 33454556 DOI: 10.1016/j.cbd.2020.100787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022]
Abstract
To assemble the genome of the marine water flea Diaphanosoma celebensis, a sentinel model for marine environmental monitoring, we constructed a high-quality genome using PromethION and HiSeq 2500 platforms. The total length of the assembled genome was 100.08 Mb, with N50 = 2.56 Mb (benchmarking universal single-copy orthologs, 96.9%) and consisted of 179 scaffolds. A total of 15,427 genes were annotated, and orthologous gene clusters in D. celebensis were analyzed and compared with those of the cladocerans Daphnia magna and Daphnia pulex. In addition, phase I, II, and III detoxification gene families of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette were fully identified and revealed lineage-specific gene loss and/or expansion, suggesting that the evolution of detoxification gene families likely modulates fitness and susceptibility in response to environmental stressors. The study improves our understanding of the detoxification-related gene system and should contribute to future studies of molecular ecotoxicology in cladoceran species and their responses to emerging pollutants.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Hye-Min Kang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
18
|
Identification and response of cytochrome P450 genes in the brackish water flea Diaphanosoma celebensis after exposure to benzo[α]pyrene and heavy metals. Mol Biol Rep 2021; 48:657-664. [PMID: 33393003 DOI: 10.1007/s11033-020-06113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is extensive; these enzymes participate in phase I enzyme metabolism and are involved in xenobiotic detoxification in all living organisms. Despite their significance in xenobiotic detoxification, little is known about the species-specific comparison of CYPs and their molecular responses in aquatic invertebrates. We identified 31 CYPs in the brackish water flea Diaphanosoma celebensis via thorough exploration of transcriptomic databases and measured the transcript profiles of 9 CYPs (within full sequences) in response to benzo[α]pyrene (B[α]P) and two heavy metals (cadmium [Cd] and copper [Cu]). Through phylogenetic analysis, the CYPs were separated and clustered into four clans: mitochondrial, CYP2, CYP3, and CYP4. The expression of 9 CYPs were differentially modulated (up- and/or downregulated) in response to B[α]P, Cd, and Cu. In particular, CYP370A15 was significantly upregulated in response to B[α]P, Cd, and Cu, suggesting that the identified CYPs are involved in xenobiotic detoxification and are useful as biomarkers in response to B[α]P, Cd, and Cu. This study aimed to comprehensively annotate cladoceran CYPs; our results will add to the existing knowledge on the potential roles of CYPs in xenobiotic detoxification in cladocerans.
Collapse
|
19
|
Hong Y, Huang Y, Wu S, Yang X, Dong Y, Xu D, Huang Z. Effects of imidacloprid on the oxidative stress, detoxification and gut microbiota of Chinese mitten crab, Eriocheir sinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138276. [PMID: 32361427 DOI: 10.1016/j.scitotenv.2020.138276] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Imidacloprid (IMI) is used in integrated aquaculture systems for pest control and the toxicity of IMI to non-target aquatic animals such as fish and microcrustaceans has been recognised. However, knowledge about the toxic effect of IMI on commercial crabs is still scarce. In the present study, effects of IMI on the acute toxicity, antioxidative status, detoxification systems and gut microbiota in Chinese mitten crab, Erocheir sinensis were investigated. In the present study, the 96-h LC50 of IMI for E. sinensis was 24.97 mg/L. Under sublethal exposure, superoxide dismutase (SOD) activities increased under low concentration (LC, 5 μg/L) and median concentration (MC, 50 μg/L) exposure, but decreased in high concentration group (HC, 500 μg/L). Activities of catalyse (CAT) decreased in a dose-dependent manner. Detoxification-related enzymes aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND) increased in all treatments whereas glutathione-S-transferase (GST) decreased dose-dependently. The relative mRNA expression of the cytochrome P4502 (cyp2) gene was induced significantly in LC and HC groups while no significant change was observed in cytochrome P4503 (cyp3) gene. The expression of gst was also significantly decreased in HC group. Up-regulation of heat shock protein hsp70 and 90 was observed in MC and HC groups whereas hsp60 up-regulated only in LC group. In addition, significant changes of composition of microbial communities at both phylum and genus levels were found in this test. In particular, beneficial bacteria were found to decrease and pathogens increased after exposure to IMI. These results indicate that high concentration of IMI could induce oxidative stress and suppress the detoxification system mainly by down-regulation of gst mRNA expression, inhibition of enzyme activities and dysbiosis of gut microbiota.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Shanghai Engineering Research Centre of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China.
| | - Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Shanghai Engineering Research Centre of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Yanzhen Dong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Dayong Xu
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|
20
|
Xue B, Yu X, Yu R, Liao J, Zhu W, Tian S, Wang L. Photocatalytic degradation of marine diesel oil spills using composite CuO/ZrO 2 under visible light. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1257-1265. [PMID: 32532181 DOI: 10.1080/10934529.2020.1779533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Diesel oil spills in marine environments pose a severe threat to both aquatic and terrestrial ecosystems. Photocatalysis is an environment-friendly method for marine oil remediation; however, its practical usage is limited due to several issues. In this study, we demonstrate the enhanced efficacy of doped CuO/ZrO2 photocatalyst at degrading marine diesel in comparison to undoped ZrO2. The photocatalysts were prepared using co-precipitation method, and their physical and chemical properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and ultraviolet-visible spectroscopy (UV-Vis). XRD analysis showed that the photocatalytic crystallite size of ZrO2 and CuO/ZrO2 was 28.80 nm and 40.32 nm, respectively. Both catalysts exhibited stable crystalline forms. UV-Vis analysis showed that doping of ZrO2 with CuO significantly reduced its band gap from 4.61 eV to 1.18 eV, thus enhancing the utilization of visible light. The effect of catalyst dosage, doping ratio, and initial diesel concentration on the degradation rate of diesel was investigated by performing single-factor experiments. The optimization experiment results showed that 96.96% of diesel could be degraded under visible light. This study laid an experimental foundation for expanding the practical applications of photocatalytic technology.
Collapse
Affiliation(s)
- Bining Xue
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Xiaocai Yu
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Runqiang Yu
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Jiaqi Liao
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Wanting Zhu
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Siyao Tian
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Liping Wang
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| |
Collapse
|
21
|
Jansen van Rensburg G, Bervoets L, Smit NJ, Wepener V, van Vuren J. Biomarker Responses in the Freshwater Shrimp Caridina nilotica as Indicators of Persistent Pollutant Exposure. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:193-199. [PMID: 31873761 DOI: 10.1007/s00128-019-02773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Biomarkers are applied as early warning indicators of organisms' exposure to pollutants. The aim of this study was to utilise a multi-biomarker approach in the freshwater shrimp Caridina nilotica (Decapoda: Atyidae) as indicators of persistent pollutant exposure. A suite of biomarkers was selected to cover oxidative stress and damage, and energetics of the organisms. Five sites, representing an agricultural and pesticide application gradient, were sampled during two flow related hydro-periods in rivers of the Phongolo floodplain, north-eastern South Africa. Cytochrome P450 (CYP) activity was significantly higher in shrimp at sites directly adjacent to regions of increased human activity. Increased oxidative responses, i.e. catalase (CAT; p < 0.01) and protein carbonyl (PC, p < 0.01) were also found at these sites. The energetics biomarker did not show any influence of increased contaminant exposure. We demonstrated that the biomarkers of exposure (CYP) and effect (CAT, PC) were suitable to detect effects of stressors, probably persistent pollutants.
Collapse
Affiliation(s)
| | - Lieven Bervoets
- Systematic Physiological and Ecotoxicological Research unit, University of Antwerp, Antwerp, Belgium
| | - Nico J Smit
- Water Research Group, Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa
| | - Johan van Vuren
- Department of Zoology, Kingsway Campus, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
22
|
Zhang J, He Y, Yan X, Qu C, Li J, Zhao S, Wang X, Guo B, Liu H, Qi P. Two novel CYP3A isoforms in marine mussel Mytilus coruscus: Identification and response to cadmium and benzo[a]pyrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105239. [PMID: 31280135 DOI: 10.1016/j.aquatox.2019.105239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
CYP3A enzymes play a crucial role in metabolic clearance of a variety of xenobiotics. However, their genetic information and function remain unclear in molluscs. In the present study, two novel CYP3A genes i.e. McCYP3A-1 and McCYP3A-2 were identified and characterized from the thick shell mussel Mytilus coruscus, and their tissue distribution as well as the response to cadmium (Cd) and benzo[a]pyrene (B[α]P) exposure were addressed using real time quantitative RT-PCR (qRT-PCR) and erythromycin N-demethylase (ERND) assay. McCYP3A-1 and McCYP3A-2 possess typically domains of CYP family such as helix-C, helix-I, helix-K, PERF and the heme binding domain as well as the characteristic domains of CYP3s including six SRS motifs. McCYP3A-1 and McCYP3A-2 transcripts were constitutively expressed in all examined tissues with high expression level in digestive glands, hepatopancreas and gonads. Upon B[α]P exposure, McCYP3A-1 and McCYP3A-2 mRNA expression in digestive glands showed a pattern of up-regulation followed by down-regulation, while under Cd exposure, showed a time-dependent induction profile. In addition, ERND activity, generally used as an indicator of CYP3, increased in a time-dependent manner after exposure to Cd and B[α]P. These results collectively indicated that McCYP3A-1 and McCYP3A-2 are CYP3A family member and may play a potential role in metabolic clearance of xenobiotics. Meanwhile, the current results may provide some baseline data to support McCYP3A-1 and McCYP3A-2 as candidate biomarkers for monitoring of PAHs and heavy metal pollution.
Collapse
Affiliation(s)
- Jianshe Zhang
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yuehua He
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Xiaojun Yan
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Chengkai Qu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiji Li
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Sheng Zhao
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Xiaoyan Wang
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Baoying Guo
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Huihui Liu
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Pengzhi Qi
- NationalEngineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
23
|
Charry MP, Northcott GL, Gaw S, Keesing V, Costello MJ, Tremblay LA. Development of acute and chronic toxicity bioassays using the pelagic copepod Gladioferens pectinatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:611-617. [PMID: 30875554 DOI: 10.1016/j.ecoenv.2019.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Well validated and reliable biological assays using local and native species are required to characterise the impacts of pollution on ecosystem health. We identified a native estuarine pelagic copepod species suitable for assessing the ecotoxicological impact of anthropogenic contaminants. Gladioferens pectinatus fulfilled the necessary-selection criteria of: wide distribution and abundance across New Zealand estuaries, ease of maintenance in the laboratory, short life cycle, sensitivity to toxicants with different modes of action, and providing reproducibility of biological response to toxicants. Measured endpoints were survival and larval development rate for the nauplii, and survival, realized offspring and total potential offspring for adults. LC50 values for the survival of G. pectinatus exposed to copper, phenanthrene and chlorpyrifos were 170 (143-193), 181.3 (131.3-231.3) and 4.3 (3.8-4.9) µg/L, respectively. The most sensitive chronic endpoint identified for G. pectinatus was the larval development rate, with EC50 values of 49.8 (45-55.3), 31.3 (24.8-44.7) and 1.97 (1.6-2.31) µg/L for copper, phenanthrene and chlorpyrifos, respectively. The acute and chronic responses obtained for G. pectinatus against the three reference toxicants are comparable with those reported for other copepod species and confirm its sensitivity and suitability to assess the toxicity of New Zealand estuarine samples.
Collapse
Affiliation(s)
- Maria P Charry
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- Chemistry Department, University of Canterbury, Private Bag 4800, Christchurch 8140 New Zealand
| | - Vaughan Keesing
- Boffa Miskell Ltd, PO Box 13340, Wellington 6142, New Zealand
| | - Mark J Costello
- Institute of Marine Science, University of Auckland, Auckland 1142, New Zealand
| | - Louis A Tremblay
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
24
|
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:69-84. [PMID: 30826642 DOI: 10.1016/j.aquatox.2019.02.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The water flea Daphnia magna is a small planktonic cladoceran. D. magna has been used as a model species for ecotoxicology, as it is sensitive to environmental stressors and environmental changes. Since Daphnia is affected by culture environment and each population/strain has its own ecological and genetic characteristics, its population/strain-based genome information is useful for environmental genomic studies. In this study, we assembled and characterized the genome of D. magna. Using a high-density genetic map of D. magna xinb3, the draft genome was integrated to 10 linkage groups (LGs). The total length of the integrated genome was about 123 Mb with N50 = 10.1 Mb, and the number of scaffolds was 4193 including 10 LGs. A total of 15,721 genes were annotated after manual curation. Orthologous genes were characterized in the genome and compared with other genomes of Daphnia. In addition, we identified defense related genes such as cytochrome P450 (CYP) genes, glutathione S-transferase (GST) genes, and ATP-binding cassette (ABC) genes from the assembled D. magna genome for its potential use in molecular ecotoxicological studies in the freshwater environment. This genomic resource will be helpful to study for a better understanding on molecular mechanism in response to various pollutants.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
25
|
Lee BY, Lee MC, Jeong CB, Kim HJ, Hagiwara A, Souissi S, Han J, Lee JS. RNA-Seq-based transcriptome profiling and expression of 16 cytochrome P450 genes in the benzo[α]pyrene-exposed estuarine copepod Eurytemora affinis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:142-150. [PMID: 30196245 DOI: 10.1016/j.cbd.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 01/23/2023]
Abstract
The calanoid copepod Eurytemora affinis is one of the most abundant estuarine species and is considered to be an ideal candidate species for ecotoxicological research. An RNA-Seq-based transcriptome was developed from whole bodies of this species. Among 142,442 contigs of the de novo assembly by Trinity, 48,480 open reading frame (ORF) contigs were found using TransDecoder. A total of 17,762 genes were identified by BLAST analysis, which covers about 75% of the annotated genes in the E. affinis genome. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that most annotated sequences were related to metabolism pathways, including xenobiotic biodegradation. Using transcriptome data, we identified putative transcripts related to xenobiotic processing genes including phase I enzymes, phase II enzymes, transporters, and transcription factors. To understand the CYP-mediated detoxification metabolism of xenobiotics, we measured the transcriptional levels of 16 CYPs (within full sequences) of E. affinis in response to benzo[α]pyrene (B[α]P). Most Ea-CYP genes were significantly down- and/or up-regulated (P < 0.05) in response to B[α]P, suggesting that Ea-CYP genes are likely involved in detoxification (mainly in biotransformation of xenobiotics) with particular genes, demonstrating significant upregulation or downregulation compared to others, as shown in other copepod model species (e.g. Tigriopus japonicus and Paracyclopina nana). This study will provide insight into the potential role of E. affinis in response to various toxic or xenobiotic chemicals in the marine environment.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Cote d'Opale, UMR 8187, LOG, Laboratoire d'Oceanologie et de Geosciences, 62930 Wimereux, France
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
26
|
Lee YH, Park JC, Hwang UK, Lee JS, Han J. Adverse effects of the insecticides chlordecone and fipronil on population growth and expression of the entire cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and the marine rotifer Brachionus plicatilis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:181-187. [PMID: 30055411 DOI: 10.1016/j.aquatox.2018.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
Chlordecone and fipronil are used as an insecticide and have been widely detected in the aquatic environments. However, their toxicity is still poorly investigated in aquatic invertebrates. In this study, we examined effects of chlordecone and fipronil on population growth and transcriptional regulation of the entire cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and the marine rotifer B. plicatilis. In B. calyciflorus, a 24 h-no observed effect concentration (NOEC-24 h) and a 24 h-median lethal concentration (LC50-24 h) of chlordecone were determined as 100 μg/L and 193.8 μg/L, respectively, while NOEC-24 h and LC50-24 h of fipronil were determined as 1000 μg/L and 2033.0 μg/L, respectively. In B. plicatilis, NOEC-24 h and LC50-24 h of chlordecone were 100 μg/L and 291.0 μg/L, respectively, while NOEC-24 h and LC50-24 h of fipronil were determined as 1000 μg/L and 5735.0 μg/L, respectively. Moreover, retardation in the population growth were observed in response to chlordecone and fipronil in both rotifer species, suggesting that chlordecone and fipronil have a potential adverse effects on life cycle parameters of two rotifer species. Additionally, modulation in the expressions of the entire CYP genes were demonstrated in response to chlordecone and fipronil at 24 h period. These results provide the better understanding on how chlordecone and fipronil can affect in population growth of two rotifers and CYP gene expressions in chlordecone- and fipronil-exposed rotifers.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
27
|
Charry MP, Keesing V, Costello M, Tremblay LA. Assessment of the ecotoxicity of urban estuarine sediment using benthic and pelagic copepod bioassays. PeerJ 2018; 6:e4936. [PMID: 29868297 PMCID: PMC5984583 DOI: 10.7717/peerj.4936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
Urban estuarine sediments are sinks to a range of contaminants of anthropogenic origin, and a key challenge is to characterize the risk of these compounds to receiving environments. In this study, the toxicity of urban estuarine sediments was tested using acute and chronic bioassays in the benthic harpacticoid Quinquelaophonte sp., and in the planktonic calanoid Gladioferens pectinatus, two New Zealand copepod species. The sediment samples from the estuary tributary sites significantly impacted reproduction in Quinquelaophonte sp. However, results from one of the estuary sites were not significantly different to those from the tributaries sites, suggesting that chemicals other than trace metals, polycyclic aromatic hydrocarbons and ammonia may be the causative stressors. Sediment elutriate samples had significant effects on reproductive endpoints in G. pectinatus, and on the induction of DNA damage in cells, as shown by the comet assay. The results indicate that sediment contamination at the Ahuriri Estuary has the potential to impact biological processes of benthic and pelagic organisms. The approach used provides a standardized methodology to assess the toxicity of estuarine sediments.
Collapse
Affiliation(s)
- Maria P Charry
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Cawthron Institute, Nelson, New Zealand
| | | | - Mark Costello
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Louis A Tremblay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
28
|
Han J, Kim DH, Kim HS, Kim HJ, Declerck SAJ, Hagiwara A, Lee JS. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[α]pyrene-induced expression patterns. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:26-33. [PMID: 29126086 DOI: 10.1016/j.cbd.2017.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022]
Abstract
While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the freshwater rotifer Brachionus calyciflorus. The 31 Bc-CYP genes with a few tandem duplications were clustered into CYP 2, 3, 4, mitochondrial, and 46 clans with two marine rotifers Brachionus plicatilis and Brachionus koreanus. To understand the molecular responses of these 31 Bc-CYP genes, we also examined their expression patterns in response to benzo[α]pyrene (B[α]P). Three Bc-CYP genes (Bc-CYP3044B3, Bc-CYP3049B4, Bc-CYP3049B6) were significantly upregulated (P<0.05) in response to B[α]P, suggesting that these CYP genes can be involved in detoxification in response to B[α]P exposure. These genes might be useful as biomarkers of B[α]P exposure in B. calyciflorus. Overall, our findings expand the repertoire of known CYPs and shed light on their potential roles in xenobiotic detoxification in rotifers.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
29
|
Han J, Kim HS, Kim IC, Kim S, Hwang UK, Lee JS. Effects of water accommodated fractions (WAFs) of crude oil in two congeneric copepods Tigriopus sp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:511-517. [PMID: 28783601 DOI: 10.1016/j.ecoenv.2017.07.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Oil pollution has deleterious effects on marine ecosystems. However, the toxicity of crude oil towards Antarctic marine organisms has not been well studied. We compared the deleterious effects of water accommodated fractions (WAFs) of crude oil on reproduction, intracellular reactive oxygen species (ROS) levels, and antioxidant enzymatic activity in Antarctic (Tigriopus kingsejongensis) and temperate (Tigriopus japonicus) copepods. Reproductive rates of T. kingsejongensis and T. japonicus were significantly reduced (P < 0.05) in response to WAFs. Furthermore, T. kingsejongensis showed elevated levels of ROS and higher antioxidant enzyme (glutathione peroxidase [GPx]) activity than T. japonicus in response to WAFs. CYP genes from congeneric copepods were identified and annotated to better understand molecular detoxification mechanisms. We observed significant up-regulation (P < 0.05) of Tk-CYP3024A3 and Tj-CYP3024A2 in response to WAFs, suggesting that CYP genes may contribute to the detoxification mechanism in response to WAF exposure. These finding also suggest that WAFs may induce oxidative stress, leading to reproductive impairment in copepods. Furthermore, Tk-CYP3024A3 and Tj-CYP3024A2 genes can be considered as potential biomarkers of WAF toxicity in the congeneric copepods T. kingsejongensis and T. japonicus. This study will be helpful for enhancing our knowledge on the harmful effects of WAFs in Antarctic and temperate copepods and provides insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
30
|
Han J, Kim DH, Kim HS, Nelson DR, Lee JS. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:49-57. [PMID: 28709111 DOI: 10.1016/j.cbd.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022]
Abstract
Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, United States
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
31
|
Puthumana J, Lee MC, Park JC, Kim HS, Hwang DS, Han J, Lee JS. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:116-122. [PMID: 28131078 DOI: 10.1016/j.aquatox.2017.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m2, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m2) induced developmental delays, and higher doses (6-18kJ/m2) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m2) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.
Collapse
Affiliation(s)
- Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
32
|
Han J, Kim DH, Seo JS, Kim IC, Nelson DR, Puthumana J, Lee JS. Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:42-49. [PMID: 28088650 DOI: 10.1016/j.cbpc.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 01/28/2023]
Abstract
CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an "orphan" gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jung Soo Seo
- Pathology Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, United States
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|