1
|
Gutierrez-Rodriguez A, Herresanchez-Herresanchez C, Ortiz-Moriano MP, Gomez-Diaz C, Garcia-Vazquez E, Machado-Schiaffino G. Effects of trace metals and microplastics on the gene expression of antioxidant and detoxification genes in Mytilus galloprovincialis from estuaries. CHEMOSPHERE 2025; 377:144375. [PMID: 40179706 DOI: 10.1016/j.chemosphere.2025.144375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
In the present study, the effects of emerging and legacy pollutants such as hazardous microplastics (hMP) and toxic elements (As, Cd, Hg and Pb) were investigated in wild Mediterranean mussel Mytilus galloprovincialis (n = 40) from three estuaries with different anthropogenic uses in the Asturias region (SW Bay of Biscay). The expression levels of six candidate genes related with oxidative stress and/or heavy metal detoxification (sod1, sod2, cat, hsp70, mt10 & mt20) were measured using qPCR. The relationship between their expression levels, the Condition Index (CI), and the concentration of these concurrent pollutants was assessed through linear mixed models (LMM). PERMANOVA revealed significant differences between polluted and clean locations for both pollutants and gene expression levels in mussels. However, no differences were found between Nalón and Sella estuaries despite their distinct historical uses and pollution levels, suggesting recovery in post-mining times. Overall, the expression of the antioxidant gene sod2 and the detoxification genes mt10 and mt20 were upregulated in mussels from the most industrialized and heavy metal polluted estuary of Avilés, with Cd and Pb significantly predicting mt10 and mt20 increase. Hg and the hMP content significantly explained the expression patterns of sod1 and sod2 genes. To the best of our knowledge, this is the first study examining the combined molecular effects of legacy and emerging pollutants on wild populations of the bioindicator Mediterranean mussel. Additionally, it represents the first application of this molecular approach to monitor the ecological status of estuaries in the region that could be applied elsewhere.
Collapse
Affiliation(s)
| | | | | | - Carolina Gomez-Diaz
- Department of Functional Biology, University of Oviedo, Oviedo, 33006, Spain
| | - Eva Garcia-Vazquez
- Department of Functional Biology, University of Oviedo, Oviedo, 33006, Spain
| | | |
Collapse
|
2
|
Kim J, Kim HJ, Choi E, Park JJ, Cho M, Choi S, Kim H, Lee JS, Park H. Genome-wide identification of Tegillarca granosa ATP-binding cassette (ABC) transporter family related to arsenic toxicity. Genomics 2025; 117:111024. [PMID: 40015574 DOI: 10.1016/j.ygeno.2025.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Arsenic is a widespread environmental contaminant recognized for its high mobility and potential toxicity. Arsenic levels at Suncheon Bay, one of the primary Tegillarca granosa culturation sites in South Korea, were identified as higher than the habitat's threshold effect level (TEL). After 12 and 48 h of arsenic exposure, a total of 939 and 842 DEGs were identified in the gill and mantle, respectively. Detoxification genes were identified based on DEG analysis, and out of 10 ABCA3 genes in T. granosa, seven ABCA3 genes in total were up- and/or downregulated in two tissues. The metabolic and the cell adhesion molecules KEGG pathways were the most enriched among the commonly identified up- and downregulated genes. The 'metabolic process' gene ontology term was highly enriched with upregulated DEGs. We then identified 74 ATP-binding cassette (ABC) genes in the T. granosa genome, which has seven subfamilies (A to G), with gene expansion found in the ABCC and ABCA subfamilies. Although the precise mechanisms of arsenic-induced gene dysregulation remain unknown, our findings suggest that ABCA3 genes might participate in arsenic active transport and play an important role in arsenic detoxification.
Collapse
Affiliation(s)
- Jinmu Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Hyeon Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Eunkyung Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Jun Park
- Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung 25435, Republic of Korea
| | - Minjoo Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Soyun Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyejin Kim
- Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science, Haenam 59002, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea.
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Ma B, Zhao X, Zhang X, Yang B, Cai Z, Xing Z, Xu M, Mi L, Zhang J, Wang L, Zhao Y, Liu X. The acute neurotoxicity of inorganic mercury in Mactra chinensis philippi. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106896. [PMID: 38490093 DOI: 10.1016/j.aquatox.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Inorganic mercury (IHg) is hazardous to marine organisms especially resulting in neurotoxicity, bivalves are sensitive to pollutants as "ocean sentinel", but data on the neurotoxicity of IHg in bivalves are sparse. So we chosed M. chinensis philippi with typical neural structures in bivalves to investigate the neurotoxicity of IHg, which could be helpful to understand the specificity of neural regulation and the response characteristics of bivalves. After acute exposed to IHg (HgCl2) for 24 h, the metabolites of ganglion tissues in M. chinensis philippi were evaluated using 1H-nuclear magnetic resonance based metabolomics; Ca2+, neurotransmitters (nitric oxide, glutamate, acetylcholine) and related enzymes (calcineurin, nitric oxide synthase and acetylcholinesterase) were measured using biochemical detection. Compared to the control group, the levels of the nitric oxide (81.04 ± 12.84 μmol/g prot) and acetylcholine (30.93 ± 12.57 μg/mg prot) in M. chinensis philippi of IHg-treated were decreased, while glutamate (2.11 ± 0.61 mmol/L) increased significantly; the activity of nitric oxide synthase (679.34 ± 135.33 U/mg prot) was increased, while acetylcholinesterase (1.39 ± 0.44 U/mg prot) decreased significantly, and the activity of calcineurin (0.52 ± 0.02 U/mg prot) had a statistically insignificant increasing tendency. The concentration of Ca2+ (0.92 ± 0.46 mmol/g prot) in the IHg-treated group was significantly higher than that in the control group. OPLS-DA was performed to reveal the difference in metabolites between the control and IHg-challenged groups, the metabolites of glucose, glutamine, inosine, succinate, glutamate, homarine, and alanine were sensitive to IHg, subsequently metabolic pathways that were affected including glucose metabolism, glutamine metabolism, nucleotide metabolism, Krebs cycle, amino acid metabolism and osmotic regulation. In our study, IHg interfered with metabolites in M. chinensis philippi, thus the corresponding metabolic pathways were changed, which influenced the neurotransmitters subsequently. Furthermore, Ca2+overload affected the synthesis or degradation of the neurotransmitters, and then the altered neurotransmitters involved in changes in metabolic pathways again. Overall, we hypothesized that the neurotoxic effects of IHg on bivalve were in close contact with metabolism, neurotransmitters, related enzymes and Ca2+, which could be effective neurotoxic biomarkers for marine environmental quality assessment, and also provide effective data for the study of the regulatory mechanism of the nervous system in response to IHg in bivalves.
Collapse
Affiliation(s)
- Bangguo Ma
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Xiaoli Zhao
- Center for Reproductive Medicine, Yantai Yuhuangding Hospital, Yantai 264000, PR China
| | - Xiaoning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Bowen Yang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zimin Cai
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Zihan Xing
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Mingzhe Xu
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Liuya Mi
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | | | - Lei Wang
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Yancui Zhao
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
4
|
Lee JW, Jo AH, Lee DC, Choi CY, Kang JC, Kim JH. Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. ENVIRONMENTAL RESEARCH 2023; 236:116600. [PMID: 37429393 DOI: 10.1016/j.envres.2023.116600] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Cadmium (Cd) in aquatic environments can cause environmental toxicity to fish and induce oxidative stress owing to an excessive production of reactive oxygen species in fish bodies. Fish have developed various antioxidant systems to protect themselves from reactive oxygen species; thus, a change in antioxidant responses in fish can be a criterion for evaluating oxidative stress resulting from Cd exposure. Because Cd exposure may be recognized as an exogenous substance by a fish body, it may lead to the stimulation or suppression of its immune system. Various immune responses can be assessed to evaluate Cd toxicity in fish. This review aimed to identify the impacts of Cd exposure on oxidative stress and immunotoxicity in fish as well as identify accurate indicators of Cd toxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Ju-Wook Lee
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan, South Korea
| | - Deok-Chan Lee
- Shellfish Research Team, South Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyoung 53085, South Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
5
|
Lamine I, Chahouri A, Mghili B, Moukrim A, Ait Alla A. Do the individual and population-level traits of Donax trunculus reflect the effects of metal contamination in aquatic environments? MARINE ENVIRONMENTAL RESEARCH 2023; 191:106134. [PMID: 37586222 DOI: 10.1016/j.marenvres.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Heavy metals are considered a major threat to aquatic ecosystems, due to their ability to penetrate and accumulate through the food chain, putting marine organisms and the ecosystem at risk. This research presents a case study of the Taghazout coast, located in the central Atlantic of Morocco, which has become the focal point of various development projects, including the Taghazout Bay tourist resort. The study aimed to gain a deeper understanding of the harmful effects of these metals on the reproductive cycle and population dynamics of the bivalve Donax trunculus. The assessment of cadmium (Cd), lead (Pb), and copper (Cu) levels in D. trunculus bivalves and sediment at the research location provides evidence of exposure to these metal sources by these bivalves. The analysis of the reproductive cycle revealed a balanced sex ratio of males to females. The Sexual Maturity Index (SMI) and Condition Index (CI) of the bivalves were found to be significantly influenced by trace elements Pb and Cu, as well as environmental factors like temperature, dissolved oxygen, and salinity. The maturity stages of the gonads were classified into five stages: undifferentiated, developing, mature, spawning, and spent. Two spawning periods were observed aligning with the population dynamics study that identified a bimodal recruitment (early autumn and spring) in D. trunculus. The population was found to have 11 size cohorts, with a maximum length of 37.96 cm, a yearly growth rate of 1.93 cm, and a short lifespan of 1.5 years. The high mortality rate of 3.30 per year was attributed to the presence of trace elements in Taghazout coast. These findings shed light on heavy metal's impact on the population of D. trunculus, revealing that a sole emphasis on its physiological or cellular effects may overlook its larger impact.
Collapse
Affiliation(s)
- Imane Lamine
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco.
| | - Abir Chahouri
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | | | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Ecosystems, Department of Biology, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco
| |
Collapse
|
6
|
Basu M, Guha AK. Separation of lead from aqueous phase by cucumber peel in column bioreactor: A phenomenon of interaction between biological and chemical system and its ecological importance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117738. [PMID: 36963180 DOI: 10.1016/j.jenvman.2023.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
This research work represents a holistic approach of separation of aqueous lead through dynamic adsorption on cucumber peel in fixed bed column bioreactor and highlights the biological perspective of mode of interaction between adsorbent and adsorbate. Additionally attempt has been made to elucidate the importance of this process in preservation of aquatic ecosystem. The study illustrates influence of design parameters, periodic surveillance of generated effluents, statistical and mathematical model analyses of results and desorption. The findings exhibited a direct association between quality of treated effluent and speed of the feed solution, feed concentration and height of the fixed bed. Lead removal percentage was at its best (99.25%) at 8 cm bed height, 20 mL min-1 (0.9 L h-1) flow rate and 50 mg L-1 feed concentration whereas adsorption capacity reached its peak (300.26 mg g-1) when feed concentration was doubled up to 100 mg L-1. Time bound monitoring confirmed concentration of lead in treated effluents remained within satisfactory level. Adsorbed lead was recovered up to ∼95%. Experimentation with actual industrial effluents demonstrated that lead removal percentage remained in the range of 99.97-99.46% and 99.96-99.17% up to the entire phase of bioreactor operation. In summation proper combination of design parameters of column bioreactor played important role in generating superior quality effluent, multiple reuse of the bioreactor bed was dependent on proper eluant treatment and practicability of the study was ascertained by its ability to maintain concentration of lead in actual industrial effluents within permissible limit for prolonged duration.
Collapse
Affiliation(s)
- Mousumi Basu
- Department of Food Technology and Biochemical Engineering, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Arun K Guha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B Raja S.C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
7
|
Eraso-Ordoñez JF, Yee-Duarte JA, Roldán-Wong NT, García-Ulloa M, Góngora-Gómez AM, Arellano-Martínez M. Histopathological alterations in the gonads of wild white clams Dosinia ponderosa inhabiting a former copper mine locality in the Gulf of California. JOURNAL OF AQUATIC ANIMAL HEALTH 2023. [PMID: 37243331 DOI: 10.1002/aah.10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Prolonged exposure to heavy metals, such as Pb, Hg, or Cu, has multiple adverse effects on marine organisms at the cellular, physiological, and population levels. Bivalves' histopathology provides a sensitive biomarker of pollutant-induced stress and environmental health. Gonad tissue deterioration is of particular concern, as it affects the reproductive success of a species. This study aimed to examine the histopathological alterations caused by metal exposure in the gonad of the white clam Dosinia ponderosa. METHODS Organisms were sampled from three locations in the Gulf of California: Santa Rosalia (SR), a former Cu mining town; San Lucas beach (SL), a nearby site influenced by pollution; and Escondida beach (EB), which served as a control site. Histological and histochemical stains were used, and the prevalence and intensity level of each alteration were calculated. RESULT The prevalence of alterations was higher in the ovaries of SR clams (92% compared to 60% in SL clams and 32.7% in EB clams), during spawning (91.4% compared to 20% in SL clams and 4.7% in EB clams), and in winter (93.5% compared to 30% in SL clams and 17.4% in EB clams). CONCLUSION These findings suggest a significant deterioration in the gonads of white clams from SR, probably linked to the chronic exposure to high concentrations of Cu and possibly other heavy metals; hence, the reproductive health of the clams is likely compromised.
Collapse
Affiliation(s)
- Jessica F Eraso-Ordoñez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Josué Alonso Yee-Duarte
- Universidad Autónoma de Baja California Sur, Departamento Académico de Ciencias Marinas y Costeras, La Paz, Baja California Sur, Mexico
| | - Nefertiti Taydé Roldán-Wong
- Universidad Autónoma de Baja California Sur, Departamento Académico de Ciencias Marinas y Costeras, La Paz, Baja California Sur, Mexico
| | - Manuel García-Ulloa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Andrés M Góngora-Gómez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Marcial Arellano-Martínez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| |
Collapse
|
8
|
Zhan J, Sun T, Wang X, Wu H, Yu J. Meta-analysis reveals the species-, dose- and duration-dependent effects of cadmium toxicities in marine bivalves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160164. [PMID: 36395852 DOI: 10.1016/j.scitotenv.2022.160164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a typical pollutant in marine environment. Increasing studies have focused on the toxicological effects of Cd in marine bivalves. However, there were many conflicting findings of toxicological effects of Cd in marine bivalves. An integrated analysis performed on the published data of Cd toxicity in marine bivalves is still absent. In this study, a meta-analysis was performed on the toxic endpoints in bivalves exposed to aqueous-phase Cd from 87 studies screened from 1519 papers. Subgroup analyses were conducted according to the categories of species, tissue, exposure dose and duration. The results showed significant species-, duration- and dose-dependent responses in bivalves to aqueous-phase Cd exposure. In details, clams were more sensitive to Cd than oysters, mussels and scallops, indicated by the largest effect size in clams. Gill, hepatopancreas and hemolymph were top three tissues used to indicate Cd-induced toxicity and did not present a significant tissue-specific manner among them. With regard to toxicological effect subgroups, oxidative stress and detoxification were top two subgroups indicating Cd toxicities. Detoxification and genotoxicity subgroups presented higher response magnitudes. What is more, toxicological effect subgroups presented multiple dose- and duration-dependent curves. Oxidative stress and genotoxicity related endpoints presented significant increase trends with Cd exposure dose and were preferable biomarkers to marine Cd pollution. Detoxification and energy metabolism related endpoints showed inverted U-shaped and U-shaped dose-response curves, both of which could be explained by hormesis. The linear decrease in oxidative stress and energy metabolism related endpoints over time suggested their involvement into the adaptive mechanism in bivalves. Overall, this study provided not only a better understanding the responsive mechanisms of marine bivalves to Cd stress, but also a selection reference for biomarkers to aqueous-phase Cd pollution in marine environment.
Collapse
Affiliation(s)
- Junfei Zhan
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xuehong Wang
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Junbao Yu
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
9
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Biopolymer - A sustainable and efficacious material system for effluent removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130168. [PMID: 36302289 DOI: 10.1016/j.jhazmat.2022.130168] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Undesired discharge of various effluents directly into the aquatic ecosystem can adversely affect water quality, endangering aquatic and terrestrial flora and fauna. Therefore, the conceptual design and fabrication of a sustainable system for alleviating the harmful toxins that are discharged into the atmosphere and water bodies using a green sustainable approach is a fundamental standpoint. Adsorptive removal of toxins (∼99% removal efficacy) is one of the most attractive and facile approaches for cleaner technologies that remediate the environmental impacts and provide a safe operating space. Recently, the introduction of biopolymers for the adsorptive abstraction of toxins from water has received considerable attention due to their eclectic accessibility, biodegradability, biocompatibility, non-toxicity, and enhanced removal efficacy (∼ 80-90% for electrospun fibers). This review summarizes the recent literature on the biosorption of various toxins by biopolymers and the possible interaction between the adsorbent and adsorbate, providing an in-depth perspective of the adsorption mechanism. Most of the observed results are explained in terms of (1) biopolymers classification and application, (2) toxicity of various effluents, (3) biopolymers in wastewater treatment and their removal mechanism, and (4) regeneration, reuse, and biodegradation of the adsorbent biopolymer.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia; Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| |
Collapse
|
10
|
Qu Y, Zhang T, Zhang R, Wang X, Zhang Q, Wang Q, Dong Z, Zhao J. Integrative assessment of biomarker responses in Mytilus galloprovincialis exposed to seawater acidification and copper ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158146. [PMID: 35987231 DOI: 10.1016/j.scitotenv.2022.158146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The interactive effects of ocean acidification (OA) and copper (Cu) ions on the mussel Mytilus galloprovincialis are not well understood. The underlying mechanisms also remain obscure. In this study, individuals of M. galloprovincialis were exposed for 28 days to 25 μg/L and 50 μg/L Cu ions at two pH levels (ambient level - pH 8.1; acidified level - pH 7.6). The mussels were then monitored for 56 days to determine their recovery ability. Physiological parameters (clearance rate and respiration rate), oxidative stress and neurotoxicity biomarkers (activities of superoxide dismutase, lipid peroxidation, catalase, and acetylcholinesterase), as well as the recovery ability of these parameters, were investigated in two typical tissues (i.e., gills and digestive glands). Results showed that (1) OA affected the bioconcentration of Cu in the gills and digestive glands of the mussels; (2) both OA and Cu can lead to physiological disturbance, oxidative stress, cellular damage, energy metabolism disturbance, and neurotoxicity on M. galloprovincialis; (3) gill is more sensitive to OA and Cu than digestive gland; (4) Most of the biochemical and physiological alternations caused by Cu and OA exposures in M. galloprovincialis can be repaired by the recovery experiments; (5) integrated biomarker response (IBR) analysis demonstrated that both OA and Cu ions exposure caused survival stresses to the mussels, with the highest effect shown in the co-exposure treatment. This study highlights the necessity to include OA along with pollutants in future studies to better elucidate the risks of ecological perturbations. The work also sheds light on the recovery of marine animals after short-term environmental stresses when the natural environment has recovered.
Collapse
Affiliation(s)
- Yi Qu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rongliang Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China.
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
11
|
Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Phong Nguyen PQ, Nguyen XP. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. CHEMOSPHERE 2022; 302:134825. [PMID: 35526681 DOI: 10.1016/j.chemosphere.2022.134825] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The use of a cheap and effective adsorption approach based on biomass-activated carbon (AC) to remediate heavy metal contamination is clearly desirable for developing countries that are economically disadvantaged yet have abundant biomass. Therefore, this review provides an update of recent works utilizing biomass waste-AC to adsorb commonly-encountered adsorbates like Cr, Pb, Cu, Cd, Hg, and As. Various biomass wastes were employed in synthesizing AC via two-steps processing; oxygen-free carbonization followed by activation. In recent works related to the activation step, the microwave technique is growing in popularity compared to the more conventional physical/chemical activation method because the microwave technique can ensure a more uniform energy distribution in the solid adsorbent, resulting in enhanced surface area. Nonetheless, chemical activation is still generally preferred for its ease of operation, lower cost, and shorter preparation time. Several mechanisms related to heavy metal adsorption on biomass wastes-AC were also discussed in detail, such as (i) - physical adsorption/deposition of metals, (ii) - ion-exchange between protonated oxygen-containing functional groups (-OH, -COOH) and divalent metal cations (M2+), (iii) - electrostatic interaction between oppositely-charged ions, (iv) - surface complexation between functional groups (-OH, O2-, -CO-NH-, and -COOH) and heavy metal ions/complexes, and (v) - precipitation/co-precipitation technique. Additionally, key parameters affecting the adsorption performance were scrutinized. In general, this review offers a comprehensive insight into the production of AC from lignocellulosic biomass and its application in treating heavy metals-polluted water, showing that biomass-originated AC could bring great benefits to the environment, economy, and sustainability.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - Sunil Kumar
- CSIR-NEERI, Nehru Marg, Nagpur, 440 020, India
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRA, CEREGE, Aix-en-Provence, 13100, France.
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rajender S Varma
- Sustainable Technology Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West M.L.K. Drive, MS 443, Cincinnati, OH, 45268, United States
| | - N Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
12
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
13
|
A non-lethal method to assess element content in the endangered Pinna nobilis. Sci Rep 2021; 11:19244. [PMID: 34584132 PMCID: PMC8478926 DOI: 10.1038/s41598-021-98535-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The fan shell Pinna nobilis is the largest bivalve endemic to the Mediterranean and is actually a strongly endangered species. Due to the biological, ecological, and historical relevance of this species, the research of a non-lethal method to relate the element content in organism's tissues and environment can provide information potentially useful to evaluate environmental pollution and organism physiological status. In this study, a screening on element concentration in the animal growing environment (seawater and sediments) and in four soft tissues (hepatopancreas, gills, mantle, and muscle), and two acellular tissues (calcite shell layer, and byssus) was performed. The comparison among these results was used to assess whether the no-lethal acellular tissue element concentration can be used to reveal the element presence in the environment and soft tissues. Elements, such as B, Ag, As, Mn, Mo, Pb, or Se, showed a possible relationship between their presence in the byssus and soft tissues. In the byssus Cr, Sb, Sn, and V have shown to be mostly related to the environment, more than the soft tissues, and might be used to draw a historical record of the exposure of the organism. The element concentration in the calcite shell layer did not relate with environmental element concentrations. Essential elements, like Cu, Fe, Ni, and Zn, were present in calcite shell layer and byssus and are likely related to their biological activity in the organism. The research also gave an overview on the presence of pollution and on the preferential intake route of the element. In summary, this study, performed on a limited number of specimens of this protected species, indicated that element concentration in the byssus can be applied as non-lethal method to monitor this endangered species and its interaction with the elements in the growing environment.
Collapse
|
14
|
Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. WATER 2021. [DOI: 10.3390/w13192660] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recognition of sustainability issues around water resource consumption is gaining traction under global warming and land utilization complexities. These concerns increase the challenge of gaining an appropriate comprehension of the anthropogenic activities and natural processes, as well as how they influence the quality of surface water and groundwater systems. The characteristics of water resources cause difficulties in the comprehensive assessment regarding the source types, pathways, and pollutants behaviors. As the behavior and prediction of widely known contaminants in the water resources remain challenging, some new issues have developed regarding heavy metal pollutants. The main aim of this review is to focus on certain essential pollutants’ discharge from anthropogenic activities categorized based on land-use sectors such as industrial applications (solid/liquid wastes, chemical compounds, mining activities, spills, and leaks), urban development (municipal wastes, land use practices, and others), and agricultural practices (pesticides and fertilizers). Further, important pollutants released from natural processes classified based on climate change, natural disasters, geological factors, soil/matrix, and hyporheic exchange in the aquatic environment, are also discussed. Moreover, this study addresses the major inorganic substances (nitrogen, fluoride, and heavy metals concentrations). This study also emphasizes the necessity of transdisciplinary research and cross-border communication to achieve sustainable water quality using sound science, adaptable legislation, and management systems.
Collapse
|
15
|
Abo-Al-Ela HG, Faggio C. MicroRNA-mediated stress response in bivalve species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111442. [PMID: 33038725 DOI: 10.1016/j.ecoenv.2020.111442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bivalve mollusks are important aquatic organisms, which are used for biological monitoring because of their abundance, ubiquitous nature, and abilities to adapt to different environments. MicroRNAs (miRNAs) are small noncoding RNAs, which typically silence the expression of target genes; however, certain miRNAs directly or indirectly upregulate their target genes. They are rapidly modulated and play an essential role in shaping the response of organisms to stresses. Based on the regulatory function and rapid alteration of miRNAs, they could act as biomarkers for biotic and abiotic stress, including environmental stresses and contaminations. Moreover, mollusk, particularly hemocytes, rapidly respond to environmental changes, such as pollution, salinity changes, and desiccation, which makes them an attractive model for this purpose. Thus, bivalve mollusks could be considered a good animal model to examine a system's response to different environmental conditions and stressors. miRNAs have been reported to adjust the adaptation and physiological functions of bivalves during endogenous and environmental stressors. In this review, we aimed to discuss the potential mechanisms underlying the response of bivalves to stressors and how miRNAs orchestrate this process; however, if necessary, other organisms' response is included to explain specific processes.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
16
|
Sharma KV, Sarvalingam BK, Marigoudar SR. A review of mesocosm experiments on heavy metals in marine environment and related issues of emerging concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1304-1316. [PMID: 33079346 DOI: 10.1007/s11356-020-11121-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Mesocosms are real-world environmental science tools for bridging the gap between laboratory-scale experiments and actual habitat studies on ecosystem complexities. These experiments are increasingly being applied in understanding the complex impacts of heavy metals, ocean acidification, global warming, and oil spills. The insights of the present review indicate how metals and metal-bound activities impact on various aspects of ecological complexities like prey predator cues, growth, embryonic development, and reproduction. Plankton and benthos are used more often over fish and microbes owing to their smaller size, faster reproduction, amenability, and repeatability during mesocosm experiments. The results of ocean acidification reveal calcification of plankton, corals, alteration of pelagic structures, and plankton blooms. The subtle effect of oil spills is amplified on sediment microorganisms, primary producers, and crustaceans. An overview of the mesocosm designs over the years indicates that gradual changes have evolved in the type, size, design, composition, parameters, methodology employed, and the outputs obtained. Most of the pelagic and benthic mesocosm designs involve consideration of interactions within the water columns, between water and sediments, trophic levels, and nutrient rivalry. Mesocosm structures are built considering physical processes (tidal currents, turbulence, inner cycling of nutrients, thermal stratification, and mixing), biological complexities (population, community, and ecosystem) using appropriate filling containers, and sampling facilities that employ inert materials. The principle of design is easy transportation, mooring, deployment, and free floating structures besides addressing the unique ecosystem-based science problems. The evolution of the mesocosm tools helps in understanding further advancement of techniques and their applications in marine ecosystems.
Collapse
Affiliation(s)
- Krishna Venkatarama Sharma
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, India
| | - Barath Kumar Sarvalingam
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, India
| | | |
Collapse
|
17
|
Yee-Duarte JA, Racotta IS, Camacho-Mondragón MA, Roldán-Wong NT, Carreño-León DP, Shumilin E, Kidd KA, Arellano-Martínez M. Contrasting reproductive health of female clams Megapitaria squalida from two nearby metal-polluted sites in the Gulf of California: Potential effects of copper, lead, and cobalt. MARINE POLLUTION BULLETIN 2020; 160:111583. [PMID: 32861942 DOI: 10.1016/j.marpolbul.2020.111583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
We studied the effects of chronic exposure to metals on energy reserves and reproduction in the clam Megapitaria squalida in two nearby populations exposed to different levels of pollution from mining operations in the Gulf of California, Mexico. Female M. squalida from San Lucas beach had good reproductive health status, whereas Santa Rosalia specimens consistently showed low energy reserves, massive oocyte resorption throughout the year, high frequencies of undifferentiated individuals, low proportions of ripe and spawning organisms, smaller and fewer oocytes per follicle, and significantly lower follicular areas. Ovarian levels of Co, Cu, Pb, Mn, and Zn were consistently higher in clams from Santa Rosalia. The poor reproductive health of clams inhabiting this site may be attributed to their long-term exposure to high Co, Cu, and Pb concentrations, as these have been shown to cause toxicity and reproductive impairments in other marine organisms.
Collapse
Affiliation(s)
- Josué Alonso Yee-Duarte
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico; Instituto Nacional de Pesca y Acuacultura, Centro Regional de Investigación Acuícola y Pesquera La Paz, Carretera a Pichilingue Km 1, Col. Esterito, C.P. 23020 La Paz, Baja California Sur, Mexico.
| | - Ilie S Racotta
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Playa Palo de Santa Rita, C.P. 23000 La Paz, Baja California Sur, Mexico.
| | - Marian Alejandra Camacho-Mondragón
- Instituto Nacional de Pesca y Acuacultura, Centro Regional de Investigación Acuícola y Pesquera La Paz, Carretera a Pichilingue Km 1, Col. Esterito, C.P. 23020 La Paz, Baja California Sur, Mexico.
| | - Nefertiti Taydé Roldán-Wong
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico.
| | - Diana Patricia Carreño-León
- Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Playa Palo de Santa Rita, C.P. 23000 La Paz, Baja California Sur, Mexico.
| | - Evgueni Shumilin
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico.
| | - Karen A Kidd
- Department of Biological Sciences and Canadian Rivers Institute, University of New Brunswick, Saint John, NB E2L 4L5, Canada.
| | - Marcial Arellano-Martínez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico.
| |
Collapse
|
18
|
McDougall DR, Kihara S, Reinhardt J, Miskelly GM, McGillivray DJ, Jeffs AG. Biodegradable chelating agent improves the survival of early larvae for shellfish aquaculture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105645. [PMID: 33010639 DOI: 10.1016/j.aquatox.2020.105645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/28/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of heavy metals commonly impacts the survival of crustacean and bivalve larvae in hatchery culture, and this has led to the widespread use of EDTA to decrease this toxicity. Since EDTA has a very poor biodegradability leading to potential persistent environmental effects, alternative methods to prevent heavy metal toxicity to shellfish larvae are needed. EDDS is a biodegradable potential alternative to EDTA for this application and was tested as a treatment of the seawater used for rearing aquaculture Greenshell™ mussel (Perna canaliculus) larval embryos in this study. Mussel embryos reared with EDTA or EDDS had significantly better survival than without. The concentrations and spatial distributions of heavy metals in D-veliger larvae as determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence Microscopy (XFM) suggested that chelating agents increased the levels of calcium in larvae while they reduced the concentration of zinc. In addition, where decreased accumulation of the other heavy metals was not observed, chelating agents affected their distribution within the larvae, especially for copper and arsenic. This is the first study to test the use of EDDS for aquaculture hatchery application and shows that EDDS is an effective biodegradable alternative to EDTA that can mitigate the effects of heavy metals for shellfish larval rearing.
Collapse
Affiliation(s)
- Daniel R McDougall
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Shinji Kihara
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Juliane Reinhardt
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria 3168, Australia
| | - Gordon M Miskelly
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Andrew G Jeffs
- Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
19
|
Jones JI, Murphy JF, Collins AL, Spencer KL, Rainbow PS, Arnold A, Pretty JL, Moorhouse AML, Aguilera V, Edwards P, Parsonage F, Potter H, Whitehouse P. The Impact of Metal-Rich Sediments Derived from Mining on Freshwater Stream Life. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:111-189. [PMID: 30671689 DOI: 10.1007/398_2018_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-rich sediments have the potential to impair life in freshwater streams and rivers and, thereby, to inhibit recovery of ecological conditions after any remediation of mine water discharges. Sediments remain metal-rich over long time periods and have long-term potential ecotoxicological interactions with local biota, unless the sediments themselves are physically removed or replaced by less metal-rich sediment. Laboratory-derived environmental quality standards are difficult to apply to the field situation, as many complicating factors exist in the real world. Therefore, there is a strong case to consider other, field-relevant, measures of toxic effects as alternatives to laboratory-derived standards and to seek better biological tools to detect, diagnose and ideally predict community-level ecotoxicological impairment. Hence, this review concentrated on field measures of toxic effects of metal-rich sediment in freshwater streams, with less emphasis on laboratory-based toxicity testing approaches. To this end, this review provides an overview of the impact of metal-rich sediments on freshwater stream life, focusing on biological impacts linked to metal contamination.
Collapse
|
20
|
Vardhan KH, Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111197] [Citation(s) in RCA: 554] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Liu L, Wang J, Wang L, Hu Y, Ma X. Vertical distributions of mercury in marine sediment cores from central and southern part of Bohai Sea, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:399-406. [PMID: 30550970 DOI: 10.1016/j.ecoenv.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
In past decades, China has experienced substantial economic growth and industrialization. However, the effects of vast development of China on Hg input to the nearby oceans are still unclear. In this study, four representative 210Pb-dated sediment cores were collected in the central and southern part of Bohai sea to investigate vertical changes of Hg contents and explore the relationship between the Hg deposition and pollution history in this region utilizing a large amount of information available. The results indicated that Hg median concentrations of sediment core B62, B66, JQ17 and HZ24 were 0.043 mg/kg, 0.054 mg/kg, 0.033 mg/kg and 0.018 mg/kg respectively, among which, B66 in Yellow river estuary and B62 in central part of Bohai Sea had higher concentrations and HZ24 in Bohai Strait had a lower concentration. 210Pb profile appeared as a three segments model in the core B62, but as many steps of decay with depth in B66. For HZ24, 210Pb activity only fluctuated with depth without any discernible trend. Sedimentary rates of these cores decreased as follows: B66>B62>JQ17>HZ24. Vertical distributions of Hg concentrations in sediment cores were totally different from each other. Hg concentrations in sediment core B62 experienced an initial fluctuation followed by a decreasing trend, while sediment core HZ24 almost showed the uniform decreasing trends from the surface to the bottom. There were three segments of variation in sediment cores JQ17: initial fluctuation followed by an obviously decreasing tendency and then a converted variation from surface to bottom. Hg contents changes in core B62 might reflect the additive effects from atmospheric deposition at a larger scale and the river-delivered sediment accumulation, while Hg vertical changes in B66 mainly had a close relationship with the input of Yellow river. The converted variation at the bottom section in sediment cores JQ17 was inferred to have some relationship with the Chengbei platform construction in the corresponding periods.
Collapse
Affiliation(s)
- Liang Liu
- National Marine Environmental Monitoring Center, Linghe Street 42, Dalian City, Liaoning Province 116023, China
| | - Juying Wang
- National Marine Environmental Monitoring Center, Linghe Street 42, Dalian City, Liaoning Province 116023, China.
| | - Lijun Wang
- National Marine Environmental Monitoring Center, Linghe Street 42, Dalian City, Liaoning Province 116023, China
| | - Yingying Hu
- National Marine Environmental Monitoring Center, Linghe Street 42, Dalian City, Liaoning Province 116023, China
| | - Xindong Ma
- National Marine Environmental Monitoring Center, Linghe Street 42, Dalian City, Liaoning Province 116023, China
| |
Collapse
|