1
|
Chen Y, Ning J, Su D, Wang Y, Huang H, Chen Z, Ma Y, Liu Z. Molecular diversity and potential ecological risks of toxic HAB species in the coastal waters off Qinhuangdao, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126121. [PMID: 40139296 DOI: 10.1016/j.envpol.2025.126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Harmful algal blooms (HABs) have occurred frequently in the coastal waters off Qinhuangdao (CWQ) of the Bohai Sea during the past two decades, with paralytic shellfish toxins frequently exceeding safe levels in recent years. However, the biodiversity of toxic HAB species remain poorly understood. Cruise observations in the CWQ of the Bohai Sea from August to November 2021 were used, to investigate the biodiversity, geographical and temporal distributions of toxic HAB species, and associated environmental factors. Through amplicon sequence variants (ASVs)-based metabarcoding analysis, 4261 ASVs of five microalgae phyla were identified in this study, of which Dinoflagellata was the most dominant phylum in most sampling sites. Consequently, 257 microalgae species were annotated in this study, in which 70 were identified as HAB species, including 33 toxic HAB species have been reported to produce toxins or potentially toxic substances. Notably, most HAB species were widely distributed in the CWQ in August to November, especially the toxic species Karlodinium veneficum. Moreover, some toxic HAB species may be distributed in the CWQ all year round, with a high risk of toxic HAB outbreak. Eight environmental factors were evaluated, and the temperature was found to be the key environmental factor influencing the distribution and seasonal variation of dominant HAB species. This research highlights the necessity for monitoring toxic HAB species for accurate prevention and mitigation of HABs.
Collapse
Affiliation(s)
- Yang Chen
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China.
| | - Jiaqi Ning
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China
| | - Du Su
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China
| | - Yibo Wang
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China
| | - Hailong Huang
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo, 315211, China
| | - Zuoyi Chen
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, 066000, China
| | - Yue Ma
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China
| | - Zhiliang Liu
- Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China; Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao, 066004, China.
| |
Collapse
|
2
|
Xu Z, Jiang H, Liu S, Ying J, Jiang Y, Jiang H, Xu J. Behavioral adaptations of cruise-feeding copepods to harmful algal blooms: Insights from the East China Sea. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107005. [PMID: 39947070 DOI: 10.1016/j.marenvres.2025.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 03/08/2025]
Abstract
Harmful algal blooms (HABs) have become a global environmental concern, significantly impacting marine life and the fishing industry. However, the tolerance and adaptive mechanisms of zooplankton to HABs remain poorly understood. This study examines the behavioral and feeding responses of the cruise-feeding copepod Centropages dorsispinatus to summer HABs in the East China Sea (ECS), focusing on interactions with the blooming diatom (Skeletonema costatum) and dinoflagellates (Prorocentrum donghaiense, Karenia mikimotoi, and Alexandrium tamarense). Using short-term incubations and high-speed filming, we compared the ingestion rates and behaviors of C. dorsispinatus fed mono-algal diets and mixed diets containing neutral distraction particles (polystyrene beads). The results revealed that C. dorsispinatus obtained limited carbon from each algal diet (1.02-7.02 μg C cop.-1 day-1). The presence of distraction particles reduced carbon intake from S. costatum, P. donghaiense, and A. tamarense, but significantly increased intake from the healthy control, Platymonas helgolandica. Behavioral responses varied among algal diets: compared to P. helgolandica, C. dorsispinatus exhibited more frequent but shorter swims in S. costatum diets and less frequent swims in K. mikimotoi, and A. tamarense diets. These algal-specific responses were generally mitigated when copepods simultaneously exposed to the neutral distraction particles. Copepods achieved higher carbon intake with lower mechanical energy expenditure when grazing on large dinoflagellates compared to diatoms. We suggest that cruise-feeding copepods can actively adjust their behavior to adapt to varying food conditions, including the density, morphologic characteristics, and toxicity of algae. It allows copepods to better survive and forage in dinoflagellate HABs than in diatom HABs. However, the low ingestion rates observed limit the potential for cruise-feeding copepods to exert top-down control on HABs.
Collapse
Affiliation(s)
- Zhongheng Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Huihuang Jiang
- Nantong Marine Center, Ministry of Natural Resources, Nantong, 226002, China.
| | - Shouhai Liu
- East China Sea Ecology Center, Ministry of Natural Resources, Shanghai, 201206, China; Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, Ministry of Natural Resources, Shanghai, 201206, China.
| | - Jiawen Ying
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Yining Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China
| | - Huimin Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Hainan Institute, East China Normal University, Sanya, 572025, China.
| |
Collapse
|
3
|
Zhang X, Chen J, Xu Z, Liu H. Metabarcoding reveals high species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters, a typical subtropical region. MARINE POLLUTION BULLETIN 2025; 212:117549. [PMID: 39827618 DOI: 10.1016/j.marpolbul.2025.117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Chaetoceros, Pseudo-nitzschia, and Thalassiosira are ecologically important genera which formed blooms frequently in Hong Kong coastal waters in past decades. However, species identification based on microscopic observation for diatoms in these genera is difficult. In this study, we investigated species diversity of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters using metabarcoding approach. Based on the analysis of SSU rRNA gene (Small subunit of ribosome), LSU rRNA gene (Large subunit of ribosome), and ITS region (Internal transcribed spacer), ITS region was the best gene marker for Pseudo-nitzschia while LSU rRNA gene was better to reveal the species diversity of Chaetoceros and Thalassiosira than other two gene markers. We detected seventeen, thirteen, and seventeen species of Chaetoceros, Pseudo-nitzschia, and Thalassiosira, respectively, in Hong Kong coastal waters. Twelve Chaetoceros species, six Pseudo-nitzschia species, and five Thalassiosira species were recorded for the first time in this study. Taking consideration of previous studies together, there are at least 31, 22 and 38 species of Chaetoceros, Pseudo-nitzschia, and Thalassiosira in Hong Kong coastal waters. In addition, according to previous studies and local records, multiple species of three genera were capable to form blooms and ten Pseudo-nitzschia species were potentially toxic. The bloom-forming species C. tenuissimus, P. micropora, P. cuspidata, and T. lundiana as well as non-bloom forming species T. tenera were the main dominant species. The remarkably high abundance of Pseudo-nitzschia in summer was potentially mainly contributed by the P. cuspidata, which is capable to produce domoic acid locally.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhimeng Xu
- Haide College, Ocean University of China, Qingdao, China.
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, Hong Kong, China.
| |
Collapse
|
4
|
Kuwata K, Lum WM, Takahashi K, Benico G, Takahashi K, Lim PT, Leaw CP, Uchida H, Ozawa M, Matsushima R, Watanabe R, Suzuki T, Iwataki M. Phylogeny and ultrastructure of a non-toxigenic dinoflagellate Amphidoma fulgens sp. nov. (Amphidomataceae, Dinophyceae), with a wide distribution across Asian Pacific. HARMFUL ALGAE 2024; 138:102701. [PMID: 39244236 DOI: 10.1016/j.hal.2024.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
Amphidoma languida, a marine thecate dinoflagellate that produces the lipophilic toxin azaspiracids (AZAs), is primarily found in the Atlantic. Although this species has not been recorded in the Asian Pacific, environmental DNAs related to Am. languida have been widely detected in the region by metabarcoding analysis. Their morphology and AZA production remain unclear. In this study, the morphology, ultrastructure, phylogeny, and AZA production of nine Amphidoma strains isolated from Japan, Malaysia, and Philippines were investigated. Phylogenetic trees inferred from rDNAs (SSU, ITS, and LSU rDNA) showed monophyly of the nine Pacific strains and were sister to the Am. languida clade, including the toxigenic strains from the Atlantic. Cells were ellipsoid, 8.7-16.7 µm in length and 7.4-14.0 µm in width, with a conspicuous apical pore complex. A large nucleus in the hyposome, parietal chloroplast with a spherical pyrenoid in the episome, and refractile bodies were observed. Thecal tabulation was typical of Amphidoma, Po, cp, X, 6', 6'', 6C, 5S, 6''', 2''''. A ventral pore was located on the anterior of 1' plate, beside the suture to 6' plate. The presence of a ventral depression, on the anterior of anterior sulcal plate, was different from Am. languida. A large antapical pore, containing approximately 10 small pores, was observed. Cells were apparently smaller than Am. trioculata, a species possessing three pores (ventral pore, ventral depression, and antapical pore). TEM showed the presence of crystalline structures, resembling guanine crystals, and cytoplasmic invaginations into the pyrenoid matrix. Flagellar apparatus lacking the striated root connective is similar to peridinioids and related dinoflagellates. AZAs were not detected from the Pacific strains by LC-MS/MS. This non-toxigenic Amphidoma species, here we propose as Amphidoma fulgens sp. nov., is widely distributed in the Asian Pacific. Moreover, molecular comparison also suggested that most of the environmental DNA sequences previously reported as Am. languida or related sequences from the Asian Pacific were attributable to Am. fulgens.
Collapse
Affiliation(s)
- Koyo Kuwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Wai Mun Lum
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan; Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Kazuya Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Garry Benico
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan; Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, 3120, Philippines
| | - Kazutaka Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310, Bachok, Kelantan, Malaysia
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Mayu Ozawa
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Ryoji Matsushima
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Ryuichi Watanabe
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Mitsunori Iwataki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Huang X, Li Y, Du H, Chen N. Comparative assessment of the intragenomic variations of dinoflagellate Tripos species through single-cell sequencing. MARINE POLLUTION BULLETIN 2024; 206:116690. [PMID: 39024906 DOI: 10.1016/j.marpolbul.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Tripos is a large dinoflagellate genus widely distributed in the world's oceans. Morphology-based species identification is inconclusive due to high morphological intraspecific variability. Metabarcoding analysis has been demonstrated to be effective for species identification and tracking their spatiotemporal dynamics. However, accumulating evidence suggests high levels of intragenomic variations (IGVs) are common in many algae, leading to concerns about overinterpretation of molecular diversity in metabarcoding studies. In this project, we evaluated and compared IGVs in Tripos species by conducting the first high-throughput sequencing (HTS) of 18S rDNA V4 of Tripos single cells. High numbers of haplotypes (19-172) were identified in each of the 30 Tripos cells. Each cell contained one dominant haplotype with high relative abundance and many haplotypes with lower abundances. Thus, the presence of multiple minor haplotypes substantially overestimate the molecular diversity identified in metabarcoding analysis, which encompass not only interspecific and intraspecific diversities, but high levels of IGVs.
Collapse
Affiliation(s)
- Xianliang Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yingchao Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haina Du
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Li S, Luo N, Li C, Mao S, Huang H. Diversity and distribution analysis of eukaryotic communities in the Xiangshan Bay, East China sea by metabarcoding approach. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106451. [PMID: 38492505 DOI: 10.1016/j.marenvres.2024.106451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Eukaryotic communities play an important role in the coastal ecosystem of Xiangshan Bay, a narrow semi-closed bay famous for fisheries and marine farming. However, information on the diversity and composition of eukaryotic communities in Xiangshan Bay remains unclear. In this study, the metabarcoding approach was utilized to comprehensively investigate the eukaryotic plankton community structure and dominant taxa, particularly eukaryotic microalgae, in the Xiangshan Bay over a period of four months in 2018. The results showed that the three major phyla were Arthropoda, Chlorophyta, and Bacillariophyta. The richness indices revealed that species richness peaked in February and was at its lowest in May. Diversity indices showed that the samples collected in May had the lowest diversity. Centropages was detected in the samples of all months, however, its highest dominance was observed in the samples collected in February. In addition, compared to other months, a greater proportion of eukaryotic microalgae was witnessed in March. The three eukaryotic algae with highest abundances in March were Cyclotella, Prorocentrum, and Thalassiosira. Moreover, high diversity of pico-sized (0.2-2.0 μm) phytoplankton (which are often easily missed by microscopy) was discovered in this study by using metabarcoding approach. This study highlights the strength and significance of the metabarcoding approach to uncover a large number of eukaryotic species which remains undetectable during application of conventional approaches. The findings of this study reveals that the eukaryotic community structure varies noticeably in both time and space throughout sampling period, with temperature being the most important environmental factor influencing these changes. This study lays a solid foundation to understand eukaryotic plankton composition, temporal and spatial dynamics and the distribution mechanism of eukaryotic plankton community in Xiangshan Bay, providing theoretical reference for further studies related to marine ecology.
Collapse
Affiliation(s)
- Shuangqing Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ningjian Luo
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Chuang Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shuoqian Mao
- Ningbo Institute of Oceanography, Ningbo, 315832, China.
| | - Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
8
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
9
|
Liu K, Huang X, Ding X, Chen N. The high molecular diversity in Noctiluca scintillans is dominated by intra-genomic variations revealed by single cell high-throughput sequencing of 18S rDNA V4. HARMFUL ALGAE 2024; 132:102568. [PMID: 38331542 DOI: 10.1016/j.hal.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
The application of high-throughput sequencing (HTS) technologies has revolutionized research on phytoplankton biodiversity by generating an unprecedented amount of molecular data in marine ecosystem surveys. However, high-level of molecular diversity uncovered in HTS-based metabarcoding analyses may lead to overinterpretation of phytoplankton diversity due to excessive intra-genomic variations (IGVs). The aims in this study are to explore the nature of phytoplankton molecular diversity and to test the hypothesis. We carried out single-cell metabarcoding analysis of 18S rDNA V4 sequences obtained in single Noctiluca scintillans cells isolated from various sites in coastal waters of China. Results showed that each single N. scintillans cell harbored a high level of IGVs with about 100 amplicon sequence variants (ASVs). The large numbers of non-dominant ASVs identified in N. scintillans cells, which might correspond to the larger numbers of ASVs annotated as N. scintillans and showed similar temporal dynamics in metabarcoding analyses, could inflate the inter-species diversity or intra-species genetic diversity. In addition, there were large numbers of additional ASVs that were not annotated as N. scintillans. These non-N. scintillans ASVs might represent diverse preys for N. scintillans, consistent with previous reports that N. scintillans may act as chance predator of a broad-spectrum preys. This single-cell study has unambiguously demonstrated that the existence of high levels of IGVs in N. scintillans and most likely many other phytoplankton species, demonstrating that the majority of the molecular diversity revealed in metabarcoding analysis, which were generally interpreted as the sum of inter-species diversity and intra-species diversity, actually included high levels of IGVs and should be interpreted with caution.
Collapse
Affiliation(s)
- Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xianliang Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiangxiang Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
10
|
Yu Z, Tang Y, Gobler CJ. Harmful algal blooms in China: History, recent expansion, current status, and future prospects. HARMFUL ALGAE 2023; 129:102499. [PMID: 37951615 DOI: 10.1016/j.hal.2023.102499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 11/14/2023]
Abstract
The impacts of harmful algal blooms (HABs) on economies, public health, ecosystems, and aquaculture across the globe have all increased in recent decades, and this has been acutely the case in China. Here, we review the history of HABs and HABs research in China, as well as recent trends in HABs and future prospects of HAB science in China. The most updated analyses demonstrated that the number of HAB events, the number of HAB species, the aerial coverage of HABs, and the impacts of HABs in Chinese waters during the 21st century were all higher than that during the last two decades of the 20th century. The increase in the number of HABs in China has been significantly correlated with the increased discharge of ammonium and total phosphorus into coastal waters (p < 0.01 for both). Notable newly recognized events this century have included chronic HABs caused by Prorocentrum donghaiense and Karenia mikimotoi, a paralytic shellfish poisoning event caused by Gymnodinium catenatum that sickened 80 people, brown tides caused by Aureococcus anophagefferens, green tides caused by Ulva prolifera, golden tides caused by Sargassum horneri, and the disruption of a nuclear power plant caused by a bloom of Phaeocystis globosa. A series of key discoveries regarding HABs has been made this century including documentation of nearly all known HAB toxins in Chinese waters, discovery of novel cyst-formation and/or life stages of multiple HABs-causing species, identification of the chemical and physical oceanographic drivers of multiple HABs including those formed by P. donghaiense, K. mikimotoi, and U. prolifera, and the successful mitigation of HABs via the use of modified clay approaches. Future research prospects highlighted include the use of macroalgae as a means to prevent, mitigate, and control (PCM) HABs and the process by which multi-disciplinary studies involving molecular approaches (omics), remote in situ detection, artificial intelligence, and mega-data analyses might be used to develop refined and realistic HAB forecasting platforms. Collectively, this review demonstrates the significant evolution of HAB science since the 20th century in China and demonstrates that while HABs in China are complex and widespread, recent and on-going discoveries make the development of detailed understanding and effective measures to mitigate the negative effects of HABs a hopeful outcome in the coming years.
Collapse
Affiliation(s)
- Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yingzhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790, United States of America
| |
Collapse
|
11
|
Xiaodong L, Weijing L, Fan J, Ziqin C, Yang C, Ziyang W, Tan Y, Jing L, Weicheng W, Xinhua C. The dinoflagellate Noctiluca scintillans in China: A review of its distribution and role in harmful algal blooms. MARINE POLLUTION BULLETIN 2023; 194:115415. [PMID: 37634317 DOI: 10.1016/j.marpolbul.2023.115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/29/2023]
Abstract
The dinoflagellate Noctiluca scintillans is often reported as a worldwide HAB species and caused severe financial losses to local aquaculture. In this review, we summarized the temporal and geographical distribution of its HABs in China, as well as its position in the plankton structure. Increasing N. scintillans HABs, both frequency and coverage, have broken out in almost all Chinese coastal regions mainly from April to June, with short-term and small coverage blooms as the primary type. The HAB period seems to shift with age and latitude. Recently, increasing abundance and dominance of N. scintillans were also reported in plankton communities in Chinese coastal waters, with multiple environmental factors related. In particular, trophic relationships may play an important role in its dominance and outbreaks of HABs. However, how N. scintillans became a dominant species in China and the mechanisms responsible for its HABs require further study.
Collapse
Affiliation(s)
- Li Xiaodong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China.
| | - Lu Weijing
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| | - Jiang Fan
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| | - Chen Ziqin
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| | - Chang Yang
- College of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| | - Wang Ziyang
- College of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| | - Yan Tan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong Province 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Jing
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wang Weicheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| | - Chen Xinhua
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China; Fuzhou Institute of Oceanography, Fuzhou 350108, China
| |
Collapse
|
12
|
He L, Yu Z, Xu X, Zhu J, Yuan Y, Cao X, Song X. Metabarcoding analysis identifies high diversity of harmful algal bloom species in the coastal waters of the Beibu Gulf. Ecol Evol 2023; 13:e10127. [PMID: 37223313 PMCID: PMC10202623 DOI: 10.1002/ece3.10127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Harmful algal blooms (HABs) have occurred more frequently in recent years. In this study, to investigate their potential impact in the Beibu Gulf, short-read and long-read metabarcoding analyses were combined for annual marine phytoplankton community and HAB species identification. Short-read metabarcoding showed a high level of phytoplankton biodiversity in this area, with Dinophyceae dominating, especially Gymnodiniales. Multiple small phytoplankton, including Prymnesiophyceae and Prasinophyceae, were also identified, which complements the previous lack of identifying small phytoplankton and those unstable after fixation. Of the top 20 phytoplankton genera identified, 15 were HAB-forming genera, which accounted for 47.3%-71.5% of the relative abundance of phytoplankton. Based on long-read metabarcoding, a total of 147 OTUs (PID > 97%) belonging to phytoplankton were identified at the species level, including 118 species. Among them, 37 species belonged to HAB-forming species, and 98 species were reported for the first time in the Beibu Gulf. Contrasting the two metabarcoding approaches at the class level, they both showed a predominance of Dinophyceae, and both included high abundances of Bacillariophyceae, Prasinophyceae, and Prymnesiophyceae, but the relative contents of the classes varied. Notably, the results of the two metabarcoding approaches were quite different below the genus level. The high abundance and diversity of HAB species were probably due to their special life history and multiple nutritional modes. Annual HAB species variation revealed in this study provided a basis for evaluating their potential impact on aquaculture and even nuclear power plant safety in the Beibu Gulf.
Collapse
Affiliation(s)
- Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin Xu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Yongquan Yuan
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
13
|
Wu G, Liu F, Chen G, Wang Y, Wang Y, Zhang C. Establishment of a multiplex polymerase chain reaction detection assay for three common harmful microalgae in the East China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60500-60513. [PMID: 37036653 DOI: 10.1007/s11356-023-26821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
It is urgent to develop techniques that can simultaneously detect multiple microalgae, due to the diversity of harmful algal blooms (HABs)-forming algal species. The target algae species in this study are Heterosigma akashiwo, Prorocentrum donghaiense and Karenia mikimotoi. These algae are the dominant species that cause HABs in the East China Sea, and the multiple detection technique focusing on these three algae is not common. Therefore, this study established a multiplex polymerase chain reaction(mPCR) to diagnose the three algae, which is simple and low cost. First, the corresponding specific primers were designed based on the D1-D2 region of the large subunit (LSU) ribosomal DNA sequence. Then, mPCR was established and the reaction conditions were optimized. And the specificity, sensitivity, and stability of mPCR were evaluated. The result of specificity test showed that the established mPCR had good specificity for the target microalgae and did not cross-react with eighteen non-target microalgae. The sensitivity of experiment was 3.3 × 10-1 ng μL-1, and the established mPCR was not affected by the interfering microalgae. Moreover, the practicability evaluation of mPCR by using the simulated natural water samples showed that the detection limit of target microalgae was 100 cells mL-1, which could meet the demand for early warning of HABs. In summary, the established mPCR is characterized by strong specificity, good stability, and multiple analysis to detect H. akashiwo, P. donghaiense, and K. mikimotoi.
Collapse
Affiliation(s)
- Ganlin Wu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Yihan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, Shandong Province, People's Republic of China.
| |
Collapse
|
14
|
Huang H, Xu S, Li S, Wang X, Guo K, Yan R, Xie W, Yin K, Hou S, Jiang H. Diversity and Distribution of Harmful Algal Bloom Species from Seamount to Coastal Waters in the South China Sea. Microbiol Spectr 2023; 11:e0416922. [PMID: 36815795 PMCID: PMC10100961 DOI: 10.1128/spectrum.04169-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
Mount Xianbei is one of the largest shallow seamounts located in the middle of the South China Sea (SCS), which might play a role in shaping the biodiversity of surrounding continental coastal waters, particularly the diversity of phytoplankton species causing frequent harmful algal blooms (HABs) in northern SCS. However, the diversity, composition, and distribution of phytoplankton species in the seamount regions of Xianbei remain largely unexplored. In this study, samples around and outside the seamount regions were collected during a late summer cruise of 2021 to test whether seamounts play a role in HAB species propagation. In total, we identified 19 HAB species across all samples using the ASV-based DNA metabarcoding approach, 6 of which had not been reported previously in the SCS, suggesting a diverse HAB species in the SCS. Specifically, 16 HAB species were found in the seamount region of Xianbei, and 5 of them were also found in the coastal waters, indicating a close connection between seamount and coastal waters. This study was the first attempt to explore HAB species' spatial diversity and vertical distribution in the seamount region of Xianbei at single-nucleotide resolution, which provides a novel explanation for the coastal HAB occurrence in the northern SCS. IMPORTANCE There are a number of seamounts under the water of the South China Sea (SCS). The seamounts might play a role in shaping the biodiversity of surrounding continental coastal waters. However, there is no direct evidence revealing the relationship of the biodiversity of phytoplankton between seamounts and coastal waters in the SCS, especially those species having the potential to form harmful algal blooms (HABs). Some HAB species might proliferate in certain geographic locations, while others may be broadly distributed across oceanic provinces. In this study, we provided a detailed analysis of phytoplankton composition and molecular detection of HAB species from seamount to coastal waters in the SCS, which suggested a strong interaction in the HAB species between the two areas. This finding provides new insights into the diversity and distribution of HABs in seamounts and their role in shaping the composition and the occurrence of HABs in coastal water.
Collapse
Affiliation(s)
- Hailong Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
| | - Shuaishuai Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shuangqing Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinwei Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kangli Guo
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Rongman Yan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Haibo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Huang H, Chen S, Xu Z, Wu Y, Mei L, Pan Y, Yan X, Zhou C. Comparative metabarcoding analysis of phytoplankton community composition and diversity in aquaculture water and the stomach contents of Tegillarca granosa during months of growth. MARINE POLLUTION BULLETIN 2023; 187:114556. [PMID: 36640496 DOI: 10.1016/j.marpolbul.2022.114556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Filter-feeder bivalves and phytoplankton are interdependent. Their interaction plays important role in estuarine and coastal ecosystem. The correlation between bivalve feeding and phytoplankton is highly species specificity and environment dependent. In the background of miniature and nondiatom trend of phytoplankton in coastal seawaters, how bivalve respond and how the response play roles in the phytoplankton community are poorly known. In the present study, by applying DNA metabarcoding approach based on plastid 23S rDNA, this question was addressed by comparing the phytoplankton composition in the seston and the stomach content of blood clam Tegillarca granosa sampled during the growth period from March to November 2020 in an experimental farm on tidal flat in Xiangshan Bay, East China Sea. The result showed that, a total of seven phyla, 55 genera and 73 species of phytoplankton were identified for all samples. Chlorophyta, Bacillariophyta, and Cyanobacteria were found to be three dominant phyla both in the stomach contents and seston. High diversity of pico-sized phytoplankton, which was easy overlooked by microscopy, was revealed both in seston and stomach contents. This result indicated that the clam was able to feed on the pico-sized algae. At the genus level, the most abundant genera were the pico-sized green alga Ostreococcus (6.12 %-67.88 %) in seston and Picochlorum (4.07 %-35.33 %) in the stomach contents. In addition, microalgae of high nutritional value showed trend of higher proportion in stomach contents than that in seston, especially in July and September when significant growth of T. granosa was observed during this period (the body size increased 155 %). Biodiversity of phytoplankton in the seston was totally higher than that in stomach content, however, the changes among the months showed respective trend. Especially in July when the biodiversity was the lowest in seston, that in the stomach content showed the highest. The results indicated that blood clam farming might influence the phytoplankton composition, including those of pico-sized level, although the particular species in seston were mainly correlating with the dominant environmental factors such as temperature, salinity, pH respectively. These results extend the understanding of roles that bivalve aquaculture may play in the changing of coastal phytoplankton community.
Collapse
Affiliation(s)
- Hailong Huang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Sentao Chen
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zhihui Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yanhua Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Limin Mei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yuanbo Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Xiaojun Yan
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China.
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
16
|
Biodiversity and Interannual Variation of Harmful Algal Bloom Species in the Coastal Sea of Qinhuangdao, China. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010192. [PMID: 36676142 PMCID: PMC9867081 DOI: 10.3390/life13010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
For the frequent occurrence of harmful algal blooms (HABs) in the Qinhuangdao coastal sea (QCS) of the Bohai Sea in summer, we tested the hypothesis that high-biodiversity HAB species exist in the area, and a series of censuses of HAB species were conducted in the QCS in the summers of 2014-2019. Through morphological identification, we found 100 algae species representing 42 genera in 3 phytoplankton phyla in this study, among which Bacillariophyta was the most dominant phylum. We also found that the population density of Dinoflagellata increased from 2016 to 2019. In total, 59 HAB species were annotated in this study, including 39 of Bacillariophyta, 18 of Dinoflagellata and 2 of Ochrophyta, of which 13 HAB species were reported in the Bohai Sea for the first time, and most HAB species were widely distributed in the QCS in summer. Notably, four dominant HAB species displayed unique temporal and spatial distribution characteristics, while their distribution ranges and population densities increased from 2014 to 2019. The distributions of five environmental factors were different in the QCS, while the temperature, salinity, and dissolved inorganic nitrogen might be the key environmental factors influencing the distribution of dominant HAB species in the summer. In conclusion, this study provides a detailed evaluation of phytoplankton diversity and interannual variation in the QCS. The existence of a high level of biodiversity of algal bloom species suggests the need for long-term monitoring in order to further study and prevent potential HABs.
Collapse
|
17
|
Boudriga I, Abdennadher M, Khammeri Y, Mahfoudi M, Quéméneur M, Hamza A, Bel Haj Hmida N, Zouari AB, Hassen MB. Karenia selliformis bloom dynamics and growth rate estimation in the Sfax harbour (Tunisia), by using automated flow cytometry equipped with image in flow, during autumn 2019. HARMFUL ALGAE 2023; 121:102366. [PMID: 36639188 DOI: 10.1016/j.hal.2022.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
A Karenia selliformis bloom event in the Gulf of Gabès (Mediterranean Sea), was monitored over 9 days at high frequency during fall 2019, by using an automated flow cytometer (Cytosense, Cytobuoy b.v.) with an image-in-flow attachment. The instrument recorded the shape of the optical signals that lead to the resolution of six cell groups of pico-, nano- and microphytoplankton, during the Harmful Algal Bloom (HAB). K. selliformis cell dimensions derived from the hourly records, enabled to estimate the daily division rate over the bloom period. Results revealed that K. selliformis was the only bloom-forming species and it reached its highest mean abundance the fourth day of the survey. A shift in the nutrient composition occurred with a potential P limitation during the bloom growth and N limitation during the bloom collapse. The co-inertia analysis revealed opposite patterns for K. selliformis and heterotrophic prokaryotes suggesting trophic interactions and possible mixotrophic behaviour of K. selliformis at the end of the bloom. K. selliformis exhibited low growth rates generally < 1 division day-1, which could not explain the observed high abundance. The tide played a crucial role in the dynamics of K. selliformis at a semi-diurnal scale and at spring-neap tide scale and was probably enhancing K. selliformis accumulation.
Collapse
Affiliation(s)
- Ismail Boudriga
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia.
| | | | - Yosra Khammeri
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia
| | - Mabrouka Mahfoudi
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia
| | - Marianne Quéméneur
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Asma Hamza
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia
| | | | | | - Malika Bel Hassen
- INSTM - Institut National des Sciences et Technologies de la Mer, Tunisia
| |
Collapse
|
18
|
Genetic Diversity and Geographical Distribution of the Red Tide Species Coscinodiscus granii Revealed Using a High-Resolution Molecular Marker. Microorganisms 2022; 10:microorganisms10102028. [PMID: 36296304 PMCID: PMC9612147 DOI: 10.3390/microorganisms10102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Diatoms are responsible for approximately 40% of the global primary photosynthetic production and account for up to 20% of global carbon fixation. Coscinodiscus granii is a red tide forming species of the phylum Bacillariophyta that has been detected in a wide range of coastal regions, suggesting the possibility of the existence of high genetic diversity with differential adaptation. Common molecular markers including 18S rDNA, 16S rDNA, ITS, cox1, and rbcL do not provide sufficient resolution for distinguishing intra-species genetic diversity, hindering in-depth research on intra-species genetic diversity and their spatial and temporal dynamics. In this project, we aimed to develop molecular markers with high resolution and specificity for C. granii, attempting to identify different taxa of this species, which will set up a stage for subsequent functional assays. Comparative genomics analysis of the mtDNAs of C. granii strains identified a genomic region with high genomic variations, which was used to guide the development of a molecular marker with high resolution and high specificity. This new molecular marker, which was named cgmt1 (C. granii mitochondrial 1), was 376 bp in size and differentiated C. granii samples collected in coastal regions of China into three different clades. Preliminary analysis of field samples collected in various coastal regions in China revealed that C. granii clades were almost exclusively found in the Bohai Sea and the north Yellow Sea. This newly developed molecular marker cgmt1 could be used for tracking intra-species genetic diversity and biogeographic distribution of C. granii in different ecosystems.
Collapse
|
19
|
Assessment of VIIRS on the Identification of Harmful Algal Bloom Types in the Coasts of the East China Sea. REMOTE SENSING 2022. [DOI: 10.3390/rs14092089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Visible Infrared Imaging Radiometer Suite (VIIRS) data were systematically evaluated and used to detect harmful algal bloom (HAB) and classify algal bloom types in coasts of the East China Sea covered by optically complex and sediment-rich waters. First, the accuracy and spectral characteristics of VIIRS retrieved normalized water-leaving radiance or the equivalent remote sensing reflectance from September 2019 to October 2020 that were validated by the long-term observation data acquired from an offshore platform and underway measurements from a cruise in the Changjiang Estuary and adjacent East China Sea. These data were evaluated by comparing them with data from the Moderate-Resolution Imaging Spectroradiometer. The bands of 486, 551, and 671 nm provided much higher quality than those of 410 and 443 nm and were more suitable for HAB detection. Secondly, the performance of four HAB detection algorithms were compared. The Ratio of Algal Bloom (RAB) algorithm is probably more suitable for HAB detection in the study area. Importantly, although RAB was also verified to be applicable for the detection of different kinds of HAB (Prorocentrum donghaiense, diatoms, Ceratium furca, and Akashiwo sanguinea), the capability of VIIRS in the classification of those algal species was limited by the lack of the critical band near 531 nm.
Collapse
|