1
|
Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater Today Bio 2022; 17:100453. [PMID: 36254248 PMCID: PMC9568881 DOI: 10.1016/j.mtbio.2022.100453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/30/2022] Open
Abstract
In the last decade, hyaluronic acid (HA) has attracted an ever-growing interest in the biomedical engineering field as a biocompatible, biodegradable, and chemically versatile molecule. In fact, HA is a major component of the extracellular matrix (ECM) and is essential for the maintenance of cellular homeostasis and crosstalk. Innovative experimental strategies in vitro and in vivo using three-dimensional (3D) HA systems have been increasingly reported in studies of diseases, replacement of tissue and organ damage, repairing wounds, and encapsulating stem cells for tissue regeneration. The present work aims to give an overview and comparison of recent work carried out on HA systems showing advantages, limitations, and their complementarity, for a comprehensive characterization of their use. A special attention is paid to the use of HA in three important areas: cancer, diseases of the central nervous system (CNS), and tissue regeneration, discussing the most innovative experimental strategies. Finally, perspectives within and beyond these research fields are discussed.
Collapse
Affiliation(s)
- Maddalena Grieco
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Ornella Ursini
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| | - Ilaria Elena Palamà
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Giuseppe Gigli
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Department of Mathematics and Physics “Ennio De Giorgi” University of Salento, Via Arnesano, 73100, Lecce, Italy
| | - Lorenzo Moroni
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| |
Collapse
|
2
|
Goodarzi K, Rao SS. Hyaluronic acid-based hydrogels to study cancer cell behaviors. J Mater Chem B 2021; 9:6103-6115. [PMID: 34259709 DOI: 10.1039/d1tb00963j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hyaluronic acid (HA) is a natural polysaccharide and a key component of the extracellular matrix (ECM) in many tissues. Therefore, HA-based biomaterials are extensively utilized to create three dimensional ECM mimics to study cell behaviors in vitro. Specifically, derivatives of HA have been commonly used to fabricate hydrogels with controllable properties. In this review, we discuss the various chemistries employed to fabricate HA-based hydrogels as a tunable matrix to mimic the cancer microenvironment and subsequently study cancer cell behaviors in vitro. These include Michael-addition reactions, photo-crosslinking, carbodiimide chemistry, and Diels-Alder chemistry. The utility of these HA-based hydrogels to examine cancer cell behaviors such as proliferation, migration, and invasion in vitro in various types of cancer are highlighted. Overall, such hydrogels provide a biomimetic material-based platform to probe cell-matrix interactions in cancer cells in vitro and study the mechanisms associated with cancer progression.
Collapse
Affiliation(s)
- Kasra Goodarzi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
| | | |
Collapse
|
3
|
Fernando K, Kwang LG, Lim JTC, Fong ELS. Hydrogels to engineer tumor microenvironments in vitro. Biomater Sci 2021; 9:2362-2383. [DOI: 10.1039/d0bm01943g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Illustration of engineered hydrogel to recapitulate aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- Kanishka Fernando
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Leng Gek Kwang
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Joanne Tze Chin Lim
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
- The N.1 Institute for Health
- National University of Singapore
| |
Collapse
|
4
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
5
|
Chu HY, Chen YJ, Hsu CJ, Liu YW, Chiou JF, Lu LS, Tseng FG. Physical Cues in the Microenvironment Regulate Stemness-Dependent Homing of Breast Cancer Cells. Cancers (Basel) 2020; 12:E2176. [PMID: 32764400 PMCID: PMC7464848 DOI: 10.3390/cancers12082176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Tissue-specific microenvironmental factors contribute to the targeting preferences of metastatic cancers. However, the physical attributes of the premetastatic microenvironment are not yet fully characterized. In this research, we develop a transwell-based alginate hydrogel (TAH) model to study how permeability, stiffness, and roughness of a hanging alginate hydrogel regulate breast cancer cell homing. In this model, a layer of physically characterized alginate hydrogel is formed at the bottom of a transwell insert, which is placed into a matching culture well with an adherent monolayer of breast cancer cells. We found that breast cancer cells dissociate from the monolayer and home to the TAH for continual growth. The process is facilitated by the presence of rich serum in the upper chamber, the increased stiffness of the gel, as well as its surface roughness. This model is able to support the homing ability of MCF-7 and MDA-MB-231 cells drifting across the vertical distance in the culture medium. Cells homing to the TAH display stemness phenotype morphologically and biochemically. Taken together, these findings suggest that permeability, stiffness, and roughness are important physical factors to regulate breast cancer homing to a premetastatic microenvironment.
Collapse
Affiliation(s)
- Hsueh-Yao Chu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (C.-J.H.); (Y.-W.L.)
| | - Yin-Ju Chen
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (Y.-J.C.); (J.-F.C.)
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Jieh Hsu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (C.-J.H.); (Y.-W.L.)
| | - Yang-Wei Liu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (C.-J.H.); (Y.-W.L.)
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (Y.-J.C.); (J.-F.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (Y.-J.C.); (J.-F.C.)
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (H.-Y.C.); (C.-J.H.); (Y.-W.L.)
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan
| |
Collapse
|
6
|
Sieni E, Bazzolo B, Pieretti F, Zamuner A, Tasso A, Dettin M, Conconi MT. Breast cancer cells grown on hyaluronic acid-based scaffolds as 3D in vitro model for electroporation. Bioelectrochemistry 2020; 136:107626. [PMID: 32784105 DOI: 10.1016/j.bioelechem.2020.107626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, electroporation (EP) represents a promising method for the intracellular delivery of anticancer drugs. To setting up the process, the EP efficiency is usually evaluated by using cell suspension and adherent cell cultures that are not representative of the in vivo conditions. Indeed, cells are surrounded by extracellular matrix (ECM) whose composition and physical characteristics are different for each tissue. So, various three-dimensional (3D) in vitro models, such as spheroids and hydrogel-based cultures, have been proposed to mimic the tumour microenvironment. Herein, a 3D breast cancer in vitro model has been proposed. HCC1954 cells were seeded on crosslinked and lyophilized matrices composed of hyaluronic acid (HA) and ionic complementary self-assembling peptides (SAPs) already known to provide a fibrous structure mimicking collagen network. Herein, SAPs were functionalized with laminin derived IKVAV adhesion motif. Cultures were characterized by spheroids surrounded by ECM produced by cancer cells as demonstrated by collagen1a1 and laminin B1 transcripts. EP was carried out on both 2D and 3D cultures: a sequence of 8 voltage pulses at 5 kHz with different amplitude was applied using a plate electrode. Cell sensitivity to EP seemed to be modulated by the presence of ECM and the different cell organization. Indeed, cells cultured on HA-IKVAV were more sensitive than those treated in 2D and HA cultures, in terms of both cell membrane permeabilization and viability. Collectively, our results suggest that HA-IKVAV cultures may represent an interesting model for EP studies. Further studies will be needed to elucidate the influence of ECM composition on EP efficiency.
Collapse
Affiliation(s)
- Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Via Dunant, 3, 21100 Varese, Italy.
| | - Bianca Bazzolo
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, 35131 Padova, Italy.
| | - Fabio Pieretti
- University of Padova, Department of Industrial Engineering, Via Marzolo, 9, 35131 Padova, Italy.
| | - Annj Zamuner
- University of Padova, Department of Industrial Engineering, Via Marzolo, 9, 35131 Padova, Italy.
| | - Alessia Tasso
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, 35131 Padova, Italy
| | - Monica Dettin
- University of Padova, Department of Industrial Engineering, Via Marzolo, 9, 35131 Padova, Italy.
| | - Maria Teresa Conconi
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, 35131 Padova, Italy.
| |
Collapse
|
7
|
Bonnesœur S, Morin‐Grognet S, Thoumire O, Le Cerf D, Boyer O, Vannier J, Labat B. Hyaluronan‐based hydrogels as versatile tumor‐like models: Tunable ECM and stiffness with genipin‐crosslinking. J Biomed Mater Res A 2020; 108:1256-1268. [DOI: 10.1002/jbm.a.36899] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah Bonnesœur
- Normandie Université, INSERM, U1234, Faculté de Médecine et Pharmacie, UNIROUEN Rouen France
| | - Sandrine Morin‐Grognet
- Normandie Université, PBS UMR 6270, UFR de Sciences et Techniques, FR3038, UNIROUEN, INSA Rouen, CNRS Evreux Cedex France
| | - Olivier Thoumire
- Normandie Université, PBS UMR 6270, UFR de Sciences et Techniques, FR3038, UNIROUEN, INSA Rouen, CNRS Evreux Cedex France
| | - Didier Le Cerf
- Normandie Université, PBS UMR 6270, UFR de Sciences et Techniques, FR3038, UNIROUEN, INSA Rouen, CNRS Rouen France
| | - Olivier Boyer
- Normandie Université, INSERM, U1234, Faculté de Médecine et Pharmacie, UNIROUEN Rouen France
| | - Jean‐Pierre Vannier
- Normandie Université, INSERM, U1234, Faculté de Médecine et Pharmacie, UNIROUEN Rouen France
| | - Béatrice Labat
- Normandie Université, PBS UMR 6270, UFR de Sciences et Techniques, FR3038, UNIROUEN, INSA Rouen, CNRS Evreux Cedex France
| |
Collapse
|
8
|
Sieni E, Dettin M, De Robertis M, Bazzolo B, Conconi MT, Zamuner A, Marino R, Keller F, Campana LG, Signori E. The Efficiency of Gene Electrotransfer in Breast-Cancer Cell Lines Cultured on a Novel Collagen-Free 3D Scaffold. Cancers (Basel) 2020; 12:cancers12041043. [PMID: 32340405 PMCID: PMC7226458 DOI: 10.3390/cancers12041043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Gene Electro-Transfer (GET) is a powerful method of DNA delivery with great potential for medical applications. Although GET has been extensively studied in vitro and in vivo, the optimal parameters remain controversial. 2D cell cultures have been widely used to investigate GET protocols, but have intrinsic limitations, whereas 3D cultures may represent a more reliable model thanks to the capacity of reproducing the tumor architecture. Here we applied two GET protocols, using a plate or linear electrode, on 3D-cultured HCC1954 and MDA-MB231 breast cancer cell lines grown on a novel collagen-free 3D scaffold and compared results with conventional 2D cultures. To evaluate the electrotransfer efficiency, we used the plasmid pEGFP-C3 encoding the enhanced green fluorescent protein (EGFP) reporter gene. The novel 3D scaffold promoted extracellular matrix deposition, which particularly influences cell behavior in both in vitro cell cultures and in vivo tumor tissue. While the transfection efficiency was similar in the 2D-cultures, we observed significant differences in the 3D-model. The transfection efficiency in the 3D vs 2D model was 44% versus 15% (p < 0.01) and 24% versus 17% (p < 0.01) in HCC1954 and MDA-MB231 cell cultures, respectively. These findings suggest that the novel 3D scaffold allows reproducing, at least partially, the peculiar morphology of the original tumor tissues, thus allowing us to detect meaningful differences between the two cell lines. Following GET with plate electrodes, cell viability was higher in 3D-cultured HCC1954 (66%) and MDA-MB231 (96%) cell lines compared to their 2D counterpart (53% and 63%, respectively, p < 0.001). Based on these results, we propose the novel 3D scaffold as a reliable support for the preparation of cell cultures in GET studies. It may increase the reliability of in vitro assays and allow the optimization of GET parameters of in vivo protocols.
Collapse
Affiliation(s)
- Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence: (E.S.); (E.S.); Tel.: +39-0332-421405 (E.S.); Tel.: +39-0-649-934-232 (E.S.)
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (M.D.); (A.Z.)
| | - Mariangela De Robertis
- CNR-Institute of Biomembrane, Bioenergetics and Molecular Biotechnology, 70126 Bari, Italy;
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Itay
| | - Bianca Bazzolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (B.B.); (M.T.C.)
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (B.B.); (M.T.C.)
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; (M.D.); (A.Z.)
| | - Ramona Marino
- Campus Bio-Medico University of Rome, 00128 Roma, Italy; (R.M.); (F.K.)
| | - Flavio Keller
- Campus Bio-Medico University of Rome, 00128 Roma, Italy; (R.M.); (F.K.)
| | - Luca Giovanni Campana
- Department of Surgical Oncological and Gastroenterological Sciences DISCOG, University of Padova, 35124 Padova, Italy;
| | - Emanuela Signori
- Campus Bio-Medico University of Rome, 00128 Roma, Italy; (R.M.); (F.K.)
- CNR-Institute of Translational Pharmacology, 00133 Roma, Italy
- Correspondence: (E.S.); (E.S.); Tel.: +39-0332-421405 (E.S.); Tel.: +39-0-649-934-232 (E.S.)
| |
Collapse
|
9
|
Ge M, Sun J, Chen M, Tian J, Yin H, Yin J. A hyaluronic acid fluorescent hydrogel based on fluorescence resonance energy transfer for sensitive detection of hyaluronidase. Anal Bioanal Chem 2020; 412:1915-1923. [DOI: 10.1007/s00216-020-02443-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
|
10
|
Molla MDS, Katti DR, Iswara J, Venkatesan R, Paulmurugan R, Katti KS. Prostate Cancer Phenotype Influences Bone Mineralization at Metastasis: A Study Using an In Vitro Prostate Cancer Metastasis Testbed. JBMR Plus 2020; 4:e10256. [PMID: 32083238 PMCID: PMC7017885 DOI: 10.1002/jbm4.10256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, two types of prostate cancer cell lines, highly metastatic PC-3 and low metastatic MDA PCa 2b (PCa) were cultured on bone mimetic scaffolds to recapitulate metastasis to bone. A unique in vitro 3D tumor model that uses a sequential culture (SC) of human mesenchymal stem cells followed by seeding with cancer cells after bone formation was initiated to study the phenotype-specific interaction between prostate cancer cells and bone microenvironment. The PCa cells were observed to be less prolific and less metastatic, and to form multicellular tumoroids in the bone microenvironment, whereas PC-3 cells were more prolific and were highly metastatic, and did not form multicellular tumoroids in the bone microenvironment. The metastatic process exhibited by these two prostate cancer cell lines showed a significant and different effect on bone mineralization and extracellular matrix formation. Excessive bone formation in the presence of PC-3 and significant osteolysis in the presence of PCa were observed, which was also indicated by osteocalcin and MMP-9 expression as measured by ELISA and qRT-PCR. The field emission scanning electron microscopy images revealed that the structure of mineralized collagen in the presence of PC-3 is different than the one observed in healthy bone. All experimental results indicated that both osteolytic and osteoblastic bone lesions can be recapitulated in our tumor testbed model and that different cancer phenotypes have a very different influence on bone at metastasis. The 3D in vitro model presented in this study provides an improved, reproducible, and controllable system that is a useful tool to elucidate osteotropism of prostate cancer cells. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- MD Shahjahan Molla
- Center for Engineered Cancer TestbedsNorth Dakota State UniversityFargoNDUSA
- Department of Civil and Environmental EngineeringNorth Dakota State UniversityFargoNDUSA
- Scintillon InstituteSan DiegoUSA
| | - Dinesh R Katti
- Center for Engineered Cancer TestbedsNorth Dakota State UniversityFargoNDUSA
- Department of Civil and Environmental EngineeringNorth Dakota State UniversityFargoNDUSA
| | - Jairam Iswara
- Department of Urology, Saint Elizabeth's Medical CenterTufts UniversityBostonMAUSA
| | - Renugopalkrishnan Venkatesan
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMAUSA
- Center for Life SciencesBoston Children's Hospital, Harvard Medical School, BostonMassachusettsUSA
| | - Ramasamy Paulmurugan
- Department of RadiologyCellular Pathway Imaging Laboratory (CPIL), Stanford University School of MedicinePalo AltoCAUSA
| | - Kalpana S Katti
- Center for Engineered Cancer TestbedsNorth Dakota State UniversityFargoNDUSA
| |
Collapse
|
11
|
Ashworth JC, Thompson JL, James JR, Slater CE, Pijuan-Galitó S, Lis-Slimak K, Holley RJ, Meade KA, Thompson A, Arkill KP, Tassieri M, Wright AJ, Farnie G, Merry CLR. Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro. Matrix Biol 2020; 85-86:15-33. [PMID: 31295578 PMCID: PMC7610915 DOI: 10.1016/j.matbio.2019.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/14/2023]
Abstract
Current materials used for in vitro 3D cell culture are often limited by their poor similarity to human tissue, batch-to-batch variability and complexity of composition and manufacture. Here, we present a "blank slate" culture environment based on a self-assembling peptide gel free from matrix motifs. The gel can be customised by incorporating matrix components selected to match the target tissue, with independent control of mechanical properties. Therefore the matrix components are restricted to those specifically added, or those synthesised by encapsulated cells. The flexible 3D culture platform provides full control over biochemical and physical properties, allowing the impact of biochemical composition and tissue mechanics to be separately evaluated in vitro. Here, we demonstrate that the peptide gels support the growth of a range of cells including human induced pluripotent stem cells and human cancer cell lines. Furthermore, we present proof-of-concept that the peptide gels can be used to build disease-relevant models. Controlling the peptide gelator concentration allows peptide gel stiffness to be matched to normal breast (<1 kPa) or breast tumour tissue (>1 kPa), with higher stiffness favouring the viability of breast cancer cells over normal breast cells. In parallel, the peptide gels may be modified with matrix components relevant to human breast, such as collagen I and hyaluronan. The choice and concentration of these additions affect the size, shape and organisation of breast epithelial cell structures formed in co-culture with fibroblasts. This system therefore provides a means of unravelling the individual influences of matrix, mechanical properties and cell-cell interactions in cancer and other diseases.
Collapse
Affiliation(s)
- J C Ashworth
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK.
| | - J L Thompson
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - J R James
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - C E Slater
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - S Pijuan-Galitó
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, UK
| | - K Lis-Slimak
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - R J Holley
- Stem Cell and Neurotherapies Group, University of Manchester, UK
| | - K A Meade
- Office of Business Relations, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - A Thompson
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - K P Arkill
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - M Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, UK
| | - A J Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, UK
| | - G Farnie
- Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK; SGC, Botnar Research Centre, NDORMS, University of Oxford, UK.
| | - C L R Merry
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK.
| |
Collapse
|
12
|
Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells. Carbohydr Polym 2019; 211:336-348. [PMID: 30824098 DOI: 10.1016/j.carbpol.2019.01.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
In tumor biology, it is widely recognized that 3D rather than 2D cell culture can recapitulate key features of solid tumors, including cell-extracellular matrix (ECM) interactions. In this study, to mimick the ECM of breast cancer, hyaluronic acid (HA) hydrogels were synthesized from two polyvalent HA derivatives through a hydrazone and photo dual crosslinking process. HA hydrogels could be formed within 120 s. The hydrogels had similar topography and mechanical properties to breast tumor and displayed glutathione and hyaluronidase dual-responsive degradation behavior. Biological studies demonstrated that HA hydrogel could support the proliferation and clustering of breast cancer MCF-7 cells. The expression levels of VEGF, IL-8 and bFGF in hydrogel-cultured cells were significantly greater than those in 2D culture. Moreover, cells from hydrogel culture exhibited greater migration/invasion abilities and tumorigenicity than 2D-cultured cells. Therefore, the HA hydrogels are a promising ECM-mimicking matrix for in vitro construction of breast cancer.
Collapse
|
13
|
Abdoul-Azize S, Buquet C, Li H, Picquenot JM, Vannier JP. Integration of Ca 2+ signaling regulates the breast tumor cell response to simvastatin and doxorubicin. Oncogene 2018; 37:4979-4993. [PMID: 29795329 DOI: 10.1038/s41388-018-0329-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
Recent studies have suggested that the lipid-lowering agent simvastatin holds great promise as a cancer therapeutic; it inhibits the growth of multiple tumors, including triple-negative breast cancer. Doxorubicin- and simvastatin-induced cytotoxicity has been associated with the modulation of Ca2+ signaling, but the underlying mechanisms remain incompletely understood. Here we identify how Ca2+ signaling regulates the breast tumor cell response to doxorubicin and simvastatin. These two drugs inhibit cell survival while increasing apoptosis in two human breast cancer cell lines and five primary breast tumor specimens through the modulation of Ca2+ signaling. Signal transduction and functional studies revealed that both simvastatin and doxorubicin trigger persistent cytosolic Ca2+ release, thereby stimulating the proapoptotic BIM pathway and mitochondrial Ca2+ overload, which are responsible for metabolic dysfunction and apoptosis induction. Simvastatin and doxorubicin suppress the prosurvival ERK1/2 pathway in a Ca2+-independent and Ca2+-dependent manner, respectively. In addition, reduction of the Ca2+ signal by chelation or pharmacological inhibition significantly prevents drug-mediated anticancer signaling. Unexpectedly, a scratch-wound assay indicated that these two drugs induce rapid cell migration, while inhibiting cell invasion and colony formation in a Ca2+-dependent manner. Further, the in vivo data for MDA-MB-231 xenografts demonstrate that upon chelation of Ca2+, the ability of both drugs to reduce the tumor burden was significantly reduced via caspase-3 deactivation. Our results establish a calcium-based mechanism as crucial for executing the cell death process triggered by simvastatin and doxorubicin, and suggest that combining simvastatin with doxorubicin may be an effective regimen for the treatment of breast cancer.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Unité Inserm U1234/Université de Rouen/IRIB, Faculté de Médecine et Pharmacie, Rouen Cedex, 76183, France.
| | - Catherine Buquet
- Unité Inserm U1234/Université de Rouen/IRIB, Faculté de Médecine et Pharmacie, Rouen Cedex, 76183, France
| | - Hong Li
- Unité Inserm U1234/Université de Rouen/IRIB, Faculté de Médecine et Pharmacie, Rouen Cedex, 76183, France
| | - Jean-Michel Picquenot
- Service Anatomie et Cytologie pathologiques, Centre Henri Becquerel de Lutte Contre le Cancer (CLCC) de Normandie, Rouen Cedex 1, 76038, France
| | - Jean-Pierre Vannier
- Unité Inserm U1234/Université de Rouen/IRIB, Faculté de Médecine et Pharmacie, Rouen Cedex, 76183, France
| |
Collapse
|
14
|
de Gooijer MC, Guillén Navarro M, Bernards R, Wurdinger T, van Tellingen O. An Experimenter's Guide to Glioblastoma Invasion Pathways. Trends Mol Med 2018; 24:763-780. [PMID: 30072121 DOI: 10.1016/j.molmed.2018.07.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022]
Abstract
Glioblastoma is a highly aggressive brain tumor that is characterized by its unparalleled invasiveness. Invasive glioblastoma cells not only escape surgery and focal therapies but also are more resistant to current radio- and chemo-therapeutic approaches. Thus, any curative therapy for this deadly disease likely should include treatment strategies that interfere with glioblastoma invasiveness. Understanding glioblastoma invasion mechanisms is therefore critical. We discuss the strengths and weaknesses of various glioblastoma invasion models and conclude that robust experimental evidence has been obtained for a pro-invasive role of Ephrin receptors, Rho GTPases, and casein kinase 2 (CK2). Extensive interplay occurs between these proteins, suggesting the existence of a glioblastoma invasion signaling network that comprises several targets for therapy.
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; These authors contributed equally to this work
| | - Miriam Guillén Navarro
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; These authors contributed equally to this work
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Chen JWE, Pedron S, Harley BAC. The Combined Influence of Hydrogel Stiffness and Matrix-Bound Hyaluronic Acid Content on Glioblastoma Invasion. Macromol Biosci 2017; 17:10.1002/mabi.201700018. [PMID: 28379642 PMCID: PMC5555785 DOI: 10.1002/mabi.201700018] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal form of brain cancer. Its high mortality is associated with its aggressive invasion throughout the brain. The heterogeneity of stiffness and hyaluronic acid (HA) content within the brain makes it difficult to study invasion in vivo. A dextran-bead assay is employed to quantify GBM invasion within HA-functionalized gelatin hydrogels. Using a library of stiffness-matched hydrogels with variable levels of matrix-bound HA, it is reported that U251 GBM invasion is enhanced in softer hydrogels but reduced in the presence of matrix-bound HA. Inhibiting HA-CD44 interactions reduces invasion, even in hydrogels lacking matrix-bound HA. Analysis of HA biosynthesis suggests that GBM cells compensate for a lack of matrix-bound HA by producing soluble HA to stimulate invasion. Together, a robust method is showed to quantify GBM invasion over long culture times to reveal the coordinated effect of matrix stiffness, immobilized HA, and compensatory HA production on GBM invasion.
Collapse
Affiliation(s)
- Jee-Wei Emily Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Sara Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| |
Collapse
|
16
|
Vikram Singh A, Gharat T, Batuwangala M, Park B, Endlein T, Sitti M. Three‐dimensional patterning in biomedicine: Importance and applications in neuropharmacology. J Biomed Mater Res B Appl Biomater 2017; 106:1369-1382. [DOI: 10.1002/jbm.b.33922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ajay Vikram Singh
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Tanmay Gharat
- Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteNew York New York12180
| | - Madu Batuwangala
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Byung‐Wook Park
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Thomas Endlein
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| | - Metin Sitti
- Department of Physical IntelligenceMax Planck Institute for Intelligent Systems, Heisenbergstr 370569Stuttgart Germany
| |
Collapse
|
17
|
Tumor spheroid assembly on hyaluronic acid-based structures: A review. Carbohydr Polym 2016; 150:139-48. [DOI: 10.1016/j.carbpol.2016.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 02/03/2023]
|
18
|
Pradhan S, Hassani I, Clary JM, Lipke EA. Polymeric Biomaterials for In Vitro Cancer Tissue Engineering and Drug Testing Applications. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:470-484. [PMID: 27302080 DOI: 10.1089/ten.teb.2015.0567] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic polymers and materials have been widely used in tissue engineering for regeneration and replication of diverse types of both normal and diseased tissues. Cancer, being a prevalent disease throughout the world, has initiated substantial interest in the creation of tissue-engineered models for anticancer drug testing. The development of these in vitro three-dimensional (3D) culture models using novel biomaterials has facilitated the investigation of tumorigenic and associated biological phenomena with a higher degree of complexity and physiological context than that provided by established two-dimensional culture models. In this review, an overview of a wide range of natural, synthetic, and hybrid biomaterials used for 3D cancer cell culture and investigation of cancer cell behavior is presented. The role of these materials in modulating cell-matrix interactions and replicating specific tumorigenic characteristics is evaluated. In addition, recent advances in biomaterial design, synthesis, and fabrication are also assessed. Finally, the advantages of incorporating polymeric biomaterials in 3D cancer models for obtaining efficacy data in anticancer drug testing applications are highlighted.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Iman Hassani
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Jacob M Clary
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University , Auburn, Alabama
| |
Collapse
|
19
|
Rankin KS, Frankel D. Hyaluronan in cancer - from the naked mole rat to nanoparticle therapy. SOFT MATTER 2016; 12:3841-8. [PMID: 27079782 DOI: 10.1039/c6sm00513f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaluronan, a glycosaminoglycan, abundant in the tumour microenvironment, is a key player in many processes associated with cancer. Recently the cancer resistance of the naked mole rat has been attributed to the presence of an ultra-high molecular weight form of this molecule. The physical properties of this multifunctional biopolymer have been extensively studied in the context of synovial joints. However, relatively little has been reported with regard to the soft matter properties of hyaluronan in relation to cancer. In this review we examine the role of hyaluronan in cancer, paying particular attention to its mechanical interactions with malignant cells and its soft matter properties. In addition we discuss the use of hyaluronan based gels to study cancer invasion as well as nanoparticle based strategies for disease treatment.
Collapse
Affiliation(s)
- Kenneth S Rankin
- Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
20
|
Gkretsi V, Stylianou A, Papageorgis P, Polydorou C, Stylianopoulos T. Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy. Front Oncol 2015; 5:214. [PMID: 26528429 PMCID: PMC4604307 DOI: 10.3389/fonc.2015.00214] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022] Open
Abstract
Solid tumor pathophysiology is characterized by an abnormal microenvironment that guides tumor progression and poses barriers to the efficacy of cancer therapies. Most common among tumor types are abnormalities in the structure of the tumor vasculature and stroma. Remodeling the tumor microenvironment with the aim to normalize any aberrant properties has the potential to improve therapy. In this review, we discuss structural abnormalities of the tumor microenvironment and summarize the therapeutic strategies that have been developed to normalize tumors as well as their potential to enhance therapy. Finally, we present different in vitro models that have been developed to analyze and better understand the effects of the tumor microenvironment on cancer cell behavior.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus
| | - Panagiotis Papageorgis
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus ; Program in Biological Sciences, Department of Health Sciences, European University Cyprus , Nicosia , Cyprus
| | - Christiana Polydorou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus
| |
Collapse
|
21
|
Abstract
For many decades, fundamental cancer research has relied on two-dimensional in vitro cell culture models. However, these provide a poor representation of the complex three-dimensional (3D) architecture of living tissues. The more recent 3D culture systems, which range from ridged scaffolds to semiliquid gels, resemble their natural counterparts more closely. The arrangement of the cells in 3D systems allows better cell-cell interaction and facilitates extracellular matrix secretion, with concomitant effects on gene and protein expression and cellular behavior. Many studies have reported differences between 3D and 2D systems as regards responses to therapeutic agents and pivotal cellular processes such as cell differentiation, morphology, and signaling pathways, demonstrating the importance of 3D culturing for various cancer cell lines.
Collapse
|
22
|
Zheng L, Hu X, Huang Y, Xu G, Yang J, Li L. In vivo
bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study. Biomed Mater 2015; 10:015016. [DOI: 10.1088/1748-6041/10/1/015016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses. Adv Drug Deliv Rev 2014; 79-80:193-213. [PMID: 24969478 DOI: 10.1016/j.addr.2014.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023]
Abstract
Tissue engineering technologies, which have originally been designed to reconstitute damaged tissue structure and function, can mimic not only tissue regeneration processes but also cancer development and progression. Bioengineered approaches allow cell biologists to develop sophisticated experimentally and physiologically relevant cancer models to recapitulate the complexity of the disease seen in patients. Tissue engineering tools enable three-dimensionality based on the design of biomaterials and scaffolds that re-create the geometry, chemistry, function and signalling milieu of the native tumour microenvironment. Three-dimensional (3D) microenvironments, including cell-derived matrices, biomaterial-based cell culture models and integrated co-cultures with engineered stromal components, are powerful tools to study dynamic processes like proteolytic functions associated with cancer progression, metastasis and resistance to therapeutics. In this review, we discuss how biomimetic strategies can reproduce a humanised niche for human cancer cells, such as peritoneal or bone-like microenvironments, addressing specific aspects of ovarian and prostate cancer progression and therapy response.
Collapse
|
24
|
Alemany-Ribes M, Semino CE. Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev 2014; 79-80:40-9. [PMID: 24996134 DOI: 10.1016/j.addr.2014.06.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 11/26/2022]
Abstract
Tumor development is a dynamic process where cancer cells differentiate, proliferate and migrate interacting among each other and with the surrounding matrix in a three-dimensional (3D) context. Interestingly, the process follows patterns similar to those involved in early tissue formation by accessing specific genetic programs to grow and disseminate. Thus, the complex biological mechanisms driving tumor progression cannot easily be recreated in the laboratory. Yet, essential tumor stages, including epithelial-mesenchymal transition (EMT), tumor-induced angiogenesis and metastasis, urgently need more realistic models in order to unravel the underlying molecular and cellular mechanisms that govern them. The latest implementation of successful 3D models is having a positive impact on the fight against cancer by obtaining more predictive systems for pre-clinical research, therapeutic drug screening, and early cancer diagnosis. In this review we explore the latest advances and challenges in tumor tissue engineering, by accessing knowledge and tools from cancer biology, material science and bioengineering.
Collapse
|
25
|
Xu X, Farach-Carson MC, Jia X. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 2014; 32:1256-1268. [PMID: 25116894 PMCID: PMC4171250 DOI: 10.1016/j.biotechadv.2014.07.009] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/20/2014] [Accepted: 07/28/2014] [Indexed: 01/09/2023]
Abstract
Cancer occurs when cells acquire genomic instability and inflammation, produce abnormal levels of epigenetic factors/proteins and tumor suppressors, reprogram the energy metabolism and evade immune destruction, leading to the disruption of cell cycle/normal growth. An early event in carcinogenesis is loss of polarity and detachment from the natural basement membrane, allowing cells to form distinct three-dimensional (3D) structures that interact with each other and with the surrounding microenvironment. Although valuable information has been accumulated from traditional in vitro studies in which cells are grown on flat and hard plastic surfaces (2D culture), this culture condition does not reflect the essential features of tumor tissues. Further, fundamental understanding of cancer metastasis cannot be obtained readily from 2D studies because they lack the complex and dynamic cell-cell communications and cell-matrix interactions that occur during cancer metastasis. These shortcomings, along with lack of spatial depth and cell connectivity, limit the applicability of 2D cultures to accurate testing of pharmacologically active compounds, free or sequestered in nanoparticles. To recapitulate features of native tumor microenvironments, various biomimetic 3D tumor models have been developed to incorporate cancer and stromal cells, relevant matrix components, and biochemical and biophysical cues, into one spatially and temporally integrated system. In this article, we review recent advances in creating 3D tumor models employing tissue engineering principles. We then evaluate the utilities of these novel models for the testing of anticancer drugs and their delivery systems. We highlight the profound differences in responses from 3D in vitro tumors and conventional monolayer cultures. Overall, strategic integration of biological principles and engineering approaches will both improve understanding of tumor progression and invasion and support discovery of more personalized first line treatments for cancer patients.
Collapse
Affiliation(s)
- Xian Xu
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Mary C Farach-Carson
- Departments of Biochemistry and Cell Biology and Bioengineering, Rice University, Houston, TX 77251, USA; Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
26
|
Simon T, Coquerel B, Petit A, Kassim Y, Demange E, Le Cerf D, Perrot V, Vannier JP. Direct effect of bevacizumab on glioblastoma cell lines in vitro. Neuromolecular Med 2014; 16:752-71. [PMID: 25113866 DOI: 10.1007/s12017-014-8324-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Bevacizumab is a humanized monoclonal antibody directed against the pro-angiogenic factor vascular and endothelial growth factor-A (VEGF-A) used in the treatment of glioblastomas. Although most patients respond initially to this treatment, studies have shown that glioblastomas eventually recur. Several non-mutually exclusive theories based on the anti-angiogenic effect of bevacizumab have been proposed to explain these mechanisms of resistance. In this report, we studied whether bevacizumab can act directly on malignant glioblastoma cells. We observe changes in the expression profiles of components of the VEGF/VEGF-R pathway and in the response to a VEGF-A stimulus following bevacizumab treatment. In addition, we show that bevacizumab itself acts on glioblastoma cells by activating the Akt and Erks survival signaling pathways. Bevacizumab also enhances proliferation and invasiveness of glioblastoma cells in hyaluronic acid hydrogel. We propose that the paradoxical effect of bevacizumab on glioblastoma cells could be due to changes in the VEGF-A-dependent autocrine loop as well as in the intracellular survival pathways, leading to the enhancement of tumor aggressiveness. Investigation of how bevacizumab interacts with glioblastoma cells and the resulting downstream signaling pathways will help targeting populations of resistant glioblastoma cells.
Collapse
Affiliation(s)
- Thomas Simon
- Groupe de Recherche «Micro-Environnement et Renouvellement Cellulaire Intégrés» MERCI UPRES EA 3829, Faculté de Médecine et Pharmacie, Université de Rouen, 22 Boulevard Gambetta, 76183, Rouen Cedex, France,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kaemmerer E, Melchels FP, Holzapfel BM, Meckel T, Hutmacher DW, Loessner D. Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater 2014; 10:2551-62. [PMID: 24590158 DOI: 10.1016/j.actbio.2014.02.035] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/12/2014] [Accepted: 02/21/2014] [Indexed: 12/27/2022]
Abstract
Modern cancer research requires physiological, three-dimensional (3-D) cell culture platforms, wherein the physical and chemical characteristics of the extracellular matrix (ECM) can be modified. In this study, gelatine methacrylamide (GelMA)-based hydrogels were characterized and established as in vitro and in vivo spheroid-based models for ovarian cancer, reflecting the advanced disease stage of patients, with accumulation of multicellular spheroids in the tumour fluid (ascites). Polymer concentration (2.5-7% w/v) strongly influenced hydrogel stiffness (0.5±0.2kPa to 9.0±1.8kPa) but had little effect on solute diffusion. The diffusion coefficient of 70kDa fluorescein isothiocyanate (FITC)-labelled dextran in 7% GelMA-based hydrogels was only 2.3 times slower compared to water. Hydrogels of medium concentration (5% w/v GelMA) and stiffness (3.4kPa) allowed spheroid formation and high proliferation and metabolic rates. The inhibition of matrix metalloproteinases and consequently ECM degradability reduced spheroid formation and proliferation rates. The incorporation of the ECM components laminin-411 and hyaluronic acid further stimulated spheroid growth within GelMA-based hydrogels. The feasibility of pre-cultured GelMA-based hydrogels as spheroid carriers within an ovarian cancer animal model was proven and led to tumour development and metastasis. These tumours were sensitive to treatment with the anti-cancer drug paclitaxel, but not the integrin antagonist ATN-161. While paclitaxel and its combination with ATN-161 resulted in a treatment response of 33-37.8%, ATN-161 alone had no effect on tumour growth and peritoneal spread. The semi-synthetic biomaterial GelMA combines relevant natural cues with tunable properties, providing an alternative, bioengineered 3-D cancer cell culture in in vitro and in vivo model systems.
Collapse
|
28
|
Rao SS, Lannutti JJ, Viapiano MS, Sarkar A, Winter JO. Toward 3D biomimetic models to understand the behavior of glioblastoma multiforme cells. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:314-27. [PMID: 24044776 DOI: 10.1089/ten.teb.2013.0227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) tumors are one of the most deadly forms of human cancer and despite improved treatments, median survival time for the majority of patients is a dismal 12-15 months. A hallmark of these aggressive tumors is their unique ability to diffusively infiltrate normal brain tissue. To understand this behavior and successfully target the mechanisms underlying tumor progression, it is crucial to develop robust experimental ex vivo disease models. This review discusses current two-dimensional (2D) experimental models, as well as animal-based models used to examine GBM cell migration, including their advantages and disadvantages. Recent attempts to develop three-dimensional (3D) tissue engineering-inspired models and their utility in unraveling the role of microenvironment on tumor cell behaviors are also highlighted. Further, the use of 3D models to bridge the gap between 2D and animal models is explored. Finally, the broad utility of such models in the context of brain cancer research is examined.
Collapse
Affiliation(s)
- Shreyas S Rao
- 1 William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio
| | | | | | | | | |
Collapse
|
29
|
A novel tissue engineered three-dimensional in vitro colorectal cancer model. Acta Biomater 2013; 9:7917-26. [PMID: 23624217 PMCID: PMC3711238 DOI: 10.1016/j.actbio.2013.04.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
The interactions of cancer cells within a solid mass with the surrounding reactive stroma are critical for growth and progression. The surrounding vasculature is recruited into the periphery of the growing tumour to supply cancer cells with nutrients and O2. This study focuses on developing a novel three-dimensional (3-D) in vitro biomimetic colorectal cancer model using colorectal cancer cells and connective tissue cells. The 3-D model comprises a dense artificial cancer mass, created by partial plastic compression of collagen type I containing HT29 colorectal cancer cells, nested in a non-dense collagen type I gel populated by fibroblasts and/or endothelial cells. HT29 cells within the dense mass proliferate slower than when cultured in a two-dimensional system. These cells form tumour spheroids which invade the surrounding matrix, away from the hypoxic conditions in the core of the construct, measured using real time O2 probes. This model is also characterized by the release of vascular endothelial growth factor (VEGF) by HT29 cells, mainly at the invading edge of the artificial cancer mass. This characterization is fundamental in establishing a reproducible, complex model that could be used to advance our understanding of cancer pathology and will facilitate therapeutic drug testing.
Collapse
|
30
|
Pedron S, Becka E, Harley BAC. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials 2013; 34:7408-17. [PMID: 23827186 DOI: 10.1016/j.biomaterials.2013.06.024] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Human glioblastoma multiforme (hGBM) is the most common, aggressive, and deadly form of brain cancer. A major obstacle to understanding the impact of extracellular cues on glioblastoma invasion is the absence of model matrix systems able to replicate compositional and structural elements of the glioma mass as well as the surrounding brain tissue. Contact with a primary extracellular matrix component in the brain, hyaluronan, is believed to play a pivotal role in glioma cell invasion and malignancy. In this study we report use of gelatin and poly(ethylene glycol) (PEG) based hydrogel platforms to evaluate the effect of extracellular (composition, mechanics, HA incorporation) and intracellular (epidermal growth factor receptor overexpression) factors on the malignant transformation of U87MG glioma cells. Three-dimensional culture platforms elicit significantly different responses of U87MG glioma cells versus standard 2D culture. Critically, grafting brain-mimetic hyaluronic acid (HA) into the hydrogel network was found to induce significant, dose-dependent alterations of markers of glioma malignancy versus non-grafted 3D gelatin or PEG hydrogels. Clustering of glioma cells was observed exclusively in HA containing gels and expression profiles of malignancy-associated genes were found to vary biphasically with incorporated HA content. We also found HA-induced expression of MMP-2 is blocked by +EGFR signaling, suggesting a connection between CD44 and EGFR in glioma malignancy. Together, this work describes an adaptable platform for manipulating the local extracellular microenvironment surrounding glioma cells and highlights the importance of developing such systems for investigating the etiology and early growth of glioblastoma multiforme tumors.
Collapse
Affiliation(s)
- Sara Pedron
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
31
|
Pedron S, Harley BAC. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J Biomed Mater Res A 2013; 101:3404-15. [DOI: 10.1002/jbm.a.34637] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/06/2022]
Affiliation(s)
- S. Pedron
- Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana IL 61801
| | - B. A. C. Harley
- Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana IL 61801
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; Urbana IL 61801
| |
Collapse
|
32
|
Zimmermann M, Box C, Eccles SA. Two-dimensional vs. three-dimensional in vitro tumor migration and invasion assays. Methods Mol Biol 2013; 986:227-52. [PMID: 23436416 DOI: 10.1007/978-1-62703-311-4_15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Motility and invasion are key hallmarks that distinguish benign from malignant tumors, enabling cells to cross tissue boundaries, disseminate in blood and lymph and establish metastases at distant sites. Similar properties are also utilized by activated endothelial cells during tumor-induced angiogenesis. It is now appreciated that these processes might provide a rich source of novel molecular targets with the potential for inhibitors to restrain both metastasis and neoangiogenesis. Such therapeutic strategies require assays that can rapidly and quantitatively measure cell movement and the ability to traverse physiological barriers. The need for high-throughput, however, must be balanced by assay designs that accommodate, as far as possible, the complexity of the in vivo tumor microenvironment. This chapter aims to give an overview of some commonly used migration and invasion assays to aid in the selection of a balanced portfolio of techniques for the rapid and accurate evaluation of novel therapeutic agents.
Collapse
Affiliation(s)
- Miriam Zimmermann
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, McElwain Laboratories, The Institute of Cancer Research, Surrey, UK
| | | | | |
Collapse
|
33
|
Demange E, Kassim Y, Petit C, Buquet C, Dulong V, Cerf DL, Buchonnet G, Vannier JP. Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry. J Tissue Eng Regen Med 2012; 7:901-10. [PMID: 22473677 DOI: 10.1002/term.1482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 12/28/2011] [Accepted: 01/16/2012] [Indexed: 11/09/2022]
Abstract
Haematopoietic stem cells (HSCs) and haematopoietic progenitor cells (HPCs) grow in a specified niche in close association with the microenvironment, the so-called 'haematopoietic niche'. Scaffolds have been introduced to overcome the liquid culture limitations, mimicking the presence of the extracellular matrix (ECM). In the present study the hyaluronic acid scaffold, already developed in the laboratory, has been used for the first time to maintain long-term cultures of CD34⁺ haematopoietic cells obtained from human cord blood. One parameter investigated was the impact on ex vivo survival of CD34⁺ cord blood cells (CBCs) on the hyaluronic acid surface, immobilized with peptides containing the RGD motif. This peptide was conjugated by coating the hyaluronan hydrogel and cultured in serum-free liquid phase complemented with stem cell factor (SCF), a commonly indispensable cytokine for haematopoiesis. Our work demonstrated that these hyaluronan hydrogels were superior to traditional liquid cultures by maintaining and expanding the HPCs without the need for additional cytokines, and a colonization of 280-fold increment in the hydrogel compared with liquid culture after 28 days of ex vivo expansion.
Collapse
Affiliation(s)
- Elise Demange
- Laboratory MERCI EA3829, University of Rouen, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dulong V, Mocanu G, Picton L, Le Cerf D. Amphiphilic and thermosensitive copolymers based on pullulan and Jeffamine®: Synthesis, characterization and physicochemical properties. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.09.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Ananthanarayanan B, Kim Y, Kumar S. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 2011; 32:7913-23. [PMID: 21820737 DOI: 10.1016/j.biomaterials.2011.07.005] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/04/2011] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is a malignant brain tumor characterized by diffuse infiltration of single cells into the brain parenchyma, which is a process that relies in part on aberrant biochemical and biophysical interactions between tumor cells and the brain extracellular matrix (ECM). A major obstacle to understanding ECM regulation of GBM invasion is the absence of model matrix systems that recapitulate the distinct composition and physical structure of brain ECM while allowing independent control of adhesive ligand density, mechanics, and microstructure. To address this need, we synthesized brain-mimetic ECMs based on hyaluronic acid (HA) with a range of stiffnesses that encompasses normal and tumorigenic brain tissue and functionalized these materials with short Arg-Gly-Asp (RGD) peptides to facilitate cell adhesion. Scanning electron micrographs of the hydrogels revealed a dense, sheet-like microstructure with apparent nanoscale porosity similar to brain extracellular space. On flat hydrogel substrates, glioma cell spreading area and actin stress fiber assembly increased strongly with increasing density of RGD peptide. Increasing HA stiffness under constant RGD density produced similar trends and increased the speed of random motility. In a three-dimensional (3D) spheroid paradigm, glioma cells invaded HA hydrogels with morphological patterns distinct from those observed on flat surfaces or in 3D collagen-based ECMs but highly reminiscent of those seen in brain slices. This material system represents a brain-mimetic model ECM with tunable ligand density and stiffness amenable to investigations of the mechanobiological regulation of brain tumor progression.
Collapse
Affiliation(s)
- Badriprasad Ananthanarayanan
- Department of Bioengineering and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
36
|
Nyga A, Cheema U, Loizidou M. 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 2011; 5:239-48. [PMID: 21499821 PMCID: PMC3145874 DOI: 10.1007/s12079-011-0132-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022] Open
Abstract
3D in vitro models have been used in cancer research as a compromise between 2-dimensional cultures of isolated cancer cells and the manufactured complexity of xenografts of human cancers in immunocompromised animal hosts. 3D models can be tailored to be biomimetic and accurately recapitulate the native in vivo scenario in which they are found. These 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Approaches to create more biomimetic 3D models of cancer include, but are not limited to, (i) providing the appropriate matrix components in a 3D configuration found in vivo, (ii) co-culturing cancer cells, endothelial cells and other associated cells in a spatially relevant manner, (iii) monitoring and controlling hypoxia- to mimic levels found in native tumours and (iv) monitoring the release of angiogenic factors by cancer cells in response to hypoxia. This article aims to overview current 3D in vitro models of cancer and review strategies employed by researchers to tackle these aspects with special reference to recent promising developments, as well as the current limitations of 2D cultures and in vivo models. 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Here we review current strategies in the field of modelling cancer, with special reference to advances in complex 3D in vitro models.
Collapse
Affiliation(s)
- Agata Nyga
- Centre for Nanotechnology, Biomaterials and Tissue Engineering, University College London, London, UK
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Umber Cheema
- UCL Division of Surgery & Interventional Science, University College London, London, UK
- Tissue Repair and Engineering Centre, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore Campus, London, HA7 4LP UK
| | - Marilena Loizidou
- Centre for Nanotechnology, Biomaterials and Tissue Engineering, University College London, London, UK
- UCL Division of Surgery & Interventional Science, University College London, London, UK
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, 9th floor, Pond Street, NW3 2QG London, UK
| |
Collapse
|
37
|
Dulong V, Forbice R, Condamine E, Le Cerf D, Picton L. Pullulan–STMP hydrogels: a way to correlate crosslinking mechanism, structure and physicochemical properties. Polym Bull (Berl) 2011. [DOI: 10.1007/s00289-010-0435-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Colinet I, Dulong V, Mocanu G, Picton L, Le Cerf D. Effect of chitosan coating on the swelling and controlled release of a poorly water-soluble drug from an amphiphilic and pH-sensitive hydrogel. Int J Biol Macromol 2010; 47:120-5. [DOI: 10.1016/j.ijbiomac.2010.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 11/30/2022]
|
39
|
Coquerel B, Poyer F, Torossian F, Dulong V, Bellon G, Dubus I, Reber A, Vannier JP. Elastin-derived peptides: matrikines critical for glioblastoma cell aggressiveness in a 3-D system. Glia 2010; 57:1716-26. [PMID: 19373935 DOI: 10.1002/glia.20884] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the most common primary brain tumors, malignant glioma cells invade the extracellular matrix (ECM) and proliferate rapidly in the cerebral tissue, which is mainly composed of hyaluronan (HA) along with the elastin present in the basement membrane of blood vessels. To determine the role of ECM components in the invasive capacity of glioma cell lines, we developed a 3-D cell-culture system, based on a hydrogel in which HA can be coreticulated with kappa-elastin (HA-kappaE). Using this system, the invasiveness of cells from four glioma cell lines was dramatically increased by the presence of kappaE and a related, specific peptide (VGVAPG)(3). In addition, MMP-2 secretion increased and MMP-12 synthesis occurred. Extracellular injections of kappaE or (VGVAPG)(3) provoked a pronounced and dose-dependent increase in [Ca(2+)](i). kappaE significantly enhanced the expression of the genes encoding elastin-receptor and tropoelastin. We propose the existence of a positive feedback loop in which degradation of elastin generates fragments that stimulate synthesis of tropoelastin followed by further degradation as well as migration and proliferation of the very cells responsible for degradation. All steps in this ECM-based loop could be blocked by the addition of either of the EBP antagonists, lactose, and V-14 peptide, suggesting that the loop itself should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- Bérénice Coquerel
- Groupe de Recherche, Micro-Environnement et Renouvellement Cellulaire Intégré, MERCI UPRES EA3829, Faculté de Médecine et Pharmacie, Université de Rouen, 76183 Rouen Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jin SG, Jeong YI, Jung S, Ryu HH, Jin YH, Kim IY. The effect of hyaluronic Acid on the invasiveness of malignant glioma cells : comparison of invasion potential at hyaluronic Acid hydrogel and matrigel. J Korean Neurosurg Soc 2009; 46:472-8. [PMID: 20041058 DOI: 10.3340/jkns.2009.46.5.472] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/16/2009] [Accepted: 10/25/2009] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Hyaluronidase (HAse), a degrading enzyme of hyaluronic acid (HA), is highly expressed in patients with malignant glioma. The purpose of this study was to verify whether HAse is related to the invasion of glioma cells. We also investigated if glioma cells with higher mobility in 2-dimensioal (2-D) method have also higher mobility at 3-dimensional (3-D) environment. METHODS Malignant glioma cell lines (U87MG, U251MG, U343MG-A, and U373MG) were used, and their HAse expressions were evaluated by HA zymography. The migration ability was evaluated by simple scratch technique. The invasiveness of each cell lines was evaluated by Matrigel invasion assay and HA hydrogel invasion assay. In HA hydrogel invasion assay, colonies larger than 150 microm were regarded as positive ones and counted. Statistical analysis of migration ability and invasion properties of each cell lines was performed using t-test. RESULTS In scratch test to examine migration ability of each cell lines, U87MG cells were most motile than others, and U343MG-A least motile. The HAse was expressed in U251MG and U343MG-A cell lines. However, U87MG and U373MG cell lines did not express HAse activity. In Matrigel invasion assay, the cell lines expressing HAse (U251MG and U343MG-A) were more invasive in the presence of HA than HAse deficient cell lines (U87MG and U373MG). In HA hydrogel invasion assay, the HAse-expressing cell lines formed colonies more invasively than HAse-deficient ones. CONCLUSION Malignant Glioma cells expressing HAse were more invasive than HAse-deficient ones in 3-dimensional environment. Therefore, it might be suggested that invasion of malignant gliomas is suppressed by inhibition of HAse expression or HA secretion. Additionally, the ability of 2-D migration and 3-D invasion might not be always coincident to each other in malignant glioma cells.
Collapse
Affiliation(s)
- Shu-Guang Jin
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital & Medical School, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
41
|
David L, Dulong V, Coquerel B, Le Cerf D, Cazin L, Lamacz M, Vannier JP. Collagens, stromal cell-derived factor-1alpha and basic fibroblast growth factor increase cancer cell invasiveness in a hyaluronan hydrogel. Cell Prolif 2008; 41:348-64. [PMID: 18336478 DOI: 10.1111/j.1365-2184.2008.00515.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE Beyond to control of cell migration, differentiation and proliferation, the extracellular matrix (ECM) also contributes to invasiveness of human cancers. As the roles of hyaluronan (HA) and collagens in this process are still controversial, we have investigated their involvement in cancer pathogenesis. MATERIALS AND METHODS With this aim in view, we developed a three-dimensional matrix, as reticulate HA hydrogel alone or coated with different collagens, in which cells could invade and grow. RESULTS We show that cancer cells, which were non-invasive in a single HA hydrogel, acquired this capacity in the concomitant presence of type I or III collagens. Both types of ECM compound, HA and collagens, possess the capacity to stimulate production of metalloprotease-2, recognized otherwise as a factor for poor cancer prognosis. HA-provoked cellular invasiveness resulted from CD44-mediated increase in cytosolic [Ca2+] and its subsequent hydrolysis due to ADAM (a disintegrin and metalloprotease) proteolytic activity. Interestingly, this mechanism seemed to be absent in non-invasive cancer cell lines. CONCLUSION Furthermore, using basic fibroblast growth factor and stromal cell-derived factor-1alpha, we also show that this three-dimensional reticulate matrix may be considered as a valuable model to study chemokinetic and chemotactic potentials of factors present in tumour stroma.
Collapse
Affiliation(s)
- L David
- Groupe de Recherche sur le Micro-Environnement et le Renouvellement Cellulaire Intégré (M.E.R.C.I., UPRES EA 3829), Faculté de Médecine Pharmacie, Université de ROUEN, Rouen, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
David L, Dulong V, Le Cerf D, Cazin L, Lamacz M, Vannier JP. Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomater 2008; 4:256-63. [PMID: 17936097 DOI: 10.1016/j.actbio.2007.08.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/18/2007] [Accepted: 08/20/2007] [Indexed: 11/17/2022]
Abstract
The extracellular polysaccharide hyaluronan (HA) controls cell migration, differentiation and proliferation, and contributes to the invasiveness of human cancers. In order to investigate the sensitivity of cancer cells to antimitotic agents, we developed a cross-linked HA hydrogel, a three-dimensional matrix in which cells can invade and grow. We have studied three cell lines (SA87, NCI-H460 and H460M), from primary tumors and metastases, that migrated into the HA hydrogel and proliferated giving rise to clusters and colonies. Concurrently, we studied the growth of these cell lines in a usual monolayer culture system. In these two models, increasing concentrations of doxorubicin and 5-fluorouracil were evaluated for their ability to inhibit tumor cell growth and colony formation. Taken together, our data suggest that the cancer cells were more resistant in the three-dimensional model than in monolayer cell systems. The antimitotic drugs were efficient after 24h of treatment in the monolayer cultures, whereas they were significantly efficient only after one week of incubation in the HA hydrogels. Herein, we show that this cross-linked matrix provides a three-dimensional model particularly appropriate for investigating mechanisms involved in cancer cell line sensitivity to antimitotic drugs.
Collapse
Affiliation(s)
- Laurent David
- Groupe de Recherche sur le Micro-Environnement et le Renouvellement Cellulaire Intégré (MERCI, UPRES EA 3829), Faculté de Médecine Pharmacie, Université de Rouen, 22 boulevard Gambetta, 76183 Rouen, France.
| | | | | | | | | | | |
Collapse
|
43
|
Pisanti S, Borselli C, Oliviero O, Laezza C, Gazzerro P, Bifulco M. Antiangiogenic activity of the endocannabinoid anandamide: correlation to its tumor-suppressor efficacy. J Cell Physiol 2007; 211:495-503. [PMID: 17192847 DOI: 10.1002/jcp.20954] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endocannabinoids are now emerging as suppressors of key cell-signaling pathways involved in cancer cell growth, invasion, and metastasis. We have previously observed that the metabolically stable anandamide analog, 2-methyl-2'-F-anandamide (Met-F-AEA) can inhibit the growth of thyroid cancer in vivo. Our hypothesis was that the anti-tumor effect observed could be at least in part ascribed to inhibition of neo-angiogenesis. Therefore, the aim of this study was to assess the anti-angiogenic activity of Met-F-AEA, to investigate the molecular mechanisms underlying this effect and whether Met-F-AEA could antagonize tumor-induced endothelial cell sprouting. We show that Met-F-AEA inhibited bFGF-stimulated endothelial cell proliferation, in a dose-dependent manner, and also induced apoptosis, both effects reliant on cannabinoid CB1 receptor stimulation. Analyzing the signaling pathways implicated in angiogenesis, we observed that the bFGF-induced ERK phosphorylation was antagonized by Met-F-AEA, and we found that p38 MAPK was involved in Met-F-AEA-induced apoptosis. Moreover, Met-F-AEA was able to inhibit bi-dimensional capillary-like tube formation and activity of matrix metalloprotease MMP-2, a major matrix degrading enzyme. Importantly, we demonstrated that Met-F-AEA is also functional in vivo since it inhibited angiogenesis in the chick chorioallantoic neovascularization model. Finally, Met-F-AEA inhibited tumor-induced angiogenesis in a three-dimensional model of endothelial and thyroid tumor cell (KiMol) spheroids co-cultures in different 3-D polymeric matrices that resemble tumor microenvironment and architecture. Thus, our results suggest that anandamide could be involved in the control of cancer growth targeting both tumor cell proliferation and the angiogenic stimulation of the vasculature.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Arachidonic Acids/pharmacology
- Arachidonic Acids/therapeutic use
- Cannabinoid Receptor Modulators/pharmacology
- Cannabinoid Receptor Modulators/therapeutic use
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chick Embryo
- Chorioallantoic Membrane/blood supply
- Chorioallantoic Membrane/drug effects
- Coculture Techniques
- Dose-Response Relationship, Drug
- Endocannabinoids
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Humans
- MAP Kinase Signaling System/drug effects
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase Inhibitors
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Neovascularization, Physiologic/drug effects
- Polyunsaturated Alkamides/pharmacology
- Polyunsaturated Alkamides/therapeutic use
- Rats
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Spheroids, Cellular
- Swine
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Pharmaceutical Sciences, University of Salerno, Fisciano, Salerno, Italy
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Song L, Zhao B, Xie J, Zhao J. Interactions of hypocrellin B with hyaluronan and photo-induced interactions. Biochim Biophys Acta Gen Subj 2006; 1760:333-9. [PMID: 16481115 DOI: 10.1016/j.bbagen.2006.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 12/27/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
In the current work, the molecular recognition and interaction were studied by taking advantages of the environmentally sensitive fluorescence of hypocrellin B (HB) and the structural knowledge of hyaluronan (HYA), a polysaccharide over-expressed in tumor cells or tissues. Interestingly, it was found that, binding to HYA, the absorbance of HB would be greatly strengthened, suggesting HB fitting to a hydrophobic environment in HYA, while the fluorescence seriously quenched at pH 7.0, which was very distinct from the binding of HB to proteins, liposome, other polysaccharide molecules or HYA at pH 2.0. Synchronously, the particle size of HYA would become bigger after interaction with HB, suggesting an aggregation of HYA. Considering the spectral responses of HB and the particle size change of HYA, a specific interaction of HB with HYA was proposed, that is, an HB molecule would link two HYA molecules not only by hydrophobic interaction but also by formations of intermolecular hydrogen bonds at physiological pH values. Furthermore, the estimated binding constant suggests a quite high affinity of HB to HYA. Besides, an oxygen-dependent degradation of HYA and photobleaching of HB were observed via photosensitization of HB.
Collapse
Affiliation(s)
- Liming Song
- Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Dulong V, Cerf DL, Picton L, Muller G. Carboxymethylpullulan hydrogels with a ionic and/or amphiphilic behavior: Swelling properties and entrapment of cationic and/or hydrophobic molecules. Colloids Surf A Physicochem Eng Asp 2006. [DOI: 10.1016/j.colsurfa.2005.08.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Pan N, Cai X, Tang K, Zou G. Unfolding Features of Bovine Testicular Hyaluronidase Studied by Fluorescence Spectroscopy and Fourier Transformed Infrared Spectroscopy. J Fluoresc 2005; 15:841-7. [PMID: 16292497 DOI: 10.1007/s10895-005-0011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Chemical unfolding of bovine testicular hyaluronidase (HAase) has been studied by fluorescence spectroscopy and Fourier transformed infrared spectroscopy (FTIR). Thermodynamic parameters were determined for unfolding HAase from changes in the intrinsic fluorescence emission intensity and the formations of several possible unfolding intermediates have been identified. This was further confirmed by representation of fluorescence data in terms of 'phase diagram'. The secondary structures of HAase have been assigned and semiquantitatively estimated from the FTIR. The occurrence of conformational change during chemical unfolding as judged by fluorescence and FTIR spectroscopy indicated that the unfolding of HAase may not follow the typical two-state model.
Collapse
Affiliation(s)
- Nina Pan
- State Key Laboratory of Virology, Department of Biotechnology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
48
|
Eccles SA, Box C, Court W. Cell migration/invasion assays and their application in cancer drug discovery. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:391-421. [PMID: 16216785 DOI: 10.1016/s1387-2656(05)11013-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Invasive capacity is the single most important trait that distinguishes benign from malignant lesions. Tumour cells, during intravasation and extravasation of blood and lymphatic channels and when establishing colonies at secondary sites, must move through tissue boundaries that normal adult cells (other than, for example activated leukocytes) do not cross. Similar mechanisms are also utilised by activated endothelial cells during the generation of new blood vessels that enable the sustained growth and dissemination of tumours. It is now increasingly recognised that these processes--cell motility and invasion--might provide a rich source of novel targets for cancer therapy and that appropriate inhibitors may restrain both metastasis and neoangiogenesis. This new paradigm demands screening assays that can rapidly and quantitatively measure cell movement and the ability to traverse physiological barriers. We also need to consider whether simple reductionist in vitro approaches can reliably model the complexity of in vivo tumour invasion/neoangiogenesis. There are both opportunities and challenges ahead in developing a balanced portfolio of assays that will be able to evaluate accurately and finally deliver novel anti-invasive agents with therapeutic potential for clinical use.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Centre for Cancer Therapeutics, McElwain Laboratories, Institute of Cancer Research, Cotswold Road, Belmont, Sutton, Surrey, SM2 5NG, UK.
| | | | | |
Collapse
|