1
|
Pereira BP, Silva AO, Awata WMC, Pimenta GF, Ribeiro JM, de Faria Almeida CA, Antonietto CRK, Dos Reis LFC, Esteves A, Torres LHL, de Araújo Paula FB, Ruginsk SG, Tirapelli CR, Rizzi E, Ceron CS. Curcumin Prevents Renal Damage of l-NAME Induced Hypertension in by Reducing MMP-2 and MMP-9. Cell Biochem Funct 2024; 42:e4119. [PMID: 39244707 DOI: 10.1002/cbf.4119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
In the present study, we investigated whether curcumin administration would interfere with the main renal features of l-NAME-induced hypertension model. For this purpose, we conducted both in vitro and in vivo experiments to evaluate renal indicators of inflammation, oxidative stress, and metalloproteinases (MMPs) expression/activity. Hypertension was induced by l-NAME (70 mg/kg/day), and Wistar rats from both control and hypertensive groups were treated with curcumin (50 or 100 mg/kg/day; gavage) or vehicle for 14 days. Blood and kidneys were collected to determine serum creatinine levels, histological alterations, oxidative stress, MMPs expression and activity, and ED1 expression. l-NAME increased blood pressure, but both doses of curcumin treatment reduced these values. l-NAME treatment increased creatinine levels, glomeruli area, Bowman's space, kidney MMP-2 activity, as well as MMP-9 and ED1 expression, and reduced the number of glomeruli. Curcumin treatment prevented the increase in creatinine levels, MMP-2 activity, and reduced MMP-2, MMP-9, ED1, and superoxide levels, as well as increased superoxide dismutase activity and partially prevented glomeruli alterations. Moreover, curcumin directly inhibited MMP-2 activity in vitro. Thus, our main findings demonstrate that curcumin reduced l-NAME-induced hypertension and renal glomerular alterations, inhibited MMP-2 and MMP-9 expression/activity, and reduced oxidative stress and inflammatory processes, which may indirectly impact hypertension-induced renal outcomes.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Alessandra Oliveira Silva
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | - Gustavo Félix Pimenta
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, São Paulo, Brazil
| | - Jéssyca Milene Ribeiro
- Food and Medicines Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | | | - Luis Felipe Cunha Dos Reis
- Department of Structural Biology, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Alessandra Esteves
- Department of Anatomy, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Sílvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carlos Renato Tirapelli
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, São Paulo, Brazil
| | - Ellen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto (UNAERP), Ribeirão Preto, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
2
|
de Oliveira Neves VG, Blascke de Mello MM, Rodrigues D, Pernomian L, de Oliveira IS, Parente JM, Arantes EC, Tostes RC, Castro MM. Type I collagen proteolysis by matrix metalloproteinase-2 contributes to focal adhesion kinase activation and vascular smooth muscle cell proliferation in the aorta in early hypertension. Vascul Pharmacol 2023; 152:107211. [PMID: 37607602 DOI: 10.1016/j.vph.2023.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Increased matrix metalloproteinase (MMP)-2 activity contributes to increase vascular smooth muscle cell (VSMC) proliferation in the aorta in early hypertension by cleaving many proteins of the extracellular matrix. Cleaved products from type I collagen may activate focal adhesion kinases (FAK) that trigger migration and proliferation signals in VSMC. We therefore hypothesized that increased activity of MMP-2 proteolyzes type I collagen in aortas of hypertensive rats, and thereby, induces FAK activation, thus leading to increased VSMC proliferation and hypertrophic remodeling in early hypertension. METHODS Male Sprague-Dawley rats were submitted to renovascular hypertension by the two kidney-one clip (2K1C) model and treated with doxycycline (30 mg/kg/day) by gavage from the third to seventh-day post-surgery. Controls were submitted to sham surgery. Systolic blood pressure (SBP) was measured daily by tail-cuff plethysmography and the aortas were processed for zymography and Western blot for MMP-2, pFAK/FAK, integrins and type I collagen. Mass spectrometry, morphological analysis and Ki67 immunofluorescence were also done to identify collagen changes and VSMC proliferation. A7r5 cells were stimulated with collagen and treated with the MMP inhibitors (doxycycline or ARP-100), and with the FAK inhibitor PND1186 for 24 h. Cells were lysed and evaluated by Western blot for pFAK/FAK. RESULTS 2K1C rats developed elevated SBP in the first week as well as increased expression and activity of MMP-2 in the aorta (p < 0.05 vs. Sham). Treatment with doxycycline reduced both MMP activity and type I collagen proteolysis in aortas of 2K1C rats (p < 0.05). Increased pFAK/FAK and increased VSMC proliferation (p < 0.05 vs. Sham groups) were also seen in the aortas of 2K1C and doxycycline decreased both parameters (p < 0.05). Higher proliferation of VSMC contributed to hypertrophic remodeling as seen by increased media/lumen ratio and cross sectional area (p < 0.05 vs Sham groups). In cell culture, MMP-2 cleaves collagen, an effect reversed by MMP inhibitors (p < 0.05). Increased levels of pFAK/FAK were observed when collagen was added in the culture medium (p < 0.05 vs control) and MMP and FAK inhibitors reduced this effect. CONCLUSIONS Increase in MMP-2 activity proteolyzes type I collagen in the aortas of 2K1C rats and contributes to activate FAK and induces VSMC proliferation during the initial phase of hypertension.
Collapse
Affiliation(s)
- Viviano Gomes de Oliveira Neves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Marcela M Blascke de Mello
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Laena Pernomian
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Juliana M Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
3
|
Rocha TLA, Borges TF, Rodrigues SD, Martins LZ, da Silva MLS, Bonacio GF, Rizzi E, Dias-Junior CA. Sevoflurane and isoflurane anesthesia induce redox imbalance, but only sevoflurane impairs vascular contraction. Fundam Clin Pharmacol 2023; 37:937-946. [PMID: 37085979 DOI: 10.1111/fcp.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Volatile anesthetics may cause vascular dysfunction; however, underlying effects are unclear. The aim of the present study was to investigate whether sevoflurane and isoflurane affect vascular function, nitric oxide (NO) bioavailability, and biomarkers of oxidative stress and inflammation. Wistar rats were divided into three experimental groups: Not anesthetized (control group) or submitted to anesthesia with isoflurane (Iso group) or sevoflurane (Sevo group). Hemodynamic parameters were monitored during anesthesia, and blood gas values and biochemical determinants were analyzed. Isometric contractions were recorded in aortic rings. Vasoconstriction induced by potassium chloride (KCl) and phenylephrine (Phe) were measured. No differences in hemodynamic parameters and blood gasses variables were observed. Impaired KCl and Phe-induced contractions were observed in endothelium-intact aorta of Sevo compared to Iso and Control groups. Redox imbalance was found in Sevo and Iso groups. Reduced NO bioavailability and increased activity of matrix metalloproteinase 2 (MMP-2) were observed in Sevo, but not in the Iso group. While reduced IL-10 and IL-1β were observed in Sevo, increases in IL-1β in the Iso group were found. Sevoflurane, but not isoflurane, anesthesia impairs vasocontraction, and reduced NO and cytokines and increased MMP-2 activity may be involved in vascular dysfunction after sevoflurane anesthesia.
Collapse
Affiliation(s)
- Thalita L A Rocha
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Teubislete F Borges
- Department of Anesthesiology, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Serginara D Rodrigues
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Laisla Z Martins
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Maria L S da Silva
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Gisele F Bonacio
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos A Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
4
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
5
|
Ahmed AA, Mohamed SK, Nofal S, El Morsy EM, Ahmed AAE. Effect of bempedoic acid on angiotensin-II induced hypertension and vascular tissue remodelling in renal hypertensive rats through AMPK multiple signalling pathways modulation. Life Sci 2023; 320:121573. [PMID: 36931497 DOI: 10.1016/j.lfs.2023.121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Angiotensin II (Ang II), the effector of the renin-angiotensin system (RAS), is a key player in the pathogenesis of chronic hypertension, accompanied by vascular tissue resistance, remodelling, and damage. Chronic activation of Ang II receptor 1 (AT-1R) impairs multiple cellular targets implicated in cellular protection and survival, including adenosine Monophosphate-activated protein kinase (AMPK) signalling. In addition, it induces oxidative damage, endoplasmic reticulum (ER) stress, and fibrotic changes in resistance vessels. Our study investigated the antihypertensive and antifibrotic effects of bempedoic acid, a first-in-class antihyperlipidemic drug that targets adenosine triphosphate-citrate lyase enzyme to inhibit cholesterol synthesis. We also studied the modulation of multiple AMPK signalling pathways by bempedoic acid in a chronic hypertension model in rats. Sixty male Sprague-Dawley rats were divided into four groups: sham group, hypertensive group, standard captopril group, and bempedoic treated group. All groups underwent left renal artery ligation except the sham group. Fourteen days post-surgery, captopril and bempedoic acid were administered with a dose of 30 mg/kg/day orally to captopril-standard and bempedoic acid-treated groups for two weeks, respectively. In mesenteric resistance arteries, bempedoic acid activated AMPK energy independently and augmented AMPK multiple cellular targets to adapt to Ang II-induced cellular stress. It exerted antioxidant activity, increased endothelial nitric oxide synthase, and reversed the ER stress. Bempedoic acid maintained vascular integrity and prevented vascular remodelling by inhibiting extracellular signal-regulated kinase (ERK)/transforming growth factor-β fibrotic pathway. These effects were reflected in the improved hemodynamic measurements.
Collapse
Affiliation(s)
- Asmaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt.
| | - Shimaa K Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Engy M El Morsy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| |
Collapse
|
6
|
Trentini A, Manfrinato MC, Castellazzi M, Bellini T. Sex-Related Differences of Matrix Metalloproteinases (MMPs): New Perspectives for These Biomarkers in Cardiovascular and Neurological Diseases. J Pers Med 2022; 12:jpm12081196. [PMID: 35893290 PMCID: PMC9331234 DOI: 10.3390/jpm12081196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
It is now established that sex differences occur in clinical manifestation, disease progression, and prognosis for both cardiovascular (CVDs) and central nervous system (CNS) disorders. As such, a great deal of effort is now being put into understanding these differences and turning them into “advantages”: (a) for the discovery of new sex-specific biomarkers and (b) through a review of old biomarkers from the perspective of the “newly” discovered sex/gender medicine. This is also true for matrix metalloproteinases (MMPs), enzymes involved in extracellular matrix (ECM) remodelling, which play a role in both CVDs and CNS disorders. However, most of the studies conducted up to now relegated sex to a mere confounding variable used for statistical model correction rather than a determining factor that can influence MMP levels and, in turn, disease prognosis. Consistently, this approach causes a loss of information that might help clinicians in identifying novel patterns and improve the applicability of MMPs in clinical practice by providing sex-specific threshold values. In this scenario, the current review aims to gather the available knowledge on sex-related differences in MMPs levels in CVDs and CNS conditions, hoping to shed light on their use as sex-specific biomarkers of disease prognosis or progression.
Collapse
Affiliation(s)
- Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Cristina Manfrinato
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.C.M.); (T.B.)
| | - Massimiliano Castellazzi
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.C.M.); (T.B.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Tiziana Bellini
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.C.M.); (T.B.)
| |
Collapse
|
7
|
Aires R, Gobbi Amorim F, Côco LZ, da Conceição AP, Zanardo TÉC, Taufner GH, Nogueira BV, Vasquez EC, Melo Costa Pereira T, Campagnaro BP, Dos Santos Meyrelles S. Use of kefir peptide (Kef-1) as an emerging approach for the treatment of oxidative stress and inflammation in 2K1C mice. Food Funct 2022; 13:1965-1974. [PMID: 35088783 DOI: 10.1039/d1fo01798e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The benefits of kefir consumption are partially due to the rich composition of bioactive molecules released from its fermentation. Angiotensin-converting enzyme (ACE) inhibitors are bioactive molecules with potential use in the treatment or prevention of hypertension, heart failure, and myocardial infarction. Here, the in vivo actions of the Kef-1 peptide, an ACE inhibitor derived from kefir, were evaluated in an angiotensin II-dependent hypertension model. The Kef-1 peptide showed a potential anti-hypertensive effect. Additionally, Kef-1 exhibited systemic antioxidant and anti-inflammatory activities. In smooth muscle cells (SMCs), the Kef-1 peptide decreased ROS production through the reduced participation of NADPH oxidase and mitochondria. The aorta of 2K1C mice treated with Kef-1 showed lesser wall-thickening and partial restoration of the endothelial structure. In conclusion, these novel findings highlight the in vivo biological potential of this peptide demonstrating that Kef-1 may be a relevant nutraceutical treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Rafaela Aires
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Amanda Pompermayer da Conceição
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Tadeu Ériton Caliman Zanardo
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Gabriel Henrique Taufner
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Breno Valentim Nogueira
- Biotechnology Graduate Program, Rede Nordeste de Biotecnologia (RENORBIO), Vitória, Brazil.,Tissue Engineering Core, Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Silvana Dos Santos Meyrelles
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espirito Santo (UFES), Vitoria, Brazil.
| |
Collapse
|
8
|
González-Blázquez R, Alcalá M, Cárdenas-Rebollo JM, Viana M, Steckelings UM, Boisvert WA, Unger T, Fernández-Alfonso MS, Somoza B, Gil-Ortega M. AT2R stimulation with C21 prevents arterial stiffening and endothelial dysfunction in the abdominal aorta from mice fed a high-fat diet. Clin Sci (Lond) 2021; 135:2763-2780. [PMID: 34854902 DOI: 10.1042/cs20210971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). Five-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks. Half of the animals of each group were simultaneously treated with C21 (1 mg/kg/day, in the drinking water), generating four groups: Chow C, Chow C21, HF C, and HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition and TGF-β1 concentrations were determined in the abdominal aorta and the activity of metalloproteinases (MMP) 2 and 9 was analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II. This effect was abrogated with C21 treatment by preserving NO availability. A left-shift in the tension-stretch relationship, paralleled by an augmented β-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-β1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice. In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - José Miguel Cárdenas-Rebollo
- Departamento de Matemática Aplicada y Estadística. Facultad de Ciencias Económicas y Empresariales. Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - Ulrike Muscha Steckelings
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB311, Honolulu, HI 96813, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28925, Madrid, Spain
| |
Collapse
|
9
|
Ceron CS, Pereira DA, Sandrim VC, Luizon MR. Potential roles of visfatin/NAMPT on endothelial dysfunction in preeclampsia and pathways underlying cardiac and vascular remodeling. J Cell Physiol 2021; 237:10-12. [PMID: 34486731 DOI: 10.1002/jcp.30572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Carla S Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniela A Pereira
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valéria C Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
do Vale GT, da Silva CBP, Sousa AH, Gonzaga NA, Parente JM, Araújo KM, Castro MM, Tirapelli CR. Nebivolol Prevents Up-Regulation of Nox2/NADPH Oxidase and Lipoperoxidation in the Early Stages of Ethanol-Induced Cardiac Toxicity. Cardiovasc Toxicol 2021; 21:224-235. [PMID: 33067693 DOI: 10.1007/s12012-020-09614-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Changes in redox state are described in the early stages of ethanol-induced cardiac toxicity. Here, we evaluated whether nebivolol would abrogate ethanol-induced redox imbalance in the heart. Male Wistar rats were treated with a solution of ethanol (20% v/v) for 3 weeks. Treatment with nebivolol (10 mg/kg/day; p.o. gavage) prevented the increase of both superoxide (O2•-) and thiobarbituric acid reactive substances (TBARS) in the left ventricle of rats chronically treated with ethanol. Neither ethanol nor nebivolol affected the expression of Nox4, p47phox, or Rac-1. Nebivolol prevented ethanol-induced increase of Nox2 expression in the left ventricle. Superoxide dismutase (SOD) activity as well as the concentration of reduced glutathione (GSH) was not altered by ethanol or nebivolol. Augmented catalase activity was detected in the left ventricle of both ethanol- and nebivolol-treated rats. Treatment with nebivolol, but not ethanol increased eNOS expression in the left ventricle. No changes in the activity of matrix metalloproteinase (MMP)2 or in the expressions of MMP2, MMP9, and tissue inhibitor metalloproteinase (TIMP)1 were detected after treatment with ethanol or nebivolol. However, ethanol increased the expression of TIMP2, and this response was prevented by nebivolol. Our results provided novel insights into the mechanisms underlying the early stages of the cardiac injury induced by ethanol consumption. We demonstrated that Nox2/NADPH oxidase-derived ROS play a role in ethanol-induced lipoperoxidation and that this response was prevented by nebivolol. In addition, we provided evidence that MMPs are not activated in the early stages of ethanol-induced cardiac toxicity.
Collapse
Affiliation(s)
- Gabriel T do Vale
- Universidade do Estado de Minas Gerais (UEMG), Passos, MG, Brazil
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carla B P da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Programa de Pós-graduação em Toxicologia, USP, Ribeirão Preto, SP, Brazil
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Arthur H Sousa
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Natália A Gonzaga
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Juliana M Parente
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Katiúscia M Araújo
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil
| | - Michele M Castro
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, USP, Avenida Bandeirantes 3900, CEP 14040-902, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Miguel-Dos-Santos R, Santos JFD, Macedo FN, Marçal AC, Santana Filho VJ, Wichi RB, Lauton-Santos S. Strength Training Reduces Cardiac and Renal Oxidative Stress in Rats with Renovascular Hypertension. Arq Bras Cardiol 2021; 116:4-11. [PMID: 33566958 PMCID: PMC8159508 DOI: 10.36660/abc.20190391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023] Open
Abstract
Fundamento O treino de força tem efeitos benéficos em doenças renais, além de ajudar a melhorar a defesa antioxidante em animais saudáveis. Objetivo Verificar se o treino de força reduz o dano oxidativo ao coração e rim contralateral para cirurgia de indução de hipertensão renovascular, bem como avaliar as alterações na atividade das enzimas antioxidantes endógenas superóxido dismutase (SOD), catalase (CAT) e glutationa peroxidase (GPx). Métodos Dezoito ratos machos foram divididos em três grupos (n=6/grupo): placebo, hipertenso e hipertenso treinado. Os animais foram induzidos a hipertensão renovascular através da ligação da artéria renal esquerda. O treino de força foi iniciado quatro semanas após a indução da hipertensão renovascular, teve 12 semanas de duração e foi realizada a 70% de 1RM. Depois do período de treino, os animais foram submetidos a eutanásia e o rim esquerdo e o coração foram retirados para realizar a quantificação de peróxidos de hidrogênio, malondialdeído e grupos sulfidrílicos, que são marcadores de danos oxidativos. Além disso, foram medidas as atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. O nível de significância adotado foi de 5% (p < 0,05). Resultados Depois do treino de força, houve redução de danos oxidativos a lipídios e proteínas, como pode-se observar pela redução de peróxidos de hidrogênio e níveis sulfidrílicos totais, respectivamente. Além disso, houve um aumento nas atividades das enzimas antioxidantes superóxido dismutase, catalase e glutationa peroxidase. Conclusão O treino de força tem o potencial de reduzir danos oxidativos, aumentando a atividades de enzimas antioxidantes. (Arq Bras Cardiol. 2021; 116(1):4-11)
Collapse
Affiliation(s)
- Rodrigo Miguel-Dos-Santos
- Norwegian University of Science and Technology - Cardiac Exercise Reserch Group, Department of Circulation and Medical Imaging, Trondheim - Noruega.,Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | | | - Fabricio Nunes Macedo
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Departamento de Educação Física, Centro Universitário Estácio de Sergipe, Aracaju, SE - Brasil
| | - Anderson Carlos Marçal
- Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Departamento de Morfologia da Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Valter J Santana Filho
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Medicina, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Rogerio Brandão Wichi
- Programa de Pós-Graduação em Educação Física, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| | - Sandra Lauton-Santos
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil.,Programa de Pós-Graduação em Medicina, Universidade Federal de Sergipe, São Cristóvão, SE - Brasil
| |
Collapse
|
12
|
Li W, Yu J, Zhao J, Xiao X, Li W, Zang L, Yu J, Liu H, Niu X. Poria cocos
polysaccharides reduces high‐fat diet‐induced arteriosclerosis in
ApoE
−/−
mice by inhibiting inflammation. Phytother Res 2020; 35:2220-2229. [DOI: 10.1002/ptr.6980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Weifeng Li
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jinjin Yu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jinmeng Zhao
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Xin Xiao
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Wenqi Li
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Lulu Zang
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jiabao Yu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Haijing Liu
- Quality Inspection Department Shaanxi Institute for Food and Drug Control Xi'an China
| | - Xiaofeng Niu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| |
Collapse
|
13
|
TNF-α inhibition decreases MMP-2 activity, reactive oxygen species formation and improves hypertensive vascular hypertrophy independent of its effects on blood pressure. Biochem Pharmacol 2020; 180:114121. [PMID: 32592722 DOI: 10.1016/j.bcp.2020.114121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Systemic arterial hypertension is a public health problem associated with an increased risk of cardiovascular disease. Matrix metalloproteinases (MMP) are endopeptidases that participate in hypertension-induced cardiovascular remodeling, which may be activated by oxidative stress. Angiotensin II (Ang II), a potent hypertrophic and vasoconstrictor peptide, increases oxidative stress, MMP-2 activity and tumor necrosis factor (TNF-α) expression. In vitro studies have shown that TNF-α is essential for Ang II-induced MMP-2 expression. Thus, this study evaluated whetherTNF-α inhibition decreases the development of hypertension-induced vascular remodeling via reduction of MMP-2 activity and reactive oxygen species (ROS) formation. Two distinct pharmacological approaches were used in the present study: Pentoxifylline (PTX), a non-selective inhibitor of phosphodiesterases that exerts anti- inflammatory effects via inhibition of TNF-α, and Etanercept (ETN), a selective TNF-α inhibitor. 2-kidney and 1-Clip (2K1C). 2-kidney and 1-Clip (2K1C) and Sham rats were treated with Vehicle, PTX (50 mg/Kg and 100 mg/kg daily) or ETN (0.3 mg/Kg and 1 mg/kg; three times per week). Systolic blood pressure (SBP) was measured weekly by tail cuff plethysmography. Plasma TNF-α and IL-1β levels were evaluated by enzyme-linked immunosorbent assay (ELISA) technique. The vascular hypertrophy was examined in the aorta sections stained with hematoxylin/eosin. ROS in aortas was evaluated by dihydroethidium and chemiluminescence lucigenin assay. Aortic MMP-2 levels and activity were evaluated by gel zymography and in situ zymography, respectively. The 2K1C animals showed a progressive increase in SBP levels and was accompanied by significant vascular hypertrophy (p < 0.05 vs Sham). Treatment with PTX at higher doses decreased SBP and vascular remodeling in 2K1C animals (p < 0.05 vs 2K1C vehicle). Although the highest dose of ETN treatment did not reduce blood pressure, the vascular hypertrophy was significantly attenuated in 2K1C animals treated with ETN1 (p < 0.05). The increased cytokine levels and ROS formation were reversed by the highest doses of both PTX and ETN. The increase in MMP-2 levels and activity in 2K1C animals were reduced by PTX100 and ETN1 treatments (p < 0.05 vs vehicle 2K1C). Lower doses of PTX and ETN did not affect any of the evaluated parameters in this study, except for a small reduction in TNF-α levels. The findings of the present study suggest that PTX and ETN treatment exerts immunomodulatory effects, blunted excessive ROS formation, and decreased renovascular hypertension-induced MMP-2 up-regulation, leading to improvement ofvascular remodeling typically found in 2K1C hypertension. Therefore, strategies using anti-hypertensive drugs in combination with TNF alpha inhibitors could be an attractive therapeutic approach to tackle hypertension and its associated vascular remodeling.
Collapse
|
14
|
Pereira BP, do Valle GT, Salles BCC, Costa KCM, Ângelo ML, Torres LHL, Novaes RD, Ruginsk SG, Tirapelli CR, de Araújo Paula FB, Ceron CS. Pyrrolidine dithiocarbamate reduces alloxan-induced kidney damage by decreasing nox4, inducible nitric oxide synthase, and metalloproteinase-2. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1899-1910. [PMID: 32440769 DOI: 10.1007/s00210-020-01906-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
We examined the effect of the NFκB inhibitor pyrrolidine-1-carbodithioic acid (PDTC) on inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2) activity, and oxidative and inflammatory kidney damage in alloxan-induced diabetes. Two weeks after diabetes induction (alloxan-130 mg/kg), control and diabetic rats received PDTC (100 mg/kg) or vehicle for 8 weeks. Body weight, glycemia, urea, and creatinine were measured. Kidney changes were measured in hematoxylin/eosin sections and ED1 by immunohistochemistry. Kidney thiobarbituric acid reactive substances (TBARS), superoxide anion (O2-), and nitrate/nitrite (NOx) levels, and catalase and superoxide dismutase (SOD) activities were analyzed. Also, kidney nox4 and iNOS expression, and NFkB nuclear translocation were measured by western blot, and MMP-2 by zymography. Glycemia and urea increased in alloxan rats, which were not modified by PDTC treatment. However, PDTC attenuated kidney structural alterations and macrophage infiltration in diabetic rats. While diabetes increased both TBARS and O2- levels, PDTC treatment reduced TBARS in diabetic and O2- in control kidneys. A decrease in NOx levels was found in diabetic kidneys, which was prevented by PDTC. Diabetes reduced catalase activity, and PDTC increased catalase and SOD activities in both control and diabetic kidneys. PDTC treatment reduced MMP-2 activity and iNOS and p65 NFκB nuclear expression found increased in diabetic kidneys. Our results show that the NFκB inhibitor PDTC reduces renal damage through reduction of Nox4, iNOS, macrophages, and MMP-2 in the alloxan-induced diabetic model. These findings suggest that PDTC inhibits alloxan kidney damage via antioxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Gabriel Tavares do Valle
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo - USP, Sao Paulo, Brazil
| | - Bruno César Côrrea Salles
- Departamento de Análises Clínicas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Karla Cristinne Mancini Costa
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Marilene Lopes Ângelo
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Larissa Helena Lobo Torres
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Rômulo Dias Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Sílvia Graciela Ruginsk
- Departamento de Ciências Fisiológicas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Carlos Renato Tirapelli
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo - USP, Sao Paulo, Brazil
| | | | - Carla Speroni Ceron
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil.
| |
Collapse
|
15
|
do Prado AF, Bannwart CM, Shinkai VMT, de Souza Lima IM, Meschiari CA. Phyto-derived Products as Matrix Metalloproteinases Inhibitors in Cardiovascular Diseases. Curr Hypertens Rev 2020; 17:47-58. [PMID: 32386496 DOI: 10.2174/1573402116666200510011356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are enzymes that present a metallic element in their structure. These enzymes are ubiquitously distributed and function as extracellular matrix (ECM) remodelers. MMPs play a broad role in cardiovascular biology regulating processes such as cell adhesion and function, cellular communication and differentiation, integration of mechanical force and force transmission, tissue remodeling, modulation of damaged-tissue structural integrity, cellular survival or apoptosis and regulation of inflammation-related cytokines and growth factors. MMPs inhibition and downregulation are correlated with minimization of cardiac damage, i.e., Chinese herbal medicine has shown to stabilize abdominal aorta aneurysm due to its antiinflammatory, antioxidant and MMP-2 and 9 inhibitory properties. Thus phyto-derived products rise as promising sources for novel therapies focusing on MMPs inhibition and downregulation to treat or prevent cardiovascular disorders.
Collapse
Affiliation(s)
- Alejandro F do Prado
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cahy M Bannwart
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Victoria M T Shinkai
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | | | - César A Meschiari
- Health and Sports Science Center, Federal University of Acre, Rio Branco, AC, Brazil
| |
Collapse
|
16
|
Caniffi C, Cerniello FM, Bouchet G, Sueiro ML, Tomat A, Maglio DG, Toblli JE, Arranz C. Chronic treatment with C-type natriuretic peptide impacts differently in the aorta of normotensive and hypertensive rats. Pflugers Arch 2019; 471:1103-1115. [DOI: 10.1007/s00424-019-02287-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022]
|
17
|
Rizzi E, Amaral JH, Guimarães DA, Conde-Tella SO, Pinheiro LC, Gerlach RF, Castro MM, Tanus-Santos JE. Nitrite treatment downregulates vascular MMP-2 activity and inhibits vascular remodeling in hypertension independently of its antihypertensive effects. Free Radic Biol Med 2019; 130:234-243. [PMID: 30399409 DOI: 10.1016/j.freeradbiomed.2018.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Hypertension is associated with cardiovascular remodeling. Given that impaired redox state activates matrix metalloproteinase (MMP)- 2 and promotes vascular remodeling, we hypothesized that nitrite treatment at a non-antihypertensive dose exerts antioxidant effects and attenuates both MMP-2 activation and vascular remodeling of hypertension. We examined the effects of oral sodium nitrite at antihypertensive (15 mg/kg) or non-antihypertensive (1 mg/kg) daily dose in hypertensive rats (two kidney, one clip; 2K1C model). Sham-operated and 2K1C hypertensive rats received vehicle or nitrite by gavage for four weeks. Systolic blood pressure decreased only in hypertensive rats treated with nitrite 15 mg/Kg/day. Both low and high nitrite doses decreased 2K1C-induced vascular remodeling assessed by measuring aortic cross-sectional area, media/lumen ratio, and number of vascular smooth muscle cells/aortic length. Both low and high nitrite doses decreased 2K1C-induced vascular oxidative stress assessed in situ with the fluorescent dye DHE and with the lucigenin chemiluminescence assay. Vascular MMP-2 expression and activity were assessed by gel zymography, Western blot, and in situ zymography increased with hypertension. While MMP-2 levels did not change in response to both doses of nitrite, both doses completely prevented hypertension-induced increases in vascular MMP activity. Moreover, incubation of aortas from hypertensive rats with nitrite at 1-20 μmol/L reduced gelatinolytic activity by 20-30%. This effect was fully inhibited by the xanthine oxidase (XOR) inhibitor febuxostat, suggesting XOR-mediated generation of nitric oxide (NO) from nitrite as a mechanism explaining the responses to nitrite. In vitro incubation of aortic extracts with nitrite 20 μmol/L did not affect MMP-2 activity. These results show that nitrite reverses the vascular structural alterations of hypertension, independently of anti-hypertensive effects. This response is mediated, at least in part, by XOR and is attributable to antioxidant effects of nitrite blunting vascular MMP-2 activation. Our findings suggest nitrite therapy to reverse structural alterations of hypertension.
Collapse
Affiliation(s)
- Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil; Biotechnology Unit, Ribeirao Preto University, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Jefferson H Amaral
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Danielle A Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Sandra O Conde-Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14049-900, Brazil.
| |
Collapse
|
18
|
Han S, Bal NB, Sadi G, Usanmaz SE, Uludag MO, Demirel-Yilmaz E. The effects of LXR agonist GW3965 on vascular reactivity and inflammation in hypertensive rat aorta. Life Sci 2018; 213:287-293. [PMID: 30366037 DOI: 10.1016/j.lfs.2018.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/17/2022]
Abstract
AIMS Liver X receptors (LXRs) play an important role in the regulation of cholesterol, fatty acid and glucose metabolisms together with inflammatory processes. In the present study, the effects of LXR agonist GW3965 on vascular reactivity and expression of functional proteins in DOCA-Salt induced hypertension were examined. MAIN METHODS Hypertension was induced through unilateral nephrectomy and deoxycorticosterone-acetate (DOCA) injection (20 mg/kg, twice a week) for 6 weeks in male Wistar albino rats (8 weeks old). An LXR agonist GW3965 (10 mg/kg/day, i.p.) was administered to animals for last seven days. KEY FINDINGS GW3965 treatment reduced systolic blood pressures in hypertensive rats. Acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent vasorelaxations were decreased in hypertensive rats but not affected by GW3965. GW3965 treatment enhanced plasma nitrite levels in normotensive rats. KCl and phenylephrine (Phe)-induced vasocontractions were reduced in hypertensive groups and increased with GW3965 treatment. Decreased sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) expression in the hypertensive aorta was not changed by GW3965 treatment. Expression of inositoltrisphosphate receptor1 (IP3R1) was increased by GW3965 in normotensive animals. The nuclear factor kappaB (NF-κB) and tumor necrosis factor alpha (TNF-α) expressions were increased in hypertensive rats and reduced by GW3965 treatment. SIGNIFICANCE The results of study indicate that the LXR agonist, GW3965, exhibited a beneficial effect on increased blood pressure and improved hypertension-induced impairment in contractile activity of vessel and inflammatory markers in vascular tissue. Therefore, these effects of LXR agonists on vessel should be taken into account in experimental or therapeutic approaches to hypertension.
Collapse
Affiliation(s)
- Sevtap Han
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman, Turkey
| | - Suzan Emel Usanmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sıhhiye, 06100 Ankara, Turkey
| | - Mecit Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sıhhiye, 06100 Ankara, Turkey
| |
Collapse
|
19
|
Prado AF, Pernomian L, Azevedo A, Costa RAP, Rizzi E, Ramos J, Paes Leme AF, Bendhack LM, Tanus-Santos JE, Gerlach RF. Matrix metalloproteinase-2-induced epidermal growth factor receptor transactivation impairs redox balance in vascular smooth muscle cells and facilitates vascular contraction. Redox Biol 2018; 18:181-190. [PMID: 30029165 PMCID: PMC6052251 DOI: 10.1016/j.redox.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022] Open
Abstract
Increased reactive oxygen species (ROS) formation may enhance matrix metalloproteinase (MMP)-2 activity and promote cardiovascular dysfunction. We show for the first time that MMP-2 is upstream of increased ROS formation and activates signaling mechanisms impairing redox balance. Incubation of vascular smooth muscle cells (VSMC) with recombinant MMP-2 increased ROS formation assessed with dihydroethidium (DHE) by flow cytometry. This effect was blocked by the antioxidant apocynin or by polyethylene glycol-catalase (PEG-catalase), and by MMP inhibitors (doxycycline or GM6001). Next, we showed in HEK293 cells that MMP-2 transactivates heparin-binding epidermal growth factor (HB-EGF) leading to EGF receptor (EGFR) activation and increased ROS concentrations. This effect was prevented by the EGFR kinase inhibitor Ag1478, and by phospholipase C (PLC) or protein kinase C (PKC) inhibitors (A778 or chelerythrine, respectively), confirming the involvement of EGFR pathway in MMP-2-induce responses. Next, we showed that intraluminal exposure of aortas to MMP-2 increased vascular MMP-2 levels detected by immunofluorescence and gelatinolytic activity (by in situ zimography) in association with increased ROS formation. This effect was inhibited by MMP inhibitors (phenanthroline or doxycycline) and by apocynin or PEG-catalase. MMP-2 also increased aortic contractility to phenylephrine and this effect was prevented by MMP inhibitor GM6001 and by apocynin or PEG-catalase, showing again that increased ROS formation mediates functional effects of MMP-2. These results show that MMP-2 activates the EGFR and triggers downstream signaling pathways increasing ROS formation and promoting vasoconstriction. These findings may have various implications for cardiovascular diseases. MMP-2 is activated by reactive oxygen species and promotes cardiovascular diseases. We show here that MMP-2 is upstream of reactive oxygen species formation. This effect involves epidermal growth factor receptor transactivation. MMP-2 impairs redox balance and contributes to vascular contraction.
Collapse
Affiliation(s)
- Alejandro F Prado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil
| | - Laena Pernomian
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirao Preto, University of São Paulo, SP, Brazil
| | - Aline Azevedo
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rute A P Costa
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Junia Ramos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Para, Belem, PA, Brazil; Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirao Preto, University of São Paulo, SP, Brazil; Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil; Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Av. Café, S/N - Ribeirao Preto, SP 14040-904, Brazil
| | - Adriana F Paes Leme
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, Brazil
| | - Lusiane M Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences from Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Physiology and Basic Pathology, Faculty of Dentistry of Ribeirao Preto, University of Sao Paulo, Av. Café, S/N - Ribeirao Preto, SP 14040-904, Brazil.
| |
Collapse
|
20
|
Bunbupha S, Wunpathe C, Maneesai P, Berkban T, Kukongviriyapan U, Kukongviriyapan V, Prachaney P, Pakdeechote P. Carthamus tinctorius L. extract improves hemodynamic and vascular alterations in a rat model of renovascular hypertension through Ang II-AT 1R-NADPH oxidase pathway. Ann Anat 2018; 216:82-89. [PMID: 29274384 DOI: 10.1016/j.aanat.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 02/09/2023]
Abstract
Carthamus tinctorius L. (CT) is widely used in Asian countries as a beverage and in folk medicine. The effects of CT extract on hemodynamics, vascular remodeling, the renin-angiotensin system (RAS) and oxidative stress in the two-kidney, one clip (2K-1C) hypertensive rat model were investigated. Renovascular hypertension was induced in male Sprague-Dawley rats and were treated with CT extract (500mg/kg/day) or captopril (5mg/kg/day) or vehicle for four weeks. CT extract or captopril reduced blood pressure, hindlimb vascular resistance, and increased hindlimb blood flow in 2K-1C hypertensive rats (p<0.05). Increases in aortic wall thickness, cross-sectional area and collagen deposition in 2K-1C rats were alleviated with CT extract or captopril treatment (p<0.05). CT extract or captopril suppressed RAS activation, including elevated serum ACE activity, and plasma Ang II level and up-regulated aortic AT1R protein expression in 2K-1C rats (p<0.05). Furthermore, CT extract or captopril reduced vascular superoxide production, aortic NADPH oxidase subunit gp91phox expression and increased plasma nitric oxide metabolite levels in 2K-1C rats (p<0.05). These findings suggest that CT extract ameliorated hemodynamic alteration and vascular remodeling in 2K-1C hypertensive rats. Possible mechanisms may involve RAS inhibitor effects and potent antioxidant activity.
Collapse
Affiliation(s)
- Sarawoot Bunbupha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Faculty of Medicine, Mahasarakham University, 44000, Maha Sarakham, Thailand
| | - Chutamas Wunpathe
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Thewarid Berkban
- Faculty of Medicine, Mahasarakham University, 44000, Maha Sarakham, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Parichat Prachaney
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, 40002, Khon Kaen, Thailand; Cardiovascular Research Group, Khon Kaen University, 40002, Khon Kaen, Thailand.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Although the roles of oxidant stress and redox perturbations in hypertension have been the subject of several reviews, role of thioredoxin (Trx), a major cellular redox protein in age-related hypertension remains inadequately reviewed. The purpose of this review is to bring readers up-to-date with current understanding of the role of thioredoxin in age-related hypertension. RECENT FINDINGS Age-related hypertension is a major underlying cause of several cardiovascular disorders, and therefore, intensive management of blood pressure is indicated in most patients with cardiovascular complications. Recent studies have shown that age-related hypertension was reversed and remained lowered for a prolonged period in mice with higher levels of human Trx (Trx-Tg). Additionally, injection of human recombinant Trx (rhTrx) decreased hypertension in aged wild-type mice that lasted for several days. Both Trx-Tg and aged wild-type mice injected with rhTrx were normotensive, showed increased NO production, decreased arterial stiffness, and increased vascular relaxation. These studies suggest that rhTrx could potentially be a therapeutic molecule to reverse age-related hypertension in humans. The reversal of age-related hypertension by restoring proteins that have undergone age-related modification is conceptually novel in the treatment of hypertension. Trx reverses age-related hypertension via maintaining vascular redox homeostasis, regenerating critical vasoregulatory proteins oxidized due to advancing age, and restoring native function of proteins that have undergone age-related modifications with loss-of function. Recent studies demonstrate that Trx is a promising molecule that may ameliorate or reverse age-related hypertension in older adults.
Collapse
Affiliation(s)
- Kumuda C Das
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA.
| | - Venkatesh Kundumani-Sridharan
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| | - Jaganathan Subramani
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| |
Collapse
|
22
|
Mendes Garrido Abregú F, Gobetto MN, Juriol LV, Caniffi C, Elesgaray R, Tomat AL, Arranz C. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats. J Nutr Biochem 2018. [PMID: 29525532 DOI: 10.1016/j.jnutbio.2018.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life.
Collapse
Affiliation(s)
- Facundo Mendes Garrido Abregú
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - María Natalia Gobetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Lorena Vanesa Juriol
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Carolina Caniffi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Rosana Elesgaray
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| | - Analía Lorena Tomat
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina.
| | - Cristina Arranz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Buenos Aires, Argentina
| |
Collapse
|
23
|
Pereira SC, Parente JM, Belo VA, Mendes AS, Gonzaga NA, do Vale GT, Ceron CS, Tanus-Santos JE, Tirapelli CR, Castro MM. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis 2018; 270:146-153. [PMID: 29425960 DOI: 10.1016/j.atherosclerosis.2018.01.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/13/2017] [Accepted: 01/18/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Increased activity of matrix metalloproteinase (MMP)-2 is observed in aortas of different models of hypertension, and its activation is directly mediated by oxidative stress. As quercetin is an important flavonoid with significant antioxidant effects, the hypothesis here is that quercetin will reduce increased MMP-2 activity by decreasing oxidative stress in aortas of hypertensive rats and then ameliorate hypertension-induced vascular remodeling. METHODS Male two-kidney one-clip (2K1C) hypertensive Wistar rats and controls were treated with quercetin (10 mg/kg/day) or its vehicle for three weeks by gavage. Rats were then analyzed at five weeks of hypertension. Systolic blood pressure (SBP) was determined by tail-cuff plethysmography. Aortas were used to determine MMP activity by in situ zymography and reactive oxygen species (ROS) levels by dihydroethidium. Western blot was performed to detect focal adhesion kinase (FAK) and phosphorylated-FAK levels. RESULTS SBP was increased in 2K1C rats and only a borderline reduction in SBP was observed after treating 2K1C rats with quercetin. Cross-sectional area and the number of vascular smooth muscle cells were significantly increased in aortas of hypertensive rats, and quercetin reduced them. Quercetin reduced ROS levels in aortas of 2K1C rats and the increased activity of gelatinases in situ. However, quercetin did not affect the levels of tissue inhibitor of MMP (TIMP)-2 and did not interfere with FAK and p-FAK levels in aortas of hypertensive rats. Furthermore, different concentrations of quercetin did not directly reduce the activity of human recombinant MMP-2 in vitro. CONCLUSIONS Quercetin reduces hypertension-induced vascular remodeling, oxidative stress and MMP-2 activity in aortas.
Collapse
Affiliation(s)
- Sherliane C Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Juliana M Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Vanessa A Belo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Atlante S Mendes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Natália A Gonzaga
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil; Laboratory of Pharmacology, DEPCH, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14040-902, Ribeirao Preto, Brazil
| | - Gabriel T do Vale
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil; Laboratory of Pharmacology, DEPCH, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14040-902, Ribeirao Preto, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil; Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, 37130001, Alfenas, MG, Brazil
| | - José Eduardo Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Carlos R Tirapelli
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil; Laboratory of Pharmacology, DEPCH, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14040-902, Ribeirao Preto, Brazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
24
|
Electrical and histological remodeling of the pulmonary vein in 2K1C hypertensive rats: Indication of initiation and maintenance of atrial fibrillation. Anatol J Cardiol 2018; 19:169-175. [PMID: 29339676 PMCID: PMC5864765 DOI: 10.14744/anatoljcardiol.2017.7844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective Hypertension is a significant risk factor for atrial fibrillation (AF). The role of pulmonary vein (PV) remodeling in the mechanistic association between hypertension and AF is not definitive. In this study, we aimed to identify changes in the electrophysiology and histology in PVs in two-kidney, one-clip (2K1C) hypertensive rats. Methods Fifty male Sprague-Dawley rats were classified into the 2K1C and sham-operated groups. The systolic blood pressure was measured every 2 weeks. The left atrial diameter was measured by transthoracic echocardiography. Left superior PV (LSPV) and left atrial (LA) fibrosis was evaluated by Masson’s trichrome staining. The expression of fibrosis markers [angiotensin II (Ang II), transforming growth factor-β1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and collagen I (Col I)] and ion channels [Kir2.1, Kir2.3, Cav1.2, and Nav1.5] in LSVP was quantified by western blot. Conventional microelectrodes were used to record the action potential duration at 90% repolarization (APD90) and effective refractory period (ERP) in isolated LA. Results At 4 months, the 2K1C hypertensive rats developed LA dilation. Col deposition in LSPV and left atrium and expression of TGF-β1, MMP-2, and Col I in LSPV were significantly increased in 2K1C hypertensive rats. In addition, hypertension reduced the expression of Nav1.5 and Kir2.1, although there were no significant differences in APD90; ERP; and expression of Ang II, Kir2.3, and Cav1.2 between the two groups. Conclusion Hypertension may lead to changes in the electrophysiology and histology of rats PVs, which is characterized by significant reduction in the expression of Nav1.5 and Kir2.1 and increase in interstitial fibrosis. These observations may clarify the role of PVs in the mechanistic association between hypertension and AF.
Collapse
|
25
|
Ferreira LG, Evora PRB, Capellini VK, Albuquerque AA, Carvalho MTM, Gomes RADS, Parolini MT, Celotto AC. Effect of rosmarinic acid on the arterial blood pressure in normotensive and hypertensive rats: Role of ACE. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 38:158-165. [PMID: 29425648 DOI: 10.1016/j.phymed.2017.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/24/2017] [Accepted: 02/22/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND In recent years, it has been demonstrated the inhibitory effect of some plant species on the angiotensin-converting enzyme and rosmarinic acid is a prominent constituent of these species. HYPOTHESIS/PURPOSE This study was carried out to verify the effect of rosmarinic acid on blood pressure through inhibitory activity on angiotensin-converting enzyme in rats. STUDY DESIGN The arterial hypertension was promoted using 2-kidneys 1-clip model in rats. The potential inhibitory rosmarinic acid effect on angiotensin-converting enzyme activity was compared with captopril actions by analyzing in vivo blood pressure dose-response curves to angiotensin I and bradykinin. The in vitro plasma angiotensin-converting enzyme activity was measured by fluorimetry using the substrate Abz-FRK(Dnp)P-OH substrate. In addition, dosages of nitrite/nítrate analysis were carried out. RESULTS (1) rosmarinic acid caused systolic blood pressure dose-dependent decrease in hypertensive rats; (2) The angiotensin I dose-response curves demonstrated that rosmarinic acid promotes minor changes in systolic blood pressure only in the hypertensive group; (3) The bradykinin dose-response curves showed that both rosmarinic acid and captopril promoted a systolic blood pressure reduction, but only the captopril effect was significant; (4) The angiotensin-converting enzyme activity in rat lung tissue was inhibited by the rosmarinic acid in a dose dependent manner; (5) The analysis of nitrite/nítrate plasma concentrations showed no significant difference among the experimental groups. CONCLUSION The rosmarinic acid is effective in reducing blood pressure, selectively, only in hypertensive animals. The rosmarinic acid (173µM) promoted almost a 98.96% reduction on angiotensin-converting enzyme activity.
Collapse
Affiliation(s)
- Luciana Garros Ferreira
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo Roberto Barbosa Evora
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Verena Kise Capellini
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Agnes Afrodite Albuquerque
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marco Túlio Menezes Carvalho
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Marco Túlio Parolini
- Institute of Biological and Natural Science, University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Andrea Carla Celotto
- Postgraduate Program in Medical Surgical Clinic, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil.
| |
Collapse
|
26
|
The role of losartan in preventing vascular remodeling in spontaneously hypertensive rats by inhibition of the H2O2/VPO1/HOCl/MMPs pathway. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Pinheiro LC, Ferreira GC, Amaral JH, Portella RL, Tella SDOC, Passos MA, Tanus-Santos JE. Oral nitrite circumvents antiseptic mouthwash-induced disruption of enterosalivary circuit of nitrate and promotes nitrosation and blood pressure lowering effect. Free Radic Biol Med 2016; 101:226-235. [PMID: 27769921 DOI: 10.1016/j.freeradbiomed.2016.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 02/04/2023]
Abstract
The nitric oxide (NO•) metabolites nitrite and nitrate exert antihypertensive effects by mechanisms that involve gastric formation of S-nitrosothiols. However, while the use of antiseptic mouthwash (AM) is known to attenuate the responses to nitrate by disrupting its enterosalivary cycle, there is little information about whether AM attenuates the effects of orally administered nitrite. We hypothesized that the antihypertensive effects of orally administered nitrite would not be prevented by AM because, in contrast to oral nitrate, oral nitrite could promote S-nitrosothiols formation in the stomach without intereference by AM. Chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats (and normotensive controls) treated with AM (or vehicle) once/day. We found that orally administered nitrite exerts antihypertensive effects that were not affected by AM. This finding contrasts with lack of antihypertensive responses to oral nitrate in 2K1C hypertensive rats treated with AM. Nitrite and nitrate treatments increased plasma nitrites, nitrates, and S-nitrosothiols concentrations. However, while treatment with AM attenuated the increases in plasma nitrite concentrations after both nitrite and nitrate treatments, AM attenuated the increases in S-nitrosothiols in nitrate-treated rats, but not in nitrite-treated rats. Moreover, AM attenuated vascular S-nitrosylation (detected by the SNO-RAC method) after nitrate, but not after nitrite treatment. Significant correlations were found between the hypotensive responses and S-nitrosothiols, and vascular S-nitrosylation levels. These results show for the first time that oral nitrite exerts antihypertensive effects notwithstanding the fact that antiseptic mouthwash disrupts the enterosalivary circulation of nitrate. Our results support a major role for S-nitrosothiols formation resulting in vascular S-nitrosylation as a key mechanism for the antihypertensive effects of both oral nitrite and nitrate.
Collapse
Affiliation(s)
- Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Jefferson H Amaral
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Rafael L Portella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Sandra de O C Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Madla A Passos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
28
|
Belo VDA, Parente JM, Tanus-Santos JE, Castro MM. Matrix metalloproteinase (MMP)-2 decreases calponin-1 levels and contributes to arterial remodeling in early hypertension. Biochem Pharmacol 2016; 118:50-58. [PMID: 27531060 DOI: 10.1016/j.bcp.2016.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/12/2016] [Indexed: 01/27/2023]
Abstract
Increased matrix metalloproteinase (MMP)-2 is implicated in the vascular remodeling of hypertension. Calponin-1 is a contractile protein, and its absence is associated with vascular smooth muscle cell (VSMC) phenotype switch, which leads to migration and remodeling. We evaluated whether increased MMP-2 activity precedes chronic vascular remodeling by decreasing calponin-1 and inducing VSMC proliferation. Sham or two kidney-one clip (2K1C) rats were treated with doxycycline at 30mg/kg/day. Systolic blood pressure was increased in the 2K1C rats after 1 and 2weeks post-surgery, and doxycycline was effective to reduce it only at 2weeks of hypertension (p<0.05). Increased activity of MMP-2 was observed in aortas from 2K1C at 1 and 2weeks of hypertension, followed by increased VSMC proliferation, and those effects were abolished by treating 2K1C rats with doxycycline (p<0.05). Increased aortic media to lumen ratio started to emerge in 2K1C rats at 1week of hypertension, and it was established by 2weeks. MMP-2 and calponin-1 co-localized in the cytosol of VSMC. Aortas from 2K1C rats showed a significant reduction in calponin-1 levels at 1week of hypertension, and doxycycline prevented its loss (p<0.05). However, at 2weeks of hypertension, calponin-1 was upregulated in 2K1C (p<0.05 vs. Sham groups). The mRNA levels of calponin-1 were not altered in the aortas of 2K1C at 1week of hypertension. MMP-2 may contribute to the post-translational decrease in calponin-1, thus culminating in hypertension-induced maladaptive arterial remodeling.
Collapse
MESH Headings
- Animals
- Aorta
- Arteries/enzymology
- Arteries/metabolism
- Arteries/pathology
- Biomarkers/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Proliferation
- Cytosol/enzymology
- Cytosol/metabolism
- Cytosol/pathology
- Disease Progression
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression Regulation
- Male
- Matrix Metalloproteinase 2/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Nuclear Proteins/metabolism
- Prehypertension/metabolism
- Prehypertension/pathology
- Prehypertension/physiopathology
- Proteolysis
- RNA, Messenger/metabolism
- Random Allocation
- Rats, Wistar
- Trans-Activators/metabolism
- Vascular Remodeling
- Calponins
Collapse
Affiliation(s)
- Vanessa de Almeida Belo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Juliana Montenegro Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - José Eduardo Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
29
|
Oliveira-Paula GH, Pinheiro LC, Guimaraes DA, Tella SOC, Blanco ALF, Angelis CD, Schechter AN, Tanus-Santos JE. Tempol improves xanthine oxidoreductase-mediated vascular responses to nitrite in experimental renovascular hypertension. Redox Biol 2016; 8:398-406. [PMID: 27078869 PMCID: PMC5022046 DOI: 10.1016/j.redox.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 02/07/2023] Open
Abstract
Upregulation of xanthine oxidoreductase (XOR) increases vascular reactive oxygen species (ROS) levels and contributes to nitroso-redox imbalance. However, XOR can generate nitric oxide (NO) from nitrite, and increased superoxide could inactivate NO formed from nitrite. This study tested the hypothesis that XOR contributes to the cardiovascular effects of nitrite in renovascular hypertension, and that treatment with the antioxidant tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) improves XOR-mediated effects of nitrite. Blood pressure was assessed weekly in two-kidney one-clip (2K1C) and control rats. After six weeks of hypertension, the relaxing responses to nitrite were assessed in aortic rings in the presence of the XOR inhibitor oxypurinol (or vehicle), either in the absence or in the presence of tempol. Moreover, in vivo hypotensive responses to nitrite were also examined in the presence of oxypurinol (or vehicle) and tempol (or vehicle). Aortic XOR activity and expression were evaluated by fluorescence and Western blot, respectively. Vascular ROS production was assessed by the dihydroethidium assay. 2K1C hypertensive rats showed increased aortic XOR activity and vascular ROS production compared with control rats. Oxypurinol shifted the nitrite concentration–response curve to the right in aortic rings from 2K1C rats (but not in controls). Oxypurinol also attenuated the hypotensive responses to nitrite in 2K1C rats (but not in controls). These functional findings agree with increased aortic and plasma XOR activity found in 2K1C rats. Tempol treatment enhanced oxypurinol-induced shift of the nitrite concentration–response curve to the right. However, antioxidant treatment did not affect XOR-mediated hypotensive effects of nitrite. Our results show that XOR is important to the cardiovascular responses to nitrite in 2K1C hypertension, and XOR inhibitors commonly used by patients may cancel this effect. This finding suggests that nitrite treatment may not be effective in patients being treated with XOR inhibitors. Moreover, while tempol may improve the vascular responses to nitrite, antihypertensive responses are not affected. Upregulation of xanthine oxidoreductase (XOR) is usually found in hypertension. While XOR produces superoxide, it can also produce NO from nitrite. This study shows that XOR mediates vasorelaxing effects of nitrite in renovascular hypertension. XOR inhibition prevents against the antihypertensive effects of nitrite. Antioxidant treatment improves XOR-mediated vasorelaxing effects of nitrite.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Danielle A Guimaraes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sandra O Conde Tella
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Ana L Furlan Blanco
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Celio D Angelis
- Department of Pharmacology, State University of Campinas, Campinas, SP, Brazil
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
30
|
Zhou N, Zhu Y, Zhang P, Zhang YU, Zhou M, Wang T, He L. Imperatorin derivative OW1 inhibits the upregulation of TGF-β and MMP-2 in renovascular hypertension-induced cardiac remodeling. Exp Ther Med 2016; 11:1748-1754. [PMID: 27168797 PMCID: PMC4840669 DOI: 10.3892/etm.2016.3172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic hypertension induces vascular and cardiac remodeling. OW1 is a novel imperatorin derivative that was previously reported to inhibit vascular remodeling and improve kidney function affected by hypertension. In the present study, the effect of OW1 on the cardiac remodeling induced by hypertension was investigated. OW1 inhibited vascular smooth muscle cell (VSMC) proliferation and the phenotypic modulation of VSMCs induced by angiotensin II (Ang II). The OW1-induced vasodilatation of rat cardiac arteries was evaluated in vitro. Renovascular hypertensive rats were developed using the two-kidney one-clip method and treated with OW1 (40 or 80 mg/kg/day) or nifedipine (30 mg/kg per day) for 5 weeks. OW1 markedly reduced the systolic and diastolic blood pressure compared with that in the hypertension group or the respective baseline value during the first week. OW1 also reduced cardiac weight, and the concentrations of Ang II, aldosterone and transforming growth factor-β1 (TGF-β1). Histological examination demonstrated that OW1 exerted an inhibitory effect on vascular and cardiac remodeling. These inhibitory effects were associated with decreased cardiac levels of Ang II, matrix metalloproteinase-2 and TGF-β1 in the hypertensive rats. In summary, OW1 exhibited a clear antihypertensive effect. More importantly, it inhibited vascular and cardiovascular remodeling, which may reduce the risk of hypertension-induced cardiovascular diseases. These results have potential implications in the development of new antihypertensive drugs.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yaning Zhu
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Peng Zhang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Y U Zhang
- Institute of Material Medica, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mingyao Zhou
- Xi'an Medical Emergency Center, Xi'an, Shaanxi 710061, P.R. China
| | - Tao Wang
- Institute of Material Medica, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Langchong He
- Institute of Material Medica, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
31
|
Belo VA, Guimarães DA, Castro MM. Matrix Metalloproteinase 2 as a Potential Mediator of Vascular Smooth Muscle Cell Migration and Chronic Vascular Remodeling in Hypertension. J Vasc Res 2016; 52:221-31. [PMID: 26731549 DOI: 10.1159/000441621] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/10/2015] [Indexed: 11/19/2022] Open
Abstract
For vascular remodeling in hypertension, it is essential that vascular smooth muscle cells (VSMCs) reshape in order to proliferate and migrate. The extracellular matrix (ECM) needs to be degraded to favor VSMC migration. Many proteases, including matrix metalloproteinases (MMPs), contribute to ECM proteolysis and VSMC migration. Bioactive peptides, hemodynamic forces and reactive oxygen-nitrogen species regulate MMP-2 expression and activity. Increased MMP-2 activity contributes to hypertension-induced maladaptive arterial changes and sustained hypertension. New ECM is synthesized to supply VSMCs with bioactive mediators, which stimulate hypertrophy. MMP-2 stimulates the interaction of VSMCs with newly formed ECM, which triggers intracellular signaling via integrins to induce a phenotypic switch and persistent migration. VSMCs switch from a contractile to a synthetic phenotype in order to migrate and contribute to vascular remodeling in hypertension. MMPs also disrupt growth factors bound to ECM, thus contributing to their capacity to regulate VSMC migration. This review sheds light on the proteolytic effects of MMP-2 on ECM and non-ECM substrates in the vasculature and how these effects contribute to VSMC migration in hypertension. The inhibition of MMP activity as a therapeutic target may make it possible to reduce arterial maladaptation caused by hypertension and prevent the resulting fatal cardiovascular events.
Collapse
Affiliation(s)
- V A Belo
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sx00E3;o Paulo, Ribeirao Preto, Brazil
| | | | | |
Collapse
|
32
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
33
|
Angiotensin-II induced hypertension and renovascular remodelling in tissue inhibitor of metalloproteinase 2 knockout mice. J Hypertens 2015; 31:2270-81; discussion 2281. [PMID: 24077247 DOI: 10.1097/hjh.0b013e3283649b33] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sustained hypertension induces renovascular remodelling by altering extracellular matrix (ECM) components. Matrix metalloproteinases (MMPs) are Zn-dependent enzymes that regulate ECM turnover in concert with their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Increased MMP-2 and MMP-9 have been implicated in hypertensive complications; however, the contribution of individual MMPs/TIMPs in renal remodelling has not been fully elucidated. The purpose of this study was to determine the effect of TIMP2 deficiency and thus MMP-2 on angiotensin-II (Ang-II) induced renal remodelling. METHOD C57BL/6J (wild-type) and TIMP2 knockout mice were infused with Ang-II at 250 ng/kg per min for 4 weeks. Blood pressure was measured weekly and end-point laser Doppler flowmetry was done to assess cortical blood flow. Immunohistochemical staining was performed for collagen and elastin analyses. The activity of MMP-9 and MMP-2 was determined by Gelatin zymography. RESULTS Ang-II induced similar elevation in mean blood pressure in TIMP2 and wild-type mice. In TIMP2 mice, Ang-II treatment was associated with a greater reduction in renal cortical blood flow and barium angiography demonstrated decreased vascular density compared with Ang-II treated wild-type mice. Peri-glomerular and vascular collagen deposition was increased and elastin content was decreased causing increased wall-to-lumen ratio in TIMP2 mice compared with wild-type mice receiving Ang-II. Ang-II increased the expression and activity of MMP-9 predominantly in TIMP2 mice than in wild-type mice. CONCLUSION These results suggest that TIMP2 deficiency exacerbates renovascular remodelling in agonist-induced hypertension by a mechanism that may, in part, be attributed to increased activity of MMP-9.
Collapse
|
34
|
Guimarães DA, Rizzi E, Ceron CS, Martins-Oliveira A, Gerlach RF, Shiva S, Tanus-Santos JE. Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension. Redox Biol 2015; 6:386-395. [PMID: 26343345 PMCID: PMC4564390 DOI: 10.1016/j.redox.2015.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 11/30/2022] Open
Abstract
Imbalanced matrix metalloproteinase (MMP)-2 activity and transforming growth factor expression (TGF-β) are involved in vascular remodeling of hypertension. Atorvastatin and sildenafil exert antioxidant and pleiotropic effects that may result in cardiovascular protection. We hypothesized that atorvastatin and sildenafil alone or in association exert antiproliferative effects by down-regulating MMP-2 and TGF-β, thus reducing the vascular hypertrophy induced by two kidney, one clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral atorvastatin 50 mg/kg, sildenafil 45 mg/kg, or both, daily for 8 weeks. Blood pressure was monitored weekly. Morphologic changes in the aortas were studied. TGF-β levels were determined by immunofluorescence. MMP-2 activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence. The effects of both drugs on proliferative responses of aortic smooth muscle cells to PDGF and on on MMP-2 activity in vitro were determined. Atorvastatin, sildenafil, or both drugs exerted antiproliferative effects in vitro. All treatments attenuated 2K1C-induced hypertension and prevented the increases in the aortic cross-sectional area and media/lumen ratio in 2K1C rats. Aortas from 2K1C rats showed higher collagen deposition, TGF-β levels and MMP-2 activity and expression when compared with Sham-operated animals. Treatment with atorvastatin and/or sildenafil was associated with attenuation of 2K1C hypertension-induced increases in these pro-fibrotic factors. However, these drugs had no in vitro effects on hr-MMP-2 activity. Atorvastatin and sildenafil was associated with decreased vascular TGF-β levels and MMP-2 activity in renovascular hypertensive rats, thus ameliorating the vascular remodeling. These novel pleiotropic effects of both drugs may translate into protective effects in patients. Atorvastatin and sildenafil exert antioxidant and other pleotropic effects. Imbalanced MMP-2 activity and TGF-β expression promote vascular remodeling in hypertension. Atorvastatin and sildenafil exerted antiproliferative effects in vitro. Both drugs prevented hypertension-induced increases pro-fibrotic factors. These additional pleiotropic effects may translate into protective effects in patients.
Collapse
Affiliation(s)
- Danielle A Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | | | - Raquel F Gerlach
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
35
|
Boonla O, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Thawornchinsombut S. Peptides-Derived from Thai Rice Bran Improves Endothelial Function in 2K-1C Renovascular Hypertensive Rats. Nutrients 2015; 7:5783-5799. [PMID: 26184305 PMCID: PMC4517029 DOI: 10.3390/nu7075252] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 11/16/2022] Open
Abstract
In recent years, a number of studies have investigated complementary medical approaches to the treatment of hypertension using dietary supplements. Rice bran protein hydrolysates extracted from rice is a rich source of bioactive peptides. The present study aimed to investigate the vasorelaxation and antihypertensive effects of peptides-derived from rice bran protein hydrolysates (RBP) in a rat model of two kidney-one clip (2K-1C) renovascular hypertension. 2K-1C hypertension was induced in male Sprague-Dawley rats by placing a silver clip around the left renal artery, whereas sham-operated rats were served as controls. 2K-1C and sham-operated rats were intragastrically administered with RBP (50 mg kg(-1) or 100 mg kg(-1)) or distilled water continuously for six weeks. We observed that RBP augmented endothelium-dependent vasorelaxation in all animals. Administration of RBP to 2K-1C rats significantly reduced blood pressure and decreased peripheral vascular resistance compared to the sham operated controls (p < 0.05). Restoration of normal endothelial function and blood pressure was associated with reduced plasma angiotensin converting enzyme (ACE), decreased superoxide formation, reduced plasma malondialdehyde and increased plasma nitrate/nitrite (p < 0.05). Up-regulation of eNOS protein and down-regulation of p47phox protein were found in 2K-1C hypertensive rats-treated with RBP. Our results suggest that RBP possesses antihypertensive properties which are mainly due to the inhibition of ACE, and its vasodilatory and antioxidant activity.
Collapse
Affiliation(s)
- Orachorn Boonla
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
36
|
Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension. Redox Biol 2015; 5:340-346. [PMID: 26119848 PMCID: PMC4491646 DOI: 10.1016/j.redox.2015.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 02/01/2023] Open
Abstract
Hypertension is a common disease that includes oxidative stress as a major feature, and oxidative stress impairs physiological nitric oxide (NO) activity promoting cardiovascular pathophysiological mechanisms. While inorganic nitrite and nitrate are now recognized as relevant sources of NO after their bioactivation by enzymatic and non-enzymatic pathways, thus lowering blood pressure, mounting evidence suggests that sodium nitrite also exerts antioxidant effects. Here we show for the first time that sodium nitrite exerts consistent systemic and vascular antioxidant and antihypertensive effects in the deoxycorticosterone-salt (DOCA-salt) hypertension model. This is particularly important because increased oxidative stress plays a major role in the DOCA-salt hypertension model, which is less dependent on activation of the renin-angiotensin system than other hypertension models. Indeed, antihypertensive effects of oral nitrite were associated with increased plasma nitrite and nitrate concentrations, and completely blunted hypertension-induced increases in plasma 8-isoprostane and lipid peroxide levels, in vascular reactive oxygen species, in vascular NADPH oxidase activity, and in vascular xanthine oxidoreductase activity. Together, these findings provide evidence that the oral administration of sodium nitrite consistently decreases the blood pressure in association with major antioxidant effects in experimental hypertension. Nitrite is known to recycle back to NO under specific conditions. Antihypertensive effects have been shown for sodium nitrite in some animal models. The DOCA-salt hypertension model includes oxidative stress as a major pathogenetic mechanism. This study shows antihypertensive effects of nitrite in the DOCA-salt hypertension model. Reduction in arterial blood pressure was associated with important antioxidant effects of sodium nitrite.
Collapse
|
37
|
Zhou N, Wang T, Song J, He H, He J, He L. Antihypertensive and vascular remodelling effects of the imperatorin derivative OW1 in renovascular hypertension rats. Clin Exp Pharmacol Physiol 2015; 41:571-8. [PMID: 24798462 DOI: 10.1111/1440-1681.12248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/25/2014] [Accepted: 04/17/2014] [Indexed: 11/26/2022]
Abstract
OW1 is a novel imperatorin derivative that exhibits vasodilator activity. In the present study, the antihypertensive effect of and inhibition of vascular remodelling by OW1 were investigated in two-kidney, one-clip (2K1C) renovascular hypertensive rats. Rats were subjected to the 2K1C procedure and treated with OW1 (40 or 80 mg/kg per day) for 8 weeks. Blood pressure was measured in conscious rats. Microalbumin (mALB) and total protein (U-TP) concentrations were determined in the urine, as were plasma concentrations of angiotensin (Ang) II, calcitonin gene-related peptide (CGRP) and angiotensin-converting enzyme 1 (ACE). The unclipped kidney was stained with haematoxylin and eosin and Masson trichrome, whereas aortic sections were stained with Masson trichrome. In addition, OW1-induced vasodilatation was evaluated in vitro in rat mesenteric and renal arteries. Immunohistochemical analysis was used to quantify collagen I and III expression. OW1 relaxed rat mesenteric and renal arterial rings in vitro. Treatment of 2K1C hypertensive rats with OW1 (40 and 80 mg/kg per day) for 8 weeks significantly decreased blood pressure. In addition, OW1 reduced plasma AngII and ACE concentrations and increased plasma CGRP concentrations. At 80 mg/kg per day, OW1 decreased blood urea nitrogen, mALB and U-TP levels. Histological analysis revealed that OW1 reduced renal arteriolar thickness and relieved the structural hypertrophic arteries. Moreover, OW1 had an inhibitory effect on vascular remodelling and renal lesions in hypertensive rats. In conclusion, the results suggest that OW1 could potentially be a novel candidate for hypertension intervention.
Collapse
Affiliation(s)
- Nan Zhou
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
38
|
Cau SBA, Guimaraes DA, Rizzi E, Ceron CS, Gerlach RF, Tanus-Santos JE. The Nuclear Factor kappaB Inhibitor Pyrrolidine Dithiocarbamate Prevents Cardiac Remodelling and Matrix Metalloproteinase-2 Up-Regulation in Renovascular Hypertension. Basic Clin Pharmacol Toxicol 2015; 117:234-41. [PMID: 25816715 DOI: 10.1111/bcpt.12400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
Imbalanced matrix metalloproteinase (MMP) activity is involved in hypertensive cardiac hypertrophy. Pharmacological inhibition of nuclear factor kappaB (NF-кB) with pyrrolidine dithiocarbamate (PDTC) can prevent MMP up-regulation. We suggested that treatment with PDTC could prevent 2-kidney, 1-clip (2K1C) hypertension-induced left ventricular remodelling. Sham-operated controls or 2K1C rats with hypertension received either vehicle or PDTC (100 mg/kg/day) by gavage for 8 weeks. Systolic blood pressure was monitored every week. Histological assessment of left ventricles was carried out with haematoxylin/eosin sections, and fibrosis was quantified in picrosirius red-stained sections. Oxidative stress was evaluated in heart samples with the dihydroethidium probe. Cardiac MMP activity was determined by in situ zymography, and cardiac MMP-2 was assessed by immunofluorescence. 2K1C surgery significantly increased systolic blood pressure in the 2K1C vehicle. PDTC exerted antihypertensive effects after 2 weeks of treatment. Histology revealed increased left ventricular and septum wall thickness associated with augmented myocyte diameter in hypertensive rats, which were reversed by treatment with PDTC. Hypertensive rats developed pronounced cardiac fibrosis with increased interstitial collagen area, increased cardiac reactive oxygen species levels, gelatinase activity and MMP-2 expression. PDTC treatment decreased these alterations. These findings show that PDTC modulates myocardial MMP-2 expression and ameliorates cardiac remodelling in renovascular hypertension. These results suggest that interfering with MMP expression at transcriptional level may be an interesting strategy in the therapy of organ damage associated with hypertension.
Collapse
Affiliation(s)
- Stefany B A Cau
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Danielle A Guimaraes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
39
|
Kamisah Y, Periyah V, Lee KT, Noor-Izwan N, Nurul-Hamizah A, Nurul-Iman BS, Subermaniam K, Jaarin K, Azman A, Faizah O, Qodriyah HMS. Cardioprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats. PHARMACEUTICAL BIOLOGY 2015; 53:1243-1249. [PMID: 25853965 DOI: 10.3109/13880209.2014.971383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Virgin coconut oil (VCO) contains high antioxidant activity which may have protective effects on the heart in hypertensive rats. OBJECTIVES The study investigated the effects of VCO on blood pressure and cardiac tissue by measuring angiotensin-converting enzyme (ACE) activity and its histomorphometry in rats fed with a heated palm oil (HPO) diet. MATERIALS AND METHODS Thirty-two male Sprague-Dawley rats were randomly divided into four groups: (i) control, (ii) orally given VCO (1.42 ml/kg), (iii) fed with a HPO (15%) diet, and (iv) fed with a HPO diet and supplemented with VCO (1.42 ml/kg, po) (HPO+VCO) for 16 weeks. Blood pressure was measured monthly. After 16 weeks, rat hearts were dissected for lipid peroxidation (TBARS) and ACE activity measurement and histomorphometric study. RESULTS Systolic blood pressure was significantly increased in the HPO group compared with the control starting at week eight (112.91 ± 1.32 versus 98.08 ± 3.61 mmHg, p < 0.05) which was prevented by VCO supplementation (91.73 ± 3.42 mmHg). The consumption of HPO increased TBARS and ACE activity in heart, which were inhibited by VCO supplementation. The increases in the myofiber width and area as well as nuclear size reduction in the HPO group were significantly prevented by VCO supplementation. CONCLUSION These results suggested that VCO supplementation possesses a cardioprotective effect by preventing the increase in blood pressure via an antioxidant mechanism and remodeling in rats fed repeatedly with a HPO diet.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guimaraes DA, Tanus-Santos JE. Combining drugs to optimize the therapy of hypertension: experimental evidence derived from animal models. Hypertens Res 2015; 38:457-8. [DOI: 10.1038/hr.2015.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Zhou N, Zhang Y, Wang T, He J, He H, He L. The imperatorin derivative OW1, a new vasoactive compound, inhibits VSMC proliferation and extracellular matrix hyperplasia. Toxicol Appl Pharmacol 2015; 284:125-33. [DOI: 10.1016/j.taap.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022]
|
42
|
Wang M, Kim SH, Monticone RE, Lakatta EG. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 2015; 65:698-703. [PMID: 25667214 DOI: 10.1161/hypertensionaha.114.03618] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mingyi Wang
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD.
| | - Soo Hyuk Kim
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD
| | - Robert E Monticone
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD
| | - Edward G Lakatta
- From the Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), Baltimore, MD.
| |
Collapse
|
43
|
Sehgel NL, Sun Z, Hong Z, Hunter WC, Hill MA, Vatner DE, Vatner SF, Meininger GA. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging. Hypertension 2014; 65:370-7. [PMID: 25452471 DOI: 10.1161/hypertensionaha.114.04456] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging.
Collapse
Affiliation(s)
- Nancy L Sehgel
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Biomedical and Health Sciences, Newark (N.L.S., W.C.H., D.E.V., S.F.V.); Department of Biomedical Engineering, New Jersey Institute of Technology, Newark (N.L.S., W.C.H.); Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., Z.H., M.A.H., G.A.M.)
| | - Zhe Sun
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Biomedical and Health Sciences, Newark (N.L.S., W.C.H., D.E.V., S.F.V.); Department of Biomedical Engineering, New Jersey Institute of Technology, Newark (N.L.S., W.C.H.); Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., Z.H., M.A.H., G.A.M.)
| | - Zhongkui Hong
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Biomedical and Health Sciences, Newark (N.L.S., W.C.H., D.E.V., S.F.V.); Department of Biomedical Engineering, New Jersey Institute of Technology, Newark (N.L.S., W.C.H.); Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., Z.H., M.A.H., G.A.M.)
| | - William C Hunter
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Biomedical and Health Sciences, Newark (N.L.S., W.C.H., D.E.V., S.F.V.); Department of Biomedical Engineering, New Jersey Institute of Technology, Newark (N.L.S., W.C.H.); Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., Z.H., M.A.H., G.A.M.)
| | - Michael A Hill
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Biomedical and Health Sciences, Newark (N.L.S., W.C.H., D.E.V., S.F.V.); Department of Biomedical Engineering, New Jersey Institute of Technology, Newark (N.L.S., W.C.H.); Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., Z.H., M.A.H., G.A.M.)
| | - Dorothy E Vatner
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Biomedical and Health Sciences, Newark (N.L.S., W.C.H., D.E.V., S.F.V.); Department of Biomedical Engineering, New Jersey Institute of Technology, Newark (N.L.S., W.C.H.); Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., Z.H., M.A.H., G.A.M.)
| | - Stephen F Vatner
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Biomedical and Health Sciences, Newark (N.L.S., W.C.H., D.E.V., S.F.V.); Department of Biomedical Engineering, New Jersey Institute of Technology, Newark (N.L.S., W.C.H.); Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., Z.H., M.A.H., G.A.M.).
| | - Gerald A Meininger
- From the Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Biomedical and Health Sciences, Newark (N.L.S., W.C.H., D.E.V., S.F.V.); Department of Biomedical Engineering, New Jersey Institute of Technology, Newark (N.L.S., W.C.H.); Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia (Z.S., Z.H., M.A.H., G.A.M.).
| |
Collapse
|
44
|
Bakker ENTP, Groma G, Spijkers LJA, de Vos J, van Weert A, van Veen H, Everts V, Arribas SM, VanBavel E. Heterogeneity in arterial remodeling among sublines of spontaneously hypertensive rats. PLoS One 2014; 9:e107998. [PMID: 25251068 PMCID: PMC4175999 DOI: 10.1371/journal.pone.0107998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/21/2014] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Spontaneously hypertensive rats (SHR) have been used frequently as a model for human essential hypertension. However, both the SHR and its normotensive control, the Wistar Kyoto rat (WKY), consist of genetically different sublines. We tested the hypothesis that the pathophysiology of vascular remodeling in hypertension differs among rat sublines. METHODS AND RESULTS We studied mesenteric resistance arteries of WKY and SHR from three different sources, at 6 weeks and 5 months of age. Sublines of WKY and SHR showed differences in blood pressure, body weight, vascular remodeling, endothelial function, and vessel ultrastructure. Common features in small mesenteric arteries from SHR were an increase in wall thickness, wall-to-lumen ratio, and internal elastic lamina thickness. CONCLUSIONS Endothelial dysfunction, vascular stiffening, and inward remodeling of small mesenteric arteries are not common features of hypertension, but are subline-dependent. Differences in genetic background associate with different types of vascular remodeling in hypertensive rats.
Collapse
Affiliation(s)
- Erik N. T. P. Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
- * E-mail:
| | - Gergely Groma
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Léon J. A. Spijkers
- Department of Vascular Medicine and Nephrology, Academic Medical Center, Amsterdam, the Netherlands
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Angela van Weert
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Henk van Veen
- Van Leeuwenhoek Center for Advanced Microscopy, Department of Cell Biology, Academic Medical Center, Amsterdam, the Netherlands
| | - Vincent Everts
- Van Leeuwenhoek Center for Advanced Microscopy, Department of Cell Biology, Academic Medical Center, Amsterdam, the Netherlands
| | - Silvia M. Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ed VanBavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
45
|
Azevedo A, Prado AF, Antonio RC, Issa JP, Gerlach RF. Matrix metalloproteinases are involved in cardiovascular diseases. Basic Clin Pharmacol Toxicol 2014; 115:301-14. [PMID: 24974977 DOI: 10.1111/bcpt.12282] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/26/2014] [Indexed: 12/18/2022]
Abstract
This MiniReview describes the essential biochemical and molecular aspects of matrix metalloproteinases (MMPs) and briefly discusses how they engage in different diseases, with particular emphasis on cardiovascular diseases. There is compelling scientific evidence that many MMPs, especially MMP-2, play important roles in the development of cardiovascular diseases; inhibition of these enzymes is beneficial to many cardiovascular conditions, sometimes precluding or postponing end-organ damage and fatal outcomes. Conducting comprehensive discussions and further studies on how MMPs participate in cardiovascular diseases is important, because inhibition of these enzymes may be an alternative or an adjuvant for current cardiovascular disease therapy.
Collapse
Affiliation(s)
- Aline Azevedo
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
46
|
The antihypertensive effects of sodium nitrite are not associated with circulating angiotensin converting enzyme inhibition. Nitric Oxide 2014; 40:52-9. [PMID: 24878382 DOI: 10.1016/j.niox.2014.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/04/2014] [Accepted: 05/20/2014] [Indexed: 01/15/2023]
Abstract
Nitrite-derived nitric oxide (NO) formation exerts antihypertensive effects. Because NO inhibits angiotensin converting enzyme (ACE) activity, we carried a comprehensive series of experiments in rats to test the hypothesis that sodium nitrite exerts antihypertensive effects by inhibiting ACE. We examined whether sodium nitrite (15 mg/kg; or vehicle; by gavage): (I) attenuates the pressor responses to angiotensin I at doses of 0.03, 0.1, 0.3, 1, 3, and 10 μg/kg intravenously; (II) attenuates the acute hypertension induced by L-NAME (100 mg/kg; or vehicle; by gavage); (III) attenuates the chronic hypertension induced by L-NAME (1 g/L in drinking water; or vehicle) administered for 6 weeks; (IV) attenuates the hypertension in the 2 kidney-1 clip (2K1C) chronic hypertension model. Blood samples were collected at the end of each study and plasma angiotensin converting enzyme (ACE) activity was measured with a fluorimetric assay using Hippuryl-His-Leu as substrate. ACE inhibitors were used as positive controls. Plasma nitrite concentrations were measured by ozone-based reductive chemiluminescence. The in vitro effects of sodium nitrite (0, 1, 3, 10, 30, 100 μmol/L) on plasma ACE activity were also determined. We found that sodium nitrite did not affect the pressor responses to angiotensin I. Moreover, while sodium nitrite exerted significant antihypertensive effects in acute and chronic hypertension models, no significant effects on plasma ACE activity were found. In vitro experiments showed no effects of sodium nitrite on plasma ACE activity. This is the first study to demonstrate that the acute and chronic antihypertensive effects of sodium nitrite are not associated with significant inhibition of circulating ACE activity.
Collapse
|
47
|
Huyard F, Yzydorczyk C, Castro MM, Cloutier A, Bertagnolli M, Sartelet H, Germain N, Comte B, Schulz R, DeBlois D, Nuyt AM. Remodeling of aorta extracellular matrix as a result of transient high oxygen exposure in newborn rats: implication for arterial rigidity and hypertension risk. PLoS One 2014; 9:e92287. [PMID: 24743169 PMCID: PMC3990546 DOI: 10.1371/journal.pone.0092287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
Neonatal high-oxygen exposure leads to elevated blood pressure, microvascular rarefaction, vascular dysfunction and arterial (aorta) rigidity in adult rats. Whether structural changes are present in the matrix of aorta wall is unknown. Considering that elastin synthesis peaks in late fetal life in humans, and early postnatal life in rodents, we postulated that transient neonatal high-oxygen exposure can trigger premature vascular remodelling. Sprague Dawley rat pups were exposed from days 3 to 10 after birth to 80% oxygen (vs. room air control) and were studied at 4 weeks. Blood pressure and vasomotor response of the aorta to angiotensin II and to the acetylcholine analogue carbachol were not different between groups. Vascular superoxide anion production was similar between groups. There was no difference between groups in aortic cross sectional area, smooth muscle cell number or media/lumen ratio. In oxygen-exposed rats, aorta elastin/collagen content ratio was significantly decreased, the expression of elastinolytic cathepsin S was increased whereas collagenolytic cathepsin K was decreased. By immunofluorescence we observed an increase in MMP-2 and TIMP-1 staining in aortas of oxygen-exposed rats whereas TIMP-2 staining was reduced, indicating a shift in the balance towards degradation of the extra-cellular matrix and increased deposition of collagen. There was no significant difference in MMP-2 activity between groups as determined by gelatin zymography. Overall, these findings indicate that transient neonatal high oxygen exposure leads to vascular wall alterations (decreased elastin/collagen ratio and a shift in the balance towards increased deposition of collagen) which are associated with increased rigidity. Importantly, these changes are present prior to the elevation of blood pressure and vascular dysfunction in this model, and may therefore be contributory.
Collapse
Affiliation(s)
- Fanny Huyard
- Sainte-Justine University Hospital Research Center, Department of Paediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Catherine Yzydorczyk
- Sainte-Justine University Hospital Research Center, Department of Paediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Michele M. Castro
- Departments of Pediatrics & Pharmacology, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Anik Cloutier
- Sainte-Justine University Hospital Research Center, Department of Paediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Mariane Bertagnolli
- Sainte-Justine University Hospital Research Center, Department of Paediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Hervé Sartelet
- Sainte-Justine University Hospital Research Center, Department of Pathology, Université de Montréal, Montreal, Québec, Canada
| | - Nathalie Germain
- Sainte-Justine University Hospital Research Center, Department of Paediatrics, Université de Montréal, Montreal, Québec, Canada
| | - Blandine Comte
- Unit of Human Nutrition UMR 1019, INRA, Research Centre of Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - Richard Schulz
- Departments of Pediatrics & Pharmacology, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Denis DeBlois
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Anne Monique Nuyt
- Sainte-Justine University Hospital Research Center, Department of Paediatrics, Université de Montréal, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
48
|
Ceron CS, Rizzi E, Guimarães DA, Martins-Oliveira A, Gerlach RF, Tanus-Santos JE. Nebivolol attenuates prooxidant and profibrotic mechanisms involving TGF-β and MMPs, and decreases vascular remodeling in renovascular hypertension. Free Radic Biol Med 2013; 65:47-56. [PMID: 23806385 DOI: 10.1016/j.freeradbiomed.2013.06.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/31/2013] [Accepted: 06/17/2013] [Indexed: 01/13/2023]
Abstract
Nebivolol and metoprolol are β1-adrenergic receptor blockers with different properties. We hypothesized that nebivolol, but not metoprolol, could attenuate prooxidant and profibrotic mechanisms of hypertension and therefore protect against the vascular remodeling associated with hypertension. Hypertension was induced in male Wistar rats by clipping the left renal artery. Six weeks after surgery, hypertensive and sham rats were treated with nebivolol (10 mg kg(-1) day(-1)) or metoprolol (20 mg kg(-1) day(-1)) for 4 weeks. Systolic blood pressure was monitored weekly. Morphologic changes in the aortic wall were studied in hematoxylin/eosin and picrosirius red sections. Aortic NAD(P)H activity and superoxide production were evaluated by luminescence and dihydroethidium, respectively, and TBARS levels were measured in plasma. Aortic nitrotyrosine staining was evaluated to assess peroxynitrite formation. TGF-β levels and p-ERK 1/2 expression were determined by immunofluorescence and Western blotting, respectively. Matrix metalloproteinase (MMP) activity and expression were determined by in situ zymography, gel zymography, Western blotting, and immunofluorescence, and TIMP-1 was assessed by immunohistochemistry. Both β1-receptor antagonists exerted very similar antihypertensive effects. However, while metoprolol had no significant effects, nebivolol significantly attenuated vascular remodeling and collagen deposition associated with hypertension. Moreover, nebivolol, but not metoprolol, attenuated hypertension-induced increases in aortic NAD(P)H oxidase activity, superoxide production, TBARS concentrations, nitrotyrosine levels, TGF-β upregulation, and MMP-2 and -9 expression/activity. No effects on p-ERK 1/2 and TIMP-1 expression were found. These results show for the first time that nebivolol, but not metoprolol, attenuates prooxidant and profibrotic mechanisms involving TGF-β and MMP-2 and MMP-9, which promote vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Danielle A Guimarães
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Alisson Martins-Oliveira
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Estomatology, and Physiology, Dental School of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP, Brazil, 14049-900
| | - Jose E Tanus-Santos
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
49
|
Guimarães DA, Rizzi E, Ceron CS, Pinheiro LC, Gerlach RF, Tanus-Santos JE. Atorvastatin and sildenafil lower blood pressure and improve endothelial dysfunction, but only atorvastatin increases vascular stores of nitric oxide in hypertension. Redox Biol 2013; 1:578-85. [PMID: 24363994 PMCID: PMC3863772 DOI: 10.1016/j.redox.2013.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO)-derived metabolites including the anion nitrite can recycle back to NO and thus complement NO formation independent of NO synthases. While nitrite is as a major vascular storage pool and source of NO, little is known about drugs that increase tissue nitrite concentrations. This study examined the effects of atorvastatin or sildenafil, or the combination, on vascular nitrite concentrations and on endothelial dysfunction in the 2 kidney-1 clip (2K1C) hypertension model. Sham-operated or 2K1C hypertensive rats were treated with vehicle, atorvastatin (50 mg/Kg), sildenafil (45 mg/Kg), or both for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Nitrite concentrations were assessed in the aortas and in plasma samples by ozone-based reductive chemiluminescence assay. Aortic rings were isolated to assess endothelium-dependent and independent relaxation. Aortic NADPH activity and ROS production were evaluated by luminescence and dihydroethidium, respectively, and plasma TBARS levels were measured. Aortic nitrotyrosine staining was evaluated to assess peroxynitrite formation. Atorvastatin and sildenafil, alone or combined, significantly lowered SBP by approximately 40 mmHg. Atorvastatin significantly increased vascular nitrite levels by 70% in hypertensive rats, whereas sildenafil had no effects. Both drugs significantly improved the vascular function, and decreased vascular NADPH activity, ROS, and nitrotyrosine levels. Lower plasma TBARS concentrations were found with both treatments. The combination of drugs showed no improved responses compared to each drug alone. These findings show evidence that atorvastatin, but not sildenafil, increases vascular NO stores, although both drugs exert antioxidant effects, improve endothelial function, and lower blood pressure in 2K1C hypertension. Nitrite recycles back to NO and complements NO formation independent of NO synthases. Little is known about drugs that increase tissue nitrite concentrations. Atorvastatin or sildenafil lowered blood pressure in renovascular hypertension. Both drugs exerted antioxidant effects and improved endothelial dysfunction. Only atorvastatin increased vascular nitrite levels by 70% in hypertensive rats.
Collapse
Affiliation(s)
- Danielle A Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Elen Rizzi
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| | - Raquel F Gerlach
- Department of Morphology, Physiology, and Basic Pathology, University of Sao Paulo, s/n Av. Café, Ribeirao Preto 14040-904, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
50
|
Antonio RC, Ceron CS, Rizzi E, Coelho EB, Tanus-Santos JE, Gerlach RF. Antioxidant effect of doxycycline decreases MMP activity and blood pressure in SHR. Mol Cell Biochem 2013; 386:99-105. [PMID: 24114660 DOI: 10.1007/s11010-013-1848-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/27/2013] [Indexed: 01/26/2023]
Abstract
Increased matrix metalloproteinase (MMP) levels are involved in vascular remodeling of hypertension. In this study, we hypothesized that doxycycline (a MMP inhibitor) could exert antioxidant effects, reverse establish vascular remodeling, and lower blood pressure in spontaneously hypertensive rats (SHR). SHR and Wistar-Kyoto rats received either doxycycline at 30 mg/kg/day by gavage or vehicle. Systolic blood pressure (SBP) was assessed weekly by tail cuff. After 5 weeks of treatment, morphologic changes in the aortic wall were studied in hematoxylin/eosin sections. MMP activity and expression were determined by in situ zymography using DQ gelatin and immunofluorescence for MMP-2. Dihydroethidium was used to evaluate aortic reactive oxygen species (ROS) production by fluorescence microscopy. Doxycycline reduced SBP by 25 mmHg. However, the antihypertensive effects were not associated with significant reversal of hypertension-induced vascular hypertrophy. SHR showed increased aortic MMP-2 levels which co-localized with higher aortic MMP activity and ROS levels, and all those biochemical alterations associated with hypertension were blunted by treatment with doxycycline. These results show that MMP inhibition with doxycycline in SHR with established hypertension resulted in antioxidant effects, lower gelatinolytic activity, and antihypertensive effects which were not associated with reversal of hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Raquel C Antonio
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, Ribeirao Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|