1
|
Ye Z, Lu D, Zhou S, Li G, Long L, Zhang J, Liu M, Gao X. A novel mouse model for X-linked Alport syndrome induced by splicing mutation in the Col4a5 gene. Sci Rep 2025; 15:17236. [PMID: 40383823 PMCID: PMC12086199 DOI: 10.1038/s41598-025-01663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Alport syndrome is a hereditary kidney disease with significant variations in onset and prognosis. While 80-85% of cases are due to pathogenic variants in the COL4A5 gene, there is a notable lack of mouse models with Col4a5 mutations for basic research. Our research presents an 8-year-old child with Alport syndrome, exhibiting facial edema and abnormal urine. Next-generation sequencing revealed a c.1517-1G > T mutation in the intron sequence of the COL4A5 gene. Minigene experiments confirmed that this intronic mutation affects mRNA splicing. Using the CRISPR/Cas9 system, we developed a Col4a5-c.1517-1G > T mutant mouse model. Col4α5-deficient mice exhibited growth retardation and reduced lifespan. Renal function analysis indicated progressive deterioration, with high levels of BUN and creatinine. Histological and ultrastructural analyses revealed abnormalities such as mesangial sclerosis, interstitial fibrosis and severe irregularity in membrane thickness. Additionally, significant immune cell infiltration was observed in the renal interstitium. This mouse model provides a valuable tool for studying the role of immune cells in the pathogenesis and treatment of XLAS. It is also the first reported X-linked Alport syndrome mouse model caused by a splicing mutation.
Collapse
Affiliation(s)
- Zhitao Ye
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Di Lu
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shumin Zhou
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Guanyu Li
- Maoming Maternal and Child Health Hospital, Maoming, 525000, China
| | - Lili Long
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiayi Zhang
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ming Liu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xia Gao
- Department of Nephrology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
2
|
Lu A, Zang J, Tan N, Wei L, Liang Y, Tan Z, Xu A, Lu D. Prognostic significance and multivariate modeling of COL4A family genes and HMGA2 in glioma. Front Pharmacol 2025; 16:1591932. [PMID: 40351420 PMCID: PMC12062008 DOI: 10.3389/fphar.2025.1591932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Background COL4As, a group of six homologous genes that encode the type IV collagen α chains (α1-α6), have been identified as the main components of the collagen network in brain basement membranes. The distribution and generation changes of type IV collagen have been reported during glioma progression, but its underlying function of COL4As in glioma was still unclear. Methods Based on the data of TCGA glioma cohort, we analyzed the correlation of COL4A family genes with the clinical characteristics and prognosis of glioma patients. By performing correlation and functional enrichment analysis, the interaction network of COL4As and their related genes in glioma were constructed to demonstrate the functional differences between COL4A members. By further screening the COL4As downstream factors, we sorted out the COL4As coregulated gene that could be the independent prognostic factor for glioma. Results We found the high expressions in COL4A1 and COL4A2 were positively related to a worse prognosis of glioma patient, while, in COL4A3 and COL4A4 were predicted to a better prognosis. However, none of COL4As could function as an independent prognostic factor for glioma. HMGA2 is a coregulatory target of COL4A members through the COL4As-H19/HOTRAI-miR148a/miR222-HMGA2 axis. By being involved in the infiltration of Th2 cells and macrophages, HMGA2 could serve as an independent prognostic biomarker for glioma. Conclusion In summary, our study revealed a potential common target of COL4A members HMGA2, which could serve as a novel prognostic factor for the diagnosis and therapy of glioma.
Collapse
Affiliation(s)
- Aijun Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiankun Zang
- Department of Neurology, The First People’s Hospital of Foshan, Foshan, China
| | - Na Tan
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liping Wei
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Liang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zefeng Tan
- Department of Neurology, The First People’s Hospital of Foshan, Foshan, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Xie L, Ding Y, Qiu Y, Shi Y. Synergistic toxicity of compound heterozygous mutations in the COL4A3 gene causes end-stage renal disease in A large family of Alport syndrome. Gene 2025; 937:149132. [PMID: 39615805 DOI: 10.1016/j.gene.2024.149132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Alport syndrome (AS) is a genetic disorder characterized by kidney disease and hearing/vision abnormalities, resulting from mutations in the COL4A3, COL4A4, or COL4A5 genes. While numerous mutations have been identified in AS cases, the precise molecular mechanisms, particularly for compound mutations, remain under investigation. This study investigated the molecular mechanisms of AS in a proband with end-stage kidney disease (ESKD) using whole exome sequencing, which identified two compound heterozygous COL4A3 missense mutations: NM_000091.5:c.1354G > A (p.G452R) and NM_000091.5:c.4793 T > G (p.L1598R). Sixteen family members of the proband were genotyped, and further analyses, including in silico structural prediction, molecular docking, and in vitro co-immunoprecipitation assays, revealed that the p.G452R mutation disrupted the collagen triple helical structure, associated with hematuria in carriers, while the p.L1598R mutation interfered with the interaction between the NC1 domains of COL4A3 and COL4A4 proteins, crucial for collagen trimerization. These findings demonstrate a synergistic loss-of-function effect of the two mutations, contributing to the AS pathogenesis in the proband, and emphasize the importance of genetic screening and personalized treatment strategies for AS.
Collapse
Affiliation(s)
- Longxin Xie
- Physician-Scientist Program, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Kidney Transplantation, Center of Organ Transplantation, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China.
| | - Yuxi Ding
- Physician-Scientist Program, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Kidney Transplantation, Center of Organ Transplantation, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Ying Qiu
- Physician-Scientist Program, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yi Shi
- Department of Kidney Transplantation, Center of Organ Transplantation, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China.
| |
Collapse
|
4
|
Jin L, Li J, Zhu F. AS03-adjuvanted H5N1 vaccine enhances immune response by modulating NR4A1, SDC1, ID3 genes, and reducing cortisol. Hum Vaccin Immunother 2024; 20:2426319. [PMID: 39569615 PMCID: PMC11583616 DOI: 10.1080/21645515.2024.2426319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The AS03-adjuvanted H5N1 influenza vaccine induces significantly higher immune responses compared to the non-adjuvanted H5N1 vaccine. However, the immunological mechanisms underlying this enhancement remain unclear. We aimed to identify the key genes and pathways involved in the immune response to the AS03-adjuvanted H5N1 vaccine compared to the non-adjuvanted H5N1 vaccine. The expression profiles of GSE102012 and GSE112293 were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes between AS03-adjuvanted and non-adjuvanted H5N1 vaccine groups. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery online tool. The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes database. Through cluster analysis of the PPI network, three hub genes, namely NR4A1, SDC1, and ID3, were identified as pivotal players in the intricate network of interactions. The ID3 was up-regulated, and the other two hub genes were down-regulated. The results of the GO analysis highlighted enrichment in seven biological processes, three cellular components, and two molecular functions among the differentially expressed genes. The KEGG pathway analysis revealed the involvement of the Cushing syndrome pathway. The AS03-adjuvanted H5N1 vaccine may enhance immune responses through suppressing the NR4A1 gene and the SDC1 gene, upregulating the ID3 gene, and reducing cortisol production compared to the non-adjuvanted H5N1 vaccine.
Collapse
Affiliation(s)
- Lairun Jin
- School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jingxin Li
- School of Public Health, Southeast University, Nanjing, P.R. China
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, P.R. China
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
5
|
Delage C, Andreani M, Boukrout N, Sabaouni N, Perrais M, Lefebvre B, Cauffiez C, Pottier N, Larrue R. Whole-genome sequencing revealed a novel structural variant in COL4A4 causing autosomal dominant Alport syndrome: A case report. Heliyon 2024; 10:e40802. [PMID: 39735618 PMCID: PMC11681849 DOI: 10.1016/j.heliyon.2024.e40802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Next-generation sequencing has substantially transformed the genomic diagnosis of individuals affected by inherited renal disorders. Indeed, accurate and rapid diagnostic for patients with suspected genetic kidney diseases is not only important for prognosis and patient management but also for family counseling. Alport syndrome, a genetic disease primarily affecting the basement membrane, is characterized by hematuria, progressive kidney failure, hearing impairment, as well as ocular abnormalities and stems from mutations in genes encoding type IV collagen. In this study, we show the benefit of whole-genome sequencing for the molecular diagnosis of a dominant form of Alport syndrome by identifying a novel heterozygous pathogenic structural variant in a family with three affected members. This case underscores the potential of whole-genome sequencing as a frontline diagnostic approach for inherited kidney diseases and further indicates that structural variations represent an important cause of monogenic disorders.
Collapse
Affiliation(s)
- Clément Delage
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | | | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Naoual Sabaouni
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Bruno Lefebvre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Nicolas Pottier
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Romain Larrue
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| |
Collapse
|
6
|
Delrue C, Eisenga MF, Delanghe JR, Speeckaert MM. Personalized Antifibrotic Therapy in CKD Progression. J Pers Med 2024; 14:1141. [PMID: 39728054 DOI: 10.3390/jpm14121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) is a chronic disorder characterized by kidney fibrosis and extracellular matrix accumulation that can lead to end-stage kidney disease. Epithelial-to-mesenchymal transition, inflammatory cytokines, the TGF-β pathway, Wnt/β-catenin signaling, the Notch pathway, and the NF-κB pathway all play crucial roles in the progression of fibrosis. Current medications, such as renin-angiotensin-aldosterone system inhibitors, try to delay disease development but do not stop or reverse fibrosis. This review emphasizes the growing need for tailored antifibrotic medications for CKD treatment. Precision medicine, which combines proteomic, metabolomic, and genetic data, provides a practical way to personalize treatment regimens. Proteomic signatures, such as CKD273, and genetic markers, such as APOL1 and COL4A5, help in patient stratification and focused therapy development. Two recently developed antifibrotic medications, nintedanib and pirfenidone, have been proven to diminish fibrosis in preclinical animals. Additionally, research is being conducted on the efficacy of investigational drugs targeting CTGF and galectin-3 in the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
7
|
Belamkar A, Luo Q, Mahajan N, Abhyankar S, Jones BA, Sodhi RK, Pattabiraman PP, Levi M, Bhatwadekar AD. Characterization of the Ocular Phenotype in a Col4a3 Knockout Mouse Model of Alport Syndrome. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39680378 DOI: 10.1167/iovs.65.14.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Purpose Alport syndrome (AS) is a genetic condition caused by a dysfunctional collagen (IV) α3α4α5 heterotrimer, leading to basement membrane instability and, ultimately, abnormalities in the kidney, inner ear, and eyes. This study aimed to characterize ocular pathology of AS by focusing on inflammatory and fibrotic markers. Methods Col4a3tm1Dec knockout (KO) mice eyes were evaluated for the localization of collagen (IV) α3 and collagen (IV) α4, then stained for transforming growth factor-β1 (TGF-β1), TGF-β2, connective tissue growth factor (CTGF), and β-catenin. mRNA levels of the profibrotic genes S100a4, Acta2, Col1a1, Snai1, Snai2, and Twist1 were assessed using real-time reverse transcription quantitative PCR (RT-qPCR). Results Collagen (IV) α3 and collagen (IV) α4 were co-expressed in Descemet's and Bruch's membrane but not in the retina, lens, or other corneal substructures. Immunofluorescence quantitation revealed upregulation of TGF-β1 in the anterior lens and TGF-β2 in the retina of KO eyes. Conversely, CTGF and β-catenin were shown to be elevated in the corneal epithelium but not the retina or lens. RT-qPCR showed an increase in the transcription of Acta2, Col1a1, and Snai2 in the retinas and Snai2 in anterior segments of KO mice. Conclusions Col4a3 KO mice exhibited a differential inflammatory and profibrotic response in the cornea, retina, and lens, which may play a role in the ocular pathology of AS.
Collapse
Affiliation(s)
- Ameya Belamkar
- Indiana University of School of Medicine, Indiana, United States
| | - Qianyi Luo
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Neha Mahajan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Surabhi Abhyankar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Bryce A Jones
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Rupinder Kaur Sodhi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Padmanabhan P Pattabiraman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
8
|
Roye Y, Miller C, Kalejaiye TD, Musah S. A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury. Matrix Biol Plus 2024; 24:100164. [PMID: 39582511 PMCID: PMC11585791 DOI: 10.1016/j.mbplus.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic nephropathy results from chronic (or uncontrolled) hyperglycemia and is the leading cause of kidney failure. The kidney's glomerular podocytes are highly susceptible to diabetic injury and subsequent non-reversible degeneration. We generated a human induced pluripotent stem (iPS) cell-derived model of diabetic podocytopathy to investigate disease pathogenesis and progression. The model recapitulated hallmarks of podocytopathy that precede proteinuria including retraction of foot processes and podocytopenia (detachment from the extracellular matrix (ECM)). Moreover, hyperglycemia-induced injury to podocytes exacerbated remodeling of the ECM. Specifically, mature podocytes aberrantly increased expression and excessively deposited collagen (IV)α1α1α2 that is normally abundant in the embryonic glomerulus. This collagen (IV) imbalance coincided with dysregulation of lineage-specific proteins, structural abnormalities of the ECM, and podocytopenia - a mechanism not shared with endothelium and is distinct from drug-induced injury. Intriguingly, repopulation of hyperglycemia-injured podocytes on decellularized ECM scaffolds isolated from healthy podocytes attenuated the loss of synaptopodin (a mechanosensitive protein associated with podocyte health). These results demonstrate that human iPS cell-derived podocytes can facilitate in vitro studies to uncover the mechanisms of chronic hyperglycemia and ECM remodeling and guide disease target identification.
Collapse
Affiliation(s)
- Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Carmen Miller
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham NC, USA
| | - Titilola D. Kalejaiye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA
- MEDx Investigator, Duke University, Durham, NC, USA
| |
Collapse
|
9
|
Nam J, Jung H, Won D, Gee HY, Choi JY, Jung J. Natural History of Auditory Function in Patients with Alport Syndrome: A Case Series Study. J Clin Med 2024; 13:6639. [PMID: 39597783 PMCID: PMC11594709 DOI: 10.3390/jcm13226639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Alport syndrome (AS) is a genetic disorder characterized by progressive renal disease, ocular abnormalities, and sensorineural hearing loss. However, the audiological profile of patients with AS remains elusive. Thus, this study aims to evaluate the natural history of auditory function in patients with AS. Methods: Exome or targeted sequencing for deafness genes was performed to confirm the pathogenic variants in patients with AS. Results: We identified fifteen individuals with AS who carried pathogenic variants of COL4A3, COL4A4, or COL4A5. Among fifteen, twelve (80%) showed hematuria, and six (40%) showed proteinuria. The patients exhibited bilateral sensorineural hearing loss, which was progressive and symmetric. The hearing thresholds increased according to age and plateaued at the level of 53 dB HL, indicating the hearing loss did not reach the severe-to-moderate level. The auditory dysfunction showed a distinct natural history depending on the inheritance pattern, but there was no remarkable difference between males and females among X-linked AS. Conclusions: Auditory dysfunction in AS is progressive up to the level of moderate hearing loss. Precise auditory rehabilitation for patients with AS is warranted depending on the inheritance pattern and genetic predisposition.
Collapse
Affiliation(s)
- Juyun Nam
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.N.); (H.J.)
| | - Hyuntaek Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.N.); (H.J.)
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.N.); (H.J.)
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.N.); (H.J.)
| |
Collapse
|
10
|
Zhang Y, Musah S. Mechanosensitive Differentiation of Human iPS Cell-Derived Podocytes. Bioengineering (Basel) 2024; 11:1038. [PMID: 39451413 PMCID: PMC11504473 DOI: 10.3390/bioengineering11101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Stem cell fate decisions, including proliferation, differentiation, morphological changes, and viability, are impacted by microenvironmental cues such as physical and biochemical signals. However, the specific impact of matrix elasticity on kidney cell development and function remains less understood due to the lack of models that can closely recapitulate human kidney biology. An established protocol to differentiate podocytes from human-induced pluripotent stem (iPS) cells provides a promising avenue to elucidate the role of matrix elasticity in kidney tissue development and lineage determination. In this study, we synthesized polyacrylamide hydrogels with different stiffnesses and investigated their ability to promote podocyte differentiation and biomolecular characteristics. We found that 3 kPa and 10 kPa hydrogels significantly support the adhesion, differentiation, and viability of podocytes. Differentiating podocytes on a more compliant (0.7 kPa) hydrogel resulted in significant cell loss and detachment. Further investigation of the mechanosensitive proteins yes-associated protein (YAP) and synaptopodin revealed nuanced molecular distinctions in cellular responses to matrix elasticity that may otherwise be overlooked if morphology and cell spreading alone were used as the primary metric for selecting matrices for podocyte differentiation. Specifically, hydrogels with kidney-like rigidities outperformed traditional tissue culture plates at modulating the molecular-level expression of active mechanosensitive proteins critical for podocyte health and function. These findings could guide the development of physiologically relevant platforms for kidney tissue engineering, disease modeling, and mechanistic studies of organ physiology and pathophysiology. Such advances are critical for realizing the full potential of in vitro platforms in accurately predicting human biological responses.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
11
|
Gale DP, Gross O, Wang F, Esteban de la Rosa RJ, Hall M, Sayer JA, Appel G, Hariri A, Liu S, Maski M, Shen Y, Zhang Q, Iqbal S, Kowthalam MU, Lin J, Ding J. A Randomized Controlled Clinical Trial Testing Effects of Lademirsen on Kidney Function Decline in Adults with Alport Syndrome. Clin J Am Soc Nephrol 2024; 19:995-1004. [PMID: 38829703 PMCID: PMC11321738 DOI: 10.2215/cjn.0000000000000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Key Points Lademirsen, an anti–microRNA-21 therapy, was generally well-tolerated in adults with Alport syndrome at risk of rapid disease progression. There were no significant differences between lademirsen-treated and placebo-treated participants in eGFR at any timepoint. The proportions of participants with prespecified reductions in eGFR at weeks 24 and 48 were not significantly different for lademirsen versus placebo. Background Preclinical models of disease have suggested that targeting microRNA-21 (miRNA-21) may slow the decline in kidney function in individuals with Alport syndrome (AS). The objective of this study was to investigate the effects of the anti–miRNA-21 oligonucleotide, lademirsen, on rate of eGFR decline in adults with AS at risk of rapid disease progression. Methods This study was a phase 2 trial of lademirsen, with a randomized, double-blind, placebo-controlled period followed by an open-label period. Adults with AS, eGFR >35 to <90 ml/min per 1.73 m2, and evidence of rapidly progressive kidney dysfunction were randomized 2:1 to lademirsen 110 mg subcutaneously once weekly or placebo for 48 weeks. After a planned interim analysis (after 24 of 43 randomized participants completed the week 48 study visit or discontinued before week 48), the trial was terminated for futility. Results Forty-three adults with AS (26 men, 17 women) participated (mean age 34 years), and 28 (lademirsen: n =19; placebo: n =9) completed 48 weeks of double-blind treatment. All participants in both groups developed treatment-emergent adverse events, mainly respiratory tract infections, headache, dizziness, metabolic/electrolyte disturbances, and anemia. Treatment was discontinued in three lademirsen-treated participants in the double-blind period and one participant in the open-label period, owing to treatment-emergent adverse events. The least squares mean eGFR slope (95% confidence interval) over 48 weeks in the lademirsen and placebo groups was −5 (−8.7 to −1.1) and −5 (−10.2 to 0.8) ml/min per 1.73 m2 per year, respectively. No significant differences between groups were identified in eGFR at any timepoint or in proportion of participants with prespecified reductions in eGFR at week 24 or 48. Conclusions While anti–miRNA-21 therapy with lademirsen was generally well-tolerated with an acceptable safety profile, no meaningful improvement in rate of kidney function decline in adults with AS at risk of rapidly progressive disease was observed. Clinical Trial registration number: NCT02855268 .
Collapse
Affiliation(s)
- Daniel P. Gale
- Department of Renal Medicine, University College London, London, United Kingdom
- Royal Free Hospital London, London, United Kingdom
- Great Ormond Street Hospital, London, United Kingdom
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Göttingen, Göttingen, Germany
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Matthew Hall
- Nottingham University Hospitals, Nottingham, United Kingdom
| | - John A. Sayer
- Translational and Clinical Research Institute, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Gerald Appel
- Columbia University Medical Center, New York, New York
| | - Ali Hariri
- Eloxx Pharmaceuticals, Watertown, Massachusetts
| | | | | | | | - Qi Zhang
- Sanofi, Cambridge, Massachusetts
| | | | | | | | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
Wang D, Pan M, Li H, Li M, Li P, Xiong F, Xiao H. Four novel mutations identified in the COL4A3, COL4A4 and COL4A5 genes in 10 families with Alport syndrome. BMC Med Genomics 2024; 17:181. [PMID: 38978054 PMCID: PMC11229269 DOI: 10.1186/s12920-024-01953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Alport syndrome (AS) is an inherited nephropathy caused by mutations in the type IV collagen genes. It is clinically characterized by damage to the eyes, ears and kidneys. Diagnosis of AS is hampered by its atypical clinical picture, particularly when the typical features, include persistent hematuria and microscopic changes in the glomerular basement membrane (GBM), are the only clinical manifestations in the patient. METHODS We screened 10 families with suspected AS using whole exome sequencing (WES) and analyzed the harmfulness, conservation, and protein structure changes of mutated genes. In further, we performed in vitro functional analysis of two missense mutations in the COL4A5 gene (c.2359G > C, p.G787R and c.2605G > A, p.G869R). RESULTS We identified 11 pathogenic variants in the type IV collagen genes (COL4A3, COL4A4 and COL4A5). These pathogenic variants include eight missense mutations, two nonsense mutations and one frameshift mutation. Notably, Family 2 had digenic mutations in the COL4A3 (p.G1170A) and UMOD genes (p.M229K). Family 3 had a digenic missense mutation (p.G997E) in COL4A3 and a frameshift mutation (p.P502L fs*151) in COL4A4. To our knowledge, four of the 11 mutations are novel mutations. In addition, we found that COL4A5 mutation relation mRNA levels were significantly decreased in HEK 293 T cell compared to control, while the cellular localization remained the same. CONCLUSIONS Our research expands the spectrum of COL4A3-5 pathogenic variants, which is helpful for clinical and scientific research.
Collapse
Affiliation(s)
- Duocai Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meize Pan
- Department of Nephrology, Peking University Shenzhen Hospital, Futian, Shenzhen, Guangdong, 518036, China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Futian, Shenzhen, Guangdong, China
| | - Minchun Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Li
- Department of Pathology, Peking University Shenzhen Hospital, Futian, Shenzhen, Guangdong, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Hongbo Xiao
- Department of Nephrology, Peking University Shenzhen Hospital, Futian, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
13
|
LeBleu VS, Kanasaki K, Lovisa S, Alge JL, Kim J, Chen Y, Teng Y, Gerami-Naini B, Sugimoto H, Kato N, Revuelta I, Grau N, Sleeman JP, Taduri G, Kizu A, Rafii S, Hochedlinger K, Quaggin SE, Kalluri R. Genetic reprogramming with stem cells regenerates glomerular epithelial podocytes in Alport syndrome. Life Sci Alliance 2024; 7:e202402664. [PMID: 38561223 PMCID: PMC10985218 DOI: 10.26508/lsa.202402664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFβ1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Northwestern University Feinberg School of Medicine and Kellogg School of Management, Chicago, IL, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Keizo Kanasaki
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sara Lovisa
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jiha Kim
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingqi Teng
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Behzad Gerami-Naini
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Noritoshi Kato
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ignacio Revuelta
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicole Grau
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonathan P Sleeman
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Karlsruhe Institute of Technology (IBCS-BIP), Karlsruhe, Germany
| | - Gangadhar Taduri
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Akane Kizu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shahin Rafii
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Boston, MA, USA
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine & Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Moore KH, Erman EN, Traylor AM, Esman SK, Jiang Y, LaFontaine JR, Zmijewska A, Lu Y, Soliman RH, Agarwal A, George JF. Cognate antigen-independent differentiation of resident memory T cells in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F839-F854. [PMID: 38450434 PMCID: PMC11386978 DOI: 10.1152/ajprenal.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.
Collapse
Affiliation(s)
- Kyle H Moore
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elise N Erman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie K Esman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yanlin Jiang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jennifer R LaFontaine
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna Zmijewska
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yan Lu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
15
|
Clair G, Soloyan H, Cravedi P, Angeletti A, Salem F, Al-Rabadi L, De Filippo RE, Da Sacco S, Lemley KV, Sedrakyan S, Perin L. The spatially resolved transcriptome signatures of glomeruli in chronic kidney disease. JCI Insight 2024; 9:e165515. [PMID: 38516889 PMCID: PMC11063942 DOI: 10.1172/jci.insight.165515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle-dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.
Collapse
Affiliation(s)
- Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hasmik Soloyan
- The GOFARR Laboratory, The Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea Angeletti
- Nephrology Dialysis and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Fadi Salem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Laith Al-Rabadi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Roger E. De Filippo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Stefano Da Sacco
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Kevin V. Lemley
- Division of Nephrology, Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Sargis Sedrakyan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Laura Perin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| |
Collapse
|
16
|
Roy A, Gauld JW. Sulfilimine bond formation in collagen IV. Chem Commun (Camb) 2024; 60:646-657. [PMID: 38116662 DOI: 10.1039/d3cc05715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The collagen IV network plays a crucial role in providing structural support and mechanical integrity to the basement membrane and surrounding tissues. A key aspect of this network is the formation of intra- and inter-collagen fibril crosslinks. One particular crosslink, an inter-residue sulfilimine bond, has been found, so far, to be unique to collagen IV. More specifically, these crosslinks are primarily formed between methionine and lysine or hydroxylysine residues and can occur within a single collagen fibril or between different collagen fibrils. Due to its significance as the major crosslink in the collagen IV network, the sulfilimine bond plays critical roles in tissue development and various human diseases. While the proposed reaction mechanism for sulfilimine bond formation is supported by experimental evidence, the precise nature of this bond remained uncertain until computational studies were conducted. The process involves the reaction of hypohalous acids (e.g., HOBr, HOCl), produced by a peroxidasin enzyme in the basement membrane, with the sidechain sulfur of methionine or sidechain nitrogen of lysine/hydroxylysine residues in collagen IV, to form halosulfonium or haloamine intermediates, respectively. The halosulfonium/haloamine then reacts with the sidechain amine/sulfide of the lysine (or hydroxylysine) or methionine respectively, eventually resulting in the formation of the sulfilimine (MetSNLys/Hyl) crosslink. The sulfilimine product formed not only plays a crucial role in physiological processes but also finds applications in various industrial and pharmaceutical contexts. In this review, we provide a comprehensive summary of existing studies, including our own research, aimed at understanding the reaction mechanism, protonation states, characteristic nature, and dynamic behavior of the sulfilimine bond in collagen IV. The goal is to offer readers an overview of this critically important biochemical bond.
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
17
|
Uedono H, Mori K, Nakatani S, Watanabe K, Nakaya R, Morioka F, Sone K, Ono C, Hotta J, Tsuda A, Morisada N, Seto T, Nozu K, Emoto M. Novel Digenic Variants in COL4A4 and COL4A5 Causing X-Linked Alport Syndrome: A Case Report. Case Rep Nephrol Dial 2024; 14:1-9. [PMID: 38179179 PMCID: PMC10764090 DOI: 10.1159/000535493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/18/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Alport syndrome (AS) is a hereditary, progressive kidney disease characterized by structural abnormalities and dysfunction of the glomerular basement membrane (GBM). AS is classified as X-linked, autosomal, and digenic. The number of cases of digenic AS has increased, but the genotype-phenotype correlation of patient with digenic AS is still unclear. Here, we present a case of digenic AS with novel digenic missense variants in COL4A4 (c.827G>C, p.Gly276Ala) and COL4A5 (c.4369G>C, p.Gly1457Arg). Case Presentation The patient was a 29-year-old Japanese man suffering from persistent microscopic hematuria and proteinuria without kidney function impairment. Kidney biopsy showed focal interstitial foam cell infiltration, global and segmental glomerulosclerosis. Immunofluorescence staining for collagen IV α5 was almost negative in the GBM and Bowman's capsule. Electron microscopy revealed irregular thickening with lamellation and segmental thinning of the GBM. Clinical and pathological findings were consistent with AS. Comprehensive next-generation sequencing revealed a heterozygous missense variant in COL4A4 (c.827G>C, p.Gly276Ala) in exon 1 and a hemizygous missense variant in COL4A5 (c.4369G>C, p.Gly1457Arg) in exon 49 on the patient's paternal and maternal alleles, respectively. The same digenic variants were detected in his sister, and she also showed a similar phenotype. After treatment with angiotensin-converting enzyme inhibitors, proteinuria decreased from 2.3 to 1.1 g/g creatinine, but occult blood persisted. During follow-up, kidney function has been preserved. Conclusion The novel genotype of our case provides more information on the genotype-phenotype correlation of digenic XLAS, although long-term follow-up is required. The findings in the present case also indicate the importance of genetic tests for family members of a patient diagnosed with digenic AS.
Collapse
Affiliation(s)
- Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kohei Watanabe
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Rino Nakaya
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Fumiyuki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kazuma Sone
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Chie Ono
- Department of Medical Genetics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Junko Hotta
- Department of Medical Genetics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyuki Seto
- Department of Medical Genetics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Li L, Ye H, Chen Q, Wei L. COL28 promotes proliferation, migration, and EMT of renal tubular epithelial cells. Ren Fail 2023; 45:2187236. [PMID: 36883360 PMCID: PMC10013395 DOI: 10.1080/0886022x.2023.2187236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Type XXVIII collagen (COL28) is involved in cancer and lung fibrosis. COL28 polymorphisms and mutations might be involved in kidney fibrosis, but the exact role of COL28 in renal fibrosis is unknown. This study explored the function of COL28 in renal tubular cells by examining the expression of COL28 mRNA and the effects of COL28 overexpression in human tubular cells. COL28 mRNA expression and localization were observed in normal and fibrotic kidney tissues from humans and mice using real-time PCR, western blot, immunofluorescence, and immunohistochemistry. The consequences of COL28 overexpression on cell proliferation, migration, cell polarity, and epithelial-to-mesenchymal transition (EMT) induced by TGF-β1 were examined in human tubular HK-2 cells. COL28 expression was low in human normal renal tissues, mainly observed in the renal tubular epithelial cells and especially in proximal renal tubules. COL28 protein expression in human and mouse obstructive kidney disease was higher than in normal tissues (p < 0.05) and more significant in the UUO2-Week than the UUO1-Week group. The overexpression of COL28 promoted HK-2 cell proliferation and enhanced their migration ability (all p < 0.05). TGF-β1 (10 ng/ml) induced COL28 mRNA expression in HK-2 cells, decreased E-cadherin and increased α-SMA in the COL28-overexpression group compared with controls (p < 0.05). ZO-1 expression decreased while COL6 increased in the COL28-overexpression group compared with controls (p < 0.05). In conclusion, COL28 overexpression promotes the migration and proliferation of renal tubular epithelial cells. The EMT could also be involved. COL28 could be a therapeutic target against renal- fibrotic diseases.
Collapse
Affiliation(s)
- Linlin Li
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Hong Ye
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Qiaoling Chen
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| | - Lixin Wei
- Department of nephrology, Fujian Medical University, Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Pearce H, Mabillard H. Finerenone and other future therapeutic options for Alport syndrome. JOURNAL OF RARE DISEASES (BERLIN, GERMANY) 2023; 2:18. [PMID: 39429698 PMCID: PMC11489166 DOI: 10.1007/s44162-023-00022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2024]
Abstract
Alport syndrome is a rare genetic disease that results in disordered basement membrane type IV collagen resulting in haematuria, proteinuria and often development of renal fibrosis leading to progressive kidney disease. The therapeutic blockage of the renin-angiotensin-aldosterone system, which slows the progression to kidney failure, is supported by strong evidence. Recent clinical trials using sodium-glucose co-transporter-2 (SGLT2) inhibitors and mineralocorticoid receptor antagonists (MRA) in patients with chronic kidney disease have changed the therapeutic landscape. Patients with Alport syndrome and progressive kidney disease may benefit from treatment with MRAs because research has shown that these drugs are nephroprotective through a variety of mechanisms, including by preventing fibrosis. Ongoing clinical trials show great promise in order to help establish the long-term safety and efficacy of Finerenone, a MRA. This review discusses the evidence for the use of MRAs as a potential treatment in Alport syndrome that may slow the progression of chronic kidney disease and prevent patients reaching kidney failure.
Collapse
Affiliation(s)
- Helen Pearce
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN UK
| | - Holly Mabillard
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, NE4 5PL UK
| |
Collapse
|
20
|
Picker SM, Parker G, Gissen P. Features of Congenital Arthrogryposis Due to Abnormalities in Collagen Homeostasis, a Scoping Review. Int J Mol Sci 2023; 24:13545. [PMID: 37686358 PMCID: PMC10487887 DOI: 10.3390/ijms241713545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Congenital arthrogryposis (CA) refers to the presence of multiple contractures at birth. It is a feature of several inherited syndromes, notable amongst them are disorders of collagen formation. This review aims to characterize disorders that directly or indirectly impact collagen structure and function leading to CA in search for common phenotypic or pathophysiological features, possible genotype-phenotype correlation, and potential novel treatment approaches based on a better understanding of the underlying pathomechanism. Nine genes, corresponding to five clinical phenotypes, were identified after a literature search. The most notable trend was the extreme phenotype variability. Clinical features across all syndromes ranged from subtle with minimal congenital contractures, to severe with multiple congenital contractures and extra-articular features including skin, respiratory, or other manifestations. Five of the identified genes were involved in the function of the Lysyl Hydroxylase 2 or 3 enzymes, which enable the hydroxylation and/or glycosylation of lysyl residues to allow the formation of the collagen superstructure. Whilst current treatment approaches are post-natal surgical correction, there are also potential in-utero therapies being developed. Cyclosporin A showed promise in treating collagen VI disorders although there is an associated risk of immunosuppression. The treatments that could be in the clinical trials soon are the splice correction therapies in collagen VI-related disorders.
Collapse
Affiliation(s)
| | - George Parker
- Newcastle University Medical School, Newcastle NE2 4HH, UK;
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
21
|
Liu J, Pan D, Huang X, Wang S, Chen H, Zhu YZ, Ye L. Targeting collagen in tumor extracellular matrix as a novel targeted strategy in cancer immunotherapy. Front Oncol 2023; 13:1225483. [PMID: 37692860 PMCID: PMC10484796 DOI: 10.3389/fonc.2023.1225483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Collagen, the most abundant protein in mammal, is widely expressed in tissues and organs, as well as tumor extracellular matrix. Tumor collagen mainly accumulates in tumor stroma or beneath tumor blood vessel endothelium, and is exposed due to the fragmentary structure of tumor blood vessels. Through the blood vessels with enhanced permeability and retention (EPR) effect, collagen-binding macromolecules could easily bind to tumor collagen and accumulate within tumor, supporting tumor collagen to be a potential tumor-specific target. Recently, numerous studies have verified that targeting collagen within tumor extracellular matrix (TEM) would enhance the accumulation and retention of immunotherapy drugs at tumor, significantly improving their anti-tumor efficacy, as well as avoiding severe adverse effects. In this review, we would summarize the known collagen-binding domains (CBD) or proteins (CBP), their mechanism and application in tumor-targeting immunotherapy, and look forward to future development.
Collapse
Affiliation(s)
- Jiayang Liu
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Danjie Pan
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Xuan Huang
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Songna Wang
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Huaning Chen
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Li Ye
- Department of Biological Medicines at School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
22
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska M, Ławiński J, Rysz J. The Role of miRNA in Renal Fibrosis Leading to Chronic Kidney Disease. Biomedicines 2023; 11:2358. [PMID: 37760798 PMCID: PMC10525803 DOI: 10.3390/biomedicines11092358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is an important health concern that is expected to be the fifth most widespread cause of death worldwide by 2040. The presence of chronic inflammation, oxidative stress, ischemia, etc., stimulates the development and progression of CKD. Tubulointerstitial fibrosis is a common pathomechanism of renal dysfunction, irrespective of the primary origin of renal injury. With time, fibrosis leads to end-stage renal disease (ESRD). Many studies have demonstrated that microRNAs (miRNAs, miRs) are involved in the onset and development of fibrosis and CKD. miRNAs are vital regulators of some pathophysiological processes; therefore, their utility as therapeutic agents in various diseases has been suggested. Several miRNAs were demonstrated to participate in the development and progression of kidney disease. Since renal fibrosis is an important problem in chronic kidney disease, many scientists have focused on the determination of miRNAs associated with kidney fibrosis. In this review, we present the role of several miRNAs in renal fibrosis and the potential pathways involved. However, as well as those mentioned above, other miRs have also been suggested to play a role in this process in CKD. The reports concerning the impact of some miRNAs on fibrosis are conflicting, probably because the expression and regulation of miRNAs occur in a tissue- and even cell-dependent manner. Moreover, different assessment modes and populations have been used. There is a need for large studies and clinical trials to confirm the role of miRs in a clinical setting. miRNAs have great potential; thus, their analysis may improve diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-055 Rzeszow, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
23
|
Liang L, Wu H, Cai Z, Zhao J. Genetic and molecular dynamics analysis of two variants of the COL4A5 gene causing Alport syndrome. BMC Med Genomics 2023; 16:192. [PMID: 37596645 PMCID: PMC10436629 DOI: 10.1186/s12920-023-01623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Alport syndrome (AS; OMIM#308,940) is a hereditary kidney disease that progresses over time and is distinguished by hearing loss and ocular irregularities. The syndrome has three subtypes, namely X-linked (XL; OMIM#301,050), autosomal recessive (AR; OMIM#203,780), and autosomal dominant (AD; OMIM#104,200), which are categorized based on their respective modes of inheritance. XLAS is attributed to a pathogenic variant in the COL4A5 (OMIM*303,630) gene, which encodes the α5(IV) chain of type IV collagen (Col-IV). In contrast, ADAS and ARAS are the result of variants in the COL4A3 (OMIM*120,070) and COL4A4 (OMIM*120,131) genes, which encode the α3(IV) and α4(IV) chains of Col-IV, respectively. Typically, the diagnosis of AS necessitates hereditary or pathological assessments. The determination of splicing variants as pathogenic or non-pathogenic based on gene sequencing outcomes is challenging. METHODS In this study, we conducted exome sequencing and Sanger sequencing on two unrelated Chinese patients with AS. We identified a deletion variant c.4414delG in the COL4A5 gene and a splicing variant c.4298-20T > A in the same gene. In order to ascertain the impact of c.4298-20T > A on the synthesis of COL4A5 mRNA, we performed experiments involving minigene splicing. Additionally, we predicted the ability of these two variants to affect triple helix formation of α345(IV) using molecular dynamics methods. RESULTS The c.4414delG deletion variant caused a change in the genetic code of the COL4A5 gene. Specifically, it caused a shift in codon 1472 from encoding aspartate to encoding methionine. This shift resulted in a change of 75 amino acids in the protein sequence, ultimately leading to an early stop codon. This premature stop codon caused the production of a truncated α5(IV) chain with a predicted protein effect of p.D1472Mfs. The mRNA of the COL4A5 gene experienced intron 46 retention due to the splicing variant c.4298-20T > A, leading to the inclusion of six additional amino acids between amino acids 1432 and 1433 of the α5(IV) chain. This variant is predicted to have a protein effect of p.(P1432_G1433insDYFVEI). The impact of two variants, c.4414delG and c.4298-20T > A, on the aggregation region for α3(IV), α4(IV), and α5(IV) trimerisation were studied using molecular dynamics simulations. Results showed that the deletion variant c.4414delG had a significantly stronger disruption on NC1, compared to the splicing variant c.4298-20T > A. This difference in impact is consistent with the varying clinical phenotypes observed in the two patients. Based on the American College of Medical Genetics and Genomics (ACMG) classification criteria and guidelines for genetic variants, the deletion variant c.4414delG was rated as pathogenic while the splicing variant c.4298-20T > A was rated as likely-pathogenic. CONCLUSION Our study has identified two novel pathogenic loci, the deletion variant c.4414delG and the splicing variant c.4298-20T > A, associated with XLAS. This finding expands the genetic spectrum of XLAS. We suggest that molecular dynamics can effectively model the effect of genetic variation on α345(IV) trimerization, which may offer valuable insights into the mechanisms of XLAS pathogenesis.
Collapse
Affiliation(s)
- Lei Liang
- Center for Prenatal Diagnosis and Medical Genetics, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010015, PR China
| | - Haotian Wu
- School of Public Health, Inner Mongolia Medical University, Hohhot, 010015, PR China
| | - Zeyu Cai
- Department of Nephrology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010015, PR China
| | - Jianrong Zhao
- Department of Nephrology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010015, PR China.
| |
Collapse
|
24
|
Pan S, Yu R, Liang S. Case report: A case report of Alport syndrome caused by a novel mutation of COL4A5. Front Genet 2023; 14:1216809. [PMID: 37529776 PMCID: PMC10389043 DOI: 10.3389/fgene.2023.1216809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Alport syndrome (#308940) is an X-linked genetic disease with clinical manifestations, such as hematuria, proteinuria, renal insufficiency, and end-stage renal disease. The disease is characterized by the thinning of the glomerular basement membrane in the early stages and the thickening of the glomerular basement membrane in the late stages and may be associated with ocular lesions and varying degrees of sensorineural deafness. Herein, we report a case of Alport syndrome caused by a de novo mutation in COL4A5. The patient was a young male with clinical manifestations of hematuria and massive proteinuria who was diagnosed with Alport syndrome based on renal pathology and genetic testing.
Collapse
Affiliation(s)
- Shujun Pan
- Clinical School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Rizhen Yu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shikai Liang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Kuwazuru J, Suico MA, Omachi K, Kojima H, Kamura M, Kaseda S, Kawahara T, Hitora Y, Kato H, Tsukamoto S, Wada M, Asano T, Kotani S, Nakajima M, Misumi S, Sannomiya Y, Horizono J, Koyama Y, Owaki A, Shuto T, Kai H. CyclosporinA Derivative as Therapeutic Candidate for Alport Syndrome by Inducing Mutant Type IV Collagen Secretion. KIDNEY360 2023; 4:909-917. [PMID: 37143203 PMCID: PMC10371266 DOI: 10.34067/kid.0000000000000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Key Points Screening of natural product extracts to find candidate compounds that increase mutant type IV collagen α 3,4,5 (α 345(IV)) trimer secretion in Alport syndrome (AS). Cyclosporin A (CsA) and alisporivir (ALV) increase mutant α 345(IV) trimer secretion in AS. PPIF/cyclophilin D mediates the effect of CsA and ALV on mutant trimer secretion. Background Type IV collagen α 3,4,5 (α 345(IV)) is an obligate trimer that is secreted to form a collagen network, which is the structural foundation of basement membrane. Mutation in one of the genes (COL4A3 , A4 , A5 ) encoding these proteins underlies the progressive genetic nephropathy Alport syndrome (AS) due to deficiency in trimerization and/or secretion of the α 345(IV) trimer. Thus, improving mutant α 345(IV) trimerization and secretion could be a good therapeutic approach for AS. Methods Using the nanoluciferase-based platform that we previously developed to detect α 345(IV) formation and secretion in HEK293T cells, we screened libraries of natural product extracts and compounds to find a candidate compound capable of increasing mutant α 345(IV) secretion. Results The screening of >13,000 extracts and >600 compounds revealed that cyclosporin A (CsA) increased the secretion of mutant α 345(IV)-G1244D. To elucidate the mechanism of the effect of CsA, we evaluated CsA derivatives with different ability to bind to calcineurin (Cn) and cyclophilin (Cyp). Alisporivir (ALV), which binds to Cyp but not to Cn, increased the trimer secretion of mutant α 345(IV). Knockdown studies on Cyps showed that PPIF/cyclophilin D was involved in the trimer secretion-enhancing activity of CsA and ALV. We confirmed that other α 345(IV) mutants are also responsive to CsA and ALV. Conclusions CsA was previously reported to improve proteinuria in patients with AS, but owing to its nephrotoxic effect, CsA is not recommended for treatment in patients with AS. Our data raise the possibility that ALV could be a safer option than CsA. This study provides a novel therapeutic candidate for AS with an innovative mechanism of action and reveals an aspect of the intracellular regulatory mechanism of α 345(IV) that was previously unexplored.
Collapse
Affiliation(s)
- Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruka Kojima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Teppei Kawahara
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Useful and Unique Natural Products for Drug Discovery and Development (UpRod), Program for Building Regional Innovation Ecosystems, Kumamoto University, Kumamoto, Japan
| | - Yuki Hitora
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Kato
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sachiko Tsukamoto
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mikiyo Wada
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Useful and Unique Natural Products for Drug Discovery and Development (UpRod), Program for Building Regional Innovation Ecosystems, Kumamoto University, Kumamoto, Japan
| | - Toshifumi Asano
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kotani
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shogo Misumi
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuya Sannomiya
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Horizono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuimi Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Aimi Owaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
LeBleu VS, Dai J, Tsutakawa S, MacDonald BA, Alge JL, Sund M, Xie L, Sugimoto H, Tainer J, Zon LI, Kalluri R. Identification of unique α4 chain structure and conserved antiangiogenic activity of α3NC1 type IV collagen in zebrafish. Dev Dyn 2023; 252:1046-1060. [PMID: 37002899 PMCID: PMC10524752 DOI: 10.1002/dvdy.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Type IV collagen is an abundant component of basement membranes in all multicellular species and is essential for the extracellular scaffold supporting tissue architecture and function. Lower organisms typically have two type IV collagen genes, encoding α1 and α2 chains, in contrast with the six genes in humans, encoding α1-α6 chains. The α chains assemble into trimeric protomers, the building blocks of the type IV collagen network. The detailed evolutionary conservation of type IV collagen network remains to be studied. RESULTS We report on the molecular evolution of type IV collagen genes. The zebrafish α4 non-collagenous (NC1) domain, in contrast with its human ortholog, contains an additional cysteine residue and lacks the M93 and K211 residues involved in sulfilimine bond formation between adjacent protomers. This may alter α4 chain interactions with other α chains, as supported by temporal and anatomic expression patterns of collagen IV chains during the zebrafish development. Despite the divergence between zebrafish and human α3 NC1 domain (endogenous angiogenesis inhibitor, Tumstatin), the zebrafish α3 NC1 domain exhibits conserved antiangiogenic activity in human endothelial cells. CONCLUSIONS Our work supports type IV collagen is largely conserved between zebrafish and humans, with a possible difference involving the α4 chain.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Feinberg School of Medicine and Kellogg School of Management, Northwestern University, Chicago, Illinois, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jianli Dai
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan Tsutakawa
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA
| | - Brian A MacDonald
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Sund
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Liang Xie
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - John Tainer
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leonard I Zon
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Krendel M, Leh S, Garone ME, Edwards-Richards A, Lin JJ, Brackman D, Knappskog P, Mikhailov A. Focal segmental glomerulosclerosis and proteinuria associated with Myo1E mutations: novel variants and histological phenotype analysis. Pediatr Nephrol 2023; 38:439-449. [PMID: 35723736 PMCID: PMC10506584 DOI: 10.1007/s00467-022-05634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pathogenic mutations in the non-muscle single-headed myosin, myosin 1E (Myo1e), are a rare cause of pediatric focal segmental glomerulosclerosis (FSGS). These mutations are biallelic, to date only reported as homozygous variants in consanguineous families. Myo1e regulates the actin cytoskeleton dynamics and cell adhesion, which are especially important for podocyte functions. METHODS DNA and RNA sequencing were used to identify novel MYO1E variants associated with FSGS. We studied the effects of these variants on the localization of Myo1e in kidney sections. We then analyzed the clinical and histological observations of all known pathogenic MYO1E variants. RESULTS We identified a patient compound heterozygote for two novel variants in MYO1E and a patient homozygous for a deletion of exon 19. Computer modeling predicted these variants to be disruptive. In both patients, Myo1e was mislocalized. As a rule, pathogenic MYO1E variants map to the Myo1e motor and neck domain and are most often associated with steroid-resistant nephrotic syndrome in children 1-11 years of age, leading to kidney failure in 4-10 years in a subset of patients. The ultrastructural features are the podocyte damage and striking diffuse and global Alport-like glomerular basement membrane (GBM) abnormalities. CONCLUSIONS We hypothesize that MYO1E mutations lead to disruption of the function of podocyte contractile actin cables resulting in abnormalities of the podocytes and the GBM and dysfunction of the glomerular filtration barrier. The characteristic clinicopathological data can help to tentatively differentiate this condition from other genetic podocytopathies and Alport syndrome until genetic testing is done. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sabine Leh
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Michael E Garone
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Jen-Jar Lin
- Department of Pediatrics, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Damien Brackman
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Per Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Alexei Mikhailov
- Department of Pathology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.
| |
Collapse
|
28
|
Wu WQ, Zhang JX, Cui YX, Zhang MC, Chen XH, Duan S, Zeng CH, Li PN, Li XJ. A mouse model for X-linked Alport syndrome induced by Del-ATGG in the Col4a5 gene. Front Med (Lausanne) 2023; 10:1086756. [PMID: 36968823 PMCID: PMC10030835 DOI: 10.3389/fmed.2023.1086756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Alport syndrome (AS) is an inherited glomerular basement membrane (GBM) disease leading to end-stage renal disease (ESRD). X-linked AS (XLAS) is caused by pathogenic variants in the COL4A5 gene. Many pathogenic variants causing AS have been detected, but the genetic modifications and pathological alterations leading to ESRD have not been fully characterized. In this study, a novel frameshift variant c.980_983del ATGG in the exon 17 of the COL4A5 gene detected in a patient with XLAS was introduced into a mouse model in by CRISPR/Cas9 system. Through biochemical urinalysis, histopathology, immunofluorescence, and transmission electron microscopy (TEM) detection, the clinical manifestations and pathological alterations of Del-ATGG mice were characterized. From 16 weeks of age, obvious proteinuria was observed and TEM showed typical alterations of XLAS. The pathological changes included glomerular atrophy, increased monocytes in renal interstitial, and the absence of type IV collagen α5. The expression of Col4a5 was significantly decreased in Del-ATGG mouse model. Transcriptomic analysis showed that differentially expressed genes (DEGs) accounted for 17.45% (4,188/24003) of all genes. GO terms indicated that the functions of identified DEGs were associated with cell adhesion, migration, and proliferation, while KEGG terms found enhanced the degradation of ECM, amino acid metabolism, helper T-cell differentiation, various receptor interactions, and several important pathways such as chemokine signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway. In conclusion, a mouse model with a frameshift variant in the Col4a5 gene has been generated to demonstrate the biochemical, histological, and pathogenic alterations related to AS. Further gene expression profiling and transcriptomic analysis revealed DEGs and enriched pathways potentially related to the disease progression of AS. This Del-ATGG mouse model could be used to further define the genetic modifiers and potential therapeutic targets for XLAS treatment.
Collapse
Affiliation(s)
- Wei-qing Wu
- Institute of Clinical Laboratory Science, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Center of Medical Genetics, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Jia-xun Zhang
- Institute of Clinical Laboratory Science, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Ying-xia Cui
- Institute of Clinical Laboratory Science, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Ming-chao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Xiao-hang Chen
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
| | - Shan Duan
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Cai-hong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Pei-ning Li
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Xiao-jun Li
- Institute of Clinical Laboratory Science, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- *Correspondence: Xiao-jun Li,
| |
Collapse
|
29
|
Di H, Zhang J, Gao E, Zheng C, Huang X, Wang Q, Yu X, Liu Z. Dissecting the genotype-phenotype correlation of COL4A5 gene mutation and its response to renin-angiotensin-aldosterone system blockers in Chinese male patients with Alport syndrome. Nephrol Dial Transplant 2022; 37:2487-2495. [PMID: 35020912 DOI: 10.1093/ndt/gfac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alport syndrome (AS) is an inherited type IV collagen-related disorder with an irreversible tendency to progress to end-stage renal disease (ESRD). X-linked AS (XLAS) is caused by mutations in the COL4A5 gene. The aim of this study was to investigate the effects of underlying mutations on clinical manifestations and the response to therapy in XLAS. METHODS We conducted a retrospective cohort study of 187 Chinese male patients with XLAS confirmed by pathological examination and genetic analysis. The Kaplan-Meier method and Cox proportional hazards model were used to assess the age and risk of progression to ESRD under different genotypes and treatment conditions. RESULTS A strong relationship between transcript type and renal outcome was observed, with the median age of ESRD onset being 22 years for truncating mutations and 39 years for non-truncating mutations. The response of affected patients to renin-angiotensin-aldosterone system (RAAS) blockers was genotype-associated. This therapy delayed the onset of ESRD by 16 years in patients with non-truncating mutations and 3 years in patients with truncating mutations. The efficacy of RAAS blockers functioned in a time-dependent manner, with a 7% reduction in the risk of progression to ESRD per each 6-month increase in treatment duration [hazard ratio 0.93 (95% confidence interval 0.89-0.96); P < 0.001]. CONCLUSIONS Clinical features and response to RAAS blockers were observed to be strongly correlated with the genotypes of male XLAS patients. Genotyping of COL4A5 gene mutations is essential and is a useful tool to assess the prognosis of AS patients.
Collapse
Affiliation(s)
- Hongling Di
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiahui Zhang
- Key Laboratory of Biosystems Homeostasis and Protection of the Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xianghua Huang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Wang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Roy A, Gauld JW. Molecular Dynamics Investigation on the Effects of Protonation and Lysyl Hydroxylation on Sulfilimine Cross-links in Collagen IV. ACS OMEGA 2022; 7:39680-39689. [PMID: 36385809 PMCID: PMC9647856 DOI: 10.1021/acsomega.2c03360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Collagen IV networks are an essential component of basement membranes that are important for their structural integrity and thus that of an organism's tissues. Improper functioning of these networks has been associated with several diseases. Cross-links, such as sulfilimine bonds interconnecting NC1 domains, are critical for forming and mechanically stabilizing these collagen IV networks. More specifically, the sulfilimine cross-links form between methionine (Met93) and lysine/hydroxylsine (Lys211/Hyl211) residues of NC1 domains. Therefore, the dynamic nature of the sulfilimine bond in collagen IV is crucial for network formation. To understand the dynamic nature of a neutral and protonated sulfilimine bond in collagen IV, we performed molecular dynamics (MD) simulations on four sulfilimine cross-linked systems (i.e., Met93S-NLys211, Met93S-NHLys211 +, Met93S-NHyl211, and Met93S-NHHyl211 +) of collagen IV. The MD results showed that the neutral Met93S-NLys211 system has the smallest protein backbone and showed the cross-linked residues' RMSD value. The conformational change analyses showed that the conformations of the sulfilimine cross-linked residues take on a U-shape for the Met93S-NHyl211 and Met93S-HNHyl211 + systems, whereas the conformations of the sulfilimine cross-linked residues are more open for the Met93S-NLys211, and Met93S-NHLys211 + systems. Protonation is a crucial biochemical process to stabilize the protein structure or the biological cross-links. Furthermore, the protonation of the sulfilimine bond could potentially influence hydrogen bond interaction with near amino acid residues, and according to water distribution analyses, the sulfilimine bond can potentially exist in one or more protonation states.
Collapse
|
31
|
Gross hematuria, edema, and hypocomplementemia in a 9-year-old boy: Answers. Pediatr Nephrol 2022; 37:2349-2353. [PMID: 35352193 DOI: 10.1007/s00467-022-05539-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
32
|
Chakravarti S, Enzo E, Rocha Monteiro de Barros M, Maffezzoni MBR, Pellegrini G. Genetic Disorders of the Extracellular Matrix: From Cell and Gene Therapy to Future Applications in Regenerative Medicine. Annu Rev Genomics Hum Genet 2022; 23:193-222. [PMID: 35537467 PMCID: PMC12090096 DOI: 10.1146/annurev-genom-083117-021702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans have evolved to produce various types of extracellular matrix (ECM) that provide structural support, cell adhesion, cell-cell communication, and regulated exposure to external cues. Epithelial cells produce and adhere to a specialized sheet-like ECM, the basement membrane, that is critical for cellular homeostasis and tissue integrity. Mesenchymal cells, such as chondrocytes in cartilaginous tissues and keratocytes in the corneal stroma, produce a pericellular matrix that presents optimal levels of growth factors, cytokines, chemokines, and nutrients to the cell and regulates mechanosensory signals through specific cytoskeletal and cell surface receptor interactions. Here, we discuss laminins, collagen types IV and VII, and perlecan, which are major components of these two types of ECM. We examinegenetic defects in these components that cause basement membrane pathologies such as epidermolysis bullosa, Alport syndrome, rare pericellular matrix-related chondrodysplasias, and corneal keratoconus and discuss recent advances in cell and gene therapies being developed for some of these disorders.
Collapse
Affiliation(s)
- Shukti Chakravarti
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | - Elena Enzo
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology and Department of Pathology, Grossman School of Medicine, New York University, New York, NY, USA; ,
| | | | - Graziella Pellegrini
- Center for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy; , ,
| |
Collapse
|
33
|
Abstract
While most tissues exhibit their greatest growth during development, adipose tissue is capable of additional massive expansion in adults. Adipose tissue expandability is advantageous when temporarily storing fuel for use during fasting, but becomes pathological upon continuous food intake, leading to obesity and its many comorbidities. The dense vasculature of adipose tissue provides necessary oxygen and nutrients, and supports delivery of fuel to and from adipocytes under fed or fasting conditions. Moreover, the vasculature of adipose tissue comprises a major niche for multipotent progenitor cells, which give rise to new adipocytes and are necessary for tissue repair. Given the multiple, pivotal roles of the adipose tissue vasculature, impairments in angiogenic capacity may underlie obesity-associated diseases such as diabetes and cardiometabolic disease. Exciting new studies on the single-cell and single-nuclei composition of adipose tissues in mouse and humans are providing new insights into mechanisms of adipose tissue angiogenesis. Moreover, new modes of intercellular communication involving micro vesicle and exosome transfer of proteins, nucleic acids and organelles are also being recognized to play key roles. This review focuses on new insights on the cellular and signaling mechanisms underlying adipose tissue angiogenesis, and on their impact on obesity and its pathophysiological consequences.
Collapse
|
34
|
Irion CI, Williams M, Capcha JC, Eisenberg T, Lambert G, Takeuchi LM, Seo G, Yousefi K, Kanashiro-Takeuchi R, Webster KA, Young KC, Hare JM, Shehadeh LA. Col4a3-/- Mice on Balb/C Background Have Less Severe Cardiorespiratory Phenotype and SGLT2 Over-Expression Compared to 129x1/SvJ and C57Bl/6 Backgrounds. Int J Mol Sci 2022; 23:6674. [PMID: 35743114 PMCID: PMC9223785 DOI: 10.3390/ijms23126674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Alport syndrome (AS) is a hereditary renal disorder with no etiological therapy. In the preclinical Col4a3-/- model of AS, disease progression and severity vary depending on mouse strain. The sodium-glucose cotransporter 2 (SGLT2) is emerging as an attractive therapeutic target in cardiac/renal pathologies, but its application to AS remains untested. This study investigates cardiorespiratory function and SGLT2 renal expression in Col4a3-/- mice from three different genetic backgrounds, 129x1/SvJ, C57Bl/6 and Balb/C. male Col4a3-/- 129x1/SvJ mice displayed alterations consistent with heart failure with preserved ejection fraction (HFpEF). Female, but not male, C57Bl/6 and Balb/C Col4a3-/- mice exhibited mild changes in systolic and diastolic function of the heart by echocardiography. Male C57Bl/6 Col4a3-/- mice presented systolic dysfunction by invasive hemodynamic analysis. All strains except Balb/C males demonstrated alterations in respiratory function. SGLT2 expression was significantly increased in AS compared to WT mice from all strains. However, cardiorespiratory abnormalities and SGLT2 over-expression were significantly less in AS Balb/C mice compared to the other two strains. Systolic blood pressure was significantly elevated only in mutant 129x1/SvJ mice. The results provide further evidence for strain-dependent cardiorespiratory and hypertensive phenotype variations in mouse AS models, corroborated by renal SGLT2 expression, and support ongoing initiatives to develop SGLT2 inhibitors for the treatment of AS.
Collapse
Affiliation(s)
- Camila I. Irion
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Monique Williams
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Jose Condor Capcha
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Trevor Eisenberg
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
| | - Guerline Lambert
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Lauro M. Takeuchi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Grace Seo
- Department of Medical Education, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Keyvan Yousefi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rosemeire Kanashiro-Takeuchi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Keith A. Webster
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Ophthalmology, Vascular Biology Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karen C. Young
- Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Joshua M. Hare
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| |
Collapse
|
35
|
Wang S, Shao Y, Wang Y, Lu J, Shao L. Identification of Four Novel COL4A5 Variants and Detection of Splicing Abnormalities in Three Chinese X-Linked Alport Syndrome Families. Front Genet 2022; 13:847777. [PMID: 35368650 PMCID: PMC8968133 DOI: 10.3389/fgene.2022.847777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic renal disease associated with X-linked Alport syndrome (XLAS) is relatively rare. However, due to the lack of specificity in the pathologic and clinical manifestations of the disease, it is easy to be misdiagnosed. In this study, we included three Chinese families with XLAS and used targeted NGS to find gene variants. In family X1, the 36-year-old male proband had hematuria, massive proteinuria, sensorineural deafness and ESRD at 33. In silico prediction showed the novel c.1424-4C > G variant reduced the score of the normal 3’ splice site from 0.47 to 0.00 (according to BDGP). Transcriptional analysis from his peripheral blood cells indicated that it caused the insertion of an amino acid [p.(Lys474_Gly475insVal)]. In family X2, the proband was a 32-year-old male, who had hematuria, proteinuria, hypertension, hearing loss and progressed into ESRD at 30 years. He carried a novel missense variant c.2777G > T p.(Gly926Val). In family X3, the proband, a 16-year-old male, had hematuria, massive proteinuria, sensorineural deafness and ESRD; the results of renal pathological findings were consistent with AS. He carried a novel variant c.4529-2A > T, so did his mother with ESRD and probable XLAS. Bioinformatic analysis with BDGP showed that it abolished the acceptor site from 0.83 to 0.00. RT-PCR analysis from his kidney tissue indicated that it caused exon 50 skipping and exon 50 skipping along with inserting a cryptic exon derived from intron 49 p.[Gly1510Aspfs*11, Gly1510Alafs*35]. Another novel missense variant c.1552G > A p.(Gly518Arg) was identified in his mother and his aunt. No skewed X-chromosome inactivation was involved in these two female patients. In conclusion, four novel variants in COL4A5 were identified and transcriptional analysis is essential to investigate the pathogenicity of intronic variants. Thus we found a rare event in a female patient with XLAS caused by two COL4A5 variants in trans.
Collapse
Affiliation(s)
- Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Yingfei Shao
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Yixiu Wang
- Darpartment of Hepatic Surgery, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingru Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
- *Correspondence: Leping Shao,
| |
Collapse
|
36
|
Cosgrove D, Madison J. Molecular and Cellular Mechanisms Underlying the Initiation and Progression of Alport Glomerular Pathology. Front Med (Lausanne) 2022; 9:846152. [PMID: 35223933 PMCID: PMC8863674 DOI: 10.3389/fmed.2022.846152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Alport syndrome results from a myriad of variants in the COL4A3, COL4A4, or COL4A5 genes that encode type IV (basement membrane) collagens. Unlike type IV collagen α1(IV)2α2(IV)1 heterotrimers, which are ubiquitous in basement membranes, α3/α4/α5 have a limited tissue distribution. The absence of these basement membrane networks causes pathologies in some, but not all these tissues. Primarily the kidney glomerulus, the stria vascularis of the inner ear, the lens, and the retina as well as a rare link with aortic aneurisms. Defects in the glomerular basement membranes results in delayed onset and progressive focal segmental glomerulosclerosis ultimately requiring the patient to undergo dialysis and if accessible, kidney transplant. The lifespan of patients with Alport syndrome is ultimately significantly shortened. This review addresses the consequences of the altered glomerular basement membrane composition in Alport syndrome with specific emphasis on the mechanisms underlying initiation and progression of glomerular pathology.
Collapse
Affiliation(s)
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States
| |
Collapse
|
37
|
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022; 10:821852. [PMID: 35252131 PMCID: PMC8896438 DOI: 10.3389/fbioe.2022.821852] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The absence or damage of a tissue is the main cause of most acute or chronic diseases and are one of the appealing challenges that novel therapeutic alternatives have, in order to recover lost functions through tissue regeneration. Chronic cutaneous lesions are the most frequent cause of wounds, being a massive area of regenerative medicine and tissue engineering to have efforts to develop new bioactive medical products that not only allow an appropriate and rapid healing, but also avoid severe complications such as bacterial infections. In tissue repair and regeneration processes, there are several overlapping stages that involve the synergy of cells, the extracellular matrix (ECM) and biomolecules, which coordinate processes of ECM remodeling as well as cell proliferation and differentiation. Although these three components play a crucial role in the wound healing process, the ECM has the function of acting as a biological platform to permit the correct interaction between them. In particular, ECM is a mixture of crosslinked proteins that contain bioactive domains that cells recognize in order to promote migration, proliferation and differentiation. Currently, tissue engineering has employed several synthetic polymers to design bioactive scaffolds to mimic the native ECM, by combining biopolymers with growth factors including collagen and fibrinogen. Among these, decellularized tissues have been proposed as an alternative for reconstructing cutaneous lesions since they maintain the complex protein conformation, providing the required functional domains for cell differentiation. In this review, we present an in-depth discussion of different natural matrixes recently employed for designing novel therapeutic alternatives for treating cutaneous injuries, and overview some future perspectives in this area.
Collapse
Affiliation(s)
- Víctor Alfonso Solarte David
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Program of Biomedical Engineering, Faculty of Engineering, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Viviana Raquel Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Faculty of Physicochemical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Claudia L. Sossa
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Silvia M. Becerra-Bayona
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- *Correspondence: Silvia M. Becerra-Bayona,
| |
Collapse
|
38
|
Sun X, Liu Y. Matrix Metalloproteinase-10 in Kidney Injury Repair and Disease. Int J Mol Sci 2022; 23:2131. [PMID: 35216251 PMCID: PMC8877639 DOI: 10.3390/ijms23042131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinase-10 (MMP-10) is a zinc-dependent endopeptidase with the ability to degrade a broad spectrum of extracellular matrices and other protein substrates. The expression of MMP-10 is induced in acute kidney injury (AKI) and chronic kidney disease (CKD), as well as in renal cell carcinoma (RCC). During the different stages of kidney injury, MMP-10 may exert distinct functions by cleaving various bioactive substrates including heparin-binding epidermal growth factor (HB-EGF), zonula occludens-1 (ZO-1), and pro-MMP-1, -7, -8, -9, -10, -13. Functionally, MMP-10 is reno-protective in AKI by promoting HB-EGF-mediated tubular repair and regeneration, whereas it aggravates podocyte dysfunction and proteinuria by disrupting glomerular filtration integrity via degrading ZO-1. MMP-10 is also involved in cancerous invasion and emerges as a promising therapeutic target in patients with RCC. As a secreted protein, MMP-10 could be detected in the circulation and presents an inverse correlation with renal function. Due to the structural similarities between MMP-10 and the other MMPs, development of specific inhibitors targeting MMP-10 is challenging. In this review, we summarize our current understanding of the role of MMP-10 in kidney diseases and discuss the potential mechanisms of its actions.
Collapse
Affiliation(s)
- Xiaoli Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, School of Medicine, University of Pittsburgh, S405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
39
|
Aoto Y, Horinouchi T, Yamamura T, Kondo A, Nagai S, Ishiko S, Okada E, Rossanti R, Sakakibara N, Nagano C, Awano H, Nagase H, Shima Y, Nakanishi K, Matsuo M, Iijima K, Nozu K. Last Nucleotide Substitutions of COL4A5 Exons Cause Aberrant Splicing. Kidney Int Rep 2022; 7:108-116. [PMID: 35005319 PMCID: PMC8720670 DOI: 10.1016/j.ekir.2021.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Introduction COL4A5 is a causative gene of X-linked Alport syndrome (XLAS). Male patients with XLAS with nonsense variants have the most severe phenotypes of early onset end-stage kidney disease (ESKD); those with splicing variants have middle phenotypes and those with missense variants have the mildest phenotypes. Therefore, genotyping for male patients with XLAS can be used to predict kidney prognosis. Single-base substitutions at the last nucleotide position in each exon are known to affect splicing patterns and could be splicing variants. Nevertheless, in XLAS, these variants are generally considered to be missense variants, without conducting a transcript analysis, which underestimates some patients as having mild phenotypes. This study aimed to investigate whether single-base substitutions at the last nucleotide position of COL4A5 exons cause aberrant splicing. Methods In total, 20 variants were found in the Human Gene Mutation Database (n = 14) and our cohort (n = 6). We performed functional splicing assays using a hybrid minigene analysis and in vivo transcript analyses of patients’ samples when available. Then, we investigated genotype–phenotype correlations for patients with splicing variants detected in this study by comparing data from our previous studies. Results Among the 20 variants, 17 (85%) caused aberrant splicing. Male patients with splicing variants had more severe phenotypes when compared with those with missense variants. Findings from the in vivo analyses for 3 variants were identical to those from the minigene assay. Conclusion Our study revealed that most single-base substitutions at the last nucleotide position of COL4A5 exons result in splicing variants, rather than missense variants, thereby leading to more severe phenotypes.
Collapse
Affiliation(s)
- Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Kondo
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sadayuki Nagai
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eri Okada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, Japan.,Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
40
|
Gyarmati G, Shroff UN, Izuhara A, Hou X, Da Sacco S, Sedrakyan S, Lemley KV, Amann K, Perin L, Peti-Peterdi J. Intravital imaging reveals glomerular capillary distension and endothelial and immune cell activation early in Alport syndrome. JCI Insight 2021; 7:152676. [PMID: 34793332 PMCID: PMC8765042 DOI: 10.1172/jci.insight.152676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Alport syndrome (AS) is a genetic disorder caused by mutations in type IV collagen that lead to defective glomerular basement membrane, glomerular filtration barrier (GFB) damage, and progressive chronic kidney disease. While the genetic basis of AS is well known, the molecular and cellular mechanistic details of disease pathogenesis have been elusive, hindering the development of mechanism-based therapies. Here, we performed intravital multiphoton imaging of the local kidney tissue microenvironment in a X-linked AS mouse model to directly visualize the major drivers of AS pathology. Severely distended glomerular capillaries and aneurysms were found accompanied by numerous microthrombi, increased glomerular endothelial surface layer (glycocalyx) and immune cell homing, GFB albumin leakage, glomerulosclerosis, and interstitial fibrosis by 5 months of age, with an intermediate phenotype at 2 months. Renal histology in mouse or patient tissues largely failed to detect capillary aberrations. Treatment of AS mice with hyaluronidase or the ACE inhibitor enalapril reduced the excess glomerular endothelial glycocalyx and blocked immune cell homing and GFB albumin leakage. This study identified central roles of glomerular mechanical forces and endothelial and immune cell activation early in AS, which could be therapeutically targeted to reduce mechanical strain and local tissue inflammation and improve kidney function.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, United States of America
| | - Urvi Nikhil Shroff
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, United States of America
| | - Audrey Izuhara
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, United States of America
| | - Xiaogang Hou
- Division of Urology, Children's Hospital Los Angeles, Los Angeles, United States of America
| | - Stefano Da Sacco
- Division of Urology, Children's Hospital Los Angeles, Los Angeles, United States of America
| | - Sargis Sedrakyan
- Division of Urology, Children's Hospital Los Angeles, Los Angeles, United States of America
| | - Kevin V Lemley
- Department of Pediatics, Children's Hospital Los Angeles, Los angeles, United States of America
| | - Kerstin Amann
- Department of Nephropathology, Friedrich Alexander University, Erlangen, Germany
| | - Laura Perin
- Division of Urology, Children's Hospital Los Angeles, Los Angeles, United States of America
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, United States of America
| |
Collapse
|
41
|
Namba M, Kobayashi T, Kohno M, Koyano T, Hirose T, Fukushima M, Matsuyama M. Creation of X-linked Alport syndrome rat model with Col4a5 deficiency. Sci Rep 2021; 11:20836. [PMID: 34675305 PMCID: PMC8531394 DOI: 10.1038/s41598-021-00354-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model was reliable only to mouse. In this study, we created a novel Alport syndrome rat model utilizing the rGONAD technology, which generated rat with a deletion of the Col4α5 gene. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in Col4α5 deficient rats. Thus, Col4α5 mutant rat is a reliable candidate for the Alport syndrome model for underlying the mechanism of kidney diseases and further identifying potential therapeutic targets for human renal diseases.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Mayumi Kohno
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Endocrinology and Applied Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.,Shigei Medical Research Hospital, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.
| |
Collapse
|
42
|
Sanaei‐Ardekani M, Kamal S, Handy W, Alam S, Salaheldin A, Moore A, Movafagh S. Suppression of collagen IV alpha-2 subunit by prolyl hydroxylase domain inhibition via hypoxia-inducible factor-1 in chronic kidney disease. Pharmacol Res Perspect 2021; 9:e00872. [PMID: 34617686 PMCID: PMC8495681 DOI: 10.1002/prp2.872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022] Open
Abstract
Elevation of hypoxia-inducible factor 1 protein has been shown to be protective in acute kidney injury and HIF1α enhancing drug therapies are currently in clinical trials for the treatment of anemia of chronic kidney disease. Despite its benefits, long-term HIF1 elevation seems to be associated with additional effects in the kidneys such as tubulointerstitial fibrosis. To better understand the effects of prolonged HIF1 exposure, assessment of baseline and post-therapy levels of HIF1α and other related biomarkers is essential. In this study, we assessed the effect of HIF1α enhancement using prolyl hydroxylase inhibitor (PHD-I) DMOG, on a key profibrotic marker of kidney disease. In specific, we examined the change in expression of Collagen 4 subunit A2 in cultured urinary cells of CKD patients pre and post 24-hour exposure to 1mM DMOG. Our results show that besides HIF1α enhancement, COL4A2 protein is suppressed in presence of DMOG. To determine if this effect is mediated by HIF1, we used HIF1α gene silencing in HEK293 cells and examined the effect of DMOG on protein and gene expression of COL4A2 post 24-hour exposure. We showed that silencing HIF1α reverses and amplifies the expression of COL4A2 in HEK293 cells. Our data suggest that HIF1 directly regulates the expression of COL4A2 in kidney cells and that HIF1α enhancing therapy has suppressive effects on COL4A2 that may be clinically relevant and must be considered in determining the safety and efficacy of these drugs in the treatment of anemia.
Collapse
Affiliation(s)
| | - Shyreen Kamal
- Bernard J Dunn School of PharmacyShenandoah UniversityFairfaxVirginiaUSA
| | - Whitney Handy
- Bernard J Dunn School of PharmacyShenandoah UniversityFairfaxVirginiaUSA
| | - Sidrah Alam
- Bernard J Dunn School of PharmacyShenandoah UniversityFairfaxVirginiaUSA
| | - Aya Salaheldin
- Bernard J Dunn School of PharmacyShenandoah UniversityFairfaxVirginiaUSA
| | - Anderson Moore
- Bernard J Dunn School of PharmacyShenandoah UniversityFairfaxVirginiaUSA
| | - Shahrzad Movafagh
- Department of PharmacogenomicsShenandoah University School of PharmacyINOVA Center for Personalized MedicineFairfaxVirginiaUSA
| |
Collapse
|
43
|
Frank CN, Hou X, Petrosyan A, Villani V, Zhao R, Hansen JR, Clair G, Salem F, De Filippo RE, Cravedi P, Lemley KV, Perin L. Effect of disease progression on the podocyte cell cycle in Alport Syndrome. Kidney Int 2021; 101:106-118. [PMID: 34562503 DOI: 10.1016/j.kint.2021.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/18/2021] [Accepted: 08/19/2021] [Indexed: 01/16/2023]
Abstract
Progression of glomerulosclerosis is associated with loss of podocytes with subsequent glomerular tuft instability. It is thought that a diminished number of podocytes may be able to preserve tuft stability through cell hypertrophy associated with cell cycle reentry. At the same time, reentry into the cell cycle risks podocyte detachment if podocytes cross the G1/S checkpoint and undergo abortive cytokinesis. In order to study cell cycle dynamics during chronic kidney disease (CKD) development, we used a FUCCI model (fluorescence ubiquitination-based cell cycle indicator) of mice with X-linked Alport Syndrome. This model exhibits progressive CKD and expresses fluorescent reporters of cell cycle stage exclusively in podocytes. With the development of CKD, an increasing fraction of podocytes in vivo were found to be in G1 or later cell cycle stages. Podocytes in G1 and G2 were hypertrophic. Heterozygous female mice, with milder manifestations of CKD, showed G1 fraction numbers intermediate between wild-type and male Alport mice. Proteomic analysis of podocytes in different cell cycle phases showed differences in cytoskeleton reorganization and metabolic processes between G0 and G1 in disease. Additionally, in vitro experiments confirmed that damaged podocytes reentered the cell cycle comparable to podocytes in vivo. Importantly, we confirmed the upregulation of PDlim2, a highly expressed protein in podocytes in G1, in a patient with Alport Syndrome, confirming our proteomics data in the human setting. Thus, our data showed that in the Alport model of progressive CKD, podocyte cell cycle distribution is altered, suggesting that cell cycle manipulation approaches may have a role in the treatment of various progressive glomerular diseases characterized by podocytopenia.
Collapse
Affiliation(s)
- Camille Nicolas Frank
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA; Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaogang Hou
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Rui Zhao
- Biological Science Division, Integrative Omics, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joshua R Hansen
- Biological Science Division, Integrative Omics, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Geremy Clair
- Biological Science Division, Integrative Omics, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Fadi Salem
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roger E De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Paolo Cravedi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin V Lemley
- Division of Nephrology, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
44
|
Allardyce H, Kuhn D, Hernandez-Gerez E, Hensel N, Huang YT, Faller K, Gillingwater TH, Quondamatteo F, Claus P, Parson SH. Renal pathology in a mouse model of severe Spinal Muscular Atrophy is associated with downregulation of Glial Cell-Line Derived Neurotrophic Factor (GDNF). Hum Mol Genet 2021; 29:2365-2378. [PMID: 32588893 DOI: 10.1093/hmg/ddaa126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) occurs as a result of cell-ubiquitous depletion of the essential survival motor neuron (SMN) protein. Characteristic disease pathology is driven by a particular vulnerability of the ventral motor neurons of the spinal cord to decreased SMN. Perhaps not surprisingly, many other organ systems are also impacted by SMN depletion. The normal kidney expresses very high levels of SMN protein, equivalent to those found in the nervous system and liver, and levels are dramatically lowered by ~90-95% in mouse models of SMA. Taken together, these data suggest that renal pathology may be present in SMA. We have addressed this using an established mouse model of severe SMA. Nephron number, as assessed by gold standard stereological techniques, was significantly reduced. In addition, morphological assessment showed decreased renal vasculature, particularly of the glomerular capillary knot, dysregulation of nephrin and collagen IV, and ultrastructural changes in the trilaminar filtration layers of the nephron. To explore the molecular drivers underpinning this process, we correlated these findings with quantitative PCR measurements and protein analyses of glial cell-line-derived neurotrophic factor, a crucial factor in ureteric bud branching and subsequent nephron development. Glial cell-line-derived neurotrophic factor levels were significantly reduced at early stages of disease in SMA mice. Collectively, these findings reveal significant renal pathology in a mouse model of severe SMA, further reinforcing the need to develop and administer systemic therapies for this neuromuscular disease.
Collapse
Affiliation(s)
- Hazel Allardyce
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Daniela Kuhn
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover 30625, Germany
| | - Elena Hernandez-Gerez
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Niko Hensel
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover 30625, Germany.,Center for Systems Neuroscience (ZSN) Hannover, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Yu-Ting Huang
- Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,Edinburgh Medical School: Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Kiterie Faller
- Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,Edinburgh Medical School: Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Thomas H Gillingwater
- Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.,Edinburgh Medical School: Biomedical Sciences, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Fabio Quondamatteo
- Anatomy Facility, School of Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Peter Claus
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover 30625, Germany.,Center for Systems Neuroscience (ZSN) Hannover, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Simon H Parson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
45
|
Sparasci D, Rossinelli A, Ferri R, Cippà P, Rinaldi A, Manconi M. Severe restless legs syndrome in a family with Alport syndrome. BMC Nephrol 2021; 22:249. [PMID: 34225668 PMCID: PMC8256610 DOI: 10.1186/s12882-021-02455-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Background Restless legs syndrome (RLS) is a common sleep-related movement disorder characterized by an urge to move the legs during inactivity, especially at evening-night. RLS is highly prevalent in patients with kidney failure and have an impact on quality of life, mood, sleep quality and overall on compliance to the dialysis. Alport syndrome (AS) is a rare inherited disease, predominantly X-linked, secondary to mutations in genes encoding α3, α4 or α5 chains of type IV collagen, and characterized by hematuria, chronic kidney disease, neurosensory deafness, and lenticonus. Case presentation Here we describe a family with a combination of X-linked AS and severe RLS accompanied by periodic limb movements during sleep (PLMS). In the first patient we identified, RLS was complicated by a paradoxical response to dopamine agonists named “augmentation”, leading to sleep disruption, hallucinations and five peritoneal perforations during the peritoneal dialysis due to the difficulty to rest still. Therapeutic adjustments and renal transplantation improved RLS and PLMS. In two brothers, severe RLS prevented a compliance with hemodialysis. Female family members carrying the mutation were also affected by RLS, while those without the mutations were RLS-free. Conclusions RLS has not been reported earlier in association with AS, but the peculiar combinations observed in this family will stimulate further clinical studies and motivate nephrologists to seek for RLS symptoms and sleep disturbances in AS patients.
Collapse
Affiliation(s)
- Davide Sparasci
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland.
| | - Andrea Rossinelli
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| | - Pietro Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500, Bellinzona, TI, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
46
|
Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. J Biomed Mater Res B Appl Biomater 2021; 109:1986-1999. [PMID: 34028179 DOI: 10.1002/jbm.b.34881] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 05/15/2021] [Indexed: 12/19/2022]
Abstract
Collagen is an insoluble fibrous protein that composes the extracellular matrix in animals. Although collagen has been used as a biomaterial since 1881, the properties and the complex structure of collagen are still extensive study subjects worldwide. In this article, several topics of importance for understanding collagen research are reviewed starting from its historical milestones, followed by the description of the collagen superfamily and its complex structures, with a focus on type I collagen. Subsequently, some of the superior properties of collagen-based biomaterials, such as biocompatibility, biodegradability, mechanical properties, and cell activities, are pinpointed. These properties make collagen applicable in biomedicine, such as wound healing, tissue engineering, surface coating of medical devices, and skin supplementation. Moreover, some antimicrobial strategies and the general host tissue responses regarding collagen as a biomaterial are presented. Finally, the current status and clinical application of the three-dimensional (3D) printing techniques for the fabrication of collagen-based scaffolds and the reconstruction of the human heart's constituents, such as capillary structures or even the entire organ, are discussed. Besides, an overall outlook for the future of this unique biomaterial is provided.
Collapse
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Nooshin Nourbakhsh
- Yong Loo Lin School of Medicine, Department of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Kikkawa Y, Hashimoto T, Takizawa K, Urae S, Masuda H, Matsunuma M, Yamada Y, Hamada K, Nomizu M, Liapis H, Hisano M, Akioka Y, Miura K, Hattori M, Miner JH, Harita Y. Laminin β2 variants associated with isolated nephropathy that impact matrix regulation. JCI Insight 2021; 6:145908. [PMID: 33749661 PMCID: PMC8026196 DOI: 10.1172/jci.insight.145908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in LAMB2, encoding laminin β2, cause Pierson syndrome and occasionally milder nephropathy without extrarenal abnormalities. The most deleterious missense mutations that have been identified affect primarily the N-terminus of laminin β2. On the other hand, those associated with isolated nephropathy are distributed across the entire molecule, and variants in the β2 LEa-LF-LEb domains are exclusively found in cases with isolated nephropathy. Here we report the clinical features of mild isolated nephropathy associated with 3 LAMB2 variants in the LEa-LF-LEb domains (p.R469Q, p.G699R, and p.R1078C) and their biochemical characterization. Although Pierson syndrome missense mutations often inhibit laminin β2 secretion, the 3 recombinant variants were secreted as efficiently as WT. However, the β2 variants lost pH dependency for heparin binding, resulting in aberrant binding under physiologic conditions. This suggests that the binding of laminin β2 to negatively charged molecules is involved in glomerular basement membrane (GBM) permselectivity. Moreover, the excessive binding of the β2 variants to other laminins appears to lead to their increased deposition in the GBM. Laminin β2 also serves as a potentially novel cell-adhesive ligand for integrin α4β1. Our findings define biochemical functions of laminin β2 variants influencing glomerular filtration that may underlie the pathogenesis of isolated nephropathy caused by LAMB2 abnormalities.
Collapse
Affiliation(s)
- Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taeko Hashimoto
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan.,Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiichi Takizawa
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiya Urae
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Masuda
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masumi Matsunuma
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuji Yamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Helen Liapis
- Department of Pathology and Immunology and Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Masataka Hisano
- Department of Nephrology, Chiba Children's Hospital, Chiba, Japan
| | - Yuko Akioka
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Iampietro C, Bellucci L, Arcolino FO, Arigoni M, Alessandri L, Gomez Y, Papadimitriou E, Calogero RA, Cocchi E, Van Den Heuvel L, Levtchenko E, Bussolati B. Molecular and functional characterization of urine-derived podocytes from patients with Alport syndrome. J Pathol 2021; 252:88-100. [PMID: 32652570 PMCID: PMC7589231 DOI: 10.1002/path.5496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Alport syndrome (AS) is a genetic disorder involving mutations in the genes encoding collagen IV α3, α4 or α5 chains, resulting in the impairment of glomerular basement membrane. Podocytes are responsible for production and correct assembly of collagen IV isoforms; however, data on the phenotypic characteristics of human AS podocytes and their functional alterations are currently limited. The evident loss of viable podocytes into the urine of patients with active glomerular disease enables their isolation in a non‐invasive way. Here we isolated, immortalized, and subcloned podocytes from the urine of three different AS patients for molecular and functional characterization. AS podocytes expressed a typical podocyte signature and showed a collagen IV profile reflecting each patient's mutation. Furthermore, RNA‐sequencing analysis revealed 348 genes differentially expressed in AS podocytes compared with control podocytes. Gene Ontology analysis underlined the enrichment in genes involved in cell motility, adhesion, survival, and angiogenesis. In parallel, AS podocytes displayed reduced motility. Finally, a functional permeability assay, using a podocyte–glomerular endothelial cell co‐culture system, was established and AS podocyte co‐cultures showed a significantly higher permeability of albumin compared to control podocyte co‐cultures, in both static and dynamic conditions under continuous perfusion. In conclusion, our data provide a molecular characterization of immortalized AS podocytes, highlighting alterations in several biological processes related to extracellular matrix remodelling. Moreover, we have established an in vitro model to reproduce the altered podocyte permeability observed in patients with AS. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland..
Collapse
Affiliation(s)
- Corinne Iampietro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Linda Bellucci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Fanny O Arcolino
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Alessandri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Yonathan Gomez
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Cocchi
- Department of Pediatric Nephrology, University of Torino, Torino, Italy.,Division of Nephrology and Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York, NY, USA
| | - Lambertus Van Den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
49
|
Non-Coding RNAs in Hereditary Kidney Disorders. Int J Mol Sci 2021; 22:ijms22063014. [PMID: 33809516 PMCID: PMC7998154 DOI: 10.3390/ijms22063014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Single-gene defects have been revealed to be the etiologies of many kidney diseases with the recent advances in molecular genetics. Autosomal dominant polycystic kidney disease (ADPKD), as one of the most common inherited kidney diseases, is caused by mutations of PKD1 or PKD2 gene. Due to the complexity of pathophysiology of cyst formation and progression, limited therapeutic options are available. The roles of noncoding RNAs in development and disease have gained widespread attention in recent years. In particular, microRNAs in promoting PKD progression have been highlighted. The dysregulated microRNAs modulate cyst growth through suppressing the expression of PKD genes and regulating cystic renal epithelial cell proliferation, mitochondrial metabolism, apoptosis and autophagy. The antagonists of microRNAs have emerged as potential therapeutic drugs for the treatment of ADPKD. In addition, studies have also focused on microRNAs as potential biomarkers for ADPKD and other common hereditary kidney diseases, including HNF1β-associated kidney disease, Alport syndrome, congenital abnormalities of the kidney and urinary tract (CAKUT), von Hippel-Lindau (VHL) disease, and Fabry disease. This review assembles the current understanding of the non-coding RNAs, including microRNAs and long noncoding RNAs, in polycystic kidney disease and these common monogenic kidney diseases.
Collapse
|
50
|
Novel Mutations of COL4A5 Identified in Chinese Families with X-Linked Alport Syndrome and Literature Review. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6664973. [PMID: 33748275 PMCID: PMC7943288 DOI: 10.1155/2021/6664973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/20/2021] [Indexed: 11/18/2022]
Abstract
Alport syndrome (AS) is an inherited kidney disease caused by defects in type IV collagen, which is characterized by hematuria, progressive nephritis or end-stage renal disease (ESRD), hearing loss, and occasionally ocular lesions. Approximately 80% of AS cases are caused by X-linked mutations in the COL4A5 gene. This study explored novel deletion and missense mutations in COL4A5 responsible for renal disorder in two Han Chinese families. In pedigree 1, the five male patients all had ESRD at a young age, while the affected female members only presented with microscopic hematuria. Whole exome sequencing and Sanger sequencing identified a novel frameshift deletion mutation (c.422_428del, p.Leu142Valfs∗11) in exon 7 of COL4A5. In pedigree 2, the 16-year-old male proband had elevated serum creatinine (309 μmol/L) without extrarenal manifestations, while his mother only manifested with hematuria. A missense mutation (c.476G>T, p.Gly159Val) was found in exon 9 of the COL4A5 gene. Neither of these mutations was present in the Exome Variant Server of the NHLBI-ESP database, nor was it found in the ExAC or 1000 Genomes databases. Through the literature review, it was found that male Chinese patients with X-linked AS carried COL4A5 deletion or missense mutations had a more severe phenotype than female patients, particularly in proteinuria and impaired renal function. Compared to male patients with missense mutations, patients in whom deletion mutations were found were more likely to progress to ESRD (15.4% vs. 36.0%, P = 0.041). This study identified two novel COL4A5 mutations in Chinese families with X-linked AS, expanded the mutational spectrum of the COL4A5 gene, and presented findings that are significant for the screening and genetic diagnosis of AS.
Collapse
|