1
|
Ray S, Huang E, McMullen MR, Jatana S, de la Motte C, Nagy LE. 35k Da specific-sized hyaluronan ameliorates high-fat diet-induced liver injury in murine model of moderate obesity. Matrix Biol 2025; 136:1-8. [PMID: 39732151 DOI: 10.1016/j.matbio.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/07/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Obesity is a growing concern in the US and world-wide, associated with an increased risk for several cardiometabolic diseases, including metabolic associated steatotic liver disease (MASLD). Currently, therapeutic interventions to prevent and/or treat MASLD are limited, and research is needed to identify new therapeutic targets. The specific-sized 35 kDa fragment of hyaluronan (HA35), has gut protective and anti-inflammatory properties and a previous pilot clinical study reported it is well tolerated in healthy individuals. Here we tested the hypothesis that HA35 treatment ameliorates high fat diet-induced liver injury. Five-week-old male C57BL/6 J mice were allowed ad lib access to control chow or high fat fructose and cholesterol (FFC) diet over a period of 12 weeks. HA35 was administered at 15mg/kg via oral gavage on the last 6 days of the study as a therapeutic intervention. Mice on FFC diet-gained more body weight compared to those on chow diet, with final body weights ranging from 30.8 to 45.6 g. FFC diet caused hepatocyte injury, increased expression of inflammatory cytokine/chemokine mRNA, as well as indicators of liver fibrosis. When mice were stratified based on their final body weight, only mice <40 g were protected by treatment with HA35. In this group, treatment with HA35 also restored tight junction integrity in the colon and increased expression of α -defensins in the small intestine. Taken together the data suggests that HA35 is an effective therapeutic in ameliorating high fat diet-induced liver inflammation and fibrosis in moderately obese, but not severe, conditions.
Collapse
Affiliation(s)
- Semanti Ray
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH USA
| | - Emily Huang
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH USA
| | - Megan R McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH USA
| | - Samreen Jatana
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH USA
| | - Carol de la Motte
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH USA.
| |
Collapse
|
2
|
Jatana S, Abbadi A, West GA, Ponti AK, Braga-Neto MB, Smith JL, Marino-Melendez A, Willard B, Nagy LE, Motte CDL. Hyperglycemic environments directly compromise intestinal epithelial barrier function in an organoid model and hyaluronan (∼35 kDa) protects via a layilin dependent mechanism. Matrix Biol 2024; 133:116-133. [PMID: 39187208 DOI: 10.1016/j.matbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Metabolic syndrome and diabetes in obese individuals are strong risk factors for development of inflammatory bowel disease (IBD) and colorectal cancer. The pathogenic mechanisms of low-grade metabolic inflammation, including chronic hyperglycemic stress, in disrupting gut homeostasis are poorly understood. In this study, we sought to understand the impact of a hyperglycemic environment on intestinal barrier integrity and the protective effects of small molecular weight (35 kDa) hyaluronan on epithelial barrier function. METHODS Intestinal organoids derived from mouse colon were grown in normal glucose media (5 mM) or high glucose media (25 mM) to study the impact of hyperglycemic stress on the intestinal barrier. Additionally, organoids were pretreated with 35 kDa hyaluronan (HA35) to investigate the effect of hyaluronan on epithelial barrier under high glucose stress. Immunoblotting as well as confocal imaging was used to understand changes in barrier proteins, quantitative as well as spatial distribution, respectively. Alterations in barrier function were measured using trans-epithelial electrical resistance and fluorescein isothiocyanate flux assays. Untargeted proteomics analysis was performed to elucidate mechanisms by which HA35 exerts a protective effect on the barrier. Intestinal organoids derived from receptor knockout mice specific to various HA receptors were utilized to understand the role of HA receptors in barrier protection under high glucose conditions. RESULTS We found that high glucose stress decreased the protein expression as well as spatial distribution of two key barrier proteins, zona occludens-1 (ZO-1) and occludin. HA35 prevented the degradation or loss of ZO-1 and maintained the spatial distribution of both ZO-1 and occludin under hyperglycemic stress. Functionally, we also observed a protective effect of HA35 on the epithelial barrier under high glucose conditions. We found that HA receptor, layilin, was involved in preventing barrier protein loss (ZO-1) as well as maintaining spatial distribution of ZO-1 and occludin. Additionally, proteomics analysis showed that cell death and survival was the primary pathway upregulated in organoids treated with HA35 under high glucose stress. We found that XIAP associated factor 1 (Xaf1) was modulated by HA35 thereby regulating apoptotic cell death in the intestinal organoid system. Finally, we observed that spatial organization of both focal adhesion kinase (FAK) as well as F-actin was mediated by HA35 via layilin. CONCLUSION Our results highlight the impact of hyperglycemic stress on the intestinal barrier function. This is of clinical relevance, as impaired barrier function has been observed in individuals with metabolic syndrome. Additionally, we demonstrate barrier protective effects of HA35 through its receptor layilin and modulation of cellular apoptosis under high glucose stress.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Amina Abbadi
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - András K Ponti
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Manuel B Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jordyn L Smith
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Armando Marino-Melendez
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E Nagy
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Carol de la Motte
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
4
|
Dokoshi T, Chen Y, Cavagnero KJ, Rahman G, Hakim D, Brinton S, Schwarz H, Brown EA, O'Neill A, Nakamura Y, Li F, Salzman NH, Knight R, Gallo RL. Dermal injury drives a skin to gut axis that disrupts the intestinal microbiome and intestinal immune homeostasis in mice. Nat Commun 2024; 15:3009. [PMID: 38589392 PMCID: PMC11001995 DOI: 10.1038/s41467-024-47072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
The composition of the microbial community in the intestine may influence the functions of distant organs such as the brain, lung, and skin. These microbes can promote disease or have beneficial functions, leading to the hypothesis that microbes in the gut explain the co-occurrence of intestinal and skin diseases. Here, we show that the reverse can occur, and that skin directly alters the gut microbiome. Disruption of the dermis by skin wounding or the digestion of dermal hyaluronan results in increased expression in the colon of the host defense genes Reg3 and Muc2, and skin wounding changes the composition and behavior of intestinal bacteria. Enhanced expression Reg3 and Muc2 is induced in vitro by exposure to hyaluronan released by these skin interventions. The change in the colon microbiome after skin wounding is functionally important as these bacteria penetrate the intestinal epithelium and enhance colitis from dextran sodium sulfate (DSS) as seen by the ability to rescue skin associated DSS colitis with oral antibiotics, in germ-free mice, and fecal microbiome transplantation to unwounded mice from mice with skin wounds. These observations provide direct evidence of a skin-gut axis by demonstrating that damage to the skin disrupts homeostasis in intestinal host defense and alters the gut microbiome.
Collapse
Affiliation(s)
- Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Yang Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Kellen J Cavagnero
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Gibraan Rahman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Hakim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Samantha Brinton
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Hana Schwarz
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Brown
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Alan O'Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Yoshiyuki Nakamura
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology and Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Chen J, Wu S, Wu R, Ai H, Lu X, Wang J, Luo Y, Li L, Cao J. Essential oil from Artemisia argyi alleviated liver disease in zebrafish (Danio rerio) via the gut-liver axis. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108962. [PMID: 37488037 DOI: 10.1016/j.fsi.2023.108962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
The popularity of intensive fish farming has led to the emergence of fish diseases characterized by hepatobiliary syndrome. Artemisia argyi (A. argyi) essential oils have anti-inflammatory and anti-oxidant effects. However, their alleviating effects and mechanism on liver disease in fish are still unclear. Thus, adult zebrafish were used to construct an animal model to observe histopathological damages, determine biochemical parameters and expression of inflammatory cytokines and mRNAs in the PPAR-γ/NF-κB pathway, and conduct 16 S sequencing of intestinal microbiota. The results found that after treatment with A. argyi essential oil, the histopathological damage caused by ethanol was relieved; the CAT, SOD, and GSH levels were remarkably elevated, while the MDA level was obviously lowered (P < 0.05); the expression levels of IL-10 and IFN-γ mRNAs were enhanced, but the levels of IL-1β, IL-6, PPAR-γ, NF-κB, and TNF-α mRNAs were reduced (P < 0.05) relative to the EtOH group. A. argyi essential oil remarkably attenuated the damage to intestinal tissue structure, and elevated the levels of Muc2, ZO-1, Claudin-1, and Occludin mRNA (P < 0.05). Sequencing of the gut flora showed that A. argyi essential oil significantly altered the composition of gut microbes compared with the EtOH group. In addition, KEGG and COG analyses also showed significant (P < 0.05) changes in acetate cycling metabolism in the EtOH group, catechol 2, 3-dioxygenase and nitroreductase were significantly increased (P < 0.001), and lipid metabolism and terpenoid synthesis were significantly elevated (P < 0.001) in A. argyi essential oil group. The results indicate that A. argyi essential oil could effectively relieve ethanol-caused histopathological damage of livers by modulating the composition of gut microbiota, thus inhibiting the level of IL-1β and mRNAs in the PPAR-γ/NF-κB pathway, increasing the IL-10 level, reducing the oxidative stress. This may offer a rationale for further research on the rationality of A. argyi as a substitute for feed antibiotics in aquaculture.
Collapse
Affiliation(s)
- Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shanshan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Rui Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Honghu Ai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xingru Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiaqi Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, Shanxi, 030801, China
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|