1
|
Shi SC, Hsieh YC, Rahmadiawan D. Cellulose Nanocrystal and Self-Assembling Lignin Enhanced the PEDOT/PSS/PVA Composite on Mechanical and Self-Powered Wearable Properties. ACS OMEGA 2025; 10:14666-14675. [PMID: 40290904 PMCID: PMC12019433 DOI: 10.1021/acsomega.4c07933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/03/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
Lignin nanomicelle (LNM) synthesis via deep eutectic solvent (DES) has been optimized from a conventional duration of 2-3 days to a streamlined 12 h procedure utilizing autoclave reactor heating. This approach facilitates the efficient extraction of lignin from straw and its subsequent formation into LNMs via a simultaneous self-assembly mechanism. Integration of these amphiphilic LNMs into a cellulose nanocrystal (CNC) framework, combined with PEDOT: PSS in a poly(vinyl alcohol) (PVA) matrix, yields a self-powered strain sensor characterized by enhanced tensile properties and heightened strain sensitivity. Incorporating carboxyl functional groups from LNMs on the PVA matrix significantly augments the sensor's mechanical strength and elasticity. This is evidenced by achieving Young's modulus of 65.9 MPa and an elongation capacity of 320%, ensuring its efficacy in human motion detection. The synergistic inclusion of CNCs and LNMs amplifies the sensor's gauge factor, thereby augmenting its strain responsiveness. The elevated aspect ratio of CNCs establishes an efficacious electrical network that, in concert with the interaction between CNCs and PEDOT: PSS, diminishes the electrical percolation threshold, culminating in an improved gauge factor of 19, indicative of enhanced strain detection capabilities. Furthermore, the sensor can generate a thermoelectric voltage in response to thermal gradients, with the dynamic structures of LNM improving the conductivity and PEDOT: PSS dispersion within the PVA matrix, thereby optimizing the Seebeck coefficient. After enduring 5000 cycles of 100% strain deformation tests, the sensor demonstrates consistent performance, underscoring its reliability and durability. The fabricated PVA/Gly-LNM/CNCs/PEDOT: PSS composite material has been successfully applied to detect nuanced human gestures, including finger and wrist movements, affirming its potential utility in wearable technology applications.
Collapse
Affiliation(s)
- Shih-Chen Shi
- Department
of Mechanical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Yan-Ching Hsieh
- Department
of Mechanical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Dieter Rahmadiawan
- Department
of Mechanical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Department
of Mechanical Engineering, Universitas Negeri
Padang, Padang, Sumatera Barat 25173, Indonesia
| |
Collapse
|
2
|
Dai T, Lin Y, Yin Q, Ji Q, Wang J, Jia H. Bioinspired bicontinuous adhesive hydrogel for wearable strain sensor with high sensitivity and a wide working range. J Colloid Interface Sci 2025; 684:575-585. [PMID: 39809019 DOI: 10.1016/j.jcis.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Conductive hydrogel strain sensors demonstrate extensive potential in artificial robotics, human-computer interaction, and health monitoring, owing to their excellent flexibility and biocompatibility. Wearable strain sensors for real-time monitoring of human activities require hydrogels with self-adhesion, desirable sensitivity, and wide working range. However, balancing the high sensitivity and a wide working range remains a challenge. Herein, a marine coral exoskeleton inspired bicontinuous hydrogel (PAD-iP) for strain sensor was synthesized by in-situ copolymerization of acrylic acid (AA) and dimethylaminpropyl methacrylamide (DMAPMA) in the presence of poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) skeleton, using glycerol as water-retaining agent. Benefiting from the bicontinuous structure composed of electron-transported conductive, tough PEDOT:PSS skeleton and the ion-transported, flexible poly(AA-co-DMAPMA) hydrogel matrix, the strain sensor based on PAD-iP hydrogel struck an optimal balance between ultrahigh sensitivity (gauge factor up to 1049) and a broad sensing range (strain of 0-600 %). The strain sensors could be adhered directly to skin to monitor full-range human activities, physiological activities and physical vibrational signals of the local environment. The strain sensor also exhibited robustness and stable sensing properties across a wide temperature range (-20 ∼ 40 ℃). This work offers a fresh inspiration for preparation of high-performance hydrogel strain sensors.
Collapse
Affiliation(s)
- Tianyi Dai
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China
| | - Yankun Lin
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China
| | - Qing Yin
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094 China
| | - Jingyi Wang
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou 362000 China.
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China.
| |
Collapse
|
3
|
Zheng Z, Song S, Chen X, Li X, Li J. Ultra-Stretchable Polymer Fibers Anchored with a Triple-Level Self-Assembled Conductive Network for Wide-Range Strain Detection. Polymers (Basel) 2025; 17:734. [PMID: 40292608 PMCID: PMC11945324 DOI: 10.3390/polym17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
Numerous strategies have been demonstrated to enhance the mechanical stretchability of electromechanical sensors for widespread applications in wearable electronics. However, ranging from composite to microstructural materials, their electromechanical sensing performances are usually vulnerable to large stretching deformations due to the low-ductility of the infilled conductive components and the modulus mismatch between the flexible polymer substrate and conductive fillers. Here, a novel design strategy is proposed to fabricate ultra-stretchable electromechanical composites constructed by a triple-level interaction conductive network (Tri-LICN) in buckled-TPU microfibers for strain sensors. The Tri-LICN is established by bridging one-dimensional cellulose nanocrystals (CNC) with zero-dimensional gold-nanoparticles (AuNPs) and two-dimensional MXene sheets using interface self-assembly and ultrasound-assisted anchoring to eliminate the modulus mismatching between the conductive material and polymer substrate. The buckled-TPU microfibers are introduced to improve the mechanical stretchability of composites by the external-stimuli-induced imbalance of the stretching conformation of TPU macromolecules. The Tri-LICN MXene/CNC/AuNPs@TPU composite sensor displays an enhanced strain sensitivity (GF~2514) with a fast response time (~150 ms) over a wide operational strain up to 200% and excellent durability over 1000 tensile cycles. Our finding offers a promising approach to enhancing the performance of stretchable sensors based on polymer materials, providing new opportunities for the development of next-generation electronics.
Collapse
Affiliation(s)
- Zhong Zheng
- Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (S.S.); (X.C.); (X.L.)
| | - Shuyi Song
- Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (S.S.); (X.C.); (X.L.)
| | - Xun Chen
- Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (S.S.); (X.C.); (X.L.)
| | - Xixing Li
- Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (S.S.); (X.C.); (X.L.)
| | - Jing Li
- Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (S.S.); (X.C.); (X.L.)
- School of Intelligent Manufacturing, Hubei University, Wuhan 430062, China
| |
Collapse
|
4
|
Hassan MFU, Wang Y, Yang K, Wen Y, Jin S, Zhang Y, Zhang X. Electrical Characterization of Cost-Effective Screen-Printed Sensors Based on Thermoplastic Polyurethane, Polyimide, and Polyethylene Terephthalate. MICROMACHINES 2025; 16:319. [PMID: 40141930 PMCID: PMC11944745 DOI: 10.3390/mi16030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
In recent years, the improvement in living standards and the corresponding increase in quality-of-life expectations have significantly increased the demand for advanced electronic products. This trend has generated great interest in human health monitoring and extensive research efforts. Flexible sensors in particular are being given preference because of their high extensibility, excellent biocompatibility properties, low weight, and low cost. In the present work, we took this idea further and designed flexible sensors using different substrates such as thermoplastic polyurethane (TPU), polyimide (PI), and polyethylene terephthalate (PET), fabricating them with silver paste ink using screen-printing technology. A uniform and homogeneous conductive layer was formed, which was identified through Scanning Electron Microscopy (SEM) analysis. Additionally, the width of the printed silver paste ink was approximately 100 µm. This study contributes to the design and fabrication of a new generation of flexible sensors for health monitoring. The results demonstrate that these sensors are technically possible as part of long-term wearable health-monitoring solutions for wearable health care technologies.
Collapse
Affiliation(s)
| | - Yan Wang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (M.F.u.H.); (S.J.); (X.Z.)
| | | | | | | | | | | |
Collapse
|
5
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
6
|
Tu S, Tian T, Zhang J, Liang S, Pan G, Ma X, Liu L, Fischer RA, Müller-Buschbaum P. Electrostatic Tailoring of Freestanding Polymeric Films for Multifunctional Thermoelectrics, Hydrogels, and Actuators. ACS NANO 2024; 18:34829-34841. [PMID: 39652515 DOI: 10.1021/acsnano.4c12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Organic conducting polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has garnered enormous attention in organic electronics due to its low-cost solution processability, highly tunable conductivity, superior mechanical flexibility, and good biocompatibility together with excellent atmospheric stability. Nevertheless, limited electrical properties and unfavorable water instability of pristine PEDOT:PSS film impede its further implementation in a broad spectrum of practical applications. In this work, the successful tailoring of the intrinsic electrostatic interaction within PEDOT:PSS and consequent optimized electrical properties are enabled by a simple yet effective ionic salt post-treatment strategy. The choice of zinc di[bis(trifluoromethylsulfonyl)imide] (Zn(TFSI)2) not only endows the post-treated PEDOT:PSS film with high electrical properties but also other compelling characteristics, including superior water stability, excellent mechanical flexibility, and fast humidity responsiveness. Multidimensional characterizations are conducted to gain in-depth insights into the mechanisms underlying such improved performance, ranging from intermolecular interactions, polymer conformations, and doping levels to microstructural characteristics. Benefiting from these versatile properties, the as-prepared freestanding Zn(TFSI)2-post-treated PEDOT:PSS films can serve as promising candidates for high-performance polymeric materials integrated into multifunctional flexible electronics, including thermoelectric power generators, conductive hydrogels, and humidity-responsive actuators. This study demonstrates a facile methodology for the exploration of multifunctional conducting polymers, whose implications can extend across a wide range of next-generation wearable devices, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Suo Tu
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Ting Tian
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Jinsheng Zhang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Suzhe Liang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Guangjiu Pan
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiaoxin Ma
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Liangzhen Liu
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
7
|
Zhou L, Zhao B, Liang J, Lu F, Yang W, Xu J, Zheng J, Liu Y, Wang R, Liu Z. Low hysteresis, water retention, anti-freeze multifunctional hydrogel strain sensor for human-machine interfacing and real-time sign language translation. MATERIALS HORIZONS 2024; 11:3856-3866. [PMID: 38776065 DOI: 10.1039/d4mh00126e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Hydrogel strain sensors have received increasing attention due to their potential applications in human-machine interfaces and flexible electronics. However, they usually suffer from both mechanical and electrical hysteresis and poor water retention, which limit their practical applications. To address this challenge, a poly(acrylic acid-co-acrylamide) hydrogel crosslinked by silica nanoparticles is fabricated via photo polymerization and salting-out of hydrophilic ions for the strain sensor. The resulting hydrogel strain sensor possessed low electrical hysteresis (1.6%), low mechanical hysteresis (<7%), high cycle stability (>10 000 cycles), high durability, water retention and anti-freezing ability. Moreover, this strain sensor can be used as a wearable sensor for real-time control of robotic hands and hand gesture recognition. Finally, a sign language translation system has been demonstrated with the aid of machine learning, achieving recognition rates of over 98% for 15 different sign languages. This work offers a promising prospect for human-machine interfaces, smart wearable devices, and the Internet of Things.
Collapse
Affiliation(s)
- Lijuan Zhou
- School of Textile Science and Engineering, Tiangong University, 399 West Binshui Road, Tianjin 300387, China.
| | - Bin Zhao
- School of Artificial Intelligence, Guangxi Colleges and Universities Key Laboratory of AI Algorithm Engineering, Guilin University of Electronic Technology, Guilin Guangxi, 541004, China
| | - Jingye Liang
- School of Textile Science and Engineering, Tiangong University, 399 West Binshui Road, Tianjin 300387, China.
| | - Fangying Lu
- School of Textile Science and Engineering, Tiangong University, 399 West Binshui Road, Tianjin 300387, China.
| | - Weiping Yang
- School of Textile Science and Engineering, Tiangong University, 399 West Binshui Road, Tianjin 300387, China.
| | - Jishuai Xu
- School of Textile Science and Engineering, Tiangong University, 399 West Binshui Road, Tianjin 300387, China.
| | - Jingxuan Zheng
- School of Textile Science and Engineering, Tiangong University, 399 West Binshui Road, Tianjin 300387, China.
| | - Yong Liu
- School of Textile Science and Engineering, Tiangong University, 399 West Binshui Road, Tianjin 300387, China.
| | - Run Wang
- School of Textile Science and Engineering, Tiangong University, 399 West Binshui Road, Tianjin 300387, China.
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry Frontiers Science Center for New Organic Matter, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
8
|
Lee J, Park HK, Hwang GW, Kang GR, Choi YS, Pang C. Highly Adaptive Kirigami-Metastructure Adhesive with Vertically Self-Aligning Octopus-like 3D Suction Cups for Efficient Wet Adhesion to Complexly Curved Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37147-37156. [PMID: 38949691 DOI: 10.1021/acsami.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyun Ro Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yoon Seok Choi
- Department of Internal Medicine, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Luo L, Wu Z, Ding Q, Wang H, Luo Y, Yu J, Guo H, Tao K, Zhang S, Huo F, Wu J. In Situ Structural Densification of Hydrogel Network and Its Interface with Electrodes for High-Performance Multimodal Artificial Skin. ACS NANO 2024; 18:15754-15768. [PMID: 38830235 DOI: 10.1021/acsnano.4c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The multisensory responsiveness of hydrogels positions them as promising candidates for artificial skin, whereas the mismatch of modulus between soft hydrogels and hard electrodes as well as the poor adhesion and conductance at the interface greatly impairs the stability of electronics devices. Herein, we propose an in situ postprocessing approach utilizing electrochemical reactions between metals (Zn, etc.) and hydrogels to synergistically achieve strong adhesion of the hydrogel-electrode interface, low interfacial impedance, and local strain isolation due to the structural densification of the hydrogel network. The mechanism is that Zn electrochemically oxidizes to Zn2+ and injects into the hydrogel, gradually forming a mechanically interlocked structure, Zn2+-polymer dual-helix structural nodes, and a high-modulus ZnO from the surface to the interior. Compared to untreated samples, the treated sample displays 8.7 times increased interfacial adhesion energy between the hydrogel and electrode (87 J/m2), 95% decreased interfacial impedance (218.8 Ω), and a high-strain isolation efficiency (εtotal/εisolation > 400). Akin to human skin, the prepared sensor demonstrates multimodal sensing capabilities, encompassing highly sensitive strain perception and simultaneous perception of temperature, humidity, and oxygen content unaffected by strain interference. This easy on-chip preparation of hydrogel-based multimodal sensor array shows great potential for health and environment monitoring as artificial skin.
Collapse
Affiliation(s)
- Luqi Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Transducer Technology, Shanghai 200050, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahao Yu
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Fengwei Huo
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
- State Key Laboratory of Transducer Technology, Shanghai 200050, China
| |
Collapse
|
10
|
Shi Y, Zhao J, Zhang B, Qin J, Hu X, Cheng Y, Yu J, Jie J, Zhang X. Freestanding Serpentine Silicon Strips with Ultrahigh Stretchability over 300% for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313603. [PMID: 38489559 DOI: 10.1002/adma.202313603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Well-functionalized electronic materials, such as silicon, in a stretchable format are desirable for high-performance wearable electronics. However, obtaining Si materials that meet the required stretchability of over 100% for wearable applications remains a significant challenge. Herein, a rational design strategy is proposed to achieve freestanding serpentine Si strips (FS-Si strips) with ultrahigh stretchability, fulfilling wearable requirements. The self-supporting feature makes the strips get rid of excessive constraints from substrates and enables them to deform with the minimum strain energy. Micrometer-scale thicknesses enhance robustness, and large diameter-to-width ratios effectively reduce strain concentration. Consequently, the FS-Si strips with the optimum design could withstand 300% stretch, bending, and torsion without fracturing, even under rough manual operation. They also exhibit excellent stability and durability over 50,000 cycles of 100% stretching cycles. For wearable applications, the FS-Si strips can maintain conformal contact with the skin and have a maximum stretchability of 120%. Moreover, they are electrically insensitive to large deformations, which ensure signal stability during their daily use. Combined with mature processing techniques and the excellent semiconductor properties of Si, FS-Si strips are promising core stretchable electronic materials for wearable electronics.
Collapse
Affiliation(s)
- Yihao Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Jianzhong Zhao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Bingchang Zhang
- School of Optoelectronic Science and Engineering, Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, P. R. China
| | - Jiahao Qin
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Monash University, Suzhou, 215000, P. R. China
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Xinyue Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Yuan Cheng
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Monash University, Suzhou, 215000, P. R. China
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
11
|
Yang L, Liu Y, Li X, Li M, Li W, Wang T, Wang D. Large-Scale, Stretchable, Self-Protective, and Multifunctional Perovskite Luminescent Filament with Ultra-High Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400919. [PMID: 38498901 DOI: 10.1002/adma.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Lead halide perovskites possess great application potential in flexible displays and wearable optoelectronics owing to their prominent optoelectronic properties. However, the intrinsic instability upon moisture, heat, and ultraviolet (UV) light irradiation hinders their development and application. In this work, an ultra-stable CsPbX3 (X = Cl, Br, I) perovskite luminescent filament (PLF) with high stretchability (≈2400%) and luminescence performance (photoluminescence quantum yield (PLQY) of 24.5%, tunable emission spectrum, and high color purity) is introduced by a facile environmental-friendly wet-spinning technology via solvent extraction. Benefiting from the in situ encapsulation of the hydrophobic thermoplastic polyurethane (TPU) and the chelation of Lewis base CO in TPU with Lewis acid Pb2+, the CsPbBr3 PLF demonstrates ultra-high photoluminescence (PL) stability when stored in ambient air and high humidity circumstance, annealed at 50 °C, and dipped in water for 30 days, illuminated under ultraviolet light for 300 min, and immersed in organic solvents and solutions with pH of 1-13 for 5 min, respectively. Impressively, it retains 80% of its initial PL after being recycled five times. Overall, the CsPbX3 PLF demonstrates promising prospects in multifunctional applications, including organic dyes and tensile strain sensing, flexible pattern displays, secondary anti-counterfeiting, and hazard warning systems.
Collapse
Affiliation(s)
- Liyan Yang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Yunpeng Liu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Xiaofang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| |
Collapse
|
12
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Wu Q, Chen A, Xu Y, Han S, Zhang J, Chen Y, Hang J, Yang X, Guan L. Multiple physical crosslinked highly adhesive and conductive hydrogels for human motion and electrophysiological signal monitoring. SOFT MATTER 2024; 20:3666-3675. [PMID: 38623704 DOI: 10.1039/d4sm00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hydrogel-based flexible electronic devices serve as a next-generation bridge for human-machine interaction and find extensive applications in clinical therapy, military equipment, and wearable devices. However, the mechanical mismatch between hydrogels and human tissues, coupled with the failure of conformal interfaces, hinders the transmission of information between living organisms and flexible devices, which resulted in the instability and low fidelity of signals, especially in the acquisition of electromyographic (EMG) and electrocardiographic (ECG) signals. In this study, we designed an ion-conductive hydrogel (ICHgel) utilizing multiple physical interactions, successfully applied for human motion monitoring and the collection of epidermal physiological signals. By incorporating fumed silica (F-SiO2) nanoparticles and calcium chloride into an interpenetrating network (IPN) composed of polyvinyl alcohol (PVA) and polyacrylamide (AAm)/acrylic acid (AA) chains, the ICHgel exhibited exceptional tunable stretchability (>1450% strain) and conductivity (10.58 ± 0.85 S m-1). Additionally, the outstanding adhesion of the ICHgel proved to be a critical factor for effective communication between epidermal tissues and flexible devices. Demonstrating its capability to acquire stable electromechanical signals, the ICHgel was attached to different parts of the human body. More importantly, as a flexible electrode, the ICHgel outperformed commercial Ag/AgCl electrodes in the collection of ECG and EMG signals. In summary, the synthesized ICHgel with its outstanding conformal interface capabilities and mechanical adaptability paves the way for enhanced human-machine interaction, fostering the development of flexible electronic devices.
Collapse
Affiliation(s)
- Qirui Wu
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Anbang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui, P.R. China
| | - Songjiu Han
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Jiayu Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Yujia Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Jianren Hang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Xiaoxiang Yang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| |
Collapse
|
14
|
Biswas S, Jang H, Lee Y, Choi H, Kim Y, Kim H, Zhu Y. Recent advancements in implantable neural links based on organic synaptic transistors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220150. [PMID: 38855618 PMCID: PMC11022612 DOI: 10.1002/exp.20220150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 06/11/2024]
Abstract
The progress of brain synaptic devices has witnessed an era of rapid and explosive growth. Because of their integrated storage, excellent plasticity and parallel computing, and system information processing abilities, various field effect transistors have been used to replicate the synapses of a human brain. Organic semiconductors are characterized by simplicity of processing, mechanical flexibility, low cost, biocompatibility, and flexibility, making them the most promising materials for implanted brain synaptic bioelectronics. Despite being used in numerous intelligent integrated circuits and implantable neural linkages with multiple terminals, organic synaptic transistors still face many obstacles that must be overcome to advance their development. A comprehensive review would be an excellent tool in this respect. Therefore, the latest advancements in implantable neural links based on organic synaptic transistors are outlined. First, the distinction between conventional and synaptic transistors are highlighted. Next, the existing implanted organic synaptic transistors and their applicability to the brain as a neural link are summarized. Finally, the potential research directions are discussed.
Collapse
Affiliation(s)
- Swarup Biswas
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Hyo‐won Jang
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Yongju Lee
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| | - Hyojeong Choi
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| | - Yoon Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4)University of SeoulSeoulRepublic of Korea
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
- Central Business, SENSOMEDICheongju‐siRepublic of Korea
- Institute of Sensor System, SENSOMEDICheongjuRepublic of Korea
- Energy FlexSeoulRepublic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical InnovationLos AngelesCaliforniaUSA
| |
Collapse
|
15
|
Hong S, Park T, Lee J, Ji Y, Walsh J, Yu T, Park JY, Lim J, Benito Alston C, Solorio L, Lee H, Kim YL, Kim DR, Lee CH. Rapid Self-Healing Hydrogel with Ultralow Electrical Hysteresis for Wearable Sensing. ACS Sens 2024; 9:662-673. [PMID: 38300847 DOI: 10.1021/acssensors.3c01835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Self-healing hydrogels are in high demand for wearable sensing applications due to their remarkable deformability, high ionic and electrical conductivity, self-adhesiveness to human skin, as well as resilience to both mechanical and electrical damage. However, these hydrogels face challenges such as delayed healing times and unavoidable electrical hysteresis, which limit their practical effectiveness. Here, we introduce a self-healing hydrogel that exhibits exceptionally rapid healing with a recovery time of less than 0.12 s and an ultralow electrical hysteresis of less than 0.64% under cyclic strains of up to 500%. This hydrogel strikes an ideal balance, without notable trade-offs, between properties such as softness, deformability, ionic and electrical conductivity, self-adhesiveness, response and recovery times, durability, overshoot behavior, and resistance to nonaxial deformations such as twisting, bending, and pressing. Owing to this unique combination of features, the hydrogel is highly suitable for long-term, durable use in wearable sensing applications, including monitoring body movements and electrophysiological activities on the skin.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junsang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yuhyun Ji
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Walsh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jae Young Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Claudia Benito Alston
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Li Z, Zhao K, Wang J, Wang B, Lu J, Jia B, Ji T, Han X, Luo G, Yu Y, Wang L, Li M, Wang Z, Zhao L. Sensitive, Robust, Wide-Range, and High-Consistency Capacitive Tactile Sensors with Ordered Porous Dielectric Microstructures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7384-7398. [PMID: 38308573 DOI: 10.1021/acsami.3c15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Flexible capacitive tactile sensors show great promise in personalized healthcare monitoring and human-machine interfaces, but their practical application is normally hindered because they rarely possess the required comprehensive performance, that is, high pressure sensitivity and fast response within a broad pressure range, high structure robustness, performance consistency, etc. This paper aims to engineer flexible capacitive pressure sensors with highly ordered porous dielectric microstructures and a 3D-printing-based fully solution-processable fabrication process. The proposed dielectric layer with uniformly distributed interior microporous can not only increase its compressibility and dynamic response within an extended pressure range but also enlarge its contact area with electrodes, contributing to a simultaneous improvement in the sensitivity, response speed, detection range, and structure robustness. Meanwhile, owing to its superior abilities in complex structure manufacturing and dimension controlling, the proposed 3D-printing-based fabrication process enables the consistent fabrication of the porous microstructure and thus guarantees device consistency. As a result, the prepared pressure sensors exhibit a high sensitivity of 0.21 kPa-1, fast response and relaxation times of 112 and 152 ms, an interface bonding strength of more than 455.2 kPa, and excellent performance consistency (≤5.47% deviation among different batches of sensors) and tunability. Encouraged by this, the pressure sensor is further integrated with a wireless readout circuit and realizes wireless wearable monitoring of various biosignals (pulse waves and heart rate) and body movements (from slight finger touch to large knee bending). Finally, the influence law of the feature parameters of the porous microstructure on device performance is established by the finite element method, paving the way for sensor optimization. This study motivates the development of flexible capacitive pressure sensors toward practical application.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangguang Han
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Yilin Yu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lu Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Min Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| | - Zhengjin Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, China
| |
Collapse
|
17
|
Li J, Yao Z, Meng X, Zhang X, Wang Z, Wang J, Ma G, Liu L, Zhang J, Niu S, Han Z, Ren L. High-Fidelity, Low-Hysteresis Bionic Flexible Strain Sensors for Soft Machines. ACS NANO 2024; 18:2520-2530. [PMID: 38197377 DOI: 10.1021/acsnano.3c11711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Stretchable flexible strain sensors based on conductive elastomers are rapidly emerging as a highly promising candidate for popular wearable flexible electronic and soft-mechanical sensing devices. However, due to the intrinsic limitations of low fidelity and high hysteresis, existing flexible strain sensors are unable to exploit their full application potential. Herein, a design strategy for a successive three-dimensional crack conductive network is proposed to cope with the uncoordinated variation of the output resistance signal arising from the conductive elastomer. The electrical characteristics of the sensor are dominated by the successive crack conductive network through a greater resistance variation and a concise sensing mechanism. As a result, the developed elastomer bionic strain sensors exhibit excellent sensing performance in terms of a smaller overshoot response, a lower hysteresis (∼2.9%), and an ultralow detection limit (0.00179%). What's more, the proposed strategy is universal and applicable to many conductive elastomers with different conductive fillers (including 0-D, 1-D, and 2-D conductive fillers). This approach improves the sensing signal accuracy and reliability of conductive elastomer strain sensors and holds promising potential for various applications in the fields of e-skin and soft robotic systems.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhongwen Yao
- Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L3N6, Canada
| | - Xiancun Meng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Xiangxiang Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
| | - Jingxiang Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Guoliang Ma
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Linpeng Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
18
|
Wei J, Xiao P, Chen T. Water-Resistant Conductive Gels toward Underwater Wearable Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211758. [PMID: 36857417 DOI: 10.1002/adma.202211758] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Conductive gels are developing vigorously as superior wearable sensing materials due to their intrinsic conductivity, softness, stretchability, and biocompatibility, showing a great potential in many aspects of lives. However, compared to their wide application on land, it is significant yet rather challenging for traditional conductive gels to realize sensing application under water. The swelling of gels and the loss of conductive components in the aqueous environment, resulted from the diffusion across the interface, lead to structural instability and sensing performance decline. Fortunately, great efforts are devoted to improving the water resistance of conductive gels and employing them in the field of underwater wearable sensing in recent years, and some exciting achievements are obtained, which are of great significance for promoting the safety and efficiency of underwater activities. However, there is no review to thoroughly summarize the underwater sensing application of conductive gels. This review presents a brief overview of the representative design strategies for developing water-resistant conductive gels and their diversified applications in the underwater sensing field as wearable sensors. Finally, the ongoing challenges for further developing water-resistant conductive gels for underwater wearable sensing are also discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Khosravi S, Soltanian S, Servati A, Khademhosseini A, Zhu Y, Servati P. Screen-Printed Textile-Based Electrochemical Biosensor for Noninvasive Monitoring of Glucose in Sweat. BIOSENSORS 2023; 13:684. [PMID: 37504083 PMCID: PMC10377550 DOI: 10.3390/bios13070684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Wearable sweat biosensors for noninvasive monitoring of health parameters have attracted significant attention. Having these biosensors embedded in textile substrates can provide a convenient experience due to their soft and flexible nature that conforms to the skin, creating good contact for long-term use. These biosensors can be easily integrated with everyday clothing by using textile fabrication processes to enhance affordable and scalable manufacturing. Herein, a flexible electrochemical glucose sensor that can be screen-printed onto a textile substrate has been demonstrated. The screen-printed textile-based glucose biosensor achieved a linear response in the range of 20-1000 µM of glucose concentration and high sensitivity (18.41 µA mM-1 cm-2, R2 = 0.996). In addition, the biosensors show high selectivity toward glucose among other interfering analytes and excellent stability over 30 days of storage. The developed textile-based biosensor can serve as a platform for monitoring bio analytes in sweat, and it is expected to impact the next generation of wearable devices.
Collapse
Affiliation(s)
- Safoora Khosravi
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Saeid Soltanian
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amir Servati
- Materials Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Peyman Servati
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
20
|
Nan X, Xu Z, Cao X, Hao J, Wang X, Duan Q, Wu G, Hu L, Zhao Y, Yang Z, Gao L. A Review of Epidermal Flexible Pressure Sensing Arrays. BIOSENSORS 2023; 13:656. [PMID: 37367021 DOI: 10.3390/bios13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Liangwei Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
21
|
Choi YK, Kim TH, Song JH, Jung BK, Kim W, Bae JH, Choi HJ, Kwak J, Shim JW, Oh SJ. Charge transport transition of PEDOT:PSS thin films for temperature-insensitive wearable strain sensors. NANOSCALE 2023; 15:7980-7990. [PMID: 37067237 DOI: 10.1039/d2nr05688g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, a temperature-insensitive strain sensor that detects only the strain without responding to the temperature was designed. The transport mechanism and associated temperature coefficient of resistance (TCR) of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin film were modified through secondary doping with dimethyl sulfoxide (DMSO). Upon DMSO-doping, the carrier transport mechanism of the PEDOT:PSS thin film transitioned from hopping to band-like transport, with a morphological change. At the DMSO doping level, which caused the critical point of the transport transition, the resistance of the thin film was maintained with a change in temperature. Consequently, the TCR of the optimized PEDOT:PSS thin film was less than 9 × 10-5 K-1, which is 102 times lower than that of the as-prepared films. The carrier mobility of the PEDOT:PSS thin film was effectively improved with the morphological change due to DMSO doping and was investigated through combinational analysis. Ultimately, the wearable strain sensor prepared using the optimized PEDOT:PSS thin film responded stably to the applied strain with a gauge factor of 2 and exhibited excellent temperature anti-interference.
Collapse
Affiliation(s)
- Young Kyun Choi
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Tae Hyuk Kim
- School of Electrical Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Jeong Han Song
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Woosik Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Jung Ho Bae
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Hyung Jin Choi
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jae Won Shim
- School of Electrical Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| |
Collapse
|
22
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|
23
|
Lee J, So H. 3D-printing-assisted flexible pressure sensor with a concentric circle pattern and high sensitivity for health monitoring. MICROSYSTEMS & NANOENGINEERING 2023; 9:44. [PMID: 37033109 PMCID: PMC10076430 DOI: 10.1038/s41378-023-00509-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/01/2023] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In this study, a flexible pressure sensor is fabricated using polydimethylsiloxane (PDMS) with a concentric circle pattern (CCP) obtained through a fused deposition modeling (FDM)-type three-dimensional (3D) printer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the active layer. Through layer-by-layer additive manufacturing, the CCP surface is generated from a thin cone model with a rough surface by the FDM-type 3D printer. A novel compression method is employed to convert the cone shape into a planar microstructure above the glass transition temperature of a polylactic acid (PLA) filament. To endow the CCP surface with conductivity, PDMS is used to replicate the compressed PLA, and PEDOT:PSS is coated by drop-casting. The size of the CCP is controlled by changing the printing layer height (PLH), which is one of the 3D printing parameters. The sensitivity increases as the PLH increases, and the pressure sensor with a 0.16 mm PLH exhibits outstanding sensitivity (160 kPa-1), corresponding to a linear pressure range of 0-0.577 kPa with a good linearity of R 2 = 0.978, compared to other PLHs. This pressure sensor exhibits stable and repeatable operation under various pressures and durability under 6.56 kPa for 4000 cycles. Finally, monitoring of various health signals such as those for the wrist pulse, swallowing, and pronunciation of words is demonstrated as an application. These results support the simple fabrication of a highly sensitive, flexible pressure sensor for human health monitoring.
Collapse
Affiliation(s)
- Jihun Lee
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Hongyun So
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763 South Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|
24
|
Xu L, Liu S, Zhu L, Liu Y, Li N, Shi X, Jiao T, Qin Z. Hydroxypropyl methyl cellulose reinforced conducting polymer hydrogels with ultra-stretchability and low hysteresis as highly sensitive strain sensors for wearable health monitoring. Int J Biol Macromol 2023; 236:123956. [PMID: 36898462 DOI: 10.1016/j.ijbiomac.2023.123956] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Conducting polymer hydrogels have emerged as promising materials to fabricate highly sensitive strain sensors. However, due to weak bindings between conducting polymer and gel network, they usually suffer from limited stretchability and large hysteresis, failing to achieve wide-range strain sensing. Herein, we combine hydroxypropyl methyl cellulose (HPMC), poly (3,4-ethylenedioxythiophene):poly (styrene sulfonic acid) (PEDOT: PSS) with chemically cross-linked polyacrylamide (PAM) to prepare a conducting polymer hydrogel for strain sensors. Owing to abundant hydrogen bonds between HPMC, PEDOT:PSS and PAM chains, this conducting polymer hydrogel exhibits high tensile strength (166 kPa), ultra-stretchability (>1600 %) and low hysteresis (<10 % at 1000 % cyclic tensile strain). The resultant hydrogel strain sensor shows ultra-high sensitivity, wide strain sensing ranges of 2-1600 %, and excellent durability and reproducibility. Finally, this strain sensor can be used as wearable sensor to monitor vigorous human movement and fine physiological activity, and services as bioelectrodes for electrocardiograph and electromyography monitoring. This work provides new horizons to design conducting polymer hydrogels for advanced sensing devices.
Collapse
Affiliation(s)
- Linli Xu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Shide Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Linfang Zhu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ying Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Xiaojiao Shi
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Zhihui Qin
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
25
|
Zhu Y, Haghniaz R, Hartel MC, Guan S, Bahari J, Li Z, Baidya A, Cao K, Gao X, Li J, Wu Z, Cheng X, Li B, Emaminejad S, Weiss PS, Khademhosseini A. A Breathable, Passive-Cooling, Non-Inflammatory, and Biodegradable Aerogel Electronic Skin for Wearable Physical-Electrophysiological-Chemical Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209300. [PMID: 36576895 PMCID: PMC10006339 DOI: 10.1002/adma.202209300] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Real-time monitoring of human health can be significantly improved by designing novel electronic skin (E-skin) platforms that mimic the characteristics and sensitivity of human skin. A high-quality E-skin platform that can simultaneously monitor multiple physiological and metabolic biomarkers without introducing skin discomfort or irritation is an unmet medical need. Conventional E-skins are either monofunctional or made from elastomeric films that do not include key synergistic features of natural skin, such as multi-sensing, breathability, and thermal management capabilities in a single patch. Herein, a biocompatible and biodegradable E-skin patch based on flexible gelatin methacryloyl aerogel (FGA) for non-invasive and continuous monitoring of multiple biomarkers of interest is engineered and demonstrated. Taking advantage of cryogenic temperature treatment and slow polymerization, FGA is fabricated with a highly interconnected porous structure that displays good flexibility, passive-cooling capabilities, and ultra-lightweight properties that make it comfortable to wear for long periods of time. It also provides numerous permeable capillary channels for thermal-moisture transfer, ensuring its excellent breathability. Therefore, the engineered FGA-based E-skin can simultaneously monitor body temperature, hydration, and biopotentials via electrophysiological sensors and detect glucose, lactate, and alcohol levels via electrochemical sensors. This work offers a previously unexplored materials strategy for next-generation E-skin platforms with superior practicality.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering & Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Zijie Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Mork Family Department of Chemical Engineering & Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90007, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ke Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xuanbing Cheng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Manufacturing Systems Engineering and Management, California State University Northridge, Northridge, CA, 91330, USA
| | - Sam Emaminejad
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
26
|
Li C, Xu Z, Xu S, Wang T, Zhou S, Sun Z, Wang ZL, Tang W. Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring. NANO RESEARCH 2023:1-9. [PMID: 36785562 PMCID: PMC9907204 DOI: 10.1007/s12274-023-5420-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
As extremely important physiological indicators, respiratory signals can often reflect or predict the depth and urgency of various diseases. However, designing a wearable respiratory monitoring system with convenience, excellent durability, and high precision is still an urgent challenge. Here, we designed an easy-fabricate, lightweight, and badge reel-like retractable self-powered sensor (RSPS) with high precision, sensitivity, and durability for continuous detection of important indicators such as respiratory rate, apnea, and respiratory ventilation. By using three groups of interdigital electrode structures with phase differences, combined with flexible printed circuit boards (FPCBs) processing technology, a miniature rotating thin-film triboelectric nanogenerator (RTF-TENG) was developed. Based on discrete sensing technology, the RSPS has a sensing resolution of 0.13 mm, sensitivity of 7 P·mm-1, and durability more than 1 million stretching cycles, with low hysteresis and excellent anti-environmental interference ability. Additionally, to demonstrate its wearability, real-time, and convenience of respiratory monitoring, a multifunctional wearable respiratory monitoring system (MWRMS) was designed. The MWRMS demonstrated in this study is expected to provide a new and practical strategy and technology for daily human respiratory monitoring and clinical diagnosis. Electronic Supplementary Material Supplementary material (additional figures and movies, including the production process of respiratory monitoring straps, the mechanical analysis of RSPS, RTF-TENG versus vector TENG sensors, the simulation studies of TE-TENG and FT-TENG, the additional characterization of RTF-TENG, the tensile and robustness tests of RSPS, the characterizations of the MWRMS during different sleeping positions, detailed circuit schematic of the MWRMS, the displacements and phase relations of RSPS, MWRMS for multifunctional respiratory monitoring) is available in the online version of this article at 10.1007/s12274-023-5420-1.
Collapse
Affiliation(s)
- Chengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zijie Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuxing Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
| | - Tingyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Siyu Zhou
- Peking University Third Hospital, Beijing, 100191 China
| | - Zhuoran Sun
- Peking University Third Hospital, Beijing, 100191 China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Wei Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
| |
Collapse
|
27
|
Fujisaki H, Matsumoto A, Miyahara Y, Goda T. Sialic acid biosensing by post-printing modification of PEDOT:PSS with pyridylboronic acid. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:525-534. [PMID: 36147749 PMCID: PMC9487965 DOI: 10.1080/14686996.2022.2122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
A poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based conducting polymer, which has biorecognition capabilities, has promising biosensing applications. Previously, we developed a facile method for post-printing chemical modification of PEDOT:PSS thin films from commercial sources. Molecular recognition elements were directly introduced into the PSS side chain by a two-step chemical reaction: introduction of an ethylenediamine linker via an acid chloride reaction of the sulfonate moiety, and subsequent receptor attachment to the linker via amine coupling. In this study, the same method was used to introduce 6-carboxypyridine-3-boronic acid (carboxy-PyBA) into the linker for specifically detecting N-acetylneuraminic acid (sialic acid, SA), as a cancer biomarker. The surface-modified PEDOT:PSS films were characterized by X-ray photoelectron spectroscopy, attenuated total reflection Fourier-transform infrared spectroscopy, and static water contact angle and conductivity measurements. The specific interaction between PyBA and SA was detected by label-free reagent-free potentiometry. The SA-specific negative potential responses of modified PEDOT:PSS electrodes, which was ascribed to an SA carboxyl anion, were observed in a physiologically relevant SA range (1.6-2.9 mM) at pH 5, in a concentration-dependent manner even in the presence of 10% fetal bovine serum. The sensitivity was -2.9 mV/mM in 1-5 mM SA with a limit of detection of 0.7 mM. The sensing performances were almost equivalent to those of existing graphene-based electrical SA sensors. These results show that our chemical derivatization method for printing PEDOT:PSS thin films will have applications in SA clinical diagnostics.
Collapse
Affiliation(s)
- Hideki Fujisaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Research and Development, Kanagawa Institute of Industrial Science and Technology (KISTEC), Tokyo, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, Saitama, Japan
| |
Collapse
|
28
|
Shen Z, Zhang Z, Zhang N, Li J, Zhou P, Hu F, Rong Y, Lu B, Gu G. High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203650. [PMID: 35726439 DOI: 10.1002/adma.202203650] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Indexed: 05/27/2023]
Abstract
Highly stretchable strain sensors based on conducting polymer hydrogel are rapidly emerging as a promising candidate toward diverse wearable skins and sensing devices for soft machines. However, due to the intrinsic limitations of low stretchability and large hysteresis, existing strain sensors cannot fully exploit their potential when used in wearable or robotic systems. Here, a conducting polymer hydrogel strain sensor exhibiting both ultimate strain (300%) and negligible hysteresis (<1.5%) is presented. This is achieved through a unique microphase semiseparated network design by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers with poly(vinyl alcohol) (PVA) and facile fabrication by combining 3D printing and successive freeze-thawing. The overall superior performances of the strain sensor including stretchability, linearity, cyclic stability, and robustness against mechanical twisting and pressing are systematically characterized. The integration and application of such strain sensor with electronic skins are further demonstrated to measure various physiological signals, identify hand gestures, enable a soft gripper for objection recognition, and remote control of an industrial robot. This work may offer both promising conducting polymer hydrogels with enhanced sensing functionalities and technical platforms toward stretchable electronic skins and intelligent robotic systems.
Collapse
Affiliation(s)
- Zequn Shen
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhilin Zhang
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Ningbin Zhang
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinhao Li
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiwei Zhou
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Faqi Hu
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yu Rong
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baoyang Lu
- Jiangxi Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
29
|
Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J. Wearable Pressure Sensors for Pulse Wave Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109357. [PMID: 35044014 DOI: 10.1002/adma.202109357] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Indexed: 05/15/2023]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long-term and real-time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion.
Collapse
Affiliation(s)
- Keyu Meng
- School of Electronic and Information Engineering Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun, 130022, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Wenxin Wei
- Department of Anesthesiology, China Medical University, Shenyang, 110022, China
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Ardo Nashalian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Sophia Shen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
30
|
Zhao X, Chen G, Zhou Y, Nashalian A, Xu J, Tat T, Song Y, Libanori A, Xu S, Li S, Chen J. Giant Magnetoelastic Effect Enabled Stretchable Sensor for Self-Powered Biomonitoring. ACS NANO 2022; 16:6013-6022. [PMID: 35417654 DOI: 10.1021/acsnano.1c11350] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfacing with the human body, wearable and implantable bioelectronics are a compelling platform technology for healthcare monitoring and medical therapeutics. However, clinical adoption of these devices is largely shadowed by their weakness in humidity resistance, stretchability, durability, and biocompatibility. In this work, we report a self-powered waterproof biomechanical sensor with stretchability up to 440% using the giant magnetoelastic effect in a soft polymer system. By manipulating the magnetic dipole alignment, the sensor achieved a particularly broad sensing range from 3.5 Pa to 2000 kPa, with a response time of ∼3 ms. To validate the excellent performance of the magnetoelastic sensor in biomonitoring, both ex vivo porcine heart testing and in vivo rat model testing were performed for cardiovascular monitoring and heart disease diagnosis. With the obtained sensing data, we have successfully detected ventricular arrhythmia and ventricular fibrillation in the Sprague-Dawley rat model. Holding a collection of compelling features, including minimal hysteresis, ultrawide sensing range, waterproofness, and biocompatibility, the magnetoelastic sensor represents a unique platform technology for self-powered biomonitoring in both wearable and implantable manners.
Collapse
Affiliation(s)
- Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ardo Nashalian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jing Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yang Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Tian X, Liu D, Bai J, Chan KS, Ip LC, Chan PKL, Zhang S. Pushing OECTs toward Wearable: Development of a Miniaturized Analytical Control Unit for Wireless Device Characterization. Anal Chem 2022; 94:6156-6162. [PMID: 35385255 DOI: 10.1021/acs.analchem.1c05210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic electrochemical transistors (OECTs) have emerged as a next-generation biosensing technology because of their water-stability, cost-effectiveness, and ability to obtain high sensitivity at low operation voltage (mV). However, a miniaturized readout unit that can wirelessly characterize the overall performance of an OECT is still missing, which hinders the assembling of truly wearable OECT systems for continuous health-monitoring applications. In this work, we present a coin-sized analytical unit for remote and wireless OECT characterization, namely, a personalized electronic reader for electrochemical transistors (PERfECT). It has been verified that PERfECT can measure the transfer, output, hysteresis, and transient behavior of OECTs with resolution and sampling rate on par with the bulky equipment used in laboratories. PERfECT is also capable of characterizing other low-voltage transistors. An integrated board for multiplexed OECT characterizations (32 channels) has also been demonstrated. This work provides a missing building block for developing next-generation OECT-based bioelectronics for digital wearable applications.
Collapse
|
32
|
Abstract
Conductive polymers have attracted wide attention since their discovery due to their unique properties such as good electrical conductivity, thermal and chemical stability, and low cost. With different possibilities of preparation and deposition on surfaces, they present unique and tunable structures. Because of the ease of incorporating different elements to form composite materials, conductive polymers have been widely used in a plethora of applications. Their inherent mechanical tolerance limit makes them ideal for flexible devices, such as electrodes for batteries, artificial muscles, organic electronics, and sensors. As the demand for the next generation of (wearable) personal and flexible sensing devices is increasing, this review aims to discuss and summarize the recent manufacturing advances made on flexible electrochemical sensors.
Collapse
|
33
|
Zhang H, He R, Niu Y, Han F, Li J, Zhang X, Xu F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens Bioelectron 2022; 197:113777. [PMID: 34781177 DOI: 10.1016/j.bios.2021.113777] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/19/2023]
Abstract
Wearable sensors in healthcare monitoring have recently found widespread applications in biomedical fields for their non- or minimal-invasive, user-friendly and easy-accessible features. Sensing materials is one of the major challenges to achieve these superiorities of wearable sensors for healthcare monitoring, while graphene-based materials with many favorable properties have shown great efficiency in sensing various biochemical and biophysical signals. In this paper, we review state-of-the-art advances in the development and modification of graphene-based materials (i.e., graphene, graphene oxide and reduced graphene oxide) for fabricating advanced wearable sensors with 1D (fibers), 2D (films) and 3D (foams/aerogels/hydrogels) macroscopic structures. We summarize the structural design guidelines, sensing mechanisms, applications and evolution of the graphene-based materials as wearable sensors for healthcare monitoring of biophysical signals (e.g., mechanical, thermal and electrophysiological signals) and biochemical signals from various body fluids and exhaled gases. Finally, existing challenges and future prospects are presented in this area.
Collapse
Affiliation(s)
- Huiqing Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Niu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Li
- Department of Plastic and Burn Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xiongwen Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
34
|
Zhu H, Hu X, Liu B, Chen Z, Qu S. 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59243-59251. [PMID: 34870967 DOI: 10.1021/acsami.1c17526] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electronically conductive hydrogels integrated with dielectric elastomers show great promise in a wide range of applications, such as biomedical devices, soft robotics, and stretchable electronics. However, one big conundrum that impedes the functionality and performance of hydrogel-elastomer-based devices lies in the strict demands of device integration and the requirements for devices with satisfactory mechanical and electrical properties. Herein, the digital light processing three-dimensional (3D) printing method is used to fabricate 3D functional devices that bridge submillimeter-scale device resolution to centimeter-scale object size and simultaneously realize complex hybrid structures with strong adhesion interfaces and desired functionalities. The interconnected poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) network endows the PAAm hydrogel with high conductivity and superior electrical stability and poly(2-hydroxyethyl acrylate) functions as an insulating medium. The strong interfacial bonding between the hydrogel and elastomer is achieved by incomplete photopolymerization that ensures the stability of the hybrid structure. Lastly, applications of stretchable electronics illustrated as 3D-printed electroluminescent devices and 3D-printed capacitive sensors are conceptually demonstrated. This strategy will open up avenues to fabricate conductive hydrogel-elastomer hybrids in next-generation multifunctional stretchable electronics.
Collapse
Affiliation(s)
- Heng Zhu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xiaocheng Hu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Binhong Liu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zhe Chen
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
35
|
Sun H, Li S, Li K, Liu Y, Tang C, Liu Z, Zhu L, Yang J, Qin G, Chen Q. Tough and
self‐healable carrageenan‐based
double network microgels enhanced physical hydrogels for strain sensor. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huan Sun
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Shitong Li
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Ke Li
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | | | - Cheng Tang
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Zhuangzhuang Liu
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou China
| | - Jia Yang
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Gang Qin
- School of Materials Science and Engineering Henan Polytechnic University Jiaozuo China
| | - Qiang Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
- Wenzhou Key Laboratory of Perioperative Medicine The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
36
|
Veeramuthu L, Venkatesan M, Benas JS, Cho CJ, Lee CC, Lieu FK, Lin JH, Lee RH, Kuo CC. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers (Basel) 2021; 13:4281. [PMID: 34960831 PMCID: PMC8705576 DOI: 10.3390/polym13244281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
The Conducting of polymers belongs to the class of polymers exhibiting excellence in electrical performances because of their intrinsic delocalized π- electrons and their tunability ranges from semi-conductive to metallic conductive regime. Conducting polymers and their composites serve greater functionality in the application of strain and pressure sensors, especially in yielding a better figure of merits, such as improved sensitivity, sensing range, durability, and mechanical robustness. The electrospinning process allows the formation of micro to nano-dimensional fibers with solution-processing attributes and offers an exciting aspect ratio by forming ultra-long fibrous structures. This review comprehensively covers the fundamentals of conducting polymers, sensor fabrication, working modes, and recent trends in achieving the sensitivity, wide-sensing range, reduced hysteresis, and durability of thin film, porous, and nanofibrous sensors. Furthermore, nanofiber and textile-based sensory device importance and its growth towards futuristic wearable electronics in a technological era was systematically reviewed to overcome the existing challenges.
Collapse
Affiliation(s)
- Loganathan Veeramuthu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Jean-Sebastien Benas
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Jung Cho
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Chin Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Fu-Kong Lieu
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| |
Collapse
|
37
|
Piezoresistive behavior of elastomer composites with segregated network of carbon nanostructures and alumina. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|