1
|
Jinlida Granules Improve Dysfunction of Hypothalamic-Pituitary-Thyroid Axis in Diabetic Rats Induced by STZ. BIOMED RESEARCH INTERNATIONAL 2019; 2018:4764030. [PMID: 29984235 PMCID: PMC6011157 DOI: 10.1155/2018/4764030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
Objective We aim to explore the effects and mechanisms of Jinlida granules on the dysfunction of hypothalamic-pituitary-thyroid (HPT) axis in diabetic rats induced by streptozotocin. Methods A total of 48 SD rats were randomized into normal control group (NC, n = 6) and diabetic group (n = 42). Rats in diabetic group were randomly divided into diabetes mellitus (DM) control group, low, medium, and high doses of Jinlida group (JL, JM, and JH), medium dose of Jinlida plus Tongxinluo group (JM + T), metformin group (Met), and Saxagliptin group (Sax) (n = 6 in each group). Diabetic rats were obtained by intraperitoneal injection of streptozotocin and sacrificed at 8 weeks to examine the function of HPT axis. Results Levels of fasting blood glucose (P < 0.05), pIκB, TNFα (P < 0.05), pNF-κB, and IL-6 (P < 0.01) in liver tissue and TSHR mRNA expression (P < 0.01) in diabetic group were significantly increased, while levels of serum T3 and T4, thyroid hormone receptor (TR) mRNA and Dio1 mRNA in liver tissue, and sodium iodide symporter (NIS) mRNA in thyroid tissue in diabetic group were significantly decreased compared with those in NC group (P < 0.01). Among diabetic groups, level of fasting blood glucose in JH, JM + T and Met group was lower (P < 0.05) compared with DM group. However, levels of serum T3 and T4, TR mRNA in liver tissue, TSHR, and NIS mRNA in thyroid tissue in JH, JM + T, Met, and Sax group were significantly increased (P < 0.01) compared to DM group. In contrast, levels of Dio1 mRNA, pI-κB in Met and JM + T groups, pNF-κB in JH, JM + T, and Met group, and TNFα and IL-6 in JM, JH, JM + T, and Met group were significantly decreased (P < 0.05). HE staining showed reduced thyroid follicular epithelium and follicular area, as well as increased colloid area in DM group, indicating impaired synthesis, reabsorption, and secretory of TH in diabetes, which was significantly improved in JH, JM + T, and Met groups. Conclusion HPT axis dysfunction in DM could be significantly improved by Jinlida granules. The mechanism might be associated with the anti-inflammatory effects involving NF-κB pathway. Our findings suggested the potential benefit of Jinlida granules for patients with HPT axis dysfunction and DM, which was to be verified by more experimental and clinical studies.
Collapse
|
2
|
Egri P, Fekete C, Dénes Á, Reglődi D, Hashimoto H, Fülöp BD, Gereben B. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice. Endocrinology 2016; 157:2356-66. [PMID: 27046436 DOI: 10.1210/en.2016-1043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamic activation of thyroid hormones by type 2 deiodinase (D2), catalyzing the conversion of thyroxine to T3, is critical for the proper function of the hypothalamo-pituitary-thyroid (HPT) axis. Regulation of D2 expression in tanycytes alters the activity of the HPT axis. However, signals that regulate D2 expression in tanycytes are poorly understood. The pituitary adenylate cyclase-activating polypeptide (PACAP) increases intracellular cAMP level, a second messenger known to stimulate the DIO2 gene; however, its importance in tanycytes is not completely characterized. Therefore, we tested whether this ubiquitously expressed neuropeptide regulates the HPT axis through stimulation of D2 in tanycytes. PACAP increased the activity of human DIO2 promoter in luciferase reporter assay that was abolished by mutation of cAMP-response element. Furthermore, PAC1R receptor immunoreactivity was identified in hypothalamic tanycytes, suggesting that these D2-expressing cells could be regulated by PACAP. Intracerebroventricular PACAP administration resulted in increased D2 activity in the mediobasal hypothalamus, suppressed Trh expression in the hypothalamic paraventricular nucleus, and decreased Tshb expression in the pituitary demonstrating that PACAP affects the D2-mediated control of the HPT axis. To understand the role of endogenous PACAP in the regulation of HPT axis, the effect of decreased PACAP expression was studied in heterozygous Adcyap1 (PACAP) knockout mice. These animals were hypothyroid that may be the consequence of altered hypothalamic T3 degradation during set-point formation of the HPT axis. In conclusion, PACAP is an endogenous regulator of the HPT axis by affecting T3-mediated negative feedback via cAMP-induced D2 expression of tanycytes.
Collapse
Affiliation(s)
- P Egri
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - C Fekete
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - Á Dénes
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - D Reglődi
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - H Hashimoto
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - B D Fülöp
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| | - Balázs Gereben
- Department of Endocrine Neurobiology (P.E., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; János Szentágothai PhD School of Neurosciences (P.E.), Semmelweis University, Budapest H-1085, Hungary; Department of Medicine (C.F.), Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; Department of Gene Technology and Developmental Neurobiology (Á.D.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest H-1083, Hungary; Department of Anatomy (D.R., B.D.F.), University of Pécs Medical School, Pécs H-7624, Hungary; and Laboratory of Molecular Neuropharmacology (H.H.) and iPS Cell-Based Research Project on Brain Neuropharmacology and Toxicology (H.H.), Graduate School of Pharmaceutical Sciences, Osaka University, and Molecular Research Center for Children's Mental Development H.H.), United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
| |
Collapse
|