1
|
Do VG, Yang MS. Production of Mature Recombinant Human Activin A in Transgenic Rice Cell Suspension Culture. Curr Issues Mol Biol 2024; 46:1164-1176. [PMID: 38392192 PMCID: PMC10888380 DOI: 10.3390/cimb46020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Activin A belongs to the transforming growth factor (TGF) family member, which exhibits a wide range of biological activities, including the regulation of cellular proliferation and differentiation and the promotion of neuronal survival. The isolation of AA from natural sources can only produce limited quantities of this bioactive protein. In this study, the whole gene of the precursor form of recombinant human activin A (rhAA) contains a signal peptide, and a pro-region and a mature region were cloned into an expression vector under the control of the rice α-amylase 3D (RAmy3D) promoter. To obtain the mature (active) form of rhAA, an enterokinase cleavage site was inserted between the pro-region and mature region of rhAA. The rice seed (Oryza sativa L. cv. Dongjin) was transformed with recombinant vectors by the Agrobacterium-mediated method, and the integration of the target gene into the plant genome was confirmed by genomic PCR. The transcript expression of rhAA in transgenic rice calli was confirmed by a Northern blot analysis of mRNA. The production of rhAA was verified by Western blot analysis and ELISA. The accumulation of secreted rhAA in the culture medium was purified by Ni2+-NTA. The mature form of AA was released from the precursor form of rhAA after proteolytically processing with enterokinase. Western blot shows that the mature AA was split into monomer and homodimer with molecular weights of 14 kDa and 28 kDa under reducing and non-reducing conditions, respectively. These results suggest that the mature form of rhAA could be produced and purified using transgenic rice cell suspension culture.
Collapse
Affiliation(s)
- Van Giap Do
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 39000, Republic of Korea
- Department of Bioactive Material Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Moon-Sik Yang
- Department of Bioactive Material Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Shimizu K, Kikuta J, Ohta Y, Uchida Y, Miyamoto Y, Morimoto A, Yari S, Sato T, Kamakura T, Oshima K, Imai R, Liu YC, Okuzaki D, Hara T, Motooka D, Emoto N, Inohara H, Ishii M. Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction. Nat Commun 2023; 14:4417. [PMID: 37537159 PMCID: PMC10400591 DOI: 10.1038/s41467-023-40094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Cholesteatoma, which potentially results from tympanic membrane retraction, is characterized by intractable local bone erosion and subsequent hearing loss and brain abscess formation. However, the pathophysiological mechanisms underlying bone destruction remain elusive. Here, we performed a single-cell RNA sequencing analysis on human cholesteatoma samples and identify a pathogenic fibroblast subset characterized by abundant expression of inhibin βA. We demonstrate that activin A, a homodimer of inhibin βA, promotes osteoclast differentiation. Furthermore, the deletion of inhibin βA /activin A in these fibroblasts results in decreased osteoclast differentiation in a murine model of cholesteatoma. Moreover, follistatin, an antagonist of activin A, reduces osteoclastogenesis and resultant bone erosion in cholesteatoma. Collectively, these findings indicate that unique activin A-producing fibroblasts present in human cholesteatoma tissues are accountable for bone destruction via the induction of local osteoclastogenesis, suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Kotaro Shimizu
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| | - Yumi Ohta
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Miyamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akito Morimoto
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shinya Yari
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takefumi Kamakura
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuo Oshima
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryusuke Imai
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu-Chen Liu
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuya Hara
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Higashinada, Kobe, 658-8558, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Higashinada, Kobe, 658-8558, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
3
|
Letsiou S, Ganopoulos I, Kapazoglou A, Xanthopoulou A, Sarrou E, Tanou G, Molassiotis A. Probing the effects of sweet cherry (Prunus avium L.) extract on 2D and 3D human skin models. Mol Biol Rep 2022; 49:2687-2693. [PMID: 35034286 DOI: 10.1007/s11033-021-07076-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Natural products are not only positioned in the heart of traditional medicine but also in modern medicine as many current drugs are coming from natural sources. Apart from the field of medicine and therapeutics, natural products are broadly used in other industrial fields such as nutrition, skincare products and nanotechnology. METHODS AND RESULTS The aim of this study was to assess the effects of sweet cherry (Prunus avium L.) fruit extract from the Greek native cultivar 'Vasiliadi', on the human 2D and 3D in vitro models in order to investigate its potential impact on skin. We focused on 2D culture of primary normal human epidermal keratinocytes (NHEK) that were treated with sweet cherry fruit extract. In the first place, we targeted fruit extract potential cytotoxicity by determining ATP intracellular levels. Furthermore, we assessed its potential skin irritability by using 3D skin model. To better understand the bioactivity of sweet cherry fruit. extract, we used qPCR to study the expression of various genes that are implicated in the skin functions. Our experiments showed that sweet cherry fruit extract is non-toxic in 2D keratinocytes culture as well as non-irritant in 3D skin model. Our results revealed that the extract mediated important pathways for the optimum epidermis function such as cell proliferation, immune and inflammatory response. CONCLUSION The sweet cherry fruit extracts possesses significant activity in epidermis function without any potential of cytotoxicity or skin irritability, which makes it a rather promising active agent for skincare.
Collapse
Affiliation(s)
- Sophia Letsiou
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece.
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, ELGO-DEMETER, Lykovrysi, 14123, Athens, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, 57001, Thessaloniki-Thermi, Greece
| | - Eirini Sarrou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, ELGO-DEMETER, Lykovrysi, 14123, Athens, Greece
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
- Joint Laboratory of Horticulture, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
| | - Athanassios Molassiotis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001, Thessaloniki-Thermi, Greece
| |
Collapse
|
4
|
Brunner G, Roux M, Böhm V, Meiners T. Cellular and molecular changes that predispose skin in chronic spinal cord injury to pressure ulcer formation. Int Wound J 2021; 18:728-737. [PMID: 33723924 PMCID: PMC8450792 DOI: 10.1111/iwj.13575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/04/2022] Open
Abstract
Patients with spinal cord injury have a predisposition to develop pressure ulcers. Specific characteristics of the patients' skin potentially involved have not yet been identified. The purpose of this investigation was to determine whether loss of neuronal control affects cellular and molecular homeostasis in the skin. Intact afflicted skin, wound edge of pressure ulcers, and control skin were analysed. Platelets, transforming growth factor‐β1, and activin A were identified by immunohistochemistry. Transforming growth factor‐β‐like activity was determined by bioassay, and gene expression by DNA microarray analysis or RT‐PCR. In afflicted skin, enhanced platelet extravasation was detected. Transforming growth factor‐β1 and activin A accumulated in the dermal‐epidermal junction zone. Transforming growth factor‐β‐like activity and activin A expression were increased in intact afflicted skin (compared to control skin) and were further enhanced in pressure ulcers. In vitro, activity was generated by fibroblast‐epithelial cell interactions, which also induced activin A. Thus, loss of neuronal control in spinal cord injury appears to trigger inappropriate wound healing processes in the patients' skin. Plasma leakage and increased transforming growth factor‐β‐like activity combined with shear forces potentially enhance the risk for pressure ulcer formation.
Collapse
Affiliation(s)
- Georg Brunner
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany.,Department of Cancer Research, Skin Cancer Center Hornheide, Münster, Germany
| | - Meike Roux
- Department of Cancer Research, Skin Cancer Center Hornheide, Münster, Germany
| | - Volker Böhm
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany
| | - Thomas Meiners
- Center for Spinal Cord Injuries, Werner Wicker Hospital, Bad Wildungen, Germany
| |
Collapse
|
5
|
Prediction of Calving to Conception Interval Length Using Algorithmic Analysis of Endometrial mRNA Expression in Bovine. Animals (Basel) 2021; 11:ani11010236. [PMID: 33478124 PMCID: PMC7835770 DOI: 10.3390/ani11010236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Our study aimed to develop the unsupervised clustering model based solely on selected markers to investigate the association between calving conception interval length, subclinical endometritis, and endometrial gene expression. An algorithmic analysis of endometrial gene expression showed a higher predictive ability to identify cows exhibiting excellent fertility than previously used methods, highlighting the correlation between INHBA/INHA and calving–conception interval length. Abstract After parturition, the uterus undergoes significant reconstruction, allows the endometrium to create an environment for subsequent embryo development. Here, we used an unsupervised algorithmic approach to select characteristic endometrial mRNA expression patterns of proposed markers and investigate each marker’s role as an individual indicator of reproductive success. Clinically healthy cows at a sixth week postpartum were examined, the percentage of neutrophils (PMNs%) in the cytological smear was calculated, and an endometrial biopsy was taken for qPCR. Based on pregnancy examination, cows were divided into three groups: Pregnant before 100 days postpartum (P100, n = 11), pregnant between 100–200-day (P200, n = 14), and culled (C, n = 10). Animals were also classified based on two PMNs% thresholds > 5% PMNs and > 10% PMNs. The expression of IL1B, IL6, CXCL8, and IL17A was higher in >10%PMNs. The expression of PTGS1 was higher in the P200 compared to P100. Upregulation of inhibin A subunit (INHA) and downregulation of inhibin β A subunit (INHBA) were observed in the P100. INHBA/INHA ratio was the most accurate linear predictor of the calving-to-conception interval. The application of the k-means algorithm allowed the identification of five unique expression patterns. The sensitivity and specificity of predicting allocation to P100 were 81% and 79%. We also documented the low efficiency of genes associated with subclinical endometritis and PMNs% in determining reproductive capability. These results suggested the presence of distinctive expression patterns in 6 weeks postpartum, correlated with cows’ reproductive capacity. Furthermore, we proposed the INHBA/INHA ratio as an indicator of calving-to-conception interval length.
Collapse
|
6
|
Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle? Cells 2021; 10:cells10010059. [PMID: 33401654 PMCID: PMC7823786 DOI: 10.3390/cells10010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Kidneys of mice, rats and humans possess progenitors that maintain daily homeostasis and take part in endogenous regenerative processes following injury, owing to their capacity to proliferate and differentiate. In the glomerular and tubular compartments of the nephron, consistent studies demonstrated that well-characterized, distinct populations of progenitor cells, localized in the parietal epithelium of Bowman capsule and scattered in the proximal and distal tubules, could generate segment-specific cells in physiological conditions and following tissue injury. However, defective or abnormal regenerative responses of these progenitors can contribute to pathologic conditions. The molecular characteristics of renal progenitors have been extensively studied, revealing that numerous classical and evolutionarily conserved pathways, such as Notch or Wnt/β-catenin, play a major role in cell regulation. Others, such as retinoic acid, renin-angiotensin-aldosterone system, TLR2 (Toll-like receptor 2) and leptin, are also important in this process. In this review, we summarize the plethora of molecular mechanisms directing renal progenitor responses during homeostasis and following kidney injury. Finally, we will explore how single-cell RNA sequencing could bring the characterization of renal progenitors to the next level, while knowing their molecular signature is gaining relevance in the clinic.
Collapse
|
7
|
Armstrong VS, Fitzgerald LW, Bathe OF. Cancer-Associated Muscle Wasting-Candidate Mechanisms and Molecular Pathways. Int J Mol Sci 2020; 21:ijms21239268. [PMID: 33291708 PMCID: PMC7729509 DOI: 10.3390/ijms21239268] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Excessive muscle loss is commonly observed in cancer patients and its association with poor prognosis has been well-established. Cancer-associated sarcopenia differs from age-related wasting in that it is not responsive to nutritional intervention and exercise. This is related to its unique pathogenesis, a result of diverse and interconnected mechanisms including inflammation, disordered metabolism, proteolysis and autophagy. There is a growing body of evidence that suggests that the tumor is the driver of muscle wasting by its elaboration of mediators that influence each of these pro-sarcopenic pathways. In this review, evidence for these tumor-derived factors and putative mechanisms for inducing muscle wasting will be reviewed. Potential targets for future research and therapeutic interventions will also be reviewed.
Collapse
Affiliation(s)
- Victoria S. Armstrong
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Liam W. Fitzgerald
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Oliver F. Bathe
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; (V.S.A.); (L.W.F.)
- Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Departments of Surgery and Oncology, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: ; Tel.: +1-403-521-3275
| |
Collapse
|
8
|
Letsiou S, Bakea A, Holefors A, Rembiesa J, Spanidi E, Gardikis K. In vitro protective effects of Paeonia mascula subsp. hellenica callus extract on human keratinocytes. Sci Rep 2020; 10:19213. [PMID: 33154501 PMCID: PMC7645794 DOI: 10.1038/s41598-020-76169-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Natural ingredients have been used to improve the state of health in humans. The genus Paeonia has been studied only limited yet it's reported to have many activities such as antioxidant and anti-inflammatory. To this context, here we focused on an endemic Paeonia species in Attica. This study aims to present the development of the Paeonia mascula subsp. hellenica callus extract and its pleiotropic bioactivity on human primary keratinocytes exploring its potential application as an active agent in skin-related products. This extract showed a high scavenging activity with high phenolic content and an interesting metabolic profile. At a molecular level, the study on the transcript accumulation of genes revealed that this extract exhibits in vitro skin-related protection properties by mediating mitochondrial energy, cell proliferation, immune and inflammatory response and positively regulates genes involved in epidermal and in stratum corneum function. Besides, the extract is proven not skin irritant on reconstructed human skin model. These findings indicate that the specific P. mascula subsp. hellenica extract possesses significant in vitro protection activity on human epidermis and provides new insights into its beneficial role in skin confirming that the advent of biotechnology contribution the past few decades.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece.
| | - Artemis Bakea
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece
| | - Anna Holefors
- In Vitro Plant-Tech AB, Geijersg 4B, 21618, Limhamn, Sweden
| | | | - Eleni Spanidi
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece
| | - Konstantinos Gardikis
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece
| |
Collapse
|
9
|
Deng SK, Tang JZ, Jin Y, Hu PH, Wang JF, Zhang XW. Activin B signaling may promote the conversion of normal fibroblasts to scar fibroblasts. Medicine (Baltimore) 2020; 99:e20253. [PMID: 32541451 PMCID: PMC7302586 DOI: 10.1097/md.0000000000020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This study is to explore the molecular mechanism of benign bile duct hypertrophic scar formation.Differential proteins between the normal fibroblast (NFB) and scar fibroblast (SCFB) were screened by protein chip assay, and analyzed by pathway-enrichment analysis and function-enrichment analysis. The differential proteins were further tested by ELISA. SiRNA-Act B was transfected to SCFB to down-regulate the expression of Act B. NFB was incubated with rh-Act B. The cell apoptosis and cell cycle were determined by flow cytometry. The expression of Act B, Smad2/3, transforming growth factor-β1 (TGF-β1), endothelin-1 (ET-1), thrombospondin-1 (Tsp-1), and Oncostatin M (OSM) were detected by Western blot.A total of 37 differential proteins were identified in SCFBs by microarray (P < .05), including 27 up-regulated proteins and 10 down-regulated proteins (P < .05). Their function were associated with Activin signaling, synthesis and degradation of extracellular matrix, formation and activation of cytokine, inflammatory reaction, immunoreaction, tissue damage reaction, cell cycle, migration, apoptosis, and secretion, etc. ELISA results showed that the expression of Act B, TGF-β1, ET-1 were higher in SCFBs, while the expression of Tsp-1 and OSM were lower in SCFBs (P < .05). After interfered by siRNA-Act B, the expression of Act B mRNA decreased (P < .05). The percentage of early apoptosis increased (P < .05). The expression of Act B, Smad2/3, TGF-β1 were decreased and Tsp-1, OSM were increased (P < .05). After treatment with rh-Act B, the percentage of G0/G1 phase of NFBs was decreased and that of S phase was increased without significance (P > .05). The expression of Act B, Smad2/3, TGF-β1 were increased (P < .05) and Tsp-1, OSM were decreased (P < .01).There are differentially expressed proteins between SCFBs and NFBs. Activin B signal plays an important role in the process of NFB transforming to SCFB, and TGF-β1, Smad2/3, Tsp-1, and OSM are important participants.
Collapse
Affiliation(s)
- Shi-Kang Deng
- Department of Hepatobiliary and Pancreatic Surgery, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology
| | - Jian-Zhong Tang
- Department of Hepatobiliary and Pancreatic Surgery, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology
| | - Yan Jin
- Department of Hepatobiliary and Pancreatic Surgery, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology
| | - Ping-Hai Hu
- Department of Hepatobiliary and Pancreatic Surgery, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology
| | - Jun-Feng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology
| | - Xiao-Wen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Yu M, Xiao L, Chen Y, Wang H, Gao Y, Wang A. Identification of a potential target for treatment of squamous cell carcinoma of the tongue: follistatin. Br J Oral Maxillofac Surg 2020; 58:437-442. [PMID: 32115303 DOI: 10.1016/j.bjoms.2020.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/29/2020] [Indexed: 11/24/2022]
Abstract
Squamous cell carcinoma (SCC) of the tongue is the most common oral cancer and is prone to develop regional lymph nodes and distant metastases. Reliable and stable therapeutic targets can improve the curative effect and reduce toxic side effects caused by traditional treatments such as surgery, radiotherapy, and chemotherapy. We have analysed three sets of series of functional gene expression of SCC of the tongue from gene expression omnibus (GEO) datasets, and 154 common differentially expressed genes (DEG) between SCC of the tongue and the corresponding normal tissues were screened. Further bioinformatics research that was based on the data from the Cancer genome atlas, Gene ontology, and the Kyoto encyclopaedia of genes and genomes indicated that the increased expression of follistatin might be correlated with a poor prognosis in these patients. By assay of colony formation, reverse transcription polymerase chain reaction (RT-PCR), western blotting, immunohistochemical staining, and lentivirus transfection, we confirmed that downregulation of follistatin inhibited the proliferation of SCC cells in the tongue.
Collapse
Affiliation(s)
- M Yu
- Department of Oral and Maxillofacial Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| | - L Xiao
- Department of Periodontology, Haizhu Square Hospital, Stomatological Hospital of Southern Medical University
| | - Y Chen
- Department of Oral and Maxillofacial Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - H Wang
- Department of Oral and Maxillofacial Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Y Gao
- Department of Stomatology, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - A Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Seachrist DD, Keri RA. The Activin Social Network: Activin, Inhibin, and Follistatin in Breast Development and Cancer. Endocrinology 2019; 160:1097-1110. [PMID: 30874767 PMCID: PMC6475112 DOI: 10.1210/en.2019-00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Activins and inhibins are closely related protein heterodimers with a similar tissue distribution; however, these two complexes have opposing functions in development and disease. Both are secreted cytokine hormones, with activin the primary inducer of downstream signaling cascades and inhibin acting as a rheostat that exquisitely governs activin function. Adding to the complexity of activin signaling, follistatin, a highly glycosylated monomeric protein, binds activin with high affinity and restrains downstream pathway activation but through a mechanism distinct from that of inhibin. These three proteins were first identified as key ovarian hormones in the pituitary-gonadal axis that direct the synthesis and secretion of FSH from the pituitary, hence controlling folliculogenesis. Research during the past 30 years has expanded the roles of these proteins, first by discovering the ubiquitous expression of the trio and then by implicating them in a wide array of biological functions. In concert, these three hormones govern tissue development, homeostasis, and disease in multiple organ systems through diverse autocrine and paracrine mechanisms. In the present study, we have reviewed the actions of activin and its biological inhibitors, inhibin, and follistatin, in mammary gland morphogenesis and cancer.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
- Division of General Medical Sciences–Oncology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
12
|
Subramaniam N, Petrik JJ, Vickaryous MK. VEGF, FGF-2 and TGFβ expression in the normal and regenerating epidermis of geckos: implications for epidermal homeostasis and wound healing in reptiles. J Anat 2018; 232:768-782. [PMID: 29417581 PMCID: PMC5879961 DOI: 10.1111/joa.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
The skin is a bilayered organ that serves as a key barrier between an organism and its environment. In addition to protecting against microbial invasion, physical trauma and environmental damage, skin participates in maintaining homeostasis. Skin is also capable of spontaneous self-repair following injury. These functions are mediated by numerous pleiotrophic growth factors, including members of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and transforming growth factor β (TGFβ) families. Although growth factor expression has been well documented in mammals, particularly during wound healing, for groups such as reptiles less is known. Here, we investigate the spatio-temporal pattern of expression of multiple growth factors in normal skin and following a full-thickness cutaneous injury in the representative lizard Eublepharis macularius, the leopard gecko. Unlike mammals, leopard geckos can heal cutaneous wounds without scarring. We demonstrate that before, during and after injury, keratinocytes of the epidermis express a diverse panel of growth factor ligands and receptors, including: VEGF, VEGFR1, VEGFR2, and phosphorylated VEGFR2; FGF-2 and FGFR1; and phosphorylated SMAD2, TGFβ1, and activin βA. Unexpectedly, only the tyrosine kinase receptors VEGFR1 and FGFR1 were dynamically expressed, and only during the earliest phases of re-epithelization; otherwise all the proteins of interest were constitutively present. We propose that the ubiquitous pattern of growth factor expression by keratinocytes is associated with various roles during tissue homeostasis, including protection against ultraviolet photodamage and coordinated body-wide skin shedding.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
- Institute of Medical ScienceFaculty of MedicineUniversity of TorontoTorontoONCanada
- Keenan Research Centre in the Li Ka Shing Knowledge InstituteSt. Michael's HospitalDepartment of MedicineUniversity of TorontoTorontoONCanada
| | - James J. Petrik
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| | - Matthew K. Vickaryous
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| |
Collapse
|
13
|
Biggar P, Kim GH. Treatment of renal anemia: Erythropoiesis stimulating agents and beyond. Kidney Res Clin Pract 2017; 36:209-223. [PMID: 28904872 PMCID: PMC5592888 DOI: 10.23876/j.krcp.2017.36.3.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Anemia, complicating the course of chronic kidney disease, is a significant parameter, whether interpreted as subjective impairment or an objective prognostic marker. Renal anemia is predominantly due to relative erythropoietin (EPO) deficiency. EPO inhibits apoptosis of erythrocyte precursors. Studies using EPO substitution have shown that increasing hemoglobin (Hb) levels up to 10–11 g/dL is associated with clinical improvement. However, it has not been unequivocally proven that further intensification of erythropoiesis stimulating agent (ESA) therapy actually leads to a comprehensive benefit for the patient, especially as ESAs are potentially associated with increased cerebro-cardiovascular events. Recently, new developments offer interesting options not only via stimulating erythropoeisis but also by employing additional mechanisms. The inhibition of activin, a member of the transforming growth factor superfamily, has the potential to correct anemia by stimulating liberation of mature erythrocyte forms and also to mitigate disturbed mineral and bone metabolism as well. Hypoxia-inducible factor prolyl hydroxylase inhibitors also show pleiotropic effects, which are at the focus of present research and have the potential of reducing mortality. However, conventional ESAs offer an extensive body of safety evidence, against which the newer substances should be measured. Carbamylated EPO is devoid of Hb augmenting effects whilst exerting promising tissue protective properties. Additionally, the role of hepcidin antagonists is discussed. An innovative new hemodialysis blood tube system, reducing blood contact with air, conveys a totally different and innocuous option to improve renal anemia by reducing mechanical hemolysis.
Collapse
Affiliation(s)
- Patrick Biggar
- Department of Nephrology, Klinikum Coburg, GmbH, Coburg, Germany.,KfH Kidney Centre, Coburg, Germany
| | - Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Sallustio F, Curci C, Aloisi A, Toma CC, Marulli E, Serino G, Cox SN, De Palma G, Stasi A, Divella C, Rinaldi R, Schena FP. Inhibin-A and Decorin Secreted by Human Adult Renal Stem/Progenitor Cells Through the TLR2 Engagement Induce Renal Tubular Cell Regeneration. Sci Rep 2017; 7:8225. [PMID: 28811645 PMCID: PMC5557965 DOI: 10.1038/s41598-017-08474-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
Acute kidney injury (AKI) is a public health problem worldwide. Several therapeutic strategies have been made to accelerate recovery and improve renal survival. Recent studies have shown that human adult renal progenitor cells (ARPCs) participate in kidney repair processes, and may be used as a possible treatment to promote regeneration in acute kidney injury. Here, we show that human tubular ARPCs (tARPCs) protect physically injured or chemically damaged renal proximal tubular epithelial cells (RPTECs) by preventing cisplatin-induced apoptosis and enhancing proliferation of survived cells. tARPCs without toll-like receptor 2 (TLR2) expression or TLR2 blocking completely abrogated this regenerative effect. Only tARPCs, and not glomerular ARPCs, were able to induce tubular cell regeneration process and it occurred only after damage detection. Moreover, we have found that ARPCs secreted inhibin-A and decorin following the RPTEC damage and that these secreted factors were directly involved in cell regeneration process. Polysaccharide synthetic vesicles containing these molecules were constructed and co-cultured with cisplatin damaged RPTECs. These synthetic vesicles were not only incorporated into the cells, but they were also able to induce a substantial increase in cell number and viability. The findings of this study increase the knowledge of renal repair processes and may be the first step in the development of new specific therapeutic strategies for renal repair.
Collapse
Affiliation(s)
- Fabio Sallustio
- University of Bari, Department of Emergency and Organ Transplantation, Piazza G. Cesare 11, 70124, Bari, Italy.,C.A.R.S.O. Consortium, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy
| | - Claudia Curci
- University of Bari, Department of Emergency and Organ Transplantation, Piazza G. Cesare 11, 70124, Bari, Italy.,C.A.R.S.O. Consortium, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy.,Schena Foundation, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy
| | - Alessandra Aloisi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Nanoscience, Via Arnesano 16, 73100, Lecce, Italy.,Institute of Microelectronics and Microsystems (C.N.R.- I.M.M.), via Monteroni, Campus Ecotekne, 73100, Lecce, Italy
| | - Chiara Cristina Toma
- Consiglio Nazionale delle Ricerche (CNR), Institute of Nanoscience, Via Arnesano 16, 73100, Lecce, Italy.,University of Salento, Mathematics and Physics "E. De Giorgi" Department, University of Salento, 73100, Lecce, Italy
| | - Elisabetta Marulli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Nanoscience, Via Arnesano 16, 73100, Lecce, Italy.,University of Salento, Mathematics and Physics "E. De Giorgi" Department, University of Salento, 73100, Lecce, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Bari, 70013, Italy
| | - Sharon Natasha Cox
- C.A.R.S.O. Consortium, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy.,Schena Foundation, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy
| | - Giuseppe De Palma
- University of Bari, Department of Emergency and Organ Transplantation, Piazza G. Cesare 11, 70124, Bari, Italy.,C.A.R.S.O. Consortium, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy.,Schena Foundation, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy
| | - Alessandra Stasi
- University of Bari, Department of Emergency and Organ Transplantation, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Chiara Divella
- University of Bari, Department of Emergency and Organ Transplantation, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Rosaria Rinaldi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Nanoscience, Via Arnesano 16, 73100, Lecce, Italy.,University of Salento, Mathematics and Physics "E. De Giorgi" Department, University of Salento, 73100, Lecce, Italy
| | - Francesco Paolo Schena
- University of Bari, Department of Emergency and Organ Transplantation, Piazza G. Cesare 11, 70124, Bari, Italy. .,C.A.R.S.O. Consortium, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy. .,Schena Foundation, Strada Prov. le Valenzano-Casamassima Km 3, 70100, Valenzano (Ba), Italy.
| |
Collapse
|
15
|
Follistatin is a metastasis suppressor in a mouse model of HER2-positive breast cancer. Breast Cancer Res 2017; 19:66. [PMID: 28583174 PMCID: PMC5460489 DOI: 10.1186/s13058-017-0857-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
Background Follistatin (FST) is an intrinsic inhibitor of activin, a member of the transforming growth factor-β superfamily of ligands. The prognostic value of FST and its family members, the follistatin-like (FSTL) proteins, have been studied in various cancers. However, these studies, as well as limited functional analyses of the FSTL proteins, have yielded conflicting results on the role of these proteins in disease progression. Furthermore, very few have been focused on FST itself. We assessed whether FST may be a suppressor of tumorigenesis and/or metastatic progression in breast cancer. Methods Using publicly available gene expression data, we examined the expression patterns of FST and INHBA, a subunit of activin, in normal and cancerous breast tissue and the prognostic value of FST in breast cancer metastases, recurrence-free survival, and overall survival. The functional effects of activin and FST on in vitro proliferation, migration, and invasion of breast cancer cells were also examined. FST overexpression in an autochthonous mouse model of breast cancer was then used to assess the in vivo impact of FST on metastatic progression. Results Examination of multiple breast cancer datasets revealed that FST expression is reduced in breast cancers compared with normal tissue and that low FST expression predicts increased metastasis and reduced overall survival. FST expression was also reduced in a mouse model of HER2/Neu-induced metastatic breast cancer. We found that FST blocks activin-induced breast epithelial cell migration in vitro, suggesting that its loss may promote breast cancer aggressiveness. To directly determine if FST restoration could inhibit metastatic progression, we transgenically expressed FST in the HER2/Neu model. Although FST had no impact on tumor initiation or growth, it completely blocked the formation of lung metastases. Conclusions These data indicate that FST is a bona fide metastasis suppressor in this mouse model and support future efforts to develop an FST mimetic to suppress metastatic progression. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0857-y) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Activin B regulates adipose-derived mesenchymal stem cells to promote skin wound healing via activation of the MAPK signaling pathway. Int J Biochem Cell Biol 2017; 87:69-76. [DOI: 10.1016/j.biocel.2017.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/04/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
17
|
Shi L, Resaul J, Owen S, Ye L, Jiang WG. Clinical and Therapeutic Implications of Follistatin in Solid Tumours. Cancer Genomics Proteomics 2017; 13:425-435. [PMID: 27807065 DOI: 10.21873/cgp.20005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Follistatin (FST), as a single-chain glycosylated protein, has two major isoforms, FST288 and FST315. The FST315 isoform is the predominant form whilst the FST288 variant accounts for less than 5% of the encoded mRNA. FST is differentially expressed in human tissues and aberrant expression has been observed in a variety of solid tumours, including gonadal, gastric and lung cancer, hepatocellular carcinoma, basal cell carcinoma and melanoma. Based on the current evidence, FST is an antagonist of transforming growth factor beta family members, such as activin and bone morphogenetic proteins (BMPs). FST plays a role in tumourigenesis, metastasis and angiogenesis of solid tumours through its interaction with activin and BMPs, thus resulting in pathophysiological function. In terms of diagnosis, prognosis and therapy, FST has shown strong promise. Through a better understanding of its biological functions, potential clinical applications may yet emerge.
Collapse
Affiliation(s)
- Lei Shi
- Urology Department, Yantai Yu Huang Ding Hospital, Yantai, Shandong Province, P.R. China.,Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Jeyna Resaul
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K.
| |
Collapse
|
18
|
Hildebrand L, Gaber T, Kühnen P, Morhart R, Unterbörsch H, Schomburg L, Seemann P. Trace element and cytokine concentrations in patients with Fibrodysplasia Ossificans Progressiva (FOP): A case control study. J Trace Elem Med Biol 2017; 39:186-192. [PMID: 27908413 DOI: 10.1016/j.jtemb.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 10/02/2016] [Indexed: 12/29/2022]
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare inherited disease characterized by progressive heterotopic ossification. Disease onset, severity and symptoms vary between FOP patients, as does the frequency and activity of so-called flare-ups, during which tendons, ligaments, muscle and soft tissue are replaced by bone. Traumata, infections or other stressors are known inducers of flare-ups, and the hormone Activin A may be involved in disease activity; however, reliable biomarkers for FOP activity are missing, and the basal trace element and inflammatory state of patients are unknown. We hypothesized that FOP patients develop characteristic deficiencies in inflammation-related trace elements and display a chronically increased inflammatory cytokine level, collectively aggravating disease course and flare-up risk. Serum samples from 15 FOP patients and 25 relatives were collected under highest quality standards. Concentrations of Cu, Se and Zn were determined by total reflection X-ray fluorescence, and 27 cytokines along with Activin A by specific antibody-based techniques. Data were tested for normal distribution and analyzed by parametric or non-parametric tests. Concentrations of Se and Cu were not different between the groups, while Zn levels were slightly higher in FOP as compared to controls (1110±251 vs. 970±176ng/ml, P=0.04). The average concentrations of cytokines and Activin A were not different. When focusing on the two patients with self-reported flare-ups, again no obvious differences were noted. The cytokines Eotaxin, G-CSF, hbFGF and TNF-α were within the upper half of measured concentrations, and may warrant further longitudinal analyses. Our data do not support the hypothesis that FOP patients display a characteristic pattern of trace elements or have a generally increased tone of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Laura Hildebrand
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Germany.
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Germany.
| | - Peter Kühnen
- Institute for Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Germany.
| | - Rolf Morhart
- Klinik für Kinder- und Jugendmedizin, Garmisch-Partenkirchen Medical Center, Garmisch-Partenkirchen, Germany.
| | | | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Germany.
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
19
|
ActivinB Is Induced in Insulinoma To Promote Tumor Plasticity through a β-Cell-Induced Dedifferentiation. Mol Cell Biol 2015; 36:756-64. [PMID: 26711255 DOI: 10.1128/mcb.00930-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/13/2015] [Indexed: 12/19/2022] Open
Abstract
Loss of pancreatic β-cell maturity occurs in diabetes and insulinomas. Although both physiological and pathological stresses are known to promote β-cell dedifferentiation, little is known about the molecules involved in this process. Here we demonstrate that activinB, a transforming growth factor β (TGF-β)-related ligand, is upregulated during tumorigenesis and drives the loss of insulin expression and β-cell maturity in a mouse insulinoma model. Our data further identify Pax4 as a previously unknown activinB target and potent contributor to the observed β-cell dedifferentiation. More importantly, using compound mutant mice, we found that deleting activinB expression abolishes tumor β-cell dedifferentiation and, surprisingly, increases survival without significantly affecting tumor growth. Hence, this work reveals an unexpected role for activinB in the loss of β-cell maturity, islet plasticity, and progression of insulinoma through its participation in β-cell dedifferentiation.
Collapse
|
20
|
Li Y, Klausen C, Zhu H, Leung PCK. Activin A Increases Human Trophoblast Invasion by Inducing SNAIL-Mediated MMP2 Up-Regulation Through ALK4. J Clin Endocrinol Metab 2015; 100:E1415-27. [PMID: 26305619 DOI: 10.1210/jc.2015-2134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Activin A increases matrix metalloproteinase (MMP) 2 expression and cell invasion in human trophoblasts, but whether the expression of MMP2 is essential for the proinvasive effect of activin A has yet to be determined. Moreover, the identity of the activin receptor-like kinase (ALK; TGF-β type I receptors) and downstream transcription factors (eg, SNAIL and SLUG) mediating the effects of activin on MMP2 expression and trophoblast cell invasion remains unknown. OBJECTIVE To elucidate the role of MMP2 in activin A-induced human trophoblast cell invasion as well as the involvement of ALK4 and SNAIL. DESIGN HTR8/SVneo immortalized human extravillous cytotrophoblast (EVT) cells and primary cultures of human first-trimester EVT cells were used as study models. Small interfering RNA (siRNA)-mediated knockdown approaches were used to investigate the molecular determinants of activin A-mediated functions. MAIN OUTCOME MEASURES Levels of mRNA and protein were examined by reverse transcription-quantitative real-time PCR and Western blot, respectively. Cell invasiveness was measured by Matrigel-coated transwell assays. RESULTS Treatment of HTR8/SVneo cells with activin A increased the production of SNAIL, SLUG, and MMP2 without altering that of MMP9, TIMP1, TIMP2, TWIST, RUNX2, ZEB1, or ZEB2. Similarly, activin A up-regulated the mRNA and protein levels of SNAIL and MMP2 in primary EVT cells. Knockdown of SNAIL attenuated activin A-induced MMP2 up-regulation in HTR8/SVneo and primary EVT cells. In HTR8/SVneo cells, activin A-induced production of SNAIL and MMP2 was abolished by pretreatment with the TGF-β type I receptor (ALK4/5/7) inhibitor SB431542 or siRNA targeting ALK4, SMAD2/3, or common SMAD4. Likewise, knockdown of ALK4 or SMAD4 abolished the stimulatory effects of activin A on SNAIL and MMP2 expression in primary EVT cells. Importantly, activin A-induced HTR8/SVneo and primary EVT cell invasion were attenuated by siRNA-mediated depletion of ALK4 or MMP2. CONCLUSION Activin A induces human trophoblast cell invasion by inducing SNAIL-mediated MMP2 expression through ALK4 in a SMAD2/3-SMAD4-dependent manner.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
21
|
Greer T, Hao L, Nechyporenko A, Lee S, Vezina CM, Ricke WA, Marker PC, Bjorling DE, Bushman W, Li L. Custom 4-Plex DiLeu Isobaric Labels Enable Relative Quantification of Urinary Proteins in Men with Lower Urinary Tract Symptoms (LUTS). PLoS One 2015; 10:e0135415. [PMID: 26267142 PMCID: PMC4534462 DOI: 10.1371/journal.pone.0135415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022] Open
Abstract
The relative quantification of proteins using liquid chromatography mass spectrometry (LC-MS) has allowed researchers to compile lists of potential disease markers. These complex quantitative workflows often include isobaric labeling of enzymatically-produced peptides to analyze their relative abundances across multiple samples in a single LC-MS run. Recent efforts by our lab have provided scientists with cost-effective alternatives to expensive commercial labels. Although the quantitative performance of these dimethyl leucine (DiLeu) labels has been reported using known ratios of complex protein and peptide standards, their potential in large-scale proteomics studies using a clinically relevant system has never been investigated. Our work rectifies this oversight by implementing 4-plex DiLeu to quantify proteins in the urine of aging human males who suffer from lower urinary tract symptoms (LUTS). Protein abundances in 25 LUTS and 15 control patients were compared, revealing that of the 836 proteins quantified, 50 were found to be differentially expressed (>20% change) and statistically significant (p-value <0.05). Gene ontology (GO) analysis of the differentiated proteins showed that many were involved in inflammatory responses and implicated in fibrosis. While confirmation of individual protein abundance changes would be required to verify protein expression, this study represents the first report using the custom isobaric label, 4-plex DiLeu, to quantify protein abundances in a clinically relevant system.
Collapse
Affiliation(s)
- Tyler Greer
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anatoliy Nechyporenko
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sanghee Lee
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chad M. Vezina
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Will A. Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul C. Marker
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dale E. Bjorling
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Wade Bushman
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
22
|
El-Abd N, Fawzy A, Elbaz T, Hamdy S. Evaluation of annexin A2 and as potential biomarkers for hepatocellular carcinoma. Tumour Biol 2015; 37:211-6. [PMID: 26189841 DOI: 10.1007/s13277-015-3524-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy worldwide. Early detection of HCC is difficult due to the lack of reliable markers. We aimed to assess the diagnostic role of annexin A2 (ANXA2) and follistatin as serum markers for HCC patients. This study included 50 patients with confirmed diagnosis of HCC, 30 patients with chronic liver disease, and 20 normal persons. Subjects performed thorough assessment and laboratory investigations. Serum levels of alpha fetoprotein (AFP), annexin A2, and follistatin were measured using ELISA technique. Annexin A2 significantly increased in the sera of HCC patients (median, 69.6 ng/ml) compared to chronic liver disease patients (median, 16.8 ng/ml) and control group (median, 9.5 ng/ml) (p < 0.001). Follistatin was higher in sera of HCC patients (median, 24.4 ng/ml) compared to the control group (median, 4.2 ng/ml) (p = 0.002) while no such significant difference was achieved between HCC and chronic liver disease patients. At a cutoff level 29.3 ng/ml, area under the receiver-operating characteristic curve for ANXA2 was 0.910 (95 % confidence interval (CI) 0.84-0.97). For follistatin, it was 0.631 (95 % confidence interval 0.52-0.74) at cutoff level 15.7 ng/ml. Combining both annexin A2 and AFP increased the diagnostic efficiency (98 % specificity, LR + 41 and 97.6 % PPV). Follistatin combined with AFP provided 92 % specificity while lower sensitivity (50 %) was observed. Serum ANXA2 is a promising biomarker for HCC, certainly when measured with AFP. Follistatin could not differentiate between HCC and chronic liver disease, but its combination with AFP improved the specificity for HCC diagnosis.
Collapse
Affiliation(s)
- Nevine El-Abd
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt
| | - Amal Fawzy
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo, Egypt
| | - Tamer Elbaz
- Department of Endemic Hepatogastroenterology, Cairo University, Cairo, Egypt.
| | - Sherif Hamdy
- Department of Endemic Hepatogastroenterology, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Gomes FS, de-Souza GF, Nascimento LF, Arantes EL, Pedro RM, Vitorino DC, Nunez CE, Melo Lima MH, Velloso LA, Araújo EP. Topical 5-azacytidine accelerates skin wound healing in rats. Wound Repair Regen 2015; 22:640-6. [PMID: 25039304 DOI: 10.1111/wrr.12213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/11/2014] [Indexed: 11/30/2022]
Abstract
The development of new methods to improve skin wound healing may affect the outcomes of a number of medical conditions. Here, we evaluate the molecular and clinical effects of topical 5-azacytidine on wound healing in rats. 5-Azacytidine decreases the expression of follistatin-1, which negatively regulates activins. Activins, in turn, promote cell growth in different tissues, including the skin. Eight-week-old male Wistar rats were submitted to 8.0-mm punch-wounding in the dorsal region. After 3 days, rats were randomly assigned to receive either a control treatment or the topical application of a solution containing 5-azacytidine (10 mM) once per day. Photo documentation and sample collection were performed on days 5, 9, and 15. Overall, 5-azacytidine promoted a significant acceleration of complete wound healing (99.7% ± 0.7.0 vs. 71.2% ± 2.8 on day 15; n = 10; p < 0.01), accompanied by up to threefold reduction in follistatin expression. Histological examination of the skin revealed efficient reepithelization and cell proliferation, as evaluated by the BrdU incorporation method. 5-Azacytidine treatment also resulted in increased gene expression of transforming growth factor-beta and the keratinocyte markers involucrin and cytokeratin, as well as decreased expression of cytokines such as tumor necrosis factor-alpha and interleukin-10. Lastly, when recombinant follistatin was applied to the skin in parallel with topical 5-azacytidine, most of the beneficial effects of the drug were lost. Thus, 5-azacytidine acts, at least in part through the follistatin/activin pathway, to improve skin wound healing in rodents.
Collapse
Affiliation(s)
- Fabiana S Gomes
- Nursing School, University of Campinas, Campinas, Brazil; Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zahid W, Bergestuen D, Haugaa KH, Ueland T, Thiis-Evensen E, Aukrust P, Fosse E, Edvardsen T. Myocardial Function by Two-Dimensional Speckle Tracking Echocardiography and Activin A May Predict Mortality in Patients with Carcinoid Intestinal Disease. Cardiology 2015; 132:81-90. [PMID: 26111973 DOI: 10.1159/000431076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Myocardial fibrosis causes deterioration of myocardial function in carcinoid intestinal disease (CID). We assessed the ability of myocardial function and various biomarkers to predict mortality in patients with CID. METHODS A total of 71 patients with small intestinal carcinoid tumours were included, and underwent echocardiography at baseline. Systolic function was assessed by two-dimensional speckle tracking echocardiography as left ventricular (LV) and right ventricular (RV) strain, and as mitral annular displacement (MAD), by tissue Doppler imaging. Parameters of diastolic function, the amount of liver metastases, and various biomarkers were also analysed. RESULTS During 1,274 ± 368 days of follow-up, 18 patients (25%) died. Of the 53 survivors, 46 patients (87%) were available for follow-up echocardiography. Baseline LV strain and MAD was reduced in those who died compared to those who survived (p < 0.001). Baseline plasma levels of activin A were markedly higher in patients who died during follow-up than those who survived (p = 0.001). In multivariate Cox hazard models (A, B, C and D), LV strain, age, the amount of liver metastases, MAD, and activin A were independent predictors of mortality. CONCLUSION Assessment of myocardial function by echocardiography, and the biomarker activin A, can be very useful in the risk stratification of patients with CID. © 2015 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Wasim Zahid
- Department of Cardiology and Center for Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Radeke MJ, Radeke CM, Shih YH, Hu J, Bok D, Johnson LV, Coffey PJ. Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration. Genome Med 2015; 7:58. [PMID: 26150894 PMCID: PMC4491894 DOI: 10.1186/s13073-015-0183-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/11/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a leading cause of blindness. Most vision loss occurs following the transition from a disease of deposit formation and inflammation to a disease of neovascular fibrosis and/or cell death. Here, we investigate how repeated wound stimulus leads to seminal changes in gene expression and the onset of a perpetual state of stimulus-independent wound response in retinal pigmented epithelial (RPE) cells, a cell-type central to the etiology of AMD. METHODS Transcriptome wide expression profiles of human fetal RPE cell cultures as a function of passage and time post-plating were determined using Agilent 44 K whole genome microarrays and RNA-Seq. Using a systems level analysis, differentially expressed genes and pathways of interest were identified and their role in the establishment of a persistent mesenchymal state was assessed using pharmacological-based experiments. RESULTS Using a human fetal RPE cell culture model that considers monolayer disruption and subconfluent culture as a proxy for wound stimulus, we show that prolonged wound stimulus leads to terminal acquisition of a mesenchymal phenotype post-confluence and altered expression of more than 40 % of the transcriptome. In contrast, at subconfluence fewer than 5 % of expressed transcripts have two-fold or greater expression differences after repeated passage. Protein-protein and pathway interaction analysis of the genes with passage-dependent expression levels in subconfluent cultures reveals a 158-node interactome comprised of two interconnected modules with functions pertaining to wound response and cell division. Among the wound response genes are the TGFβ pathway activators: TGFB1, TGFB2, INHBA, INHBB, GDF6, CTGF, and THBS1. Significantly, inhibition of TGFBR1/ACVR1B mediated signaling using receptor kinase inhibitors both forestalls and largely reverses the passage-dependent loss of epithelial potential; thus extending the effective lifespan by at least four passages. Moreover, a disproportionate number of RPE wound response genes have altered expression in neovascular and geographic AMD, including key members of the TGFβ pathway. CONCLUSIONS In RPE cells the switch to a persistent mesenchymal state following prolonged wound stimulus is driven by lasting activation of the TGFβ pathway. Targeted inhibition of TGFβ signaling may be an effective approach towards retarding AMD progression and producing RPE cells in quantity for research and cell-based therapies.
Collapse
Affiliation(s)
- Monte J. Radeke
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| | - Carolyn M. Radeke
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| | - Ying-Hsuan Shih
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| | - Jane Hu
- />Departments of Ophthalmology and Neurobiology, Jules Stein Eye & Brain Research Institutes, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Dean Bok
- />Departments of Ophthalmology and Neurobiology, Jules Stein Eye & Brain Research Institutes, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Lincoln V. Johnson
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| | - Pete J. Coffey
- />Neuroscience Research Institute, University of California, Santa Barbara, CA USA
| |
Collapse
|
26
|
Das UN. Molecular, Biochemical, and Physiological Basis of Beneficial Actions of Exercise. DIET AND EXERCISE IN COGNITIVE FUNCTION AND NEUROLOGICAL DISEASES 2015:183-204. [DOI: 10.1002/9781118840634.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Zhu J, Liu F, Wu Q, Liu X. Activin A regulates proliferation, invasion and migration in osteosarcoma cells. Mol Med Rep 2015; 11:4501-7. [PMID: 25634369 DOI: 10.3892/mmr.2015.3284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 01/02/2015] [Indexed: 11/06/2022] Open
Abstract
Activin A is a member of the TGF‑β superfamily. Previous studies have demonstrated that activin A exhibited pluripotent effects in several tumours. However, the roles of activin A signaling in osteosarcoma pathogenesis have not been previously investigated. Therefore, the present study aimed to investigate the effects of activin A on osteosarcoma cell proliferation, invasion and migration. Firstly, the expression of activin A in osteosarcoma cell lines (MG63, SaOS‑2 and U2OS) and a human osteoblastic cell line (hFOB1.19) was detected using reverse transcription quantitative polymerase chain reaction and western blotting. Activin A was upregulated in osteosarcoma cell lines compared with hFOB1.19 cells. To investigate the effects of activin A on osteosarcoma cell proliferation, invasion and migration, MG63 cells were generated in which activin A was either overexpressed or depleted. MTT staining, propidium iodide staining and a Transwell assay were used to analyze the cell cycle, proliferation, invasion and migration of MG63 cells, respectively. The results of the present study revealed that the abilities of proliferation, invasion and migration were suppressed in MG63 cells in which activin A was depleted, while they were enhanced in activin A-overexpressing cells. In conclusion, the results of the present study suggested that activin A may facilitate proliferation, invasion and migration of osteosarcoma cells, and it may therefore be a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fan Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Quanming Wu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiancheng Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
28
|
Loomans HA, Andl CD. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion. Cancers (Basel) 2014; 7:70-91. [PMID: 25560921 PMCID: PMC4381251 DOI: 10.3390/cancers7010070] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/23/2014] [Indexed: 12/22/2022] Open
Abstract
In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Claudia D Andl
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Kumar SS, Alarfaj AA, Munusamy MA, Singh AJAR, Peng IC, Priya SP, Hamat RA, Higuchi A. Recent developments in β-cell differentiation of pluripotent stem cells induced by small and large molecules. Int J Mol Sci 2014; 15:23418-47. [PMID: 25526563 PMCID: PMC4284775 DOI: 10.3390/ijms151223418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
Collapse
Affiliation(s)
- S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - A J A Ranjith Singh
- Department of Bioscience, Jacintha Peter College of Arts and Sciences, Ayakudi, Tenkasi, Tamilnadu 627852, India.
| | - I-Chia Peng
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan 32001, Taiwan.
| | - Sivan Padma Priya
- Department of Basic Science and Department of Surgical Sciences, Ajman University of Science and Technology-Fujairah Campus, P.O. Box 9520, Al Fujairah, United Arab Emirates.
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
30
|
Horvath L, Bodmer D, Radojevic V, Monge Naldi A. Activin Signaling Disruption in the Cochlea Does Not Influence Hearing in Adult Mice. Audiol Neurootol 2014; 20:51-61. [DOI: 10.1159/000366152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
Activin, a member of the TGF-F superfamily, was found to play an important role in the development, repair and apoptosis of different tissues and organs. Accordingly, activin signaling is involved in the development of the cochlea. Activin binds to its receptor ActRII, then dimerizes with ActRI and induces a signaling pathway resulting in gene expression. A study reported a case of fibrodysplasia ossificans progressiva with an unusual mutation in the ActRI gene leading to sensorineural hearing loss. This draws attention to the role of activin and its receptors in the developed cochlea. To date, only the expression of ActRII is known in the adult mammalian cochlea. In this study, we present for the first time the presence of activin A and ActRIB in the adult cochlea. Transgenic mice with postnatal dominant-negative ActRIB expression causing disruption of activin signaling in vivo were used for assessing cochlear morphology and hearing ability through the auditory brainstem response (ABR) threshold. Nonfunctioning ActRIB did not affect the ABR thresholds and did not alter the microscopic anatomy of the cochlea. We conclude, therefore, that activin signaling is not necessary for hearing in adult mice under physiological conditions but may be important during and after damaging events in the inner ear. i 2014 S. Karger AG, Basel
Collapse
|
31
|
Engineering TGF-β superfamily ligands for clinical applications. Trends Pharmacol Sci 2014; 35:648-57. [PMID: 25458539 DOI: 10.1016/j.tips.2014.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
TGF-β superfamily ligands govern normal tissue development and homeostasis, and their dysfunction is a hallmark of many diseases. These ligands are also well defined both structurally and functionally. This review focuses on TGF-β superfamily ligand engineering for therapeutic purposes, in particular for regenerative medicine and musculoskeletal disorders. We describe the key discovery that structure-guided mutation of receptor-binding epitopes, especially swapping of these epitopes between ligands, results in new ligands with unique functional properties that can be harnessed clinically. Given the promising results with prototypical engineered TGF-β superfamily ligands, and the vast number of such molecules that remain to be produced and tested, this strategy is likely to hold great promise for the development of new biologics.
Collapse
|
32
|
Gökmen-Polar Y, Goswami CP, Toroni RA, Sanders KL, Mehta R, Sirimalle U, Tanasa B, Shen C, Li L, Ivan M, Badve S, Sledge GW. Gene Expression Analysis Reveals Distinct Pathways of Resistance to Bevacizumab in Xenograft Models of Human ER-Positive Breast Cancer. J Cancer 2014; 5:633-45. [PMID: 25157274 PMCID: PMC4142325 DOI: 10.7150/jca.8466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022] Open
Abstract
Bevacizumab, the recombinant antibody targeting vascular endothelial growth factor (VEGF), improves progression-free but not overall survival in metastatic breast cancer. To seek further insights in resistance mechanisms to bevacizumab at the molecular level, we developed VEGF and non-VEGF-driven ER-positive MCF7-derived xenograft models allowing comparison of tumor response at different timepoints. VEGF gene (MV165) overexpressing xenografts were initially sensitive to bevacizumab, but eventually acquired resistance. In contrast, parental MCF7 cells derived tumors were de novo insensitive to bevacizumab. Microarray analysis with qRT-PCR validation revealed that Follistatin (FST) and NOTCH were the top signaling pathways associated with resistance in VEGF-driven tumors (P<0.05). Based on the presence of VEGF, treatment with bevacizumab resulted in altered patterns of metagenes and PAM50 gene expression. In VEGF-driven model after short and long-term bevacizumab treatments, a change in the intrinsic subtype (luminal to myoepithelial/basal-like) was observed in association with increased expression of genes implicated with cancer stem cell phenotype (P<0.05). Our results show that the presence or absence of VEGF expression affects the response to bevacizumab therapy and gene pathways. In particular, long-term bevacizumab treatment shifts the cancer cells to a more aggressive myoepithelial/basal subtype in VEGF-expressing model, but not in non-VEGF model. These findings could shed light on variable results to anti-VEGF therapy in patients and emphasize the importance of patient stratification based on the VEGF expression. Our data strongly suggest consideration of patient subgroups for treatment and designing novel combinatory therapies in the clinical setting.
Collapse
Affiliation(s)
- Yesim Gökmen-Polar
- 1. Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Chirayu P Goswami
- 2. Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Rachel A Toroni
- 3. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Kerry L Sanders
- 3. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Rutika Mehta
- 1. Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Usha Sirimalle
- 1. Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Bogdan Tanasa
- 4. Scripps Research Institute, University of Medicine and Pharmac, La Jolla, CA
| | - Changyu Shen
- 2. Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Lang Li
- 2. Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Mircea Ivan
- 3. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sunil Badve
- 1. Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN; ; 3. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - George W Sledge
- 1. Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN; ; 3. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
33
|
Villapol S, Wang Y, Adams M, Symes AJ. Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Exp Neurol 2013; 250:353-65. [PMID: 24120438 DOI: 10.1016/j.expneurol.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling is involved in pathological processes following brain injury. TGF-β signaling through Smad3 contributes significantly to the immune response and glial scar formation after brain injury. However, TGF-β is also neuroprotective, suggesting that Smad3 signaling may also be involved in neuroprotection after injury. We found expression of the TGF-β type II receptor (TβRII) and Smad3 protein to be strongly and rapidly induced in neurons in the ipsilateral cortex and CA1 region of the hippocampus after stab wound injury. In contrast, astrocytic expression of TβRII and Smad3 was induced more slowly. Comparison of the response of wild-type and Smad3 null mice to cortical stab wound injury showed a more pronounced loss of neuronal viability in Smad3 null mice. Neuronal density was more strongly reduced in Smad3 null mice than in wild-type mice at 1 and 3days post lesion in both the ipsilateral cortex and hippocampal CA1 region. Fluoro-Jade B, TUNEL staining, and cleaved caspase-3 staining also demonstrated increased neuronal degeneration at early time points after injury in the ipsilateral hemisphere in Smad3 null mice. Taken together, our results suggest that TGF-β cytokine family signaling through Smad3 protects neurons in the damaged cortex and hippocampus at early time points after injury.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
34
|
Gaviño MA, Wenemoser D, Wang IE, Reddien PW. Tissue absence initiates regeneration through follistatin-mediated inhibition of activin signaling. eLife 2013; 2:e00247. [PMID: 24040508 PMCID: PMC3771573 DOI: 10.7554/elife.00247] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 08/07/2013] [Indexed: 12/22/2022] Open
Abstract
Regeneration is widespread, but mechanisms that activate regeneration remain mysterious. Planarians are capable of whole-body regeneration and mount distinct molecular responses to wounds that result in tissue absence and those that do not. A major question is how these distinct responses are activated. We describe a follistatin homolog (Smed-follistatin) required for planarian regeneration. Smed-follistatin inhibition blocks responses to tissue absence but does not prevent normal tissue turnover. Two activin homologs (Smed-activin-1 and Smed-activin-2) are required for the Smed-follistatin phenotype. Finally, Smed-follistatin is wound-induced and expressed at higher levels following injuries that cause tissue absence. These data suggest that Smed-follistatin inhibits Smed-Activin proteins to trigger regeneration specifically following injuries involving tissue absence and identify a mechanism critical for regeneration initiation, a process important across the animal kingdom. DOI:http://dx.doi.org/10.7554/eLife.00247.001.
Collapse
Affiliation(s)
- Michael A Gaviño
- Department of Biology, Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Danielle Wenemoser
- Department of Biology, Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Irving E Wang
- Department of Biology, Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Peter W Reddien
- Department of Biology, Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
35
|
Moura J, da Silva L, Cruz MT, Carvalho E. Molecular and cellular mechanisms of bone morphogenetic proteins and activins in the skin: potential benefits for wound healing. Arch Dermatol Res 2013; 305:557-69. [PMID: 23800970 DOI: 10.1007/s00403-013-1381-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023]
Abstract
Bone morphogenetic proteins (BMPs) and activins are phylogenetically conserved proteins, belonging to the transforming growth factor-β superfamily, that signal through the phosphorylation of receptor-regulated Smad proteins, activating different cell responses. They are involved in various steps of skin morphogenesis and wound repair, as can be evidenced by the fact that their expression is increased in skin injuries. BMPs play not only a role in bone regeneration but are also involved in cartilage, tendon-like tissue and epithelial regeneration, maintain vascular integrity, capillary sprouting, proliferation/migration of endothelial cells and angiogenesis, promote neuron and dendrite formation, alter neuropeptide levels and are involved in immune response modulation, at least in animal models. On the other hand, activins are involved in wound repair through the regulation of skin and immune cell migration and differentiation, re-epithelialization and granulation tissue formation, and also promote the expression of collagens by fibroblasts and modulate scar formation. This review aims at enunciating the effects of BMPs and activins in the skin, namely in skin development, as well as in crucial phases of skin wound healing, such as inflammation, angiogenesis and repair, and will focus on the effects of these proteins on skin cells and their signaling pathways, exploring the potential therapeutic approach of the application of BMP-2, BMP-6 and activin A in chronic wounds, particularly diabetic foot ulcerations.
Collapse
Affiliation(s)
- J Moura
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
36
|
Sherlock L, McKeegan DEF, Cheng Z, Wathes CM, Wathes DC. Effects of contact dermatitis on hepatic gene expression in broilers. Br Poult Sci 2013; 53:439-52. [PMID: 23130578 DOI: 10.1080/00071668.2012.707310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Severe foot and hock dermatitis in broiler chickens can reduce growth rate and increase susceptibility to bacterial infection, affecting both profitability and welfare. However, little is known about the underlying physiological changes associated with foot and hock lesions. 2. This study compared global hepatic gene expression in control birds and those with ammonia-induced foot and hock lesions using Agilent 44 K chicken oligonucleotide microarrays (8 birds per group). 3. In total, 417 genes were differentially expressed of which 174 could be mapped onto the genome. Genes associated with energy metabolism, thyroid hormone activity and cellular control were affected, while there was also evidence of an up-regulation of genes linked to a pro-inflammatory response. 4. It is conceivable that pain is the underlying cause for the observed changes in energy metabolism genes. 5. Changes in hepatic gene expression provide new information on how a chicken's physiological mechanisms alter to cope with foot and hock lesions. The findings support other data indicating that birds with increased severity of lesions are likely to be in pain and that growth will be compromised. Reduction of the incidence of dermatitis by improved husbandry should therefore benefit both welfare and commercial performance.
Collapse
Affiliation(s)
- L Sherlock
- Royal Veterinary College, University of London, Hatfield, AL9 7TA.
| | | | | | | | | |
Collapse
|
37
|
Shih B, Sultan MJ, Chaudhry IH, Tan KT, Johal KS, Marstan A, Tsai M, Baguneid M, Bayat A. Identification of biomarkers in sequential biopsies of patients with chronic wounds receiving simultaneous acute wounds: a genetic, histological, and noninvasive imaging study. Wound Repair Regen 2013; 20:757-69. [PMID: 22985042 DOI: 10.1111/j.1524-475x.2012.00832.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic wounds are common and lead to significant patient morbidity. A better understanding of their pathogenesis and relevant biomarkers are required. We compared acute and chronic wounds in the same individual using noninvasive imaging including spectrophotometric intracutaneous analysis (SIAscopy) and full-field laser perfusion imaging. Gene expression analysis was also performed on sequential biopsies. Whole genome gene expression microarray analysis (44k), quantitative polymerase chain reaction, and immunohistochemistry were carried out to determine gene expression levels in tissue biopsies. Fifteen Caucasian patients with chronic venous ulcers had biopsies of the wound edges and simultaneously had an acute wound created on their upper arm on days 0, 7, and 14. SIAscopy revealed increased levels of melanin (p < 0.001), reduced levels of collagen (p < 0.001), and hemoglobin (p = 0.022) in chronic wounds. Microarray and subsequent quantitative polymerase chain reaction analysis confirmed an overall differential expression in acute and chronic wounds for several genes. Significantly higher levels of inhibin, beta A (INHBA) expression were confirmed in the dermis of chronic wounds (p < 0.05). Additionally, INHBA and thrombospondin 1 messenger RNA levels significantly correlated with SIAscopy measurements (p < 0.05). This unique study has showed aberrant expression of INHBA in chronic wounds using a sequential biopsy model of chronic vs. acute wounds in the same individual.
Collapse
Affiliation(s)
- Barbara Shih
- Plastic and Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ripoche D, Gout J, Pommier RM, Jaafar R, Zhang CX, Bartholin L, Bertolino P. Generation of a conditional mouse model to target Acvr1b disruption in adult tissues. Genesis 2012; 51:120-7. [PMID: 23109354 DOI: 10.1002/dvg.22352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/11/2012] [Accepted: 10/13/2012] [Indexed: 11/06/2022]
Abstract
Alk4 is a type I receptor that belongs to the transforming growth factor-beta (TGF-β) family. It takes part in the signaling of TGF-β ligands such as Activins, Gdfs, and Nodal that had been demonstrated to participate in numerous mechanisms ranging from early embryonic development to adult-tissue homeostasis. Evidences indicate that Alk4 is a key regulator of many embryonic processes, but little is known about its signaling in adult tissues and in pathological conditions where Alk4 mutations had been reported. Conventional deletion of Alk4 gene (Acvr1b) results in early embryonic lethality prior gastrulation, which has precluded study of Alk4 functions in postnatal and adult mice. To circumvent this problem, we have generated a conditional Acvr1b floxed-allele by flanking the fifth and sixth exons of the Acvr1b gene with loxP sites. Cre-mediated deletion of the floxed allele generates a deleted allele, which behaves as an Acvr1b null allele leading to embryonic lethality in homozygous mutant animals. A tamoxifen-inducible approach to target disruption of Acvr1b specifically in adult tissues was used and proved to be efficient for studying Alk4 functions in various organs. We report, therefore, a novel conditional model allowing investigation of biological role played by Alk4 in a variety of tissue-specific contexts.
Collapse
Affiliation(s)
- Doriane Ripoche
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Botta A, Delteil F, Mettouchi A, Vieira A, Estrach S, Négroni L, Stefani C, Lemichez E, Meneguzzi G, Gagnoux-Palacios L. Confluence switch signaling regulates ECM composition and the plasmin proteolytic cascade in keratinocytes. J Cell Sci 2012; 125:4241-52. [PMID: 22641690 DOI: 10.1242/jcs.096289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In culture, cell confluence generates signals that commit actively growing keratinocytes to exit the cell cycle and differentiate to form a stratified epithelium. Using a comparative proteomic approach, we studied this 'confluence switch' and identified a new pathway triggered by cell confluence that regulates basement membrane (BM) protein composition by suppressing the uPA-uPAR-plasmin pathway. Indeed, confluence triggers adherens junction maturation and enhances TGF-β and activin A activity, resulting in increased deposition of PAI-1 and perlecan in the BM. Extracellular matrix (ECM)-accumulated PAI-1 suppresses the uPA-uPAR-plasmin pathway and further enhances perlecan deposition by inhibiting its plasmin-dependent proteolysis. We show that perlecan deposition in the ECM strengthens cell adhesion, inhibits keratinocyte motility and promotes additional accumulation of PAI-1 in the ECM at confluence. In agreement, during wound-healing, perlecan concentrates at the wound-margin, where BM matures to stabilize keratinocyte adhesion. Our results demonstrate that confluence-dependent signaling orchestrates not only growth inhibition and differentiation, but also controls ECM proteolysis and BM formation. These data suggest that uncontrolled integration of confluence-dependent signaling, might favor skin disorders, including tumorigenesis, not only by promoting cell hyperproliferation, but also by altering protease activity and deposition of ECM components.
Collapse
|
40
|
Apostolou E, Stavropoulos A, Sountoulidis A, Xirakia C, Giaglis S, Protopapadakis E, Ritis K, Mentzelopoulos S, Pasternack A, Foster M, Ritvos O, Tzelepis GE, Andreakos E, Sideras P. Activin-A Overexpression in the Murine Lung Causes Pathology That Simulates Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2012; 185:382-91. [DOI: 10.1164/rccm.201105-0784oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
41
|
Behm B, Babilas P, Landthaler M, Schreml S. Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol 2011; 26:812-20. [PMID: 22211801 DOI: 10.1111/j.1468-3083.2011.04415.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In wound healing, a variety of mediators have been identified throughout the years. The mediators discussed here comprise growth factors, cytokines and chemokines. These mediators act via multiple (specific) receptors to facilitate wound closure. As research in the last years has led to many new findings, there is a need to give an overview on what is known, and on what might possibly play a role as a molecular target for future wound therapy. This review aims to keep the reader up to date with selected important and novel findings regarding growth factors, cytokines and chemokines in wound healing.
Collapse
Affiliation(s)
- B Behm
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
42
|
Transforming growth factor-β in normal nociceptive processing and pathological pain models. Mol Neurobiol 2011; 45:76-86. [PMID: 22125199 DOI: 10.1007/s12035-011-8221-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/09/2011] [Indexed: 12/20/2022]
Abstract
The transforming growth factor-β (TGF-β) superfamily is a multifunctional, contextually acting family of cytokines that participate in the regulation of development, disease and tissue repair in the nervous system. The TGF-β family is composed of several members, including TGF-βs, bone morphogenetic proteins (BMPs) and activins. In this review, we discuss recent findings that suggest TGF-β function as important pleiotropic modulators of nociceptive processing both physiologically and under pathological painful conditions. The strategy of increasing TGF-β signaling by deleting "BMP and activin membrane-bound inhibitor" (BAMBI), a TGF-β pseudoreceptor, has demonstrated the inhibitory role of TGF-β signaling pathways in normal nociception and in inflammatory and neuropathic pain models. In particular, strong evidence suggests that TGF-β1 is a relevant mediator of nociception and has protective effects against the development of chronic neuropathic pain by inhibiting the neuroimmune responses of neurons and glia and promoting the expression of endogenous opioids within the spinal cord. In the peripheral nervous system, activins and BMPs function as target-derived differentiation factors that determine and maintain the phenotypic identity and circuit assembly of peptidergic nociceptors. In this context, activin is involved in the complex events of neuroinflammation that modulate the expression of pain during wound healing. These findings have provided new insights into the physiopathology of nociception. Moreover, specific members of the TGF-β family and their signaling effectors and modulator molecules may be promising molecular targets for novel therapeutic agents for pain management.
Collapse
|
43
|
Arai KY, Ono M, Kudo C, Fujioka A, Okamura R, Nomura Y, Nishiyama T. IL-1beta stimulates activin betaA mRNA expression in human skin fibroblasts through the MAPK pathways, the nuclear factor-kappaB pathway, and prostaglandin E2. Endocrinology 2011; 152:3779-90. [PMID: 21828177 DOI: 10.1210/en.2011-0255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During mouse skin wound healing, mRNAs encoding IL-1, activins, and TGF-βs significantly increased. To elucidate involvement of IL-1 in the regulation of activins and related factors in the wounded skin, human foreskin fibroblasts were stimulated with IL-1β, and levels of mRNAs encoding activins, TGF-βs, and follistatin family proteins were examined by quantitative real-time PCR. IL-1β increased activin βA (INHBA) and follistatin (FST) mRNA expression within 6 h. A p38 MAPK inhibitor, SB202190, a MAPK/ERK kinase inhibitor, U0126, and an nuclear factor κB pathway inhibitor, SC-514, significantly suppressed the IL-1β-stimulated INHBA and FST mRNA expression. A prostaglandin-endoperoxide synthase inhibitor indomethacin, a potent inhibitor of prostaglandin E(2) (PGE(2)) synthesis, also significantly suppressed the IL-1β-stimulated INHBA but not FST mRNA expression. Furthermore, stimulation of fibroblasts with PGE(2) significantly increased INHBA mRNA. The PGE(2)-induced INHBA mRNA expression was significantly suppressed by U0126 and a protein kinase C inhibitor, Gö 6983. Although IL-1β stimulated FST mRNA in an acute phase, long-term exposure of fibroblasts to IL-1β revealed time-dependent stimulatory and inhibitory effects of IL-1β on FST mRNA expression. On the other hand, coculture with keratinocytes significantly increased INHBA mRNA expression in dermal equivalents. In summary, the present study indicates that the p38 MAPK, the MAPK/ERK kinase, the nuclear factor κB pathway, and PGE(2) mediate the effects of IL-1β on INHBA mRNA expression. Furthermore, it is indicated that keratinocyte-derived factor of factors stimulate INHBA mRNA expression during wound healing.
Collapse
Affiliation(s)
- Koji Y Arai
- Division of Matrix Biology, Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Sakai T, Xu Y. Stem cells decreased neuronal cell death after hypoxic stress in primary fetal rat neurons in vitro. Cell Transplant 2011; 21:355-64. [PMID: 21669034 DOI: 10.3727/096368911x580545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To explore stem cell-mediated neuronal protection through extracellular signaling pathways by transplanted stem cells, we sought to identify potential candidate molecules responsible for neuronal protection using an in vitro coculture system. Primary fetal rat hippocampal neurons underwent hypoxia (≤1% oxygen) for 96 h nad then were returned to a normoxic condition. The study group then received rat umbilical cord matrix-derived stem cells, while the control group received fresh media only. The experimental group showed decreased neuronal apoptosis compared to the control group [44.5 ± 1.6% vs. 71.0 ± 4.2% (mean ± SD, p = 0.0005) on day 5] and higher neuronal survival (4.9 ± 1.2 cells/100× field vs. 2.2 ± 0.3, p = 0.02 on day 5). Among 90 proteins evaluated using a protein array, stem cell coculture media showed increased protein secretion of TIMP-1 (5.61-fold), TIMP-2 (4.88), CNTF-Rα (3.42), activin A (2.20), fractalkine (2.04), CCR4 (2.02), and decreased secretion in MIP-2 (0.30-fold), AMPK α1 (0.43), TROY (0.48), and TIMP-3 (0.50). This study demonstrated that coculturing stem cells with primary neurons in vitro decreased neuronal cell death after hypoxia with significantly altered protein secretion. The results suggest that stem cells may offer neuronal protection through extracellular signaling.
Collapse
Affiliation(s)
- Tetsuro Sakai
- Department of Anesthesiology, The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
45
|
Kipp JL, Golebiowski A, Rodriguez G, Demczuk M, Kilen SM, Mayo KE. Gene expression profiling reveals Cyp26b1 to be an activin regulated gene involved in ovarian granulosa cell proliferation. Endocrinology 2011; 152:303-12. [PMID: 21084447 PMCID: PMC3033060 DOI: 10.1210/en.2010-0749] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activin, a member of the TGF-β superfamily, is an important modulator of FSH synthesis and secretion and is involved in reproductive dysfunctions and cancers. It also regulates ovarian follicle development. To understand the mechanisms and pathways by which activin regulates follicle function, we performed a microarray study and identified 240 activin regulated genes in mouse granulosa cells. The gene most strongly inhibited by activin was Cyp26b1, which encodes a P450 cytochrome enzyme that degrades retinoic acid (RA). Cyp26b1 has been shown to play an important role in male germ cell meiosis, but its expression is largely lost in the ovary around embryonic d 12.5. This study demonstrated that Cyp26b1 mRNA was expressed in granulosa cells of follicles at all postnatal developmental stages. A striking inverse spatial and temporal correlation between Cyp26b1 and activin-βA mRNA expression was observed. Cyp26b1 expression was also elevated in a transgenic mouse model that has decreased activin expression. The Cyp26 inhibitor R115866 stimulated the proliferation of primary cultured mouse granulosa cells, and a similar effect was observed with RA and activin. A pan-RA receptor inhibitor, AGN194310, abolished the stimulatory effect of either RA or activin on granulosa cell proliferation, indicating an involvement of RA receptor-mediated signaling. Overall, this study provides new insights into the mechanisms of activin action in the ovary. We conclude that Cyp26b1 is expressed in the postnatal mouse ovary, regulated by activin, and involved in the control of granulosa cell proliferation.
Collapse
Affiliation(s)
- Jingjing L Kipp
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Artaza JN, Contreras S, Garcia LA, Mehrotra R, Gibbons G, Shohet R, Martins D, Norris KC. Vitamin D and cardiovascular disease: potential role in health disparities. J Health Care Poor Underserved 2011; 22:23-38. [PMID: 22102304 PMCID: PMC3417128 DOI: 10.1353/hpu.2011.0161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD), which includes coronary artery disease and stroke, is the leading cause of mortality in the nation. Excess CVD morbidity and premature mortality in the African American community is one of the most striking examples of racial/ ethnic disparities in health outcomes. African Americans also suffer from increased rates of hypovitaminosis D, which has emerged as an independent risk factor for all-cause and cardiovascular mortality. This overview examines the potential role of hypovitaminosis D as a contributor to racial and ethnic disparities in cardiovascular disease (CVD). We review the epidemiology of vitamin D and CVD in African Americans and the emerging biological roles of vitamin D in key CVD signaling pathways that may contribute to the epidemiological findings and provide the foundation for future therapeutic strategies for reducing health disparities.
Collapse
Affiliation(s)
- Jorge N Artaza
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, 1731 East 120th Street, Los Angeles, CA 90059, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Huang HM, Li YC, Chung MH. Activin A induction of erythroid differentiation through MKK6-p38alpha/p38beta pathway is inhibited by follistatin. J Cell Physiol 2010; 223:687-94. [PMID: 20162623 DOI: 10.1002/jcp.22074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activin A is a member of the transforming growth factor (TGF)-beta superfamily that regulates cell proliferation and differentiation. Using the p38 inhibitor SB203580, our previous studies demonstrated that p38 was involved in activin A-mediated hemoglobin (Hb) synthesis in K562 cells. SB203580 is an inhibitor of p38alpha and p38beta isoforms. In this study, we show that p38alpha and p38beta mRNA were expressed in K562 cells and that activin A activated the kinase activities of these isoforms. To investigate the roles of p38alpha and p38beta isoforms in activin A-mediated erythroid differentiation, we generated stable clones that over-expressed the dominant negative p38 isoforms p38alpha(AF) and p38beta(AF) in K562 cells. The expressions of either p38alpha(AF) or p38beta(AF) reduced activin A-induced p38 activation, Hb synthesis, and zeta-globin promoter activity. Similarly, down-regulation of either p38alpha or p38beta by isoform-specific siRNAs also reduced activin A-induced zeta-globin promoter activity. Co-expressions of p38alpha(AF) and p38beta(AF), together, greatly inhibited the transcription activity of the zeta-globin promoter. Conversely, expression of mitogen-activated protein kinase kinase (MKK) 6b(E), a constitutive activator of p38, significantly activated zeta-globin promoter. Co-expressions of either p38alpha or p38beta with MKK6b had a similar activation of zeta-globin promoter. Activin A induction of erythroid differentiation was inhibited by follistatin. Activin A-induced phosphorylation of MKK6 and p38 was also inhibited by follistatin. Moreover, over-expression of MKK6b(E) reverted follistatin inhibition of activin A-induced zeta-globin promoter activity. These results demonstrate that activin A induces erythroid differentiation of K562 cells through activation of MKK6-p38alpha/p38beta pathway and follistatin inhibits those effects.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | | | |
Collapse
|
48
|
Kariyawasam HH, Pegorier S, Barkans J, Xanthou G, Aizen M, Ying S, Kay AB, Lloyd CM, Robinson DS. Activin and transforming growth factor-beta signaling pathways are activated after allergen challenge in mild asthma. J Allergy Clin Immunol 2009; 124:454-62. [PMID: 19733294 DOI: 10.1016/j.jaci.2009.06.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 05/15/2009] [Accepted: 06/17/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND Both transforming growth factor (TGF)-beta(1) and activin-A have been implicated in airway remodeling in asthma, but the modulation of their specific signaling pathways after disease activation remains undefined. OBJECTIVE To define the expression kinetics of TGF-beta(1), activin-A ligands, and follistatin (a natural activin inhibitor), their type I and type II receptors (activin-like kinase[ALK]-1, ALK-5, ALK-4, TbetaRII, and ActRIIA/RIIB) and activation of signaling (via phosphorylated (p) Smad2), in the asthmatic airway after allergen challenge. METHODS Immunohistochemistry was performed on bronchial biopsies from 15 mild atopic patients with asthma (median age, 25 years; median FEV(1)% predicted, 97%) at baseline and 24 hours after allergen inhalation. Functional effects of activin-A were evaluated by using cultured normal human bronchial epithelial (NHBE) cells. RESULTS pSmad2(+) epithelial cells increased at 24 hours (P = .03), and pSmad2 was detected in submucosal cells. No modulation of activin-A, follistatin, or TGF-beta(1) expression was demonstrated. Activin receptor(+) cells increased after allergen challenge: ALK-4 in epithelium (P = .04) and submucosa (P = .04), and ActRIIA in epithelium (P = .01). The TGF-beta receptor ALK-5 expression was minimal in the submucosa at baseline and after challenge and was downregulated in the epithelium after challenge (P = .02), whereas ALK-1 and TbetaRII expression in the submucosa increased after allergen challenge (P = .03 and P = .004, respectively). ALK-1 and ALK-4 expression by T cells was increased after allergen challenge. Activin-A induced NHBE cell proliferation, was produced by NHBE cells in response to TNF-alpha, and downregulated TNF-alpha and IL-13-induced chemokine production by NHBE cells. CONCLUSION Both TGF-beta and activin signaling pathways are activated on allergen provocation in asthma. Activin-A may contribute to resolution of inflammation.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Allergy and Clinical Immunology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Barton CE, Tahinci E, Barbieri CE, Johnson KN, Hanson AJ, Jernigan KK, Chen TW, Lee E, Pietenpol JA. DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis. Dev Biol 2009; 329:130-9. [PMID: 19272371 DOI: 10.1016/j.ydbio.2009.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 01/20/2023]
Abstract
p63, a homolog of the tumor suppressor p53, is critical for the development and maintenance of complex epithelia. The developmentally regulated p63 isoform, DeltaNp63, can act as a transcriptional repressor, but the link between the transcriptional functions of p63 and its biological roles is unclear. Based on our initial finding that the mesoderm-inducing factor activin A is suppressed by DeltaNp63 in human keratinocytes, we investigated the role of DeltaNp63 in regulating mesoderm induction during early Xenopus laevis development. We find that down-regulation of DeltaNp63 by morpholino injection in the early Xenopus embryo potentiates mesoderm formation whereas ectopic expression of DeltaNp63 inhibits mesoderm formation. Furthermore, we show that mesodermal induction after down-regulation of DeltaNp63 is dependent on p53. We propose that a key function for p63 in defining a squamous epithelial phenotype is to actively suppress mesodermal cell fates during early development. Collectively, we show that there is a distinct requirement for different p53 family members during the development of both mesodermal and ectodermal tissues. These findings have implications for the role of p63 and p53 in both development and tumorigenesis of human epithelia.
Collapse
Affiliation(s)
- Christopher E Barton
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Dendritic-cell (DC) and natural killer (NK)-cell interactions are critical in sculpting the adaptive immune response. However, the mechanisms by which DCs down-regulate NK-cell functions are not well understood. NK-cell function is inhibited by transforming growth factor beta (TGF-beta), but DCs do not appear to produce TGF-beta. We have previously shown that activated human DCs produce large amounts of activin-A, a TGF-beta superfamily member, which autoregulates DC function. The present report shows that NK-cells express type I and II activin receptors and that activin-A triggers NK-cell Smad 2/3 signaling. Furthermore, activin-A directly regulates NK cell functions by (1) down-regulating the T-box transcription factor T-bet and interferon gamma (IFN-gamma) but not perforin or granzyme mRNA; (2) suppressing NK-cell IFN-gamma production as potently as TGF-beta; and (3) suppressing NK-cell CD25 expression and proliferation and sculpting NK-cell cytokine and chemokine profiles. Interestingly, unlike TGF-beta, activin-A weakly down-regulates the NK-cell natural cytotoxicity receptors (NCRs) NKp30 and NKG2D but does not attenuate their cytotoxic function. These findings provide the first evidence for a novel immune regulatory role of activin-A during DC-mediated NK-cell regulation, highlighting the potential of antagonizing activin-A signaling in vivo to enhance NK cell-mediated immune functions and adaptive immunity.
Collapse
|