1
|
Tjendra Y, Kerr DA, Zuo Y, Menendez SG, Jorda M, Gomez-Fernandez C, Velez Torres JM. Probability of malignancy and molecular alterations as determined by ThyroSeq v3 genomic classifier in Bethesda Category IV. Cancer Cytopathol 2023; 131:586-595. [PMID: 37358081 DOI: 10.1002/cncy.22737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND ThyroSeq molecular testing assesses the probability of malignancy (POM) in thyroid fine-needle aspiration cytology (FNAC) with indeterminate cytology. The aim was to investigate whether Bethesda category IV (BIV) subcategories are associated with specific molecular alterations, molecular-derived risk of malignancy (MDROM), and risk of malignancy (ROM). METHODS FNAC slides, associated ThyroSeq, version 3, Genomic Classifier results, and surgical follow-up were retrieved for BIV nodules. Nodules were subcategorized as follicular neoplasm (FN) with or without cytologic atypia or oncocytic follicular neoplasm (OFN). The MDROM, ROM, and frequency of molecular alterations in FN and OFN were analyzed. p < .05 was considered significant. RESULTS A total of 92 FNAC were identified and subcategorized into 46 FN (15 with and 31 without cytologic atypia) and 46 OFN. The benign call rate and the positive call rate were 49% and 51%, respectively. The MDROM in BIV was 34.3%, trending lower in OFN than in FN. RAS mutations were significantly more frequent in FN when compared to OFN (p = .02). Chromosomal copy number alterations were more often present in OFN than in FN (p < .01). On histologic follow-up, ROM in OFN was trending lower than in FN (p = .1). The most common diagnosis in OFN was oncocytic adenoma, whereas follicular variant papillary thyroid carcinoma was most common in FN. CONCLUSIONS The MDROM and ROM were trending lower in OFN compared with FN, and the molecular alterations differed between OFN and FN subcategories.
Collapse
Affiliation(s)
- Youley Tjendra
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Yiqin Zuo
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Silvia Gra Menendez
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Merce Jorda
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carmen Gomez-Fernandez
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jaylou M Velez Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Gajzer DC, Tjendra Y, Kerr DA, Algashaamy K, Zuo Y, Menendez SG, Jorda M, Garcia-Buitrago M, Gomez-Fernandez C, Velez Torres JM. Probability of malignancy as determined by ThyroSeq v3 genomic classifier varies according to the subtype of atypia. Cancer Cytopathol 2022; 130:881-890. [PMID: 35775861 DOI: 10.1002/cncy.22617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND ThyroSeq assesses the probability of malignancy (POM) in thyroid fine-needle aspiration cytology specimens diagnosed as atypia of undetermined significance (AUS). The authors investigated whether defined AUS subcategories are associated with specific molecular alterations, the molecular-derived risk of malignancy (MDROM), and the risk of malignancy (ROM). METHODS Fine-needle aspiration cytology reports of AUS and corresponding results from the ThyroSeq version 3 genomic classifier results were retrieved and subcategorized as follicular cells with either cytologic atypia (FC-C), architectural atypia (FC-A), both cytologic and architectural atypia (FC-CA), or a predominance of Hurthle cells (PHC). The MDROM, ROM, and frequency of molecular alterations by subcategory were computed and analyzed, and p < .05 was considered significant. RESULTS The final analysis included 541 cases subdivided into 233 with FC-A, 104 with FC-C, 116 with FC-CA, and 88 with PHC. The benign call rate and positive call rate for the AUS category were 72% and 28%, respectively, which varied between AUS subcategories. The MDROM by subcategory was 15.9% FC-A, 20.5% FC-C, 33.8% FC-CA, and 14.4% PHC. Histologic follow-up was available for 155 (28%) AUS cases with a follow-up period ≥12 months. The 95% confidence intervals of the MDROMs overlapped with the ROMs. The highest MDROM and ROM were in the FC-CA subcategory. RAS mutations were present in all subcategories. BRAF V600E mutations and papillary thyroid carcinoma were most frequent in the FC-CA subcategory. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features was significantly more frequent in the FC-C subcategory. CONCLUSIONS The current results demonstrated that AUS subcategories are associated with specific genetic alterations, the MDROM, and the ROM. Molecular results and an awareness of various cancer probabilities within AUS subcategories can allow for a more tailored management.
Collapse
Affiliation(s)
- David C Gajzer
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Youley Tjendra
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Khaled Algashaamy
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yiqin Zuo
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Silvia Gra Menendez
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Merce Jorda
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Monica Garcia-Buitrago
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carmen Gomez-Fernandez
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jaylou M Velez Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Shonka DC, Ho A, Chintakuntlawar AV, Geiger JL, Park JC, Seetharamu N, Jasim S, Abdelhamid Ahmed AH, Bible KC, Brose MS, Cabanillas ME, Dabekaussen K, Davies L, Dias-Santagata D, Fagin JA, Faquin WC, Ghossein RA, Gopal RK, Miyauchi A, Nikiforov YE, Ringel MD, Robinson B, Ryder MM, Sherman EJ, Sadow PM, Shin JJ, Stack BC, Tuttle RM, Wirth LJ, Zafereo ME, Randolph GW. American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: Defining advanced thyroid cancer and its targeted treatment. Head Neck 2022; 44:1277-1300. [PMID: 35274388 DOI: 10.1002/hed.27025] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The development of systemic treatment options leveraging the molecular landscape of advanced thyroid cancer is a burgeoning field. This is a multidisciplinary evidence-based statement on the definition of advanced thyroid cancer and its targeted systemic treatment. METHODS An expert panel was assembled, a literature review was conducted, and best practice statements were developed. The modified Delphi method was applied to assess the degree of consensus for the statements developed by the author panel. RESULTS A review of the current understanding of thyroid oncogenesis at a molecular level is presented and characteristics of advanced thyroid cancer are defined. Twenty statements in topics including the multidisciplinary management, molecular evaluation, and targeted systemic treatment of advanced thyroid cancer are provided. CONCLUSIONS With the growth in targeted treatment options for thyroid cancer, a consensus definition of advanced disease and statements regarding the utility of molecular testing and available targeted systemic therapy is warranted.
Collapse
Affiliation(s)
- David C Shonka
- Department of Otolaryngology - Head and Neck Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Alan Ho
- Department of Hematology and Medical Oncology, Solid Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Jessica L Geiger
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Jong C Park
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nagashree Seetharamu
- Division of Hematology-Oncology, Donald and Barbara Zucker School of Medicine at Hofstra University, New Hyde Park, New York, USA
| | - Sina Jasim
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, School of Medicine, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Amr H Abdelhamid Ahmed
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Keith C Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcia S Brose
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Kirsten Dabekaussen
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Louise Davies
- Department of Surgery, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James A Fagin
- Endocrinology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Raj K Gopal
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Bruce Robinson
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mabel M Ryder
- Division of Endocrinology, Diabetes, Metabolism, & Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric J Sherman
- Head and Neck Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer J Shin
- Department of Otolaryngology - Head and Neck Surgery, Center for Surgery and Public Health, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan C Stack
- Department of Otolaryngology - Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - R Michael Tuttle
- Endocrinology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark E Zafereo
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Gregory W Randolph
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| |
Collapse
|
4
|
De Luise M, Iommarini L, Marchio L, Tedesco G, Coadă CA, Repaci A, Turchetti D, Tardio ML, Salfi N, Pagotto U, Kurelac I, Porcelli AM, Gasparre G. Pathogenic Mitochondrial DNA Mutation Load Inversely Correlates with Malignant Features in Familial Oncocytic Parathyroid Tumors Associated with Hyperparathyroidism-Jaw Tumor Syndrome. Cells 2021; 10:2920. [PMID: 34831144 PMCID: PMC8616364 DOI: 10.3390/cells10112920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
While somatic disruptive mitochondrial DNA (mtDNA) mutations that severely affect the respiratory chain are counter-selected in most human neoplasms, they are the genetic hallmark of indolent oncocytomas, where they appear to contribute to reduce tumorigenic potential. A correlation between mtDNA mutation type and load, and the clinical outcome of a tumor, corroborated by functional studies, is currently lacking. Recurrent familial oncocytomas are extremely rare entities, and they offer the chance to investigate the determinants of oncocytic transformation and the role of both germline and somatic mtDNA mutations in cancer. We here report the first family with Hyperparathyroidism-Jaw Tumor (HPT-JT) syndrome showing the inherited predisposition of four individuals to develop parathyroid oncocytic tumors. MtDNA sequencing revealed a rare ribosomal RNA mutation in the germline of all HPT-JT affected individuals whose pathogenicity was functionally evaluated via cybridization technique, and which was counter-selected in the most aggressive infiltrating carcinoma, but positively selected in adenomas. In all tumors different somatic mutations accumulated on this genetic background, with an inverse clear-cut correlation between the load of pathogenic mtDNA mutations and the indolent behavior of neoplasms, highlighting the importance of the former both as modifiers of cancer fate and as prognostic markers.
Collapse
Affiliation(s)
- Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Luisa Iommarini
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Lorena Marchio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Greta Tedesco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Camelia Alexandra Coadă
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Division of Medical Genetics, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maria Lucia Tardio
- Unit of Pathology, IRCCS S.Orsola University Hospital, 40138 Bologna, Italy;
| | - Nunzio Salfi
- Pathology Unit, IRCCS Giannina Gaslini Children’s Research Hospital, 16147 Genova, Italy;
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| | - Anna Maria Porcelli
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.D.L.); (L.M.); (G.T.); (C.A.C.); (D.T.); (U.P.); (I.K.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy; (L.I.); (A.M.P.)
| |
Collapse
|
5
|
Chen XC, Tang YM, Mao Y, Qin DR. Oncocytic adrenocortical tumor with uncertain malignant potential in pediatric population: A case report and review of literature. World J Clin Cases 2021; 9:5675-5682. [PMID: 34307624 PMCID: PMC8281429 DOI: 10.12998/wjcc.v9.i20.5675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/25/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Oncocytic adrenocortical tumor (OACT) is rare, with few cases reported in the literature. No more than 20 cases in children have been reported. The clinical characteristics, diagnosis, treatment and prognosis of children with OACT are summarized based on a literature review, in order to improve the understanding of OACT in children.
CASE SUMMARY We report a case of a 17-mo-old patient who was admitted to our hospital due to symptoms of odynuria and fever, which are clinical features consistent with a functional adrenocortical tumor. The patient was diagnosed with OACT of uncertain malignant potential. Computed tomography indicated a soft tissue giant tumor in the right adrenal region, approximately 4.3 cm × 5.5 cm in size. Multiple nodular and speckled calcifications were observed in the lesion. The patient received robot-assisted laparoscopic right adrenal tumor resection. Postoperative pathological results were consistent with OACT, and immunohistochemical results showed cytokeratin+/-, chromogranin A+, synaptophysin-, neuron-specific enolase-, S100-, Ki67 about 10%, CD34- and D2-40-. After surgery, urinary tract ultrasonography was reviewed monthly, catecholamine hormone and sex hormone levels were examined every 2 mo and computed tomography was performed every 6 mo. To date, no tumor metastasis or recurrence has been identified in this patient. The levels of sex hormones and catecholamine hormones decreased to normal 1 mo after surgery.
CONCLUSION OACT is rare in the pediatric population, with few cases reported in the literature. Although most pediatric OACTs are benign, malignant cases have been reported. Surgical resection is the preferred option in most patients.
Collapse
Affiliation(s)
- Xiao-Chun Chen
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Yun-Man Tang
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Yu Mao
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Dao-Rui Qin
- Department of Pediatric Surgery, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
6
|
Preste R, Vitale O, Clima R, Gasparre G, Attimonelli M. HmtVar: a new resource for human mitochondrial variations and pathogenicity data. Nucleic Acids Res 2020; 47:D1202-D1210. [PMID: 30371888 PMCID: PMC6323908 DOI: 10.1093/nar/gky1024] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Interest in human mitochondrial genetic data is constantly increasing among both clinicians and researchers, due to the involvement of mitochondrial DNA (mtDNA) in a number of physiological and pathological processes. Thanks to new sequencing technologies and modern databases, the large amount of information on mtDNA variability may be exploited to gain insights into the relationship between mtDNA variants, phenotypes and diseases. To facilitate this process, we have developed the HmtVar resource, a variant-focused database that allows the exploration of a dataset of over 40 000 human mitochondrial variants. Mitochondrial variation data, initially gathered from the HmtDB platform, are integrated with in-house pathogenicity assessments based on various evaluation criteria and with a set of additional annotations from third-party resources. The result is a comprehensive collection of information of crucial importance for human mitochondrial variation studies and investigation of common and rare diseases in which the mitochondrion may be involved. HmtVar is accessible at https://www.hmtvar.uniba.it and data may be retrieved using either a web interface through the Query page or a state-of-the-art API for programmatic access.
Collapse
Affiliation(s)
- Roberto Preste
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Ornella Vitale
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Rosanna Clima
- Department of Medical and Surgical Sciences - DIMEC, Medical Genetics Unit, University of Bologna, Bologna 40126, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences - DIMEC, Medical Genetics Unit, University of Bologna, Bologna 40126, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70126, Italy
| |
Collapse
|
7
|
Jalaly JB, Baloch ZW. Hürthle-cell neoplasms of the thyroid: An algorithmic approach to pathologic diagnosis in light of molecular advances. Semin Diagn Pathol 2020; 37:234-242. [PMID: 32444244 DOI: 10.1053/j.semdp.2020.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/17/2023]
Abstract
Our understanding of neoplasia is evolving at a rapid pace in these exciting times, where recent molecular pathology advances are reinforcing and fine tuning morphological divisions and classification. Thyroid gland neoplasia in general, and Hürthle-cell neoplasms in particular, are no exception in the current era of histopathology-molecular biology paradigm. In this review paper, we discuss the rationale that led pathologists in the past to separate Hürthle-cell neoplasms into its own dedicated diagnostic category, and provide an algorithmic approach to the differential diagnosis of oncocytic lesions of the thyroid. This review will also shed light on the current WHO classification of Hürthle-cell neoplasms in light of molecular advances that justify histopathologic distinctions.
Collapse
Affiliation(s)
- Jalal B Jalaly
- Hospital of the University of Pennsylvania, Department of Pathology, Philadelphia, (PA), United States
| | - Zubair W Baloch
- Hospital of the University of Pennsylvania, Department of Pathology, Philadelphia, (PA), United States.
| |
Collapse
|
8
|
Xu B, Reznik E, Tuttle RM, Knauf J, Fagin JA, Katabi N, Dogan S, Aleynick N, Seshan V, Middha S, Enepekides D, Casadei GP, Solaroli E, Tallini G, Ghossein R, Ganly I. Outcome and molecular characteristics of non-invasive encapsulated follicular variant of papillary thyroid carcinoma with oncocytic features. Endocrine 2019; 64:97-108. [PMID: 30689169 PMCID: PMC6657696 DOI: 10.1007/s12020-019-01848-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE In 2016, non-invasive encapsulated follicular variant of papillary thyroid carcinoma (NI-EFVPTC) was renamed as noninvasive thyroid follicular neoplasm with papillary-like nuclear features (NIFTP). However, as the study cohort did not mention tumors with oncocytic features, such lesions are still labeled by some as FVPTC. It is therefore crucial to evaluate the outcome and molecular profile of oncocytic NI-EFVPTC. METHODS A multi-institutional clinico-pathologic review was conducted to select 61 patients having oncocytic NI-EFVPTC. A detailed molecular profile was carried out in 15 patients. RESULTS Oncocytic NI-EFVPTCs predominantly affected women in their 50s. There was no distant metastasis, lymph node metastases, or structural recurrence in the entire cohort. Among patients with ≥5 years of FU, all 33 individuals did not recur with a median FU of 10.2 years. Oncocytic NI-EFVPTC commonly had RAS (33%) mutations, a high frequency of mitochondrial DNA mutations (67%) and multiple chromosomal gains/losses (53%). No fusion genes were detected. CONCLUSIONS Oncocytic NI-EFVPTC, when stringently selected for, lacks metastasis at presentation and follows an extremely indolent clinical course, even when treated conservatively with lobectomy alone without RAI therapy. These tumors share a similar mutational profile as NIFTP, FVPTC, and follicular neoplasm and are predominantly RAS-related. Like Hurthle cell neoplasms, they harbor a high frequency of mitochondrial DNA mutations, which contribute to the oncocytic cytomorphology. However, they lack the widespread chromosomal alterations observed in Hurthle cell carcinoma. Consideration should be given to include oncocytic NI-EFVPTCs as NIFTP in order to avoid overtreatment of these highly indolent tumors.
Collapse
Affiliation(s)
- Bin Xu
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - R Michael Tuttle
- Department of Medicine, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - Jeffrey Knauf
- Department of Medicine, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - James A Fagin
- Department of Medicine, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - Nathaniel Aleynick
- Department of Pathology, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer center, New York, NY, USA
| | - Danny Enepekides
- Department of Otolaryngology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | | | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine-Anatomic Pathology, University of Bologna School of Medicine, Bologna, Italy
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer center, New York, NY, USA.
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer center, New York, NY, USA.
| |
Collapse
|
9
|
Oncocytic tumors are marked by enhanced mitochondrial content and mtDNA mutations of complex I in Chinese patients. Mitochondrion 2019; 45:1-6. [DOI: 10.1016/j.mito.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
|
10
|
Gopal RK, Kübler K, Calvo SE, Polak P, Livitz D, Rosebrock D, Sadow PM, Campbell B, Donovan SE, Amin S, Gigliotti BJ, Grabarek Z, Hess JM, Stewart C, Braunstein LZ, Arndt PF, Mordecai S, Shih AR, Chaves F, Zhan T, Lubitz CC, Kim J, Iafrate AJ, Wirth L, Parangi S, Leshchiner I, Daniels GH, Mootha VK, Dias-Santagata D, Getz G, McFadden DG. Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell 2018; 34:242-255.e5. [PMID: 30107175 PMCID: PMC6121811 DOI: 10.1016/j.ccell.2018.06.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 12/24/2022]
Abstract
Hürthle cell carcinoma of the thyroid (HCC) is a form of thyroid cancer recalcitrant to radioiodine therapy that exhibits an accumulation of mitochondria. We performed whole-exome sequencing on a cohort of primary, recurrent, and metastatic tumors, and identified recurrent mutations in DAXX, TP53, NRAS, NF1, CDKN1A, ARHGAP35, and the TERT promoter. Parallel analysis of mtDNA revealed recurrent homoplasmic mutations in subunits of complex I of the electron transport chain. Analysis of DNA copy-number alterations uncovered widespread loss of chromosomes culminating in near-haploid chromosomal content in a large fraction of HCC, which was maintained during metastatic spread. This work uncovers a distinct molecular origin of HCC compared with other thyroid malignancies.
Collapse
Affiliation(s)
- Raj K Gopal
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kirsten Kübler
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Calvo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paz Polak
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dimitri Livitz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Peter M Sadow
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Braidie Campbell
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Samuel E Donovan
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Salma Amin
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Zenon Grabarek
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Julian M Hess
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Peter F Arndt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Scott Mordecai
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angela R Shih
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Frances Chaves
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tiannan Zhan
- Institute for Technology Assessment, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carrie C Lubitz
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Institute for Technology Assessment, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jiwoong Kim
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Lori Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Sareh Parangi
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Gilbert H Daniels
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Thyroid Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Vamsi K Mootha
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Gad Getz
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - David G McFadden
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Thyroid Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Acquaviva G, Visani M, Repaci A, Rhoden KJ, de Biase D, Pession A, Giovanni T. Molecular pathology of thyroid tumours of follicular cells: a review of genetic alterations and their clinicopathological relevance. Histopathology 2018; 72:6-31. [PMID: 29239040 DOI: 10.1111/his.13380] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Knowledge of the molecular pathology of thyroid tumours originating from follicular cells has greatly advanced in the past several years. Common molecular alterations, such as BRAF p.V600E, RAS point mutations, and fusion oncogenes (RET-PTC being the prototypical example), have been, respectively, associated with conventional papillary carcinoma, follicular-patterned tumours (follicular adenoma, follicular carcinoma, and the follicular variant of papillary carcinoma/non-invasive follicular thyroid neoplasm with papillary-like nuclear features), and with papillary carcinomas from young patients and arising after exposure to ionising radiation, respectively. The remarkable correlation between genotype and phenotype shows how specific, mutually exclusive molecular changes can promote tumour development and initiate a multistep tumorigenic process that is characterised by aberrant activation of mitogen-activated protein kinase and phosphoinositide 3-kinase-PTEN-AKT signalling. Molecular alterations are becoming useful biomarkers for diagnosis and risk stratification, and as potential treatment targets for aggressive forms of thyroid carcinoma. What follows is a review of the principal genetic alterations of thyroid tumours originating from follicular cells and of their clinicopathological relevance.
Collapse
Affiliation(s)
- Giorgia Acquaviva
- Anatomical Pathology, Molecular Diagnostic Unit, University of Bologna School of Medicine, Azienda USL di Bologna, Bologna, Italy
| | - Michela Visani
- Anatomical Pathology, Molecular Diagnostic Unit, University of Bologna School of Medicine, Azienda USL di Bologna, Bologna, Italy
| | - Andrea Repaci
- Endocrinology Unit, University of Bologna School of Medicine, Bologna, Italy
| | - Kerry J Rhoden
- Medical Genetics Unit, University of Bologna School of Medicine, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, Azienda USL di Bologna, Bologna, Italy
| | - Tallini Giovanni
- Anatomical Pathology, Molecular Diagnostic Unit, University of Bologna School of Medicine, Azienda USL di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Mikkelsen LH, Andreasen S, Melchior LC, Persson M, Andersen JD, Pereira V, Toft PB, Morling N, Stenman G, Heegaard S. Genomic and immunohistochemical characterisation of a lacrimal gland oncocytoma and review of literature. Oncol Lett 2017; 14:4176-4182. [PMID: 28943925 PMCID: PMC5604129 DOI: 10.3892/ol.2017.6713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/21/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to report the genetic and immunohistochemical profile of a rare case of lacrimal gland oncocytoma. A 20-year-old male underwent magnetic resonance imaging (MRI) due to viral encephalitis. Notably, the MRI revealed a multicystic tumor in the left lacrimal gland. A lateral orbitotomy was performed and the tumor was completely excised. Four months following surgery, the patient was free of symptoms. Histopathologically, the tumor was composed of large, eosinophilic and polyhedral cells with small round nuclei. The tumor cells stained strongly for antimitochondrial antibody MU213-UC, cytokeratin (CK) 5/6, CK 7, CK 17, CK 8/18 and CK 19. The final diagnosis was an oncocytoma of the lacrimal gland without any signs of malignancy. Array-based comparative genomic hybridisation demonstrated a gain of one copy of chromosome 8 and loss of one copy of chromosome 22 as the sole genomic imbalances. These chromosomal alterations have not previously been identified in oncocytoma and may be specific to lacrimal gland oncocytoma. Sequencing of the mitochondrial genome demonstrated multiple alterations of the NADH-ubiquinone oxidoreductase chain 5 (ND5) gene involved in mitochondrial oxidative phosphorylation. This may support the notion of a common genetic background of oncocytic lesions in the lacrimal gland and other anatomical sites.
Collapse
Affiliation(s)
- Lauge Hjorth Mikkelsen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, 4600 Køge, Denmark.,Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Linea Cecilie Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Marta Persson
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter Bjerre Toft
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Göran Stenman
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Andreasen S, Esmaeli B, Holstein SLV, Mikkelsen LH, Rasmussen PK, Heegaard S. An Update on Tumors of the Lacrimal Gland. Asia Pac J Ophthalmol (Phila) 2017; 6:159-172. [PMID: 28399336 DOI: 10.22608/apo.201707] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Lacrimal gland tumors are rare and constitute a wide spectrum of different entities ranging from benign epithelial and lymphoid lesions to high-grade carcinomas, lymphomas, and sarcomas with large differences in prognosis and clinical management. The symptoms and findings of a lacrimal gland lesion are a growing mass at the site of the lacrimal gland, including displacement of the eyeball, decreased motility, diplopia, and ptosis. Pain is the cardinal symptom of an adenoid cystic carcinoma. Radiological findings characteristically include an oval, well-demarcated mass for benign lesions whereas malignant lesions typically display calcifications, destruction of bone, and invasion of adjacent structures. The diagnosis ultimately relies on histology, as does the choice of treatment and the prognosis. In recent years, the understanding of the biology of numerous types of lacrimal gland neoplasia has improved and the choice of treatment has changed accordingly and holds further promise for future targeted therapies. Treatment of benign epithelial lesions is surgical excision whereas carcinomas often require adjuvant radiotherapy and/or chemotherapy. In contrast, the cornerstone in management of lymphoid lesions is chemotherapy, often including a monoclonal antibody. This article presents an update on the clinical, radiological, histological, and molecular features, along with treatment strategies for tumors of the lacrimal gland.
Collapse
Affiliation(s)
- Simon Andreasen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark
| | - Bita Esmaeli
- Orbital Oncology and Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah Linéa von Holstein
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Department of Pathology, Rigshospitalet, University of Copenhagen, Cophenhagen, Denmark
| | - Lauge Hjorth Mikkelsen
- Department of Pathology, Rigshospitalet, University of Copenhagen, Cophenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Peter Kristian Rasmussen
- Department of Pathology, Rigshospitalet, University of Copenhagen, Cophenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, University of Copenhagen, Cophenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Guyétant S. [Thyroid pathology. Case n(o) 2: Follicular oncocytic adenoma]. Ann Pathol 2015; 35:395-401. [PMID: 26387604 DOI: 10.1016/j.annpat.2015.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Serge Guyétant
- Service d'anatomie et cytologie pathologiques, hôpital Trousseau, CHRU de Tours, 37044 Tours cedex 9, France.
| |
Collapse
|
15
|
Evangelisti C, de Biase D, Kurelac I, Ceccarelli C, Prokisch H, Meitinger T, Caria P, Vanni R, Romeo G, Tallini G, Gasparre G, Bonora E. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors. BMC Cancer 2015; 15:157. [PMID: 25880213 PMCID: PMC4374372 DOI: 10.1186/s12885-015-1122-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/24/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. METHODS Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. RESULTS In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. CONCLUSIONS These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Cell Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Dario de Biase
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Claudio Ceccarelli
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomy, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy.
| | - Holger Prokisch
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Thomas Meitinger
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Giovanni Tallini
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| |
Collapse
|
16
|
Cormio A, Cormio G, Musicco C, Sardanelli AM, Gasparre G, Gadaleta MN. Mitochondrial changes in endometrial carcinoma: possible role in tumor diagnosis and prognosis (review). Oncol Rep 2014; 33:1011-8. [PMID: 25530491 DOI: 10.3892/or.2014.3690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/21/2014] [Indexed: 11/05/2022] Open
Abstract
Endometrial carcinoma (EC) is a solid neoplasia for which a role for mitochondria in cancer progression is currently emerging and yet represents a diagnostic and prognostic challenge. EC is one of the most frequently occurring gynecological malignancies in the Western world whose incidence has increased significantly during the last decades. Here, we review the literature data on mitochondrial changes reported in EC, namely, mitochondrial DNA (mtDNA) mutations, increase in mitochondrial biogenesis and discuss whether they may be used as new cancer biomarkers for early detection and prognosis of this cancer.
Collapse
Affiliation(s)
- Antonella Cormio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico 'Giovanni Paolo II', Bari, Italy
| | - Clara Musicco
- CNR-Institute of Biomembranes and Bioenergetics, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basical Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Unit of Medical Genetics, University of Bologna, Bologna, Italy
| | | |
Collapse
|
17
|
Mond M, Alexiadis M, Eriksson N, Davis MJ, Muscat GEO, Fuller PJ, Gilfillan C. Nuclear receptor expression in human differentiated thyroid tumors. Thyroid 2014; 24:1000-11. [PMID: 24559275 DOI: 10.1089/thy.2013.0509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Nuclear receptors (NRs) play a key role in endocrine signaling and metabolism and are important therapeutic targets in a number of hormone-dependent malignancies. Studies on the role of NRs in thyroid cancer are limited. OBJECTIVE The objective of the study was to examine systematically the expression of the 48 human NRs in a series of benign and malignant thyroid tissues. Within the papillary carcinoma cohort, we sought to determine if NR expression differed significantly by BRAF mutation status. PATIENTS AND METHODS RNA was isolated from multinodular goiter (MNG; n=6), papillary carcinoma (PTC, n=14), follicular carcinoma (FC; n=5), and Hürthle cell carcinoma (HCC; n=7). The 48 human NRs were profiled in this panel by quantitative real time polymerase chain reaction. Protein expression for selected NRs (Rev-erbα and LXR-β) was examined by immunohistochemistry (IHC) on tissue microarrays comprising benign and malignant thyroid tissues. RESULTS Across all groups of benign and malignant thyroid tissue, there was prominent expression of LXR-β and ROR-γ. Key findings in PTC were marked overexpression of RXR-γ and Rev-erbα compared to MNG. Within the PTC cohort, when BRAF(V600E) tumors were compared with wild type BRAF, there was relative upregulation of RXR-γ and Rev-erbα and downregulation of AR, ERR-γ, and ROR-γ. In FC, EAR-2 was overexpressed, while PPAR-α and PPAR-δ were underexpressed compared to MNG. The NR expression profile of HCC was distinct, characterized by significant downregulation of a wide range of NRs. IHC for Rev-erbα and LXR-β localized protein expression to the tumor cells. Moderate to strong Rev-erbα immunostaining was seen in 22 out of 23 PTC, and, overall, staining was stronger than in the benign group. CONCLUSIONS These results represent the first systematic examination of NR expression in thyroid cancer. Our finding of tumor-specific patterns of NR expression, as well as significant differences in NR expression between BRAF(V600E) and wild type BRAF PTC, provides a basis for further mechanistic studies and highlights potential novel therapeutic targets for this malignancy.
Collapse
Affiliation(s)
- Michael Mond
- 1 Prince Henry's Institute of Medical Research , Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Feichtinger RG, Weis S, Mayr JA, Zimmermann F, Geilberger R, Sperl W, Kofler B. Alterations of oxidative phosphorylation complexes in astrocytomas. Glia 2014; 62:514-25. [PMID: 24446254 DOI: 10.1002/glia.22621] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022]
Abstract
The shift in cellular energy production from oxidative phosphorylation (OXPHOS) to glycolysis, even under aerobic conditions, called the Warburg effect, is a feature of most solid tumors. The activity levels of OXPHOS complexes and citrate synthase were determined in astrocytomas. A gradual decrease of citrate synthase and OXPHOS complexes was observed depending on tumor grade. In low-grade astrocytomas (WHO grade II), enzyme activities of citrate synthase, complex I, and complex V were comparable to those of normal brain tissue. A trend to reduced activities was observed for complexes II-IV. In glioblastoma (WHO grade IV), activities of citrate synthase and complexes I-IV were decreased by 56-92% as compared with normal brain. Immunohistochemical staining for porin revealed that the tumorpil of low-grade astrocytomas displays characteristics of the mitochondria-rich neuropil of normal brain tissue. In high-grade tumors (WHO grades III and IV), the tumorpil was characterized by severe morphologic alterations as well as loss of "pilem" structures. Specific alterations of OXPHOS complexes were observed in all astrocytic tumors by immunohistochemical analysis: 80% of astrocytomas exhibited severe deficiency of complex IV; complex I showed a gradual reduction in amount with increasing tumor grade, whereas complex II showed reduced levels only in high-grade (WHO grade IV) tumors (9/12); complexes III and V did not show significant alterations compared with normal brain tissue. OXPHOS defects were present not only in the cell bodies of tumor cells but also in the pilem structures, indicating that the ramifications/protuberances (tumorpil) in general originate from tumor cells.
Collapse
Affiliation(s)
- René Günther Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
19
|
Gilloteaux J, Eze N, Jamison JM, McGuire K, Summers JL. A rare, human prostate oncocyte cell originates from the prostatic carcinoma (DU145) cell line. Ultrastruct Pathol 2013; 37:440-8. [PMID: 23957452 DOI: 10.3109/01913123.2013.814739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DU145 human prostate carcinoma cells are typically poorly differentiated and contain only scantily distributed organelles. However, among numerous tumor cells randomly examined by electron microscopy out of in vitro cultivation, a peculiar, rare oncocyte-like cell type has been observed whose nucleus appears to be of small dimension and with a cytoplasm almost entirely filled with often distorted mitochondria. A few small, dispersed lysosomal bodies, small cisterns of the endoplasmic reticulum and a few glycogen patches can be found among highly osmiophilic contrasted, cytosolic spaces filled by innumerable ribonucleoproteins. The excessive population of mitochondria may have arisen from a more populated tumor cell type wherein the altered mitochondria are found to appear burgeoning into a spherical-like size progeny crowding the tumor cells. Literature cited between 1950 and the present suggests that this rare, oncocytic, benign prostatic tumor cell type is likely appear epigenetically, stemming from an original secretory cell, which is confirmed by the origin of the cell line originally maintained as cell line out of a brain metastatic, adenocarcinoma niche.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, K. B. Taylor Global Scholar's Programme , Newcastle upon Tyne , UK
| | | | | | | | | |
Collapse
|
20
|
Abstract
Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence.
Collapse
|
21
|
Shirazi HA, Hedayati M, Daneshpour MS, Shafiee A, Azizi F. Analysis of loss of heterozygsity effect on thyroid tumor with oxyphilia cell locus in familial non medullary thyroid carcinoma in Iranian families. INDIAN JOURNAL OF HUMAN GENETICS 2013; 18:340-3. [PMID: 23716943 PMCID: PMC3656524 DOI: 10.4103/0971-6866.107989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
MATERIAL AND METHODS 22 nuclear families (78 persons including 12 patients) with papillary and follicular tumors were selected in a period of six months from Milad hospital. Five microsatellite markers (D19S413, D19S391, D19S916, D19S568, D19S865) on 19p13.2 were selected for genetic analysis. Genomic DNAs was extracted; PCR and polyacrylamide gel electrophoresis method were used for variation detection. RESULTS The results show that 5.4% of the follicular carcinomas and 17.9% of the papillary carcinomas presented LOH at recognition sites. LOH of Papillary carcinoma detected about 13.9% and follicular carcinoma 7.2% in this study. The frequency of informative cases was not similar for each marker: D19S413 (41.1%)[1], D19S391 (12.5%), D19S916 (10.7%), D19S568 (1.8%) and D19S865 (3.6%). Loss of hetrozygosity in D19S413 predicts the relation between variation in this region and the disease. DISCUSSION Our findings showed an average of 13.9% LOH in FNMTC cases. Among the five major microsatellites, D19S413 was the most informative for LOH analysis of FNMTC.
Collapse
Affiliation(s)
- Hasti Atashi Shirazi
- Cellular Molecular and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
22
|
Kurelac I, MacKay A, Lambros MBK, Di Cesare E, Cenacchi G, Ceccarelli C, Morra I, Melcarne A, Morandi L, Calabrese FM, Attimonelli M, Tallini G, Reis-Filho JS, Gasparre G. Somatic complex I disruptive mitochondrial DNA mutations are modifiers of tumorigenesis that correlate with low genomic instability in pituitary adenomas. Hum Mol Genet 2012; 22:226-38. [PMID: 23049073 DOI: 10.1093/hmg/dds422] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations leading to the disruption of respiratory complex I (CI) have been shown to exhibit anti-tumorigenic effects, at variance with those impairing only the function but not the assembly of the complex, which appear to contribute positively to cancer development. Owing to the challenges in the analysis of the multi-copy mitochondrial genome, it is yet to be determined whether tumour-associated mtDNA lesions occur as somatic modifying factors or as germ-line predisposing elements. Here we investigated the whole mitochondrial genome sequence of 20 pituitary adenomas with oncocytic phenotype and identified pathogenic and/or novel mtDNA mutations in 60% of the cases. Using highly sensitive techniques, namely fluorescent PCR and allele-specific locked nucleic acid quantitative PCR, we identified the most likely somatic nature of these mutations in our sample set, since none of the mutations was detected in the corresponding blood tissue of the patients analysed. Furthermore, we have subjected a series of 48 pituitary adenomas to a high-resolution array comparative genomic hybridization analysis, which revealed that CI disruptive mutations, and the oncocytic phenotype, significantly correlate with low number of chromosomal aberrations in the nuclear genome. We conclude that CI disruptive mutations in pituitary adenomas are somatic modifiers of tumorigenesis most likely contributing not only to the development of oncocytic change, but also to a less aggressive tumour phenotype, as indicated by a stable karyotype.
Collapse
Affiliation(s)
- Ivana Kurelac
- Dip. di Scienze Mediche e Chirurgiche, U.O. Genetica Medica, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Corver WE, Ruano D, Weijers K, den Hartog WCE, van Nieuwenhuizen MP, de Miranda N, van Eijk R, Middeldorp A, Jordanova ES, Oosting J, Kapiteijn E, Hovens G, Smit J, van Wezel T, Morreau H. Genome haploidisation with chromosome 7 retention in oncocytic follicular thyroid carcinoma. PLoS One 2012; 7:e38287. [PMID: 22675538 PMCID: PMC3365880 DOI: 10.1371/journal.pone.0038287] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/03/2012] [Indexed: 12/20/2022] Open
Abstract
Background Recurrent non-medullary thyroid carcinoma (NMTC) is a rare disease. We initially characterized 27 recurrent NMTC: 13 papillary thyroid cancers (PTC), 10 oncocytic follicular carcinomas (FTC-OV), and 4 non-oncocytic follicular carcinomas (FTC). A validation cohort composed of benign and malignant (both recurrent and non-recurrent) thyroid tumours was subsequently analysed (n = 20). Methods Data from genome-wide SNP arrays and flow cytometry were combined to determine the chromosomal dosage (allelic state) in these tumours, including mutation analysis of components of PIK3CA/AKT and MAPK pathways. Results All FTC-OVs showed a very distinct pattern of genomic alterations. Ten out of 10 FTC-OV cases showed near-haploidisation with or without subsequent genome endoreduplication. Near-haploidisation was seen in 5/10 as extensive chromosome-wide monosomy (allelic state [A]) with near-haploid DNA indices and retention of especially chromosome 7 (seen as a heterozygous allelic state [AB]). In the remaining 5/10 chromosomal allelic states AA with near diploid DNA indices were seen with allelic state AABB of chromosome 7, suggesting endoreduplication after preceding haploidisation. The latter was supported by the presence of both near-haploid and endoreduplicated tumour fractions in some of the cases. Results were confirmed using FISH analysis. Relatively to FTC-OV limited numbers of genomic alterations were identified in other types of recurrent NMTC studied, except for chromosome 22q which showed alterations in 6 of 13 PTCs. Only two HRAS, but no mutations of EGFR or BRAF were found in FTC-OV. The validation cohort showed two additional tumours with the distinct pattern of genomic alterations (both with oncocytic features and recurrent). Conclusions We demonstrate that recurrent FTC-OV is frequently characterised by genome-wide DNA haploidisation, heterozygous retention of chromosome 7, and endoreduplication of a near-haploid genome. Whether normal gene dosage on especially chromosome 7 (containing EGFR, BRAF, cMET) is crucial for FTC-OV tumour survival is an important topic for future research. Microarrays Data are made available at GEO (GSE31828).
Collapse
MESH Headings
- Adenocarcinoma, Follicular
- Aged
- Aged, 80 and over
- Alleles
- Carcinoma, Neuroendocrine
- Chromosomes, Human, Pair 7/genetics
- Cohort Studies
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Disease Progression
- Female
- Flow Cytometry
- Gene Dosage/genetics
- Genes, Neoplasm/genetics
- Genome, Human/genetics
- Haploidy
- Homozygote
- Humans
- Male
- Middle Aged
- Models, Biological
- Oxyphil Cells/pathology
- Phenotype
- Polymorphism, Single Nucleotide/genetics
- Recurrence
- Reproducibility of Results
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Willem E. Corver
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (WEC); (HM)
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Weijers
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Noel de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Middeldorp
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Guido Hovens
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Smit
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (WEC); (HM)
| |
Collapse
|
24
|
Pereira L, Soares P, Máximo V, Samuels DC. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 2012; 12:53. [PMID: 22299657 PMCID: PMC3342922 DOI: 10.1186/1471-2407-12-53] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/02/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. METHODS Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. RESULTS The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. CONCLUSIONS Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype.
Collapse
Affiliation(s)
- Luísa Pereira
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
25
|
Geyer FC, de Biase D, Lambros MBK, Ragazzi M, Lopez-Garcia MA, Natrajan R, Mackay A, Kurelac I, Gasparre G, Ashworth A, Eusebi V, Reis-Filho JS, Tallini G. Genomic profiling of mitochondrion-rich breast carcinoma: chromosomal changes may be relevant for mitochondria accumulation and tumour biology. Breast Cancer Res Treat 2012; 132:15-28. [PMID: 21509527 DOI: 10.1007/s10549-011-1504-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/04/2011] [Indexed: 02/08/2023]
Abstract
Oncocytic carcinomas are composed of mitochondrion-rich cells. Though recognised by the WHO classification as a histological special type of breast cancer, their status as a discrete pathological entity remains a matter of contention. Given that oncocytic tumours of other anatomical sites display distinct clinico-pathological and molecular features, we sought to define the molecular genetic features of mitochondrion-rich breast tumours and to compare them with a series of histological grade- and oestrogen receptor status-matched invasive ductal carcinomas of no special type. Seventeen mitochondrion-rich breast carcinomas, including nine bona fide oncocytic carcinomas, were profiled with antibodies against oestrogen, progesterone and androgen receptors, HER2, Ki67, GCDFP-15, chromogranin, epithelial membrane antigen, cytokeratin 7, cytokeratin 14, CD68 and mitochondria antigen. These tumours were microdissected and DNA extracted from samples with >70% of tumour cells. Fourteen cases yielded DNA of sufficient quality/quantity and were subjected to high-resolution microarray comparative genomic hybridisation analysis. The genomic profiles were compared to those of 28 grade- and oestrogen receptor status-matched invasive ductal carcinomas of no special type. Oncocytic and other mitochondrion-rich tumours did not differ significantly between themselves. As a group, mitochondrion-rich carcinomas were immunophenotypically heterogenous. Recurrent copy number changes were similar to those described in unselected breast cancers. However, unsupervised and supervised analysis identified a subset of mitochondrion-rich cancers, which often displayed gains of 11q13.1-q13.2 and 19p13. Changes in the latter two chromosomal regions have been shown to be associated with oncocytic tumours of the kidney and thyroid, respectively, and host several nuclear genes with specific mitochondrial function. Our results indicate that in a way akin to oncocytic tumours of other anatomical sites, at least a subset of mitochondrion-rich breast carcinomas may be underpinned by a distinct pattern of chromosomal changes potentially relevant for mitochondria accumulation and constitute a discrete molecular entity.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Chromosome Aberrations
- Chromosomes, Human/genetics
- Chromosomes, Human/metabolism
- Cluster Analysis
- Comparative Genomic Hybridization
- Female
- Humans
- Middle Aged
- Mitochondria/pathology
- Mitochondrial Proteins/genetics
- Neoplasm Grading
- Phenotype
- Receptors, Estrogen/metabolism
Collapse
Affiliation(s)
- Felipe C Geyer
- The Breakthrough Breast Cancer Research Centre, ICR, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gasparre G, Kurelac I, Capristo M, Iommarini L, Ghelli A, Ceccarelli C, Nicoletti G, Nanni P, De Giovanni C, Scotlandi K, Betts CM, Carelli V, Lollini PL, Romeo G, Rugolo M, Porcelli AM. A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. Cancer Res 2011; 71:6220-9. [PMID: 21852384 DOI: 10.1158/0008-5472.can-11-1042] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The oncogenic versus suppressor roles of mitochondrial genes have long been debated. Peculiar features of mitochondrial genetics such as hetero/homoplasmy and mutation threshold are seldom taken into account in this debate. Mitochondrial DNA (mtDNA) mutations generally have been claimed to be protumorigenic, but they are also hallmarks of mostly benign oncocytic tumors wherein they help reduce adaptation to hypoxia by destabilizing hypoxia-inducible factor-1α (HIF1α). To determine the influence of a disassembling mtDNA mutation and its hetero/homoplasmy on tumorigenic and metastatic potential, we injected mice with tumor cells harboring different loads of the gene MTND1 m.3571insC. Cell cultures obtained from tumor xenografts were then analyzed to correlate energetic competence, apoptosis, α-ketoglutarate (α-KG)/succinate (SA) ratio, and HIF1α stabilization with the mutation load. A threshold level for the antitumorigenic effect of MTND1 m.3571insC mutation was defined, above which tumor growth and invasiveness were reduced significantly. Notably, HIF1α destabilization and downregulation of HIF1α-dependent genes occurred in cells and tumors lacking complex I (CI), where there was an associated imbalance of α-KG/SA despite the presence of an actual hypoxic environment. These results strongly implicate mtDNA mutations as a cause of oncocytic transformation. Thus, the antitumorigenic and antimetastatic effects of high loads of MTND1 m.3571insC, following CI disassembly, define a novel threshold-regulated class of cancer genes. We suggest these genes be termed oncojanus genes to recognize their ability to contribute either oncogenic or suppressive functions in mitochondrial settings during tumorigenesis.
Collapse
Affiliation(s)
- Giuseppe Gasparre
- Dipartimento di Scienze Ginecologiche, Ostetriche e Pediatriche, Genetica Medica, Università di Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vera-Sirera B, Pérez-Rojas J, López-Valdivia C, Jiménez E, Collado-Martín D, Vera-Sempere F. SDHB Expression in Warthin's Tumour. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2011. [DOI: 10.1016/j.otoeng.2011.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Gasparre G, Romeo G, Rugolo M, Porcelli AM. Learning from oncocytic tumors: Why choose inefficient mitochondria? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:633-42. [DOI: 10.1016/j.bbabio.2010.08.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/09/2010] [Accepted: 08/15/2010] [Indexed: 10/19/2022]
|
29
|
Vera-Sirera B, Pérez-Rojas J, López-Valdivia C, Jiménez E, Collado-Martín D, Vera-Sempere F. [SDHB expression in Warthin's tumour]. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2011; 62:355-62. [PMID: 21561594 DOI: 10.1016/j.otorri.2011.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/19/2011] [Accepted: 03/27/2011] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Succinic dehydrogenase subunit B (SDHB) is an enzyme belonging to the mitochondrial complex II. The aim of this study is to analyse SDHB expression in a series of Warthin's tumours, studying its relationship with oncocytic changes, constantly present in this form of tumour. MATERIAL AND METHODS In resection tumour specimens from a series of ten Warthin's tumours (all from the parotid gland), immunohistochemical expression of SDHB was analysed using a commercially-available monoclonal antibody. RESULTS The Warthin's tumours studied affected 10 men (mean age: 64.2 yrs, range 40-80), all with smoking habits, and 2 with metachronous bilateral involvement. Two patients presented associated urothelial carcinoma. Our SDHB study showed marked reactivity (++/+++) in all cases in the oncocytic epithelial component and also in striated duct cytoplasm (+) from non-tumorous parotid tissue. Expression was not influenced by age, smoking intensity or bilateral character. One of the tumours showed squamous metaplasia foci with SDHB-negativity at this level. DISCUSSION AND CONCLUSIONS Due to the constant and intense SDHB reactivity in oncocytic cells in our observations, oncocytic changes are not considered to be associated with defective enzyme activity in the mitochondrial complex II. Strong SDHB reactivity is an additional marker of oncocytic changes in Warthin's tumour. Neither of these facts has been described previously.
Collapse
|
30
|
Guerra F, Kurelac I, Cormio A, Zuntini R, Amato LB, Ceccarelli C, Santini D, Cormio G, Fracasso F, Selvaggi L, Resta L, Attimonelli M, Gadaleta MN, Gasparre G. Placing mitochondrial DNA mutations within the progression model of type I endometrial carcinoma. Hum Mol Genet 2011; 20:2394-405. [DOI: 10.1093/hmg/ddr146] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
31
|
|